1
|
Baek SH, Park JE. Swine Acute Diarrhea Syndrome Coronavirus: An Overview of Virus Structure and Virus-Host Interactions. Animals (Basel) 2025; 15:149. [PMID: 39858149 PMCID: PMC11758606 DOI: 10.3390/ani15020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
SADS-CoV, a recently identified Rhinolophus bat coronavirus HKU2-associated swine coronavirus, is a malignant pathogen that causes acute diarrhea, severe diarrhea, and weight loss in infected piglets. The virus was first detected in Guangdong Province, China, in 2017 and has since been observed in Jiangxi, Fujian, and Guangxi Provinces. In 2023, the virus was detected in Henan Province, in inland China. This virus can infect various cell lines, including human cell lines, showing significant potential for cross-species transmission and posing a possible zoonotic threat. However, the molecular biology of SADS-CoV remains largely unknown, and there are no commercially available therapeutics or vaccines to prevent SADS-CoV infection. In this review, an update on progress in SADS-CoV research is provided, with a focus on the history of outbreaks, the characteristics of the virus, its interactions with the host, and developments in therapeutics and vaccines.
Collapse
Affiliation(s)
- Seung-Hwa Baek
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Eun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Das A, Rivera-Serrano EE, Yin X, Walker CM, Feng Z, Lemon SM. Cell entry and release of quasi-enveloped human hepatitis viruses. Nat Rev Microbiol 2023; 21:573-589. [PMID: 37185947 PMCID: PMC10127183 DOI: 10.1038/s41579-023-00889-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Infectious hepatitis type A and type E are caused by phylogenetically distinct single-stranded, positive-sense RNA viruses that were once considered to be non-enveloped. However, studies show that both are released nonlytically from hepatocytes as 'quasi-enveloped' virions cloaked in host membranes. These virion types predominate in the blood of infected individuals and mediate virus spread within the liver. They lack virally encoded proteins on their surface and are resistant to neutralizing anti-capsid antibodies induced by infection, yet they efficiently enter cells and initiate new rounds of virus replication. In this Review, we discuss the mechanisms by which specific peptide sequences in the capsids of these quasi-enveloped virions mediate their endosomal sorting complexes required for transport (ESCRT)-dependent release from hepatocytes through multivesicular endosomes, what is known about how they enter cells, and the impact of capsid quasi-envelopment on host immunity and pathogenesis.
Collapse
Affiliation(s)
- Anshuman Das
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lentigen Technology, Inc., Gaithersburg, MD, USA
| | - Efraín E Rivera-Serrano
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Elon University, Elon, NC, USA
| | - Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Huang Y, Li Q, Kang L, Li B, Ye H, Duan X, Xie H, Jiang M, Li S, Zhu Y, Tan Q, Chen L. Mitophagy Activation Targeting PINK1 Is an Effective Treatment to Inhibit Zika Virus Replication. ACS Infect Dis 2023; 9:1424-1436. [PMID: 37300493 DOI: 10.1021/acsinfecdis.3c00196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mitophagy is a selective degradation mechanism that maintains mitochondrial homeostasis by eliminating damaged mitochondria. Many viruses manipulate mitophagy to promote their infection, but its role in Zika virus (ZIKV) is unclear. In this study, we investigated the effect of mitophagy activation on ZIKV replication by the mitochondrial uncoupling agent niclosamide. Our results demonstrate that niclosamide-induced mitophagy inhibits ZIKV replication by eliminating fragmented mitochondria, both in vitro and in a mouse model of ZIKV-induced necrosis. Niclosamide induces autophosphorylation of PTEN-induced putative kinase 1 (PINK1), leading to the recruitment of PRKN/Parkin to the outer mitochondrial membrane and subsequent phosphorylation of ubiquitin. Knockdown of PINK1 promotes ZIKV infection and rescues the anti-ZIKV effect of mitophagy activation, confirming the role of ubiquitin-dependent mitophagy in limiting ZIKV replication. These findings demonstrate the role of mitophagy in the host response in limiting ZIKV replication and identify PINK1 as a potential therapeutic target in ZIKV infection.
