1
|
Hassan MSH, Sharif S. Immune responses to avian influenza viruses in chickens. Virology 2025; 603:110405. [PMID: 39837219 DOI: 10.1016/j.virol.2025.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Chickens are a key species in both the manifestation of avian influenza and the potential for zoonotic transmission. Avian influenza virus (AIV) infection in chickens can range from asymptomatic or mild disease with low pathogenic AIVs (LPAIVs) to systemic fatal disease with high pathogenic AIVs (HPAIVs). During AIV infection in chickens, Toll-like receptor 7 and melanoma differentiation-associated gene 5 are upregulated to detect the single-stranded ribonucleic acid genomes of AIV, triggering a signaling cascade that produces interferons (IFNs) and pro-inflammatory cytokines. These inflammatory mediators induce the expression of antiviral proteins and recruit immune system cells, such as macrophages and dendritic cells, to the infection site. AIV evades these antiviral responses primarily through its non-structural protein 1, which suppresses type I IFNs, influencing viral pathogenicity. The uncontrolled release of pro-inflammatory cytokines may contribute to the pathogenicity and high mortality associated with HPAIV infections. AIV modulates apoptosis in chicken cells to enhance its replication, with variations in apoptosis pathways influenced by viral strain and host cell type. The presentation of AIV antigens to T and B cells leads to the production of neutralizing antibodies and the targeted destruction of infected cells by CD8+ T cells, respectively, which enhances protection and establishes immunological memory. This review explores the diverse innate and adaptive immune responses in chickens to different AIVs, focusing on the dynamics of these responses relative to protection, susceptibility, and potential immunopathology. By understanding these immune mechanisms, informed strategies for controlling AIV infection and improving chicken health can be developed.
Collapse
Affiliation(s)
- Mohamed S H Hassan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
2
|
Williams SL, Qi L, Sheng ZM, Xiao Y, Freeman A, Matthews L, Legaspi SF, Fodor E, Taubenberger JK. Effect of pandemic influenza A virus PB1 genes of avian origin on viral RNA polymerase activity and pathogenicity. SCIENCE ADVANCES 2024; 10:eads5735. [PMID: 39671482 PMCID: PMC11641000 DOI: 10.1126/sciadv.ads5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Zoonotic influenza A virus (IAV) infections pose a substantial threat to global health. The influenza RNA-dependent RNA polymerase (RdRp) comprises the PB2, PB1, and PA proteins. Of the last four pandemic IAVs, three featured avian-origin PB1 genes. Prior research linked these avian PB1 genes to increased viral fitness when reassorted with human IAV genes. This study evaluated chimeric RdRps with PB1 genes from the 1918, 1957, and 1968 pandemic IAVs in a low pathogenic avian influenza (LPAI) virus background to assess polymerase activity and pathogenicity. Substituting in the pandemic PB1 genes reduced polymerase activity, virulence, and altered lung pathology, while the native LPAI PB1 showed the highest pathogenicity and polymerase activity. The native LPAI PB1 virus caused severe pneumonia and high early viral RNA levels, correlating with elevated host cytokine signaling. Increased genetic distance from the LPAI PB1 sequence correlated with reduced polymerase activity, IFN-β expression, viral replication, and pathogenicity.
Collapse
Affiliation(s)
- Stephanie L. Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Zong-Mei Sheng
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ashley Freeman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lex Matthews
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sharon Fong Legaspi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institutes of Health, National Institute for Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
3
|
He X, Zhang S, Zou Z, Gao P, Yang L, Xiang B. Antiviral Effects of Avian Interferon-Stimulated Genes. Animals (Basel) 2024; 14:3062. [PMID: 39518785 PMCID: PMC11545081 DOI: 10.3390/ani14213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Interferons (IFNs) stimulate the expression of numerous IFN-stimulating genes via the Janus kinase-signal transducers and activators of the transcription (JAK-STAT) signaling pathway, which plays an important role in the host defense against viral infections. In mammals, including humans and mice, a substantial number of IFN-stimulated genes (ISGs) have been identified, and their molecular mechanisms have been elucidated. It is important to note that avian species are phylogenetically distant from mammals, resulting in distinct IFN-induced ISGs that may have different functions. At present, only a limited number of avian ISGs have been identified. In this review, we summarized the identified avian ISGs and their antiviral activities. As gene-editing technology is widely used in avian breeding, the identification of avian ISGs and the elucidation of their molecular mechanism may provide important support for the breeding of avians for disease resistance.
Collapse
Affiliation(s)
- Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyuan Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ziheng Zou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453000, China;
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Briggs K, Chrzastek K, Segovia K, Mo J, Kapczynski DR. Genetic insertion of mouse Myxovirus-resistance gene 1 increases innate resistance against both high and low pathogenic avian influenza virus by significantly decreasing replication in chicken DF1 cell line. Virology 2024; 595:110066. [PMID: 38574415 DOI: 10.1016/j.virol.2024.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Avian influenza virus (AIV) is a constant threat to animal health with recent global outbreaks resulting in the death of hundreds of millions of birds with spillover into mammals. Myxovirus-resistance (Mx) proteins are key mediators of the antiviral response that block virus replication. Mouse (Mu) Mx (Mx1) is a strong antiviral protein that interacts with the viral nucleoprotein to inhibit polymerase function. The ability of avian Mx1 to inhibit AIV is unclear. In these studies, Mu Mx1 was stably introduced into chicken DF1 cells to enhance the immune response against AIV. Following infection, titers of AIV were significantly decreased in cells expressing Mu Mx1. In addition, considerably less cytopathic effect (CPE) and matrix protein staining was observed in gene-edited cells expressing Mu Mx1, suggesting Mu Mx1 is broadly effective against multiple AIV subtypes. This work provides foundational studies for use of gene-editing to enhance innate disease resistance against AIV.
Collapse
Affiliation(s)
- Kelsey Briggs
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, Georgia
| | - Klaudia Chrzastek
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, Georgia
| | - Karen Segovia
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, Georgia
| | - Jongsuk Mo
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, Georgia
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, Georgia.
| |
Collapse
|
5
|
Farrukee R, Schwab LSU, Barnes JB, Brooks AG, Londrigan SL, Hartmann G, Zillinger T, Reading PC. Induction and antiviral activity of ferret myxovirus resistance (Mx) protein 1 against influenza A viruses. Sci Rep 2024; 14:13524. [PMID: 38866913 PMCID: PMC11169552 DOI: 10.1038/s41598-024-63314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Myxovirus resistance (Mx) proteins are products of interferon stimulated genes (ISGs) and Mx proteins of different species have been reported to mediate antiviral activity against a number of viruses, including influenza A viruses (IAV). Ferrets are widely considered to represent the 'gold standard' small animal model for studying pathogenesis and immunity to human IAV infections, however little is known regarding the antiviral activity of ferret Mx proteins. Herein, we report induction of ferret (f)Mx1/2 in a ferret lung cell line and in airway tissues from IAV-infected ferrets, noting that fMx1 was induced to higher levels that fMx2 both in vitro and in vivo. Overexpression confirmed cytoplasmic expression of fMx1 as well as its ability to inhibit infection and replication of IAV, noting that this antiviral effect of fMx1was modest when compared to cells overexpressing either human MxA or mouse Mx1. Together, these studies provide the first insights regarding the role of fMx1 in cell innate antiviral immunity to influenza viruses. Understanding similarities and differences in the antiviral activities of human and ferret ISGs provides critical context for evaluating results when studying human IAV infections in the ferret model.
Collapse
Affiliation(s)
- Rubaiyea Farrukee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
| | - Lara S U Schwab
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - James B Barnes
- Victorian Infectious Diseases Reference Laboratory, WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Patrick C Reading
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St., Victoria, 3000, Australia.
- Victorian Infectious Diseases Reference Laboratory, WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Victoria, 3000, Australia.
| |
Collapse
|
6
|
Banik A, Ahmed SR, Shahid SB, Ahmed T, Tamanna HK, Marma H. Therapeutic Promises of Plant Metabolites against Monkeypox Virus: An In Silico Study. Adv Virol 2023; 2023:9919776. [PMID: 37693295 PMCID: PMC10492655 DOI: 10.1155/2023/9919776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
The monkeypox virus was still spreading in May 2022, with the first case identified in a person with travel ties to Nigeria. Using molecular docking-based techniques, we evaluated the efficiency of different bioactive chemicals obtained from plants against the monkeypox virus. A total of 56 plant compounds were evaluated for antimonekypox capabilities, with the top four candidates having a higher binding affinity than the control. We targeted the monkeypox profilin-like protein, which plays a key role in viral replication and assembly. Among the metabolites, curcumin showed the strongest binding affinity with a value of -37.43 kcal/mol, followed by gedunin (-34.89 kcal/mol), piperine (-34.58 kcal/mol), and coumadin (-34.14 kcal/mol). Based on ADME and toxicity assessments, the top four substances had no negative impacts. Furthermore, four compounds demonstrated resistance to deformability, which was corroborated by normal mode analysis. According to the bioactivity prediction study, the top compound target class was an enzyme, membrane receptor, and oxidoreductase. Furthermore, the study discovered that wortmannin, a gedunin analogue, can behave as an orthopoxvirus. The study found that these bioactive natural drug candidates could potentially work as monkeypox virus inhibitors. We recommended further experimental validation to confirm the promising findings of the study.
Collapse
Affiliation(s)
- Anik Banik
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Sheikh Rashel Ahmed
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Sonia Binte Shahid
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tufayel Ahmed
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | | | - Hlamrasong Marma
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
7
|
Wang L, Xue Z, Wang J, Jian Y, Lu H, Ma H, Wang S, Zeng W, Zhang T. Targeted knockout of Mx in the DF-1 chicken fibroblast cell line impairs immune response against Newcastle disease virus. Poult Sci 2023; 102:102855. [PMID: 37390546 PMCID: PMC10331481 DOI: 10.1016/j.psj.2023.102855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023] Open
Abstract
Newcastle disease virus (NDV) is an RNA virus taking poultry as the host, and the Newcastle disease (ND) caused by NDV is one of the diseases with serious damage to the health of poultry. Mx encoding by myxovirus resistance gene, induced by type I interferon (IFN), has a wide range of antiviral and GTPase activities in human, mice, and other species via inhibition virus replication. However, the antiviral ability of chicken Mx is still a controversial issue. To explore the effect of chicken Mx post-NDV infection, Mx-knockout DF-1 cells were constructed via CRISPR/Cas9 gene editing system. The number of copies of NDV was detected by RT-qPCR, and the mRNA expression levels of IRF-7, IFN-α, IFN-β, TNF-α, p21, p27, and Bak in DF-1 cells were analyzed after NDV infection. Compared with control cells, virus titers were much higher in Mx-knockout DF-1 cells post-NDV infection. The deficiency of Mx aggravated the cell pathological features post-NDV infection, and promoted the expression levels of IRF-7, IFN-α, IFN-β, and pro-inflammatory cytokine TNF-α in host cells. In addition, cells with Mx deficiency could alleviate the harm from virus by enhancing the expression of p21, p27, and Bak, which related to cell proliferation apoptosis. In conclusion, Mx played an important role in antivirus invasion. In the absence of Mx, cells could alleviate the harm from virus infection via retarding cell proliferation and enhancing cell apoptosis.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong 723001, China
| | - Zhen Xue
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jinping Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Yuwen Jian
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong 723001, China; Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong 723001, China
| | - Haidong Ma
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong 723001, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong 723001, China; QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China; Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong 723001, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong 723001, China; QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China; Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong 723001, China.
| |
Collapse
|
8
|
Petric PP, Schwemmle M, Graf L. Anti-influenza A virus restriction factors that shape the human species barrier and virus evolution. PLoS Pathog 2023; 19:e1011450. [PMID: 37410755 DOI: 10.1371/journal.ppat.1011450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Affiliation(s)
- Philipp Peter Petric
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Graf
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Myxovirus resistance ( Mx) Gene Diversity in Avian Influenza Virus Infections. Biomedicines 2022; 10:biomedicines10112717. [PMID: 36359237 PMCID: PMC9687888 DOI: 10.3390/biomedicines10112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Avian influenza viruses (AIVs) pose threats to animal and human health. Outbreaks from the highly pathogenic avian influenza virus (HPAIV) in indigenous chickens in Bangladesh are infrequent. This could be attributed to the Myxovirus resistance (Mx) gene. To determine the impact of Mx gene diversity on AIV infections in chicken, we assessed the Mx genes, AIVs, and anti-AIV antibodies. DNA from blood cells, serum, and cloacal swab samples was isolated from non-vaccinated indigenous chickens and vaccinated commercial chickens. Possible relationships were assessed using the general linear model (GLM) procedure. Three genotypes of the Mx gene were detected (the resistant AA type, the sensitive GG type, and the heterozygous AG type). The AA genotype (0.48) was more prevalent than the GG (0.19) and the AG (0.33) genotypes. The AA genotype was more prevalent in indigenous than in commercial chickens. A total of 17 hemagglutinating viruses were isolated from the 512 swab samples. AIVs were detected in two samples (2/512; 0.39%) and subtyped as H1N1, whereas Newcastle disease virus (NDV) was detected in the remaining samples. The viral infections did not lead to apparent symptoms. Anti-AIV antibodies were detected in 44.92% of the samples with levels ranging from 27.37% to 67.65% in indigenous chickens and from 26% to 87.5% in commercial chickens. The anti-AIV antibody was detected in 40.16%, 65.98%, and 39.77% of chickens with resistant, sensitive, and heterozygous genotypes, respectively. The genotypes showed significant association (p < 0.001) with the anti-AIV antibodies. The low AIV isolation rates and high antibody prevalence rates could indicate seroconversion resulting from exposure to the virus as it circulates. Results indicate that the resistant genotype of the Mx gene might not offer anti-AIV protection for chickens.
Collapse
|
10
|
Coinfection by influenza A virus and respiratory syncytial virus produces hybrid virus particles. Nat Microbiol 2022; 7:1879-1890. [DOI: 10.1038/s41564-022-01242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
|
11
|
Zhang M, Liu M, Bai S, Zhao C, Li Z, Xu J, Zhang X. Influenza A Virus-Host Specificity: An Ongoing Cross-Talk Between Viral and Host Factors. Front Microbiol 2021; 12:777885. [PMID: 34803997 PMCID: PMC8602901 DOI: 10.3389/fmicb.2021.777885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
One big threat from influenza A viruses (IAVs) is that novel viruses emerge from mutation alongside reassortment. Some of them have gained the capability to transmit into human from the avian reservoir. Understanding the molecular events and the involved factors in breaking the cross-species barrier holds important implication for the surveillance and prevention of potential influenza outbreaks. In this review, we summarize recent progresses, including several ground-breaking findings, in how the interaction between host and viral factors, exemplified by the PB2 subunit of the influenza virus RNA polymerase co-opting host ANP32 protein to facilitate transcription and replication of the viral genome, shapes the evolution of IAVs from host specificity to cross-species infection.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences & Animal Influenza Virus Evolution and Pathogenesis Innovation Team of the Agricultural Science and Technology Innovation Team, Shanghai, China
| | - Mingbin Liu
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shimeng Bai
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Zhao
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences & Animal Influenza Virus Evolution and Pathogenesis Innovation Team of the Agricultural Science and Technology Innovation Team, Shanghai, China
| | - Jianqing Xu
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Anjum FR, ur Rahman S, Aslam MA, Qureshi AS. Antiviral potential and stability analysis of chicken interferon-α produced by Newcastle disease virus in chicken embryo fibroblast cells. VET MED-CZECH 2021; 66:197-207. [PMID: 40201855 PMCID: PMC11975359 DOI: 10.17221/106/2020-vetmed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/06/2021] [Indexed: 04/10/2025] Open
Abstract
Chicken interferon-α (chIFN-α) is an important antiviral cytokine and represents one of the first lines of the chicken's innate immune system. The current study is the first-ever report of chicken IFN (chIFN) production in Pakistan. In this study, we have used live and UV-irradiated Newcastle disease virus (NDV) to induce the expression of chIFN-α in chicken embryo fibroblast (CEF) cells. ChIFN-α was partially purified in a two-step protocol; ultracentrifugation followed by treatment with anti-chIFN-β antibodies. The purified chIFN-α was ana-lysed via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and the in vitro antiviral potential of chIFN-α was determined against the H9N2 avian influenza virus (AIV) via a cytopathic inhibition assay. The relative mRNA level of the IFN-stimulated genes (ISGs) in the IFN-stimulated CEF cells was measured at various time intervals by a quantitative polymerase chain reaction (qPCR). The stability of natural chIFN-α to the temperature, pH, and ultraviolet (UV) light was also determined. The in vivo therapeutic potential of chIFN-α was determined in 7-day-old broiler chickens challenged with AIV. We found that a higher chIFN-α expression level was induced by the UV-irradiated NDV in the CEF cells as compared to the live NDV. The UV-irradiated NDV induced the maximum IFN production in the CEF cells at 24 h post-infection. Two bands of 21 kDa on SDS-PAGE confirmed the presence of the chIFN-α protein. The cytopathic inhibition assay indicated the strong antiviral activity of chIFN-α against AIV. Our results of the stability analysis showed that chIFN-α was stable at a wide range of temperatures and pH levels. However, a little exposure to UV-light resulted in a significant loss of antiviral activity. We also observed that the antiviral activity of chIFN-α is related to the expression levels of the antiviral ISGs. The results of the in vivo study showed that the chIFN-α therapy via the oral route resulted in a significant improvement in the tracheal pathology of chickens challenged with AIV. In conclusion, we suggest that chIFN-α could be an important therapeutic tool to control avian influenza infection in poultry.