Collapse
Affiliation(s)
- Yike Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Qingyuan Li
- North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Lan Kang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Bin Li
- Joint Laboratory on Transfusion-transmitted Infectious Diseases between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Nanning City, Nanning 530007, Guangxi, China
| | - Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - He Xie
- The Hospital of Xidian Group, Xian 710077, Shaanxi, China
| | - Man Jiang
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150000, Heilongjiang, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Ya Zhu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Qi Tan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu 610052, Sichuan, China
- Joint Laboratory on Transfusion-transmitted Infectious Diseases between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Nanning City, Nanning 530007, Guangxi, China
- The Hospital of Xidian Group, Xian 710077, Shaanxi, China
| |
Collapse
|
4
|
Zeng S, Zhao Y, Peng O, Xia Y, Xu Q, Li H, Xue C, Cao Y, Zhang H. Swine Acute Diarrhea Syndrome Coronavirus Induces Autophagy to Promote Its Replication via the Akt/mTOR Pathway. iScience 2022; 25:105394. [PMID: 36281226 PMCID: PMC9581643 DOI: 10.1016/j.isci.2022.105394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/06/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enveloped, single-stranded, positive-sense RNA virus belonging to the Coronaviridae family. Increasingly studies have demonstrated that viruses could utilize autophagy to promote their own replication. However, the relationship between SADS-CoV and autophagy remains unknown. Here, we reported that SADS-CoV infection-induced autophagy and pharmacologically increased autophagy were conducive to viral proliferation. Conversely, suppression of autophagy by pharmacological inhibitors or knockdown of autophagy-related protein impeded viral replication. Furthermore, we demonstrated the underlying mechanism by which SADS-CoV triggered autophagy through the inactivation of the Akt/mTOR pathway. Importantly, we identified integrin α3 (ITGA3) as a potential antiviral target upstream of Akt/mTOR and autophagy pathways. Knockdown of ITGA3 enhanced autophagy and consequently increased the replication of SADS-CoV. Collectively, our studies revealed a novel mechanism that SADS-CoV-induced autophagy to facilitate its proliferation via Akt/mTOR pathway and found that ITGA3 was an effective antiviral factor for suppressing viral infection. SADS-CoV triggers autophagy pathway to facilitate its proliferation Inhibition of autophagy flux impairs SADS-CoV replication SADS-CoV negatively regulates Akt/mTOR pathway to induce autophagy ITGA3 prevents SADS-CoV production through autophagy inhibition
Collapse
Affiliation(s)
- Siying Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yan Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Xia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hongmei Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China,Corresponding author
| |
Collapse
|
5
|
Jia D, Liang Q, Liu H, Li G, Zhang X, Chen Q, Wang A, Wei T. A nonstructural protein encoded by a rice reovirus induces an incomplete autophagy to promote viral spread in insect vectors. PLoS Pathog 2022; 18:e1010506. [PMID: 35533206 PMCID: PMC9119444 DOI: 10.1371/journal.ppat.1010506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/19/2022] [Accepted: 04/06/2022] [Indexed: 01/04/2023] Open
Abstract
Viruses can hijack autophagosomes as the nonlytic release vehicles in cultured host cells. However, how autophagosome-mediated viral spread occurs in infected host tissues or organs in vivo remains poorly understood. Here, we report that an important rice reovirus, rice gall dwarf virus (RGDV) hijacks autophagosomes to traverse multiple insect membrane barriers in the midgut and salivary gland of leafhopper vector to enhance viral spread. Such virus-containing double-membraned autophagosomes are prevented from degradation, resulting in increased viral propagation. Mechanistically, viral nonstructural protein Pns11 induces autophagy and embeds itself in the autophagosome membranes. The autophagy-related protein 5 (ATG5)-ATG12 conjugation is essential for initial autophagosome membrane biogenesis. RGDV Pns11 specifically interacts with ATG5, both in vitro and in vivo. Silencing of ATG5 or Pns11 expression suppresses ATG8 lipidation, autophagosome formation, and efficient viral propagation. Thus, Pns11 could directly recruit ATG5-ATG12 conjugation to induce the formation of autophagosomes, facilitating viral spread within the insect bodies. Furthermore, Pns11 potentially blocks autophagosome degradation by directly targeting and mediating the reduced expression of N-glycosylated Lamp1 on lysosomal membranes. Taken together, these results highlight how RGDV remodels autophagosomes to benefit viral propagation in its insect vector. Numerous plant viruses replicate inside the cells of their insect vectors. Here, we demonstrate that the progeny virions of rice gall dwarf virus in leafhopper vector are engulfed within virus-induced double-membraned autophagosomes. Such autophagosomes are modified to evade degradation, thus can be persistently exploited by viruses to safely transport virions across multiple insect membrane barriers. Viral nonstructural protein Pns11 induces the formation of autophagosomes via interaction with ATG5, and potentially blocks autophagosome degradation via mediating the reduced expression of N-glycosylated Lamp1 on lysosomal membranes. For the first time, we reveal that a nonstructural protein encoded by a persistent plant virus can induce an incomplete autophagy to benefit viral propagation in its insect vectors.
Collapse
Affiliation(s)
- Dongsheng Jia
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qifu Liang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huan Liu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guangjun Li
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Taiyun Wei
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
6
|
Interaction of Poliovirus Capsid Proteins with the Cellular Autophagy Pathway. Viruses 2021; 13:v13081587. [PMID: 34452452 PMCID: PMC8402707 DOI: 10.3390/v13081587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
The capsid precursor P1 constitutes the N-terminal part of the enterovirus polyprotein. It is processed into VP0, VP3, and VP1 by the viral proteases, and VP0 is cleaved autocatalytically into VP4 and VP2. We observed that poliovirus VP0 is recognized by an antibody against a cellular autophagy protein, LC3A. The LC3A-like epitope overlapped the VP4/VP2 cleavage site. Individually expressed VP0-EGFP and P1 strongly colocalized with a marker of selective autophagy, p62/SQSTM1. To assess the role of capsid proteins in autophagy development we infected different cells with poliovirus or encapsidated polio replicon coding for only the replication proteins. We analyzed the processing of LC3B and p62/SQSTM1, markers of the initiation and completion of the autophagy pathway and investigated the association of the viral antigens with these autophagy proteins in infected cells. We observed cell-type-specific development of autophagy upon infection and found that only the virion signal strongly colocalized with p62/SQSTM1 early in infection. Collectively, our data suggest that activation of autophagy is not required for replication, and that capsid proteins contain determinants targeting them to p62/SQSTM1-dependent sequestration. Such a strategy may control the level of capsid proteins so that viral RNAs are not removed from the replication/translation pool prematurely.