Collapse
Affiliation(s)
| | - Sajjad ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anas Sarwar Qureshi
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
13
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
14
|
Wang S, Xie L, Xie Z, Wan L, Huang J, Deng X, Xie ZQ, Luo S, Zeng T, Zhang Y, Zhang M, Zhou L. Dynamic Changes in the Expression of Interferon-Stimulated Genes in Joints of SPF Chickens Infected With Avian Reovirus. Front Vet Sci 2021; 8:618124. [PMID: 33614762 PMCID: PMC7892438 DOI: 10.3389/fvets.2021.618124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Avian reovirus (ARV) can induce many diseases as well as immunosuppression in chickens, severely endangering the poultry industry. Interferons (IFNs) play an antiviral role by inducing the expression of interferon-stimulated genes (ISGs). The effect of ARV infection on the expression of host ISGs is unclear. Specific-pathogen-free (SPF) chickens were infected with ARV strain S1133 in this study, and real time quantitative PCR was used to detect changes in the dynamic expression of IFNs and common ISGs in joints of SPF chickens. The results showed that the transcription levels of IFNA, IFNB, and several ISGs, including myxovirus resistance (MX), interferon-induced transmembrane protein 3 (IFITM3), protein kinase R (PKR), oligoadenylate synthase (OAS), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), interferon-stimulated gene 12 (ISG12), virus inhibitory protein (VIPERIN), interferon-alpha-inducible protein 6 (IFI6), and integrin-associated protein (CD47), were upregulated in joints on days 1–7 of infection (the levels of increase of MX, IFIT5, OAS, VIPERIN, ISG12, and IFI6 were the most significant, at hundreds-fold). In addition, the expression levels of the ISGs encoding zinc finger protein 313 (ZFP313), and DNA damage–inducible transcript 4 (DDIT4) increased suddenly on the 1st or 2nd day, then decreased to control levels. The ARV viral load in chicken joints rapidly increased after 1 day of viral challenge, and the viral load remained high within 6 days of viral challenge. The ARV viral load sharply decreased starting on day 7. These results indicate that in SPF chicken joints, many ISGs have mRNA expression patterns that are basically consistent with the viral load in joints. IFNA, IFNB, and the ISGs MX, IFITM3, PKR, OAS, IFIT5, ISG12, VIPERIN, IFI6, and CD47 play important roles in defending against ARV invasion, inhibiting ARV replication and proliferation, and promoting virus clearance. These results enrich our understanding of the innate immune response mechanisms of hosts against ARV infection and provide a theoretical basis for prevention and control of ARV infection.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China.,Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhi Qin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Gosu V, Shin D, Song KD, Heo J, Oh JD. Molecular modeling and dynamic simulation of chicken Mx protein with the S631N polymorphism. J Biomol Struct Dyn 2020; 40:612-621. [PMID: 32962555 DOI: 10.1080/07391102.2020.1819419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myxovirus resistance (Mx) proteins are antiviral GTPases induced by type I interferons (IFNs). In chickens, a single Mx protein variant, S631N, has been suggested to possess antiviral activity. However, the impact of this variant on chicken Mx (chMx) protein structure and conformation has not been investigated. Hence, in this study, we applied computational methods such as molecular modeling, molecular dynamic simulation, inter domain motion and residue networks to examine the structure and dynamic behavior of wild-type and mutant chMx. At first, we built 3-dimensional structural models for both wild-type and mutant chMx proteins, which revealed that the structural organization of chMx was similar to that of human Mx proteins. Subsequently, molecular dynamics simulations revealed that angle variation around the hinge1 region led to the different stalk domain conformations between the wild-type and mutant chMx proteins. Domain motion analysis further suggested that the conformational differences in the loop region surrounded by the mutant residue may lead to an inclined stalk domain conformation in the mutant compared to the wild-type protein. In addition, we performed betweenness centrality analysis from residue interaction networks, to identify the crucial residues for intramolecular signal flow in chMx. The results of this study provided information on the differences in structure and dynamics between wild-type and mutant chMx, which may aid in understanding the structural features of the S631N mutant, that may be associated with chMx protein antiviral activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, Republic of Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea.,The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, Republic of Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jaeyoung Heo
- International Agricultural Development and Cooperation Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
16
|
Sánchez-González R, Ramis A, Nofrarías M, Wali N, Valle R, Pérez M, Perlas A, Majó N. Pathobiology of the highly pathogenic avian influenza viruses H7N1 and H5N8 in different chicken breeds and role of Mx 2032 G/A polymorphism in infection outcome. Vet Res 2020; 51:113. [PMID: 32912265 PMCID: PMC7488313 DOI: 10.1186/s13567-020-00835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/27/2020] [Indexed: 11/10/2022] Open
Abstract
Chickens are highly susceptible to highly pathogenic avian influenza viruses (HPAIVs). However, the severity of infection varies depending of the viral strain and the genetic background of the host. In this study, we evaluated the pathogenesis of two HPAIVs (H7N1 and H5N8) and assessed the susceptibility to the infection of local and commercial chicken breeds from Spain. Eight chicken breeds were intranasally inoculated with 105 ELD50 of A/Chicken/Italy/5093/1999 (H7N1) or A/Goose/Spain/IA17CR02699/2017 (H5N8 clade 2.3.4.4. B) and monitored during 10 days. Chickens were highly susceptible to both HPAIVs, but H7N1 was considerably more virulent than H5N8 as demonstrated by the highest mortality rates and shortest mean death times (MDT). Both HPAIVs produced severe necrosis and intense viral replication in the central nervous system, heart and pancreas; however, the lesions and replication in other tissues were virus-dependent. High levels of viral RNA were detected by the oral route with both viruses. In contrast, a low number of H5N8-inoculated chickens shed by the cloacal route, demonstrating a different pattern of viral shedding dependent of the HPAIV. We found a high variation in the susceptibility to HPAIVs between the different chicken breeds. The birds carrying the genotype AA and AG at position 2032 in chicken Mx gene presented a slightly higher, but not significant, percentage of survival and a statistically significant longer MDT than GG individuals. Our study demonstrated that the severity of HPAI infection is largely dependent of the viral isolate and host factors, underlining the complexity of HPAI infections.
Collapse
Affiliation(s)
- Raúl Sánchez-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España. .,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.
| | - Antonio Ramis
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Miquel Nofrarías
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Nabil Wali
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Rosa Valle
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Albert Perlas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - Natàlia Majó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España.,Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| |
Collapse
|
17
|
Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol 2020; 17:67-81. [PMID: 30487536 DOI: 10.1038/s41579-018-0115-z] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Influenza A viruses cause pandemics when they cross between species and an antigenically novel virus acquires the ability to infect and transmit between these new hosts. The timing of pandemics is currently unpredictable but depends on ecological and virological factors. The host range of an influenza A virus is determined by species-specific interactions between virus and host cell factors. These include the ability to bind and enter cells, to replicate the viral RNA genome within the host cell nucleus, to evade host restriction factors and innate immune responses and to transmit between individuals. In this Review, we examine the host barriers that influenza A viruses of animals, especially birds, must overcome to initiate a pandemic in humans and describe how, on crossing the species barrier, the virus mutates to establish new interactions with the human host. This knowledge is used to inform risk assessments for future pandemics and to identify virus-host interactions that could be targeted by novel intervention strategies.