Collapse
|
7
|
Sargazi S, Sheervalilou R, Rokni M, Shirvaliloo M, Shahraki O, Rezaei N. The role of autophagy in controlling SARS-CoV-2 infection: An overview on virophagy-mediated molecular drug targets. Cell Biol Int 2021; 45:1599-1612. [PMID: 33818861 PMCID: PMC8251464 DOI: 10.1002/cbin.11609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022]
Abstract
Autophagy-dependent cell death is a prominent mechanism that majorly contributes to homeostasis by maintaining the turnover of organelles under stressful conditions. Several viruses, including coronaviruses (CoVs), take advantage of cellular autophagy to facilitate their own replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-coronavirus (β-CoVs) that mediates its replication through a dependent or independent ATG5 pathway using specific double-membrane vesicles that can be considered as similar to autophagosomes. With due attention to several mutations in NSP6, a nonstructural protein with a positive regulatory effect on autophagosome formation, a potential correlation between SARS-CoV-2 pathogenesis mechanisms and autophagy can be expected. Certain medications, albeit limited in number, have been indicated to negatively regulate autophagy flux, potentially in a way similar to the inhibitory effect of β-CoVs on the process of autophagy. However, there is no conclusive evidence to support their direct antagonizing effect on CoVs. Off-target accumulation of a major fraction of FDA-approved autophagy modulating drugs may result in adverse effects. Therefore, medications that have modulatory effects on autophagy could be considered as potential lead compounds for the development of new treatments against this virus. This review discusses the role of autophagy/virophagy in controlling SARS-CoV-2, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis InstituteZahedan University of Medical SciencesZahedanIran
| | | | - Mohsen Rokni
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Milad Shirvaliloo
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Omolbanin Shahraki
- Pharmacology Research CenterZahedan University of Medical SciencesZahedanIran
| | - Nima Rezaei
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for Immunodeficiencies, Children's Medical CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Li M, Xing D, Su D, Wang D, Gao H, Lan C, Gu Z, Zhao T, Li C. Transcriptome Analysis of Responses to Dengue Virus 2 Infection in Aedes albopictus (Skuse) C6/36 Cells. Viruses 2021; 13:v13020343. [PMID: 33671824 PMCID: PMC7926344 DOI: 10.3390/v13020343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Dengue virus (DENV), a member of the Flavivirus genus of the Flaviviridae family, can cause dengue fever (DF) and more serious diseases and thus imposes a heavy burden worldwide. As the main vector of DENV, mosquitoes are a serious hazard. After infection, they induce a complex host–pathogen interaction mechanism. Our goal is to further study the interaction mechanism of viruses in homologous, sensitive, and repeatable C6/36 cell vectors. Transcriptome sequencing (RNA-Seq) technology was applied to the host transcript profiles of C6/36 cells infected with DENV2. Then, bioinformatics analysis was used to identify significant differentially expressed genes and the associated biological processes. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to verify the sequencing data. A total of 1239 DEGs were found by transcriptional analysis of Aedes albopictus C6/36 cells that were infected and uninfected with dengue virus, among which 1133 were upregulated and 106 were downregulated. Further bioinformatics analysis showed that the upregulated DEGs were significantly enriched in signaling pathways such as the MAPK, Hippo, FoxO, Wnt, mTOR, and Notch; metabolic pathways and cellular physiological processes such as autophagy, endocytosis, and apoptosis. Downregulated DEGs were mainly enriched in DNA replication, pyrimidine metabolism, and repair pathways, including BER, NER, and MMR. The qRT-PCR results showed that the concordance between the RNA-Seq and RT-qPCR data was very high (92.3%). The results of this study provide more information about DENV2 infection of C6/36 cells at the transcriptome level, laying a foundation for further research on mosquito vector–virus interactions. These data provide candidate antiviral genes that can be used for further functional verification in the future.
Collapse
|
9
|
Cyclovirobuxine D inhibits dengue virus replication by impeding the complete autophagy in a cholesterol-dependent manner. Sci Bull (Beijing) 2021; 66:284-296. [PMID: 36654334 DOI: 10.1016/j.scib.2020.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/28/2020] [Accepted: 08/12/2020] [Indexed: 01/20/2023]
Abstract
Dengue virus (DENV) is the most common mosquito-borne flavivirus, and it affects millions of people globally every year. Currently, there are no approved drugs for the treatment of dengue infection. By screening a natural product library, we identified a novel compound, cyclovirobuxine D (Cvb D), that displays anti-DENV activity. Cvb D inhibits DENV replication in vitro in a dose-dependent manner and protects suckling mice against lethal DENV infection. Mechanistically, Cvb D regulates the expression of genes related to the cellular cholesterol pathway. As a result, Cvb D increases cellular cholesterol synthesis and accumulation, activates mTOR, and inhibits viral-dependent autophagy. Cvb D does not suppress autophagy initiation but impedes the nuclear translocation of the lysosome transcription factor TFEB. In addition, Cvb D restricts the replication of other positive-strand RNA viruses such as Zika virus and Coxsackievirus B3. We speculate that Cvb D could be a broad-spectrum antiviral drug candidate for use against positive-strand RNA viruses that require autophagy for optimal replication.
Collapse
|
10
|
Dai X, Hakizimana O, Zhang X, Kaushik AC, Zhang J. Orchestrated efforts on host network hijacking: Processes governing virus replication. Virulence 2021; 11:183-198. [PMID: 32050846 PMCID: PMC7051146 DOI: 10.1080/21505594.2020.1726594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the high pervasiveness of viral diseases, the battle against viruses has never ceased. Here we discuss five cellular processes, namely "autophagy", "programmed cell death", "immune response", "cell cycle alteration", and "lipid metabolic reprogramming", that considerably guide viral replication after host infection in an orchestrated manner. On viral infection, "autophagy" and "programmed cell death" are two dynamically synchronized cell survival programs; "immune response" is a cell defense program typically suppressed by viruses; "cell cycle alteration" and "lipid metabolic reprogramming" are two altered cell housekeeping programs tunable in both directions. We emphasize on their functionalities in modulating viral replication, strategies viruses have evolved to tune these processes for their benefit, and how these processes orchestrate and govern cell fate upon viral infection. Understanding how viruses hijack host networks has both academic and industrial values in providing insights toward therapeutic strategy design for viral disease control, offering useful information in applications that aim to use viral vectors to improve human health such as gene therapy, and providing guidelines to maximize viral particle yield for improved vaccine production at a reduced cost.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Xuanhao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, University of Texas at El Paso, EI Paso, TX, USA
| |
Collapse
|
11
|
Brest P, Benzaquen J, Klionsky DJ, Hofman P, Mograbi B. Open questions for harnessing autophagy-modulating drugs in the SARS-CoV-2 war: hope or hype? Autophagy 2020; 16:2267-2270. [PMID: 32521191 PMCID: PMC7751564 DOI: 10.1080/15548627.2020.1779531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/06/2023] Open
Abstract
At a time when the world faces an emotional breakdown, crushing our dreams, if not, taking our lives, we realize that together we must fight the war against the COVID-19 outbreak even if almost the majority of the scientific community finds itself confined at home. Every day, we, scientists, listen to the latest news with its promises and announcements. Across the world, a surge of clinical trials trying to cure or slow down the coronavirus pandemic has been launched to bring hope instead of fear and despair. One first proposed clinical trial has drawn worldwide hype to the benefit of chloroquine (CQ), in the treatment of patients infected by the recently emerged deadly coronavirus (SARS-CoV-2). We should consider this information in light of the long-standing anti-inflammatory and anti-viral properties of CQ-related drugs. Yet, none of the articles promoting the use of CQ in the current pandemic evoked a possible molecular or cellular mechanism of action that could account for any efficacy. Here, given the interaction of viruses with macroautophagy (hereafter referred to as autophagy), a CQ-sensitive anti-viral safeguard pathway, we would like to discuss the pros, but also the cons concerning the current therapeutic options targeting this process.
Collapse
Affiliation(s)
- Patrick Brest
- Universitty Côte d’Azur, IRCAN, CNRS , INSERM, Centre Antoine Lacassagne, FHU-OncoAge, Nice, France
| | - Jonathan Benzaquen
- Universitty Côte d’Azur, IRCAN, CNRS , INSERM, Centre Antoine Lacassagne, FHU-OncoAge, Nice, France
- Université Côte d’Azur, CHU De Nice, Department of Pulmonary Medicine and Oncology, Nice, France
| | - Daniel J. Klionsky
- Department of Molecular, Cellular, and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Paul Hofman
- Université Côte d’Azur, CHU De Nice, Laboratory of Clinical and Experimental Pathology (LPCE), Nice, France
| | - Baharia Mograbi
- Universitty Côte d’Azur, IRCAN, CNRS , INSERM, Centre Antoine Lacassagne, FHU-OncoAge, Nice, France
- Université Côte d’Azur, CHU De Nice, Laboratory of Clinical and Experimental Pathology (LPCE), Nice, France
| |
Collapse
|
12
|
Interaction between PHB2 and Enterovirus A71 VP1 Induces Autophagy and Affects EV-A71 Infection. Viruses 2020; 12:v12040414. [PMID: 32276428 PMCID: PMC7232526 DOI: 10.3390/v12040414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes severe and fatal cases of hand-foot-and-mouth disease (HFMD). HFMD caused by EV-A71 seriously endangers children’s health. Although autophagy is an important antiviral defense mechanism, some viruses have evolved strategies to utilize autophagy to promote self-replication. EV-A71 can utilize autophagy vesicles as replication scaffolds, indicating that EV-A71 infection is closely related to its autophagy induction mechanism. VP1, a structural protein of EV-A71, has been reported to induce autophagy, but the underlying mechanism is still unclear. In this study, we found that the C-terminus (aa 251–297) of VP1 induces autophagy. Mass spectrometry analysis suggested that prohibitin 2 (PHB2) interacts with the C-terminus of the EV-A71 VP1 protein, and this was further verified by coimmunoprecipitation assays. After PHB2 knockdown, EV-A71 replication, viral particle release, and viral protein synthesis were reduced, and autophagy was inhibited. The results suggest that PHB2 interaction with VP1 is essential for induction of autophagy and the infectivity of EV-A71. Furthermore, we confirmed that EV-A71 induced complete autophagy that required autolysosomal acidification, thus affecting EV-A71 infection. In summary, this study revealed that the host protein PHB2 is involved in an autophagy mechanism during EV-A71 infection.