Collapse
Affiliation(s)
- Jason S Long
- Department of Medicine, Imperial College London, London, UK
| | - Bhakti Mistry
- Department of Medicine, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
18
|
Anjum FR, Rahman SU, Aslam MA, Qureshi AS. Comprehensive network map of transcriptional activation of chicken type I IFNs and IFN-stimulated genes. Comp Immunol Microbiol Infect Dis 2019; 68:101407. [PMID: 31877494 DOI: 10.1016/j.cimid.2019.101407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
Chicken type I interferons (type I IFNs) are key antiviral players of the chicken immune system and mediate the first line of defense against viral pathogens infecting the avian species. Recognition of viral pathogens by specific pattern recognition receptors (PRRs) induce chicken type I IFNs expression followed by their subsequent interaction to IFN receptors and induction of a variety of IFN stimulated antiviral proteins. These antiviral effectors establish the antiviral state in neighboring cells and thus protect the host from infection. Three subtypes of chicken type I IFNs; chIFN-α, chIFN-β, and a recently discovered chIFN-κ have been identified and characterized in chicken. Chicken type I IFNs are activated by various host cell pathways and constitute a major antiviral innate defense in chicken. This review will help to understand the chicken type 1 IFNs, host cellular pathways that are involved in activation of chicken type I IFNs and IFN stimulated antiviral effectors along with the gaps in knowledge which will be important for future investigation. These findings will help us to comprehend the role of chicken type I IFNs and to develop different strategies for controlling viral infection in poultry.
Collapse
Affiliation(s)
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anas Sarwar Qureshi
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
19
|
Haller O, Kochs G. Mx genes: host determinants controlling influenza virus infection and trans-species transmission. Hum Genet 2019; 139:695-705. [PMID: 31773252 PMCID: PMC7087808 DOI: 10.1007/s00439-019-02092-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
The human MxA protein, encoded by the interferon-inducible MX1 gene, is an intracellular influenza A virus (IAV) restriction factor. It can protect transgenic mice from severe IAV-induced disease, indicating a key role of human MxA for host survival and suggesting that natural variations in MX1 may account for inter-individual differences in disease severity among humans. MxA also provides a robust barrier against zoonotic transmissions of avian and swine IAV strains. Therefore, zoonotic IAV must acquire MxA escape mutations to achieve sustained human-to-human transmission. Here, we discuss recent progress in the field.
Collapse
Affiliation(s)
- Otto Haller
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Georg Kochs
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
|
21
|
Lee CC, Tung CY, Wu CC, Lin TL. AVIAN INNATE IMMUNITY WITH AN EMPHASIS ON CHICKEN MELANOMA DIFFERENTIATION-ASSOCIATED GENE 5 (MDA5). ACTA ACUST UNITED AC 2019. [DOI: 10.1142/s1682648519300016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Avian species have immune system to fight invading pathogens. The immune system comprises innate and adaptive immunity. Innate immunity relies on pattern recognition receptors to sense particular molecules present in pathogens, i.e. pathogen-associated molecular patterns (PAMPs), or danger signals in the environment, i.e. danger-associated molecular patterns (DAMPs). Cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs) are the sensors recognizing cytoplasmic PAMP and/or DAMP. Among common avian species, chickens do not have RIG-I whereas ducks and finches do. Therefore, the other RLR member, melanoma differentiation-associated gene 5 (MDA5), is believed to play an important role to recognize intracellular pathogens in chickens. Chicken MDA5 has been identified and its function determined. Chicken MDA5 maintains the same domain architecture compared with MDA5 analogs in other animal species. The expression of chicken MDA5 was upregulated when a synthetic double-stranded RNA (dsRNA), polyriboinosinic:polyribocytidylic acids (poly(I:C)), was transfected into chicken cells, whereas that did not change when cells were incubated with poly(I:C). The enhanced expression of chicken MDA5 in chicken cells upregulated the expression of chicken interferon-[Formula: see text] (IFN-[Formula: see text]). The infection of dsRNA infectious bursal disease virus (IBDV) in non-immune cells triggered the activation of chicken MDA5 signaling pathway, leading to the production of IFN-[Formula: see text] and subsequent response of IFN-stimulated genes. Furthermore, in immune cells like macrophages, chicken MDA5 participated in sensing the infection of IBDV by activating downstream antiviral genes and molecules and modulating adaptive immunity.On the contrary, one of cytoplasmic NLR member, NLR family pyrin domain containing 3 (NLRP3), was cloned and functionally characterized in chicken cells. Chicken NLRP3 conserved the same domain architecture compared with NLRP3 analogs in other animal species. Chicken NLRP3 was highly expressed in kidney, bursa of Fabricius and spleen. The production of mature chicken interleukin 1 [Formula: see text] (IL-1[Formula: see text] in chicken macrophages was stimulated by lipopolysaccharide (LPS) treatment followed by short ATP exposure.In summary, chicken MDA5 was a cytoplasmic dsRNA sensor that mediated the production of type I IFN upon ligand engagement, whereas NLRP3 sensed danger signals, such as ATP, in the cytoplasm and cleaved pro-IL-1[Formula: see text] to produce mature IL-1[Formula: see text]. Chicken MDA5 was not only involved in the activation of innate immune responses in non-immune and immune cells, but it also participated in modulating adaptive immunity in immune cells. Chicken NLRP3 participated in the production of mature chicken IL-1[Formula: see text] upon ligand engagement.
Collapse
Affiliation(s)
- Chih-Chun Lee
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chun-Yu Tung
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Ching Ching Wu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan 10617, R. O. C
| | - Tsang Long Lin
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Hussain S, Turnbull ML, Pinto RM, McCauley JW, Engelhardt OG, Digard P. Segment 2 from influenza A(H1N1) 2009 pandemic viruses confers temperature-sensitive haemagglutinin yield on candidate vaccine virus growth in eggs that can be epistatically complemented by PB2 701D. J Gen Virol 2019; 100:1079-1092. [PMID: 31169484 DOI: 10.1099/jgv.0.001279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Candidate vaccine viruses (CVVs) for seasonal influenza A virus are made by reassortment of the antigenic virus with an egg-adapted strain, typically A/Puerto Rico/8/34 (PR8). Many 2009 A(H1N1) pandemic (pdm09) high-growth reassortants (HGRs) selected this way contain pdm09 segment 2 in addition to the antigenic genes. To investigate this, we made CVV mimics by reverse genetics (RG) that were either 6 : 2 or 5 : 3 reassortants between PR8 and two pdm09 strains, A/California/7/2009 (Cal7) and A/England/195/2009, differing in the source of segment 2. The 5 : 3 viruses replicated better in MDCK-SIAT1 cells than the 6 : 2 viruses, but the 6 : 2 CVVs gave higher haemagglutinin (HA) antigen yields from eggs. This unexpected phenomenon reflected temperature sensitivity conferred by pdm09 segment 2, as the egg HA yields of the 5 : 3 viruses improved substantially when viruses were grown at 35 °C compared with 37.5 °C, whereas the 6 : 2 virus yields did not. However, the authentic 5 : 3 pdm09 HGRs, X-179A and X-181, were not markedly temperature sensitive despite their PB1 sequences being identical to that of Cal7, suggesting compensatory mutations elsewhere in the genome. Sequence comparisons of the PR8-derived backbone genes identified polymorphisms in PB2, NP, NS1 and NS2. Of these, PB2 N701D affected the temperature dependence of viral transcription and, furthermore, improved and drastically reduced the temperature sensitivity of the HA yield from the 5 : 3 CVV mimic. We conclude that the HA yield of pdm09 CVVs can be affected by an epistatic interaction between PR8 PB2 and pdm09 PB1, but that this can be minimized by ensuring that the backbones used for vaccine manufacture in eggs contain PB2 701D.