Collapse
|
13
|
Targeting Autophagy Augments BBR-Mediated Cell Death in Human Hepatoma Cells Harboring Hepatitis C Virus RNA. Cells 2020; 9:cells9040908. [PMID: 32276448 PMCID: PMC7226840 DOI: 10.3390/cells9040908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC), including hepatitis C virus (HCV)-induced HCC, is a deadly disease highly refractory to chemotherapy, thus requiring the continuous identification of novel treatment strategies. Berberine (BBR) has been previously reported to inhibit hepatoma cell growth, but the main type of cell death elicited by BBR, and whether the alkaloid can inhibit hepatoma cells carrying HCV genomes, is unclear. Herein, we show that BBR treatment induced a biphasic cell death irrespective of the presence of HCV subgenomic replicon RNA, first triggering apoptosis that then progressed to necrosis between 24 and 48 h post-treatment. Furthermore, BBR treatment potentiated the HCV replicon-induced reactive oxygen species (ROS) production, inhibition of which with an antioxidant attenuated the cell death that was elicited by BBR in these cells. Moreover, BBR dampened the autophagic response in HCV RNA-positive or negative hepatoma cells, and pharmacological inhibition of autophagy conversely augmented the BBR-induced cell death. Finally, BBR inhibited the growth of Huh-7 cells that were persistently infected with the full-length genome HCV particles, and concomitant pharmacological inhibition of autophagy potentiated the killing of these cells by BBR. Our findings suggest that combining BBR with the inhibition of autophagy could be an attractive treatment strategy against HCC, irrespective of the presence of the HCV genome.
Collapse
|
14
|
Zhu J, Yang L, Zhang Q, Meng J, Lu ZL, Rong R. Autophagy Induced by Simian Retrovirus Infection Controls Viral Replication and Apoptosis of Jurkat T Lymphocytes. Viruses 2020; 12:v12040381. [PMID: 32244330 PMCID: PMC7232448 DOI: 10.3390/v12040381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 01/06/2023] Open
Abstract
Autophagy and apoptosis are two important evolutionarily conserved host defense mechanisms against viral invasion and pathogenesis. However, the association between the two pathways during the viral infection of T lymphocytes remains to be elucidated. Simian type D retrovirus (SRV) is an etiological agent of fatal simian acquired immunodeficiency syndrome (SAIDS), which can display disease features that are similar to acquired immunodeficiency syndrome in humans. In this study, we demonstrate that infection with SRV-8, a newly isolated subtype of SRV, triggered both autophagic and apoptotic pathways in Jurkat T lymphocytes. Following infection with SRV-8, the autophagic proteins LC3 and p62/SQSTM1 interacted with procaspase-8, which might be responsible for the activation of the caspase-8/-3 cascade and apoptosis in SRV-8-infected Jurkat cells. Our findings indicate that autophagic responses to SRV infection of T lymphocytes promote the apoptosis of T lymphocytes, which, in turn, might be a potential pathogenetic mechanism for the loss of T lymphocytes during SRV infection.
Collapse
Affiliation(s)
- Jingting Zhu
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou 215123, China; (J.Z.); (J.M.); (Z.-L.L.)
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK;
| | | | - Qibo Zhang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK;
| | - Jia Meng
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou 215123, China; (J.Z.); (J.M.); (Z.-L.L.)
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Zhi-Liang Lu
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou 215123, China; (J.Z.); (J.M.); (Z.-L.L.)
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Rong Rong
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou 215123, China; (J.Z.); (J.M.); (Z.-L.L.)
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Correspondence:
| |
Collapse
|
15
|
Ming K, He M, Su L, Du H, Wang D, Wu Y, Liu J. The inhibitory effect of phosphorylated Codonopsis pilosula polysaccharide on autophagosomes formation contributes to the inhibition of duck hepatitis A virus replication. Poult Sci 2020; 99:2146-2156. [PMID: 32241500 PMCID: PMC7587719 DOI: 10.1016/j.psj.2019.11.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV) infection causes duck viral hepatitis and results in enormous loss to poultry farming industry. We reported that phosphorylated Codonopsis pilosula polysaccharide (pCPPS) inhibited DHAV genome replication. Here we further explored its underlying antiviral mechanisms. Autophagosomes formation is essential for the genome replication of picornaviruses. In this study, Western blot, confocal microscopy observation, and ELISA methods were performed to analyze polysaccharides' effects on autophagy by the in vitro and in vivo experiments. Results obtained from in vitro and in vivo experiments showed that Codonopsis pilosula polysaccharide did not play a role in regulating autophagy and had no therapeutic effects on infected ducklings. However, pCPPS treatment downregulated LC3-II expression level activated by DHAV and rapamycin, indicating the inhibition of autophagosomes formation. The interdiction of autophagosomes formation resulted in the inhibition of DHAV genome replication. Further study showed that pCPPS treatment reduced the concentration of phosphatidylinositol-3-phosphate (PI3P), an important component of membrane, in cells and serum, and consequently, autophagosomes formation was downregulated. In vivo experiments also verified the therapeutic effect of pCPPS. Phosphorylated Codonopsis pilosula polysaccharide treatment increased the infected ducklings' survival rate and alleviated hepatic injury. Our studies verified the effects of pCPPS against DHAV infection in duck embryo hepatocytes and ducklings and confirmed that phosphorylated modification enhanced the bioactivities of polysaccharides. The results also stated pCPPS's antiviral mechanisms, provided fundamental basis for the development of new anti-DHAV agents.
Collapse
Affiliation(s)
- Ke Ming
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Miao He
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Linglin Su
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
16
|
Huang YP, Huang YW, Hsiao YJ, Li SC, Hsu YH, Tsai CH. Autophagy is involved in assisting the replication of Bamboo mosaic virus in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4657-4670. [PMID: 31552430 PMCID: PMC6760330 DOI: 10.1093/jxb/erz244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 05/20/2023]
Abstract
Autophagy plays a critical role in plants under biotic stress, including the response to pathogen infection. We investigated whether autophagy-related genes (ATGs) are involved in infection with Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. Initially, we observed that BaMV infection in Nicotiana benthamiana leaves upregulated the expression of ATGs but did not trigger cell death. The induction of ATGs, which possibly triggers autophagy, increased rather than diminished BaMV accumulation in the leaves, as revealed by gene knockdown and transient expression experiments. Furthermore, the inhibitor 3-methyladenine blocked autophagosome formation and the autophagy inducer rapamycin, which negatively and positively affected BaMV accumulation, respectively. Pull-down experiments with an antibody against orange fluorescent protein (OFP)-NbATG8f, an autophagosome marker protein, showed that both plus- and minus-sense BaMV RNAs could associate with NbATG8f. Confocal microscopy revealed that ATG8f-enriched vesicles possibly derived from chloroplasts contained both the BaMV viral RNA and its replicase. Thus, BaMV infection may induce the expression of ATGs possibly via autophagy to selectively engulf a portion of viral RNA-containing chloroplast. Virus-induced vesicles enriched with ATG8f could provide an alternative site for viral RNA replication or a shelter from the host silencing mechanism.
Collapse
Affiliation(s)
- Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Jen Hsiao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Siou-Cen Li
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Huei Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
17
|
Ávila-Pérez G, Diaz-Beneitez E, Cubas-Gaona LL, Nieves-Molina G, Rodríguez JR, Rodríguez JF, Rodríguez D. Activation of the autophagy pathway by Torovirus infection is irrelevant for virus replication. PLoS One 2019; 14:e0219428. [PMID: 31306441 PMCID: PMC6629058 DOI: 10.1371/journal.pone.0219428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 06/24/2019] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a conserved eukaryotic process that mediates lysosomal degradation of cytoplasmic macromolecules and damaged organelles, also exerting an important role in the elimination of intracellular pathogens. Despite the antiviral role of autophagy, many studies suggest that some positive-stranded RNA viruses exploit this pathway to facilitate their own replication. In this study, we demonstrate that the equine torovirus Berne virus (BEV), the prototype member of the Torovirus genus (Coronaviridae Family, Nidovirales Order), induces autophagy at late times post-infection. Conversion of microtubule associated protein 1B light chain 3 (LC3) from cytosolic (LC3 I) to the membrane associated form (LC3 II), a canonical marker of autophagosome formation, is enhanced in BEV infected cells. However, neither autophagy induction, via starvation, nor pharmacological blockade significantly affect BEV replication. Similarly, BEV infection is not altered in autophagy deficient cells lacking either Beclin 1 or LC3B protein expression. Unexpectedly, the cargo receptor p62, a selective autophagy receptor, aggregates within the region where the BEV main protease (Mpro) localizes. This finding, coupled with observation that BEV replication also induces ER stress at the time when selective autophagy is taking place, suggests that the autophagy pathway is activated in response to the hefty accumulation of virus-encoded polypeptides during the late phase of BEV infection.