Collapse
Affiliation(s)
- Saira Hussain
- 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK.,2 The Francis Crick Institute, London, NW1 1AT, UK
| | - Matthew L Turnbull
- 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Rute M Pinto
- 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | | | - Othmar G Engelhardt
- 3 National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Paul Digard
- 1 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| |
Collapse
|
23
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
24
|
Creating Disease Resistant Chickens: A Viable Solution to Avian Influenza? Viruses 2018; 10:v10100561. [PMID: 30326625 PMCID: PMC6213529 DOI: 10.3390/v10100561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) represents an ongoing threat to human and animal health worldwide. The generation of IAV-resistant chickens through genetic modification and/or selective breeding may help prevent viral spread. The feasibility of creating genetically modified birds has already been demonstrated with the insertion of transgenes that target IAV into the genomes of chickens. This approach has been met with some success in minimising the spread of IAV but has limitations in terms of its ability to prevent the emergence of disease. An alternate approach is the use of genetic engineering to improve host resistance by targeting the antiviral immune responses of poultry to IAV. Harnessing such resistance mechanisms in a “genetic restoration” approach may hold the greatest promise yet for generating disease resistant chickens. Continuing to identify genes associated with natural resistance in poultry provides the opportunity to identify new targets for genetic modification and/or selective breeding. However, as with any new technology, economic, societal, and legislative barriers will need to be overcome before we are likely to see commercialisation of genetically modified birds.
Collapse
|
25
|
Birth and death of Mx genes and the presence/absence of genes regulating Mx transcription are correlated with the diversity of anti-pathogenicity in vertebrate species. Mol Genet Genomics 2018; 294:121-133. [DOI: 10.1007/s00438-018-1490-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/08/2018] [Indexed: 12/20/2022]
|
26
|
Hassanane MS, Hassan AA, Ahmed FM, El-Komy EM, Roushdy KM, Hassan NA. Identification of Mx gene nucleotide dimorphism (G/A) as genetic marker for antiviral activity in Egyptian chickens. J Genet Eng Biotechnol 2018; 16:83-88. [PMID: 30647709 PMCID: PMC6296577 DOI: 10.1016/j.jgeb.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/22/2017] [Accepted: 11/17/2017] [Indexed: 11/22/2022]
Abstract
Egyptian chickens, representing 2 breeds and 7 strains, were genotyped using the PCR-RFLP and sequencing techniques for detection of a non-synonymous dimorphism (G/A) in exon 14 of chicken Myxovirus resistance (Mx) gene. This dimorphic position is responsible for altering Mx protein's antiviral activity. Polymerase Chain reactions were performed using Egyptian chickens DNA and specific primer set to amplify Mx DNA fragments of 299 or 301 bp, containing the dimorphic position. Amplicons were cut with restriction enzyme Hpy81. Genotype and allele frequencies for the resistant allele A and sensitive allele G were calculated in all the tested chickens. Results of PCR-RFLP were confirmed by sequencing. The three genotypes AA, AG, GG at the target nucleotide position in Mx gene were represented in all the studied Egyptian chicken breeds and strains except Baladi strain which showed only one genotype AA. The average allele frequency of the resistant A allele in the tested birds (0.67) was higher than the sensitive G allele average frequency in the same birds (0.33). Appling PCR-RFLP technique in the breeding program can be used to select chickens carrying the A allele with high frequencies. This will help in improving poultry breeding in Egypt by producing infectious disease-resistant chickens.
Collapse
Affiliation(s)
| | | | - Fatma M. Ahmed
- Cell Biology Department, National Research Centre, Egypt
| | | | - Khaled M. Roushdy
- Poultry Breeding Dept., Animal Production Research Institute and Animal Genetic Resources Dept., National Gene Bank, Agricultural Research Center, Giza, Egypt
| | - Nagwa A. Hassan
- Department of Zoology, Faculty of Science, Ain Shams University, Egypt
| |
Collapse
|
27
|
Schilling MA, Katani R, Memari S, Cavanaugh M, Buza J, Radzio-Basu J, Mpenda FN, Deist MS, Lamont SJ, Kapur V. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection. Front Genet 2018. [PMID: 29535762 PMCID: PMC5835104 DOI: 10.3389/fgene.2018.00061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.
Collapse
Affiliation(s)
- Megan A Schilling
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Robab Katani
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,Applied Biological Research Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Sahar Memari
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Meredith Cavanaugh
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Joram Buza
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Jessica Radzio-Basu
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Fulgence N Mpenda
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
28
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
29
|
Santhakumar D, Rubbenstroth D, Martinez-Sobrido L, Munir M. Avian Interferons and Their Antiviral Effectors. Front Immunol 2017; 8:49. [PMID: 28197148 PMCID: PMC5281639 DOI: 10.3389/fimmu.2017.00049] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds.
Collapse
Affiliation(s)
| | - Dennis Rubbenstroth
- Institute for Virology, Faculty of Medicine, University Medical Center, University of Freiburg , Freiburg , Germany
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | | |
Collapse
|
30
|
Zeng M, Chen S, Wang M, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Chen X, Cheng A. Molecular identification and comparative transcriptional analysis of myxovirus resistance GTPase (Mx) gene in goose (Anser cygnoide) after H9N2 AIV infection. Comp Immunol Microbiol Infect Dis 2016; 47:32-40. [PMID: 27477505 DOI: 10.1016/j.cimid.2016.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/20/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Interferon (IFN)-induced myxovirus resistance (Mx) GTPases belong to the family of dynamin-like GTPases and control a diverse range of viruses. In this study, the identified goose Mx (goMx) mRNA is 2009bp long, shares partially conserved exons with other homologues, and shares highly conserved domains in its primary structure. The amino acid position 629 (629aa) of the goMx protein was identified as serine (Ser), in contrast to the Ser located at 631aa in chicken Mx, which is considered to be responsible for the lack of chicken Mx antiviral activity. In addition, the goMx 142aa residue in the dynamin family signature differs from that of other functional Mx proteins. Transcriptional analysis revealed that goMx was mainly expressed in the digestive, respiratory and immune systems in an age-specific manner. GoMx transcript levels in goose peripheral blood mononuclear cells (PBMCs) were found to be significantly up-regulated by various agonists and avian viruses. Furthermore, a time course study of the effects of H9N2 avian influenza virus (AIV) on goMx expression in infected goslings suggested that H9N2 AIV affected goMx expression. However, significant changes in goMx expression were observed in the trachea, lung and small intestine of infected birds. Altogether, these results indicate that goMx protein may have acquired its broad antiviral activity by changing only a few amino acids at select sites, even as it shares a conserved architectures with species.
Collapse
Affiliation(s)
- Miao Zeng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
31
|
Yuk SS, Lee DH, Park JK, Tseren-Ochir EO, Kwon JH, Noh JY, Lee JB, Park SY, Choi IS, Song CS. Pre-immune state induced by chicken interferon gamma inhibits the replication of H1N1 human and H9N2 avian influenza viruses in chicken embryo fibroblasts. Virol J 2016; 13:71. [PMID: 27121613 PMCID: PMC4847267 DOI: 10.1186/s12985-016-0527-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/17/2016] [Indexed: 12/27/2022] Open
Abstract
Background Interferon gamma (IFN-γ), an immunoregulatory cytokine, is known to control many microbial infections. In a previous study, chicken interferon gamma (chIFN-γ) was found to be up-regulated following avian influenza virus (AIV) infection in specific pathogen-free chickens. We aimed to investigate whether the pre-immune state induced by chIFN-γ could generate an antiviral response against influenza virus. Methods We generated a chIFN-γ-expressing plasmid and transfected it into chicken embryo fibroblasts (CEFs) and then infected the cells with human origin H1N1 or avian origin H9N2 influenza viruses. Viral titers of culture medium were evaluated in MDCK cell and the viral RNA and IFN-stimulated genes (ISGs) were then quantified by real-time reverse transcriptase polymerase. To further evaluate the role of the antiviral effect of chIFN-γ by using a backward approach, synthetic small interfering RNAs (siRNA) targeting chIFN-γ were used to suppress chIFN-γ. Results The chIFN-γ-stimulated CEFs inhibited the replication of viral RNA (vRNA) and showed a mild decrease in the infectious virus load released in the culture medium. Compared to the mock-transfected control, the messenger RNA (mRNA) levels of type I IFNs and IFN-stimulated genes were up-regulated in the cells expressing chIFN-γ. After treatment with the siRNA, we detected a higher expression of viral genes than that observed in the mock-transfected control. Conclusions Our results suggest that apart from the important role played by chIFN-γ in the antiviral state generated against influenza virus infection, the pre-immune state induced by chIFN-γ can be helpful in mitigating the propagation of influenza virus. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0527-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seong-Su Yuk
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dong-Hun Lee
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jae-Keun Park
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Erdene-Ochir Tseren-Ochir
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jung-Hoon Kwon
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jin-Yong Noh
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Joong-Bok Lee
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Seung-Yong Park
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - In-Soo Choi
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Chang-Seon Song
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea.
| |
Collapse
|
32
|
Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds. PLoS One 2016; 11:e0153649. [PMID: 27078641 PMCID: PMC4841636 DOI: 10.1371/journal.pone.0153649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV.