Collapse
Affiliation(s)
- Ginés Ávila-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Elisabet Diaz-Beneitez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Liliana L. Cubas-Gaona
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Gliselle Nieves-Molina
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | | | - José F. Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| |
Collapse
|
18
|
Ming K, Yuan W, Chen Y, Du H, He M, Hu Y, Wang D, Wu Y, Liu J. PI3KC3-dependent autophagosomes formation pathway is of crucial importance to anti-DHAV activity of Chrysanthemum indicum polysaccharide. Carbohydr Polym 2019; 208:22-31. [DOI: 10.1016/j.carbpol.2018.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
|
19
|
Zhang W, Chen K, Guo Y, Chen Y, Liu X. Involvement of PRRSV NSP3 and NSP5 in the autophagy process. Virol J 2019; 16:13. [PMID: 30691473 PMCID: PMC6350329 DOI: 10.1186/s12985-019-1116-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/01/2019] [Indexed: 12/29/2022] Open
Abstract
Background Autophagy is an essential process in eukaryotic cells in which autophagosomes form to deliver cellular organelles and long-lived proteins to lysosomes for degradation. Many studies have recently identified the regulatory mechanisms involved in the interaction between viral infection and autophagy. Methods LC3 turnover and the proteins in the endoplasmic reticulum (ER) stress pathway were investigated using western blot analysis. The formation and degradation of autophagosomes were detected using immunofluorescence staining. Results Autophagy was activated by porcine reproductive and respiratory syndrome virus (PRRSV) NSP3, NSP5 and NSP9, which are two transmembrane proteins and an RNA-dependent RNA polymerase, respectively. The formation of autophagosomes was induced by NSP3 and NSP5 and developed from the ER; the fusion of these autophagosomes with lysosomes was limited. Although NSP3 and NSP5 are ER transmembrane proteins, these proteins did not activate the ER stress signaling pathways. In addition, the cytoplasmic domain of NSP3 plays a pivotal role in activating autophagy. Conclusions The data presented in this study reveal an important relationship between PRRSV NSPs and autophagy and provide new insights that improve our understanding of the involvement of PRRSV NSPs in the autophagy process. Electronic supplementary material The online version of this article (10.1186/s12985-019-1116-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Keren Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yang Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
20
|
The Oxysterol 7-Ketocholesterol Reduces Zika Virus Titers in Vero Cells and Human Neurons. Viruses 2018; 11:v11010020. [PMID: 30598036 PMCID: PMC6356585 DOI: 10.3390/v11010020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 01/19/2023] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus responsible for a major epidemic in the Americas beginning in 2015. ZIKV associated with maternal infection can lead to neurological disorders in newborns, including microcephaly. Although there is an abundance of research examining the neurotropism of ZIKV, we still do not completely understand the mechanism by which ZIKV targets neural cells or how to limit neural cell infection. Recent research suggests that flaviviruses, including ZIKV, may hijack the cellular autophagy pathway to benefit their replication. Therefore, we hypothesized that ZIKV replication would be impacted when infected cells were treated with compounds that target the autophagy pathway. We screened a library of 94 compounds known to affect autophagy in both mammalian and insect cell lines. A subset of compounds that inhibited ZIKV replication without affecting cellular viability were tested for their ability to limit ZIKV replication in human neurons. From this second screen, we identified one compound, 7-ketocholesterol (7-KC), which inhibited ZIKV replication in neurons without significantly affecting neuron viability. Interestingly, 7-KC induces autophagy, which would be hypothesized to increase ZIKV replication, yet it decreased virus production. Time-of-addition experiments suggest 7-KC inhibits ZIKV replication late in the replication cycle. While 7-KC did not inhibit RNA replication, it decreased the number of particles in the supernatant and the relative infectivity of the released particles, suggesting it interferes with particle budding, release from the host cell, and particle integrity.
Collapse
|
21
|
LUO XN, YAO HL, SONG J, SONG QQ, SHI BT, XIA D, HAN J. Coxsackievirus B3 Infection Triggers Autophagy through 3 Pathways of Endoplasmic Reticulum Stress. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2018; 31:867-875. [PMID: 30636656 PMCID: PMC7126911 DOI: 10.3967/bes2018.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Autophagy is a highly conserved intracellular degradation pathway. Many picornaviruses induce autophagy to benefit viral replication, but an understanding of how autophagy occurs remains incomplete. In this study, we explored whether coxsackievirus B3 (CVB3) infection induced autophagy through endoplasmic reticulum (ER) stress. METHODS In CVB3-infected HeLa cells, the specific molecules of ER stress and autophagy were detected using Western blotting, reverse transcription polymerase chain reaction (RT-PCR), and confocal microscopy. Then PKR-like ER protein kinase (PERK) inhibitor, inositol-requiring protein-1 (IRE1) inhibitor, or activating transcription factor-6 (ATF6) inhibitor worked on CVB3-infected cells, their effect on autophagy was assessed by Western blotting for detecting microtubule-associated protein light chain 3 (LC3). RESULTS CVB3 infection induced ER stress, and ER stress sensors PERK/eIF2α, IRE1/XBP1, and ATF6 were activated. CVB3 infection increased the accumulation of green fluorescent protein (GFP)-LC3 punctuation and induced the conversion from LC3-I to phosphatidylethanolamine-conjugated LC3-1 (LC3-II). CVB3 infection still decreased the expression of mammalian target of rapamycin (mTOR) and p-mTOR. Inhibition of PERK, IRE1, or ATF6 significantly decreased the ratio of LC3-II to LC3-I in CVB3-infected HeLa cells. CONCLUSION CVB3 infection induced autophagy through ER stress in HeLa cells, and PERK, IRE1, and ATF6a pathways participated in the regulation of autophagy. Our data suggested that ER stress may inhibit mTOR signaling pathway to induce autophagy during CVB3 infection.