Collapse
|
33
|
Abstract
Skeletal muscle, at 30 to 40% of body mass, is the most abundant soft tissue in the body. Besides its primary function in movement and posture, skeletal muscle is a significant innate immune organ with the capacity to produce cytokines and chemokines and respond to proinflammatory cytokines. Little is known about the role of skeletal muscle during systemic influenza A virus infection in any host and particularly avian species. Here we used primary chicken and duck multinucleated myotubes to examine their susceptibility and innate immune response to influenza virus infections. Both chicken and duck myotubes expressed avian and human sialic acid receptors and were readily susceptible to low-pathogenicity (H2N3 A/mallard duck/England/7277/06) and high-pathogenicity (H5N1 A/turkey/England/50-92/91 and H5N1 A/turkey/Turkey/1/05) avian and human H1N1 (A/USSR/77) influenza viruses. Both avian host species produced comparable levels of progeny H5N1 A/turkey/Turkey/1/05 virus. Notably, the rapid accumulation of viral nucleoprotein and matrix (M) gene RNA in chicken and duck myotubes was accompanied by extensive cytopathic damage with marked myotube apoptosis (widespread microscopic blebs, caspase 3/7 activation, and annexin V binding at the plasma membrane). Infected chicken myotubes produced significantly higher levels of proinflammatory cytokines than did the corresponding duck cells. Additionally, in chicken myotubes infected with H5N1 viruses, the induction of interferon beta (IFN-β) and IFN-inducible genes, including the melanoma differentiation-associated protein 5 (MDA-5) gene, was relatively weak compared to infection with the corresponding H2N3 virus. Our findings highlight that avian skeletal muscle fibers are capable of productive influenza virus replication and are a potential tissue source of infection. IMPORTANCE Infection with high-pathogenicity H5N1 viruses in ducks is often asymptomatic, and skeletal muscle from such birds could be a source of infection of humans and animals. Little is known about the ability of influenza A viruses to replicate in avian skeletal muscle fibers. We show here that cultured chicken and duck myotubes were highly susceptible to infection with both low- and high-pathogenicity avian influenza viruses. Infected myotubes of both avian species displayed rapid virus accumulation, apoptosis, and extensive cellular damage. Our results indicate that avian skeletal muscle fibers of chicken and duck could be significant contributors to progeny production of highly pathogenic H5N1 viruses.
Collapse
|
34
|
Fulton JE, Arango J, Ali RA, Bohorquez EB, Lund AR, Ashwell CM, Settar P, O'Sullivan NP, Koci MD. Genetic variation within the Mx gene of commercially selected chicken lines reveals multiple haplotypes, recombination and a protein under selection pressure. PLoS One 2014; 9:e108054. [PMID: 25244433 PMCID: PMC4171530 DOI: 10.1371/journal.pone.0108054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022] Open
Abstract
The Mx protein is one of the best-characterized interferon-stimulated antiviral mediators. Mx homologs have been identified in most vertebrates examined; however, their location within the cell, their level of activity, and the viruses they inhibit vary widely. Recent studies have demonstrated multiple Mx alleles in chickens and some reports have suggested a specific variant (S631N) within exon 14 confers antiviral activity. In the current study, the complete genome of nine elite egg-layer type lines were sequenced and multiple variants of the Mx gene identified. Within the coding region and upstream putative promoter region 36 SNP variants were identified, producing a total of 12 unique haplotypes. Each elite line contained from one to four haplotypes, with many of these haplotypes being found in only one line. Observation of changes in haplotype frequency over generations, as well as recombination, suggested some unknown selection pressure on the Mx gene. Trait association analysis with either individual SNP or haplotypes showed a significant effect of Mx haplotype on several egg production related traits, and on mortality following Marek's disease virus challenge in some lines. Examination of the location of the various SNP within the protein suggests synonymous SNP tend to be found within structural or enzymatic regions of the protein, while non-synonymous SNP are located in less well defined regions. The putative resistance variant N631 was found in five of the 12 haplotypes with an overall frequency of 47% across the nine lines. Two Mx recombinants were identified within the elite populations, indicating that novel variation can arise and be maintained within intensively selected lines. Collectively, these results suggest the conflicting reports in the literature describing the impact of the different SNP on chicken Mx function may be due to the varying context of haplotypes present in the populations studied.
Collapse
Affiliation(s)
- Janet E. Fulton
- Hy-Line International, Dallas Center, Iowa, United States of America
- * E-mail: (JEF); (MDK)
| | - Jesus Arango
- Hy-Line International, Dallas Center, Iowa, United States of America
| | - Rizwana A. Ali
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Elaine B. Bohorquez
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ashlee R. Lund
- Hy-Line International, Dallas Center, Iowa, United States of America
| | - Chris M. Ashwell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Petek Settar
- Hy-Line International, Dallas Center, Iowa, United States of America
| | | | - Matthew D. Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (JEF); (MDK)
| |
Collapse
|
35
|
Cauldwell AV, Long JS, Moncorgé O, Barclay WS. Viral determinants of influenza A virus host range. J Gen Virol 2014; 95:1193-1210. [DOI: 10.1099/vir.0.062836-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Typical avian influenza A viruses are restricted from replicating efficiently and causing disease in humans. However, an avian virus can become adapted to humans by mutating or recombining with currently circulating human viruses. These viruses have the potential to cause pandemics in an immunologically naïve human population. It is critical that we understand the molecular basis of host-range restriction and how this can be overcome. Here, we review our current understanding of the mechanisms by which influenza viruses adapt to replicate efficiently in a new host. We predominantly focus on the influenza polymerase, which remains one of the least understood host-range barriers.
Collapse
Affiliation(s)
- Anna V. Cauldwell
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London W2 1PG, UK
| | - Jason S. Long
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London W2 1PG, UK
| | - Olivier Moncorgé
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London W2 1PG, UK
| | - Wendy S. Barclay
- Imperial College London, Faculty of Medicine, Division of Infectious Disease, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
36
|
Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol Mol Biol Rev 2014; 77:551-66. [PMID: 24296571 DOI: 10.1128/mmbr.00024-13] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fifty years after the discovery of the mouse Mx1 gene, researchers are still trying to understand the molecular details of the antiviral mechanisms mediated by Mx proteins. Mx proteins are evolutionarily conserved dynamin-like large GTPases, and GTPase activity is required for their antiviral activity. The expression of Mx genes is controlled by type I and type III interferons. A phylogenetic analysis revealed that Mx genes are present in almost all vertebrates, usually in one to three copies. Mx proteins are best known for inhibiting negative-stranded RNA viruses, but they also inhibit other virus families. Recent structural analyses provide hints about the antiviral mechanisms of Mx proteins, but it is not known how they can suppress such a wide variety of viruses lacking an obvious common molecular pattern. Perhaps they interact with a (partially) symmetrical invading oligomeric structure, such as a viral ribonucleoprotein complex. Such an interaction may be of a fairly low affinity, in line with the broad target specificity of Mx proteins, yet it would be strong enough to instigate Mx oligomerization and ring assembly. Such a model is compatible with the broad "substrate" specificity of Mx proteins: depending on the size of the invading viral ribonucleoprotein complexes that need to be wrapped, the assembly process would consume the necessary amount of Mx precursor molecules. These Mx ring structures might then act as energy-consuming wrenches to disassemble the viral target structure.
Collapse
|
37
|
|
38
|
Adams S, Xing Z, Li J, Mendoza K, Perez D, Reed K, Cardona C. The effect of avian influenza virus NS1 allele on virus replication and innate gene expression in avian cells. Mol Immunol 2013; 56:358-68. [DOI: 10.1016/j.molimm.2013.05.236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
39
|
Goossens KE, Ward AC, Lowenthal JW, Bean AGD. Chicken interferons, their receptors and interferon-stimulated genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:370-376. [PMID: 23751330 DOI: 10.1016/j.dci.2013.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
The prevalence of pathogenic viruses is a serious issue as they pose a constant threat to both the poultry industry and to human health. To prevent these viral infections an understanding of the host-virus response is critical, especially for the development of novel therapeutics. One approach in the control of viral infections would be to boost the immune response through administration of cytokines, such as interferons. However, the innate immune response in chickens is poorly characterised, particularly concerning the interferon pathway. This review will provide an overview of our current understanding of the interferon system of chickens, including their cognate receptors and known interferon-stimulated gene products.
Collapse
Affiliation(s)
- Kate E Goossens
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratories, Geelong, VIC, Australia
| | | | | | | |
Collapse
|
40
|
Mänz B, Dornfeld D, Götz V, Zell R, Zimmermann P, Haller O, Kochs G, Schwemmle M. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein. PLoS Pathog 2013; 9:e1003279. [PMID: 23555271 PMCID: PMC3610643 DOI: 10.1371/journal.ppat.1003279] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 02/13/2013] [Indexed: 12/27/2022] Open
Abstract
The interferon-induced dynamin-like MxA GTPase restricts the replication of influenza A viruses. We identified adaptive mutations in the nucleoprotein (NP) of pandemic strains A/Brevig Mission/1/1918 (1918) and A/Hamburg/4/2009 (pH1N1) that confer MxA resistance. These resistance-associated amino acids in NP differ between the two strains but form a similar discrete surface-exposed cluster in the body domain of NP, indicating that MxA resistance evolved independently. The 1918 cluster was conserved in all descendent strains of seasonal influenza viruses. Introduction of this cluster into the NP of the MxA-sensitive influenza virus A/Thailand/1(KAN-1)/04 (H5N1) resulted in a gain of MxA resistance coupled with a decrease in viral replication fitness. Conversely, introduction of MxA-sensitive amino acids into pH1N1 NP enhanced viral growth in Mx-negative cells. We conclude that human MxA represents a barrier against zoonotic introduction of avian influenza viruses and that adaptive mutations in the viral NP should be carefully monitored.
Collapse
Affiliation(s)
- Benjamin Mänz
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Dominik Dornfeld
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Veronika Götz
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Roland Zell
- Institute of Virology und Antiviral Therapy, Universitätsklinikum Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Petra Zimmermann
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Otto Haller
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
- * E-mail: (GK); (MS)
| | - Martin Schwemmle
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
- * E-mail: (GK); (MS)
| |
Collapse
|
41
|
Qu H, Yang L, Meng S, Xu L, Bi Y, Jia X, Li J, Sun L, Liu W. The differential antiviral activities of chicken interferon α (ChIFN-α) and ChIFN-β are related to distinct interferon-stimulated gene expression. PLoS One 2013; 8:e59307. [PMID: 23527158 PMCID: PMC3602166 DOI: 10.1371/journal.pone.0059307] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 02/15/2013] [Indexed: 01/26/2023] Open
Abstract
Chicken interferon α (ChIFN-α) and ChIFN-β are type I IFNs that are important antiviral cytokines in the innate immune system. In the present study, we identified the virus-induced expression of ChIFN-α and ChIFN-β in chicken fibroblast DF-1 cells and systematically evaluated the antiviral activities of recombinant ChIFN-α and ChIFN-β by cytopathic-effect (CPE) inhibition assays. We found that ChIFN-α exhibited stronger antiviral activity than ChIFN-β in terms of inhibiting the replication of vesicular stomatitis virus, Newcastle disease virus and avian influenza virus, respectively. To elucidate the mechanism of differential antiviral activities between the two ChIFNs, we measured the relative mRNA levels of IFN-stimulated genes (ISGs) in IFN-treated DF-1 cells by real-time PCR. ChIFN-α displayed greater induction potency than ChIFN-β on several ISGs encoding antiviral proteins and MHC-I, whereas ChIFN-α was less potent than ChIFN-β for inducing ISGs involved in signaling pathways. In conclusion, ChIFN-α and ChIFN-β presented differential induction potency on various sets of ISGs, and the stronger antiviral activity of ChIFN-α is likely attributed to the greater expression levels of downstream antiviral ISGs.
Collapse
Affiliation(s)
- Hongren Qu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Limin Yang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shanshan Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Lei Xu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Jia
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
- China-Japan Joint Laboratory of Molecular Immunology and Molecular Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Wang Y, Brahmakshatriya V, Lupiani B, Reddy S, Okimoto R, Li X, Chiang H, Zhou H. Associations of chicken Mx1 polymorphism with antiviral responses in avian influenza virus infected embryos and broilers. Poult Sci 2012; 91:3019-24. [DOI: 10.3382/ps.2012-02471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
43
|
Sasaki K, Yoneda A, Ninomiya A, Kawahara M, Watanabe T. Both antiviral activity and intracellular localization of chicken Mx protein depend on a polymorphism at amino acid position 631. Biochem Biophys Res Commun 2012. [PMID: 23201406 DOI: 10.1016/j.bbrc.2012.11.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Mx protein is known to inhibit the multiplication of several RNA viruses. In chickens, a polymorphism at amino acid position 631 (631 aa) of Mx protein has been suggested to be involved in the antiviral ability against vesicular stomatitis virus (VSV) and influenza virus, indicating that a Ser-to-Asn substitution at 631 aa is the source of this antiviral ability. However, how the substitution at 631 aa contributes to the antiviral activity remains to be clarified. In this study, we investigated differences in antiviral activity against VSV and intracellular localization between Ser and Asn types at 631 aa of the chicken Mx protein. The results showed that chicken Mx protein with an Asn at 631 aa inhibited VSV multiplication and Mx distribution in a granular-like pattern in the cytoplasm. However, Mx carrying the Ser type did not inhibit viral growth and homogenous spread throughout the cytoplasm. Furthermore, we found that replacing Ser with Asn at 631 aa provided Mx with antiviral activity against VSV, with Mx showing granular-like distribution in the cytoplasm. These results demonstrated that a single amino acid polymorphism at 631 aa of the chicken Mx protein altered both the antiviral activity and intracellular localization.
Collapse
Affiliation(s)
- Keisuke Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
44
|
Insight into alternative approaches for control of avian influenza in poultry, with emphasis on highly pathogenic H5N1. Viruses 2012. [PMID: 23202521 PMCID: PMC3509689 DOI: 10.3390/v4113179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry.
Collapse
|
45
|
Li B, Fu D, Zhang Y, Xu Q, Ni L, Chang G, Zheng M, Gao B, Sun H, Chen G. Partial antiviral activities of the Asn631 chicken Mx against newcastle disease virus and vesicular stomatitis virus. Mol Biol Rep 2012; 39:8415-24. [PMID: 22711303 DOI: 10.1007/s11033-012-1694-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
Conflicting data existed for the antiviral potential of the chicken Mx protein and the importance of the Asn631 polymorphism in determination of the antiviral activity. In this study we modified the chicken Mx cDNA from the Ser631 to Asn631 genotype and transfected them into COS-I cells, chicken embryonic fibroblast (CEF) or NIH 3T3 cells. The Mx protein was mainly located at the cytoplasm. The transfected cell cultures were challenged with newcastle disease virus (NDV) or vesicular stomatitis virus (VSV), cytopathic affect (CPE) inhibition assay showed that the times for development of visible and full CPE were significantly postponed by the Asn631 cDNA transfection at 48 h transfection, but not by the Ser631 cDNA transfection. Viral titration assay showed that the virus titers were significantly reduced before 72 h postinfection. CEF cells was incubated by the cell lysates extracted from the COS-I cells transfected with pcDNA-Mx/Asn631, could resist and delayed NDV infection. These data suggested the importance of the Asn631 polymorphism of the chicken Mx in determination of the antiviral activities against NDV and VSV at early stage of viral infection, which were relatively weak and not sufficient to inhibit the viral replication at late stage of viral infection.
Collapse
Affiliation(s)
- Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schusser B, Reuter A, von der Malsburg A, Penski N, Weigend S, Kaspers B, Staeheli P, Härtle S. Mx is dispensable for interferon-mediated resistance of chicken cells against influenza A virus. J Virol 2011; 85:8307-15. [PMID: 21632756 PMCID: PMC3147972 DOI: 10.1128/jvi.00535-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/24/2011] [Indexed: 12/14/2022] Open
Abstract
The type I interferon (IFN) system plays an important role in antiviral defense against influenza A viruses (FLUAV), which are natural chicken pathogens. Studies of mice identified the Mx1 protein as a key effector molecule of the IFN-induced antiviral state against FLUAV. Chicken Mx genes are highly polymorphic, and recent studies suggested that an Asn/Ser polymorphism at amino acid position 631 determines the antiviral activity of the chicken Mx protein. By employing chicken embryo fibroblasts with defined Mx-631 polymorphisms and retroviral vectors for the expression of Mx isoforms in chicken cells and embryonated eggs, we show here that neither the 631Asn nor the 631Ser variant of chicken Mx was able to confer antiviral protection against several lowly and highly pathogenic FLUAV strains. Using a short interfering RNA (siRNA)-mediated knockdown approach, we noted that the antiviral effect of type I IFN in chicken cells was not dependent on Mx, suggesting that some other IFN-induced factors must contribute to the inhibition of FLUAV in chicken cells. Finally, we found that both isoforms of chicken Mx protein appear to lack GTPase activity, which might explain the observed lack of antiviral activity.
Collapse
Affiliation(s)
| | - Antje Reuter
- Department of Virology, University Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | | | - Nicola Penski
- Department of Virology, University Freiburg, Germany
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich Loeffler Institute, Neustadt-Mariensee, Germany
| | - Bernd Kaspers
- Department of Veterinary Science, University Munich, Germany
| | | | - Sonja Härtle
- Department of Veterinary Science, University Munich, Germany
| |
Collapse
|
47
|
Abstract
Host restriction factors play a crucial role in preventing trans-species transmission of viral pathogens. In mammals, the interferon-induced Mx GTPases are powerful antiviral proteins restricting orthomyxoviruses. Hence, the human MxA GTPase may function as an efficient barrier against zoonotic introduction of influenza A viruses into the human population. Successful viruses are likely to acquire adaptive mutations allowing them to evade MxA restriction. We compared the 2009 pandemic influenza A virus [strain A/Hamburg/4/09 (pH1N1)] with a highly pathogenic avian H5N1 isolate [strain A/Thailand/1(KAN-1)/04] for their relative sensitivities to human MxA and murine Mx1. The H5N1 virus was highly sensitive to both Mx GTPases, whereas the pandemic H1N1 virus was almost insensitive. Substitutions of the viral polymerase subunits or the nucleoprotein (NP) in a polymerase reconstitution assay demonstrated that NP was the main determinant of Mx sensitivity. The NP of H5N1 conferred Mx sensitivity to the pandemic H1N1 polymerase, whereas the NP of pandemic H1N1 rendered the H5N1 polymerase insensitive. Reassortant viruses which expressed the NP of H5N1 in a pH1N1 genetic background and vice versa were generated. Congenic Mx1-positive mice survived intranasal infection with these reassortants if the challenge virus contained the avian NP. In contrast, they succumbed to infection if the NP of pH1N1 origin was present. These findings clearly indicate that the origin of NP determines Mx sensitivity and that human influenza viruses acquired adaptive mutations to evade MxA restriction. This also explains our previous observations that human and avian influenza A viruses differ in their sensitivities to Mx.
Collapse
|
48
|
Foeglein Á, Loucaides EM, Mura M, Wise HM, Barclay WS, Digard P. Influence of PB2 host-range determinants on the intranuclear mobility of the influenza A virus polymerase. J Gen Virol 2011; 92:1650-1661. [PMID: 21471313 PMCID: PMC3167894 DOI: 10.1099/vir.0.031492-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Avian influenza A viruses often do not propagate efficiently in mammalian cells. The viral polymerase protein PB2 is important for this host restriction, with amino-acid polymorphisms at residue 627 and other positions acting as ‘signatures’ of avian- or human-adapted viruses. Restriction is hypothesized to result from differential interactions (either positive or inhibitory) with unidentified cellular factors. We applied fluorescence recovery after photobleaching (FRAP) to investigate the mobility of the viral polymerase in the cell nucleus using A/PR/8/34 and A/Turkey/England/50-92/91 as model strains. As expected, transcriptional activity of a polymerase with the avian PB2 protein was strongly dependent on the identity of residue 627 in human but not avian cells, and this correlated with significantly slower diffusion of the inactive polymerase in human but not avian nuclei. In contrast, the activity and mobility of the PR8 polymerase was affected much less by residue 627. Sequence comparison followed by mutagenic analyses identified residues at known host-range-specific positions 271, 588 and 701 as well as a novel determinant at position 636 as contributors to host-specific activity of both PR8 and Turkey PB2 proteins. Furthermore, the correlation between poor transcriptional activity and slow diffusional mobility was maintained. However, activity did not obligatorily correlate with predicted surface charge of the 627 domain. Overall, our data support the hypothesis of a host nuclear factor that interacts with the viral polymerase and modulates its activity. While we cannot distinguish between positive and inhibitory effects, the data have implications for how such factors might operate.
Collapse
Affiliation(s)
- Ágnes Foeglein
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Eva M Loucaides
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | - Helen M Wise
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | - Paul Digard
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
49
|
Ewald SJ, Kapczynski DR, Livant EJ, Suarez DL, Ralph J, McLeod S, Miller C. Association of Mx1 Asn631 variant alleles with reductions in morbidity, early mortality, viral shedding, and cytokine responses in chickens infected with a highly pathogenic avian influenza virus. Immunogenetics 2011; 63:363-75. [PMID: 21286706 DOI: 10.1007/s00251-010-0509-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/27/2010] [Indexed: 12/18/2022]
Abstract
Myxovirus-resistance (Mx) proteins are produced by host cells in response to type I interferons, and some members of the Mx gene family in mammals have been shown to limit replication of influenza and other viruses. According to an early report, chicken Mx1 variants encoding Asn at position 631 have antiviral activity, whereas variants with Ser at 631 lack activity in experiments evaluating Mx1 complementary DNA (cDNA) expressed ectopically in a cell line. We evaluated whether the Mx1 631 dimorphism influenced pathogenesis of highly pathogenic avian influenza virus (HPAIV) infection in chickens of two commercial broiler lines, each segregating for Asn631 and Ser631 variants. Following intranasal infection with HPAIV strain A/Chicken/Queretaro/14588-19/1995 H5N2, chickens homozygous for Asn631 allele were significantly more resistant to disease based on early mortality, morbidity, or virus shedding than Ser631 homozygotes. Higher amounts of splenic cytokine transcripts were observed in the Ser631 birds after infection, consistent with higher viral loads seen in this group and perhaps contributing to their higher morbidity. Nucleotide sequence determination of Mx1 cDNAs demonstrated that the Asn631 variants in the two chicken lines differed at several amino acid positions outside 631. In vitro experiments with a different influenza strain (low pathogenicity) failed to demonstrate an effect of Mx1 Asn631 on viral replication suggesting that in vivo responses may differ markedly from in vitro, or that choice of virus strain may be critical in demonstrating effects of chicken Mx1. Overall, these studies provide the first evidence that Mx1 has antiviral effects in chickens infected with influenza virus.
Collapse
Affiliation(s)
- Sandra J Ewald
- Department of Pathobiology, Auburn University, 166 Greene Hall, Auburn, AL 36849-5519, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Haller O, Kochs G. Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res 2010; 31:79-87. [PMID: 21166595 DOI: 10.1089/jir.2010.0076] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human myxovirus resistance protein 1 (MxA) is a key mediator of the interferon-induced antiviral response against a wide range of viruses. MxA expression is tightly regulated by type I and type III interferons, requires signal transducer and activator of transcription 1 signaling, and is not inducible directly by viruses or other stimuli. MxA shares many properties with the dynamin superfamily of large GTPases. It consists of 3 domains, namely, an N-terminal GTPase domain that binds and hydrolyses GTP, a middle domain mediating self-assembly, and a carboxy-terminal GTPase effector domain. Like dynamin, MxA has the ability to self-assemble into highly ordered oligomers and to form ring-like structures around liposomes, inducing liposome tubulation. The structural details of MxA oligomerization have recently been elucidated, providing new insights into the antiviral mechanism of this mechanochemical enzyme. The structural and functional data suggest that MxA targets the nucleoprotein of MxA-sensitive viruses. Thus, MxA may form oligomeric rings around tubular nucleocapsid structures, thereby inhibiting their transcriptional and replicative function. Here we briefly review the most salient features of MxA expression and antiviral function.
Collapse
Affiliation(s)
- Otto Haller
- Department of Virology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|