Collapse
Affiliation(s)
- Xiao Nuan LUO
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hai Lan YAO
- Molecular Immunology Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Juan SONG
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qin Qin SONG
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Bing Tian SHI
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dong XIA
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun HAN
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
22
|
Abstract
Viral infection causes many physiological alterations in the host cell, and many of these alterations can affect the host mitochondrial network, including mitophagy induction. A substantial amount of literature has been generated that advances our understanding of the relationship between mitophagy and several viruses. Some viruses trigger mitophagy directly, and indirectly and control the mitophagic process via different strategies. This enables viruses to promote persistent infection and attenuate the innate immune responses. In this review, we discuss the events of virus-regulated mitophagy and the functional relevance of mitophagy in the pathogenesis of viral infection and disease. Abbreviation: ATG: autophagy related; BCL2L13: BCL2 like 13; BNIP3L/NIX: BCL2 interacting protein 3 like; CL: cardiolipin; CSFV: classical swine fever virus; CVB: coxsackievirus B; DENV: dengue virus; DNM1L: dynamin 1 like; FIS1: fission, mitochondrial 1; FUNDC1: FUN14 domain containing 1; HPIV3: human parainfluenza virus 3; HSV-1: herpes simplex virus type 1; IMM: inner mitochondrial membrane; IAV: influenza A virus; IFN: interferon; IKBKE/IKKε: inhibitor of nuclear factor kappa B kinase subunit epsilon; LUBAC: linear ubiquitin assembly complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MeV: measles virus; MAVS: mitochondrial antiviral signaling protein; MFF: mitochondria fission factor; NLRP3: NLR family pyrin domain containing 3; NDV: Newcastle disease virus; NR4A1: nuclear receptor subfamily 4 group A member 1; OMM: outer mitochondrial membrane; OPA1: OPA1, mitochondrial dynamin like GTPase; PRKN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced putative kinase 1; PHB2: prohibitin 2; PRRSV: porcine reproductive and respiratory syndrome virus; PRRs: pattern-recognition receptors; RLRs: RIG-I-like receptors; ROS: reactive oxygen species; RIPK2: receptor interacting serine/threonine kinase 2; SESN2: sestrin 2; SNAP29: synaptosome associated protein 29; STX17: syntaxin 17; TGEV: transmissible gastroenteritis virus; TUFM: Tu translation elongation factor, mitochondrial; TRAF2: TNF receptor associated factor 2; TRIM6: tripartite motif containing 6; Ub: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; VZV: varicella-zoster virus.
Collapse
Affiliation(s)
- Linliang Zhang
- a State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences , Wuhan University , Wuhan , China
| | - Yali Qin
- a State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences , Wuhan University , Wuhan , China
| | - Mingzhou Chen
- a State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences , Wuhan University , Wuhan , China
| |
Collapse
|
23
|
Chen D, Feng C, Tian X, Zheng N, Wu Z. Promyelocytic Leukemia Restricts Enterovirus 71 Replication by Inhibiting Autophagy. Front Immunol 2018; 9:1268. [PMID: 29922292 PMCID: PMC5996053 DOI: 10.3389/fimmu.2018.01268] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
The promyelocytic leukemia (PML) protein, also known as TRIM19, functions as a major organizer of PML nuclear bodies (NBs) in most mammalian cells and plays important roles in antiviral activities against both DNA and RNA viruses. In this study, we found that the downregulation of PML rendered HeLa cells more susceptible to infection by enterovirus 71 (EV71), and the overexpression of the PMLIII or PMLIV isoforms inhibited viral protein expression and resulted in viral titers that were 2–3 log units lower than those in the control. Using short interfering RNAs, the downregulation of either the PMLIII or PMLIV isoform increased both viral protein VP1 expression and viral production. The PML repression of EV71 replication was partially mediated by the inhibition of autophagy, and PML deficiency triggered autophagy. Furthermore, the EV71 infection resulted in a reduction in PML independent of the proteasome pathway. Instead, PML degradation was mediated by virus protease 3Cpro. In conclusion, PML contributes to a cellular antiviral effect by inhibiting autophagy, which is countered by a disruption of promyelocytic leukemia protein-nuclear bodies mediated by viral protease 3Cpro.
Collapse
Affiliation(s)
- Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Chunhong Feng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Xiaoyan Tian
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.,Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.,Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Banerjee S, Aponte-Diaz D, Yeager C, Sharma SD, Ning G, Oh HS, Han Q, Umeda M, Hara Y, Wang RYL, Cameron CE. Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein. PLoS Pathog 2018; 14:e1007086. [PMID: 29782554 PMCID: PMC5983871 DOI: 10.1371/journal.ppat.1007086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 06/01/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is a marker of the RO. Studies to date indicate that the viral 3A protein hijacks a PI4 kinase to induce PI4P by a mechanism unrelated to the cellular pathway, which requires Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1, GBF1, and ADP ribosylation factor 1, Arf1. Here we show that a picornaviral 3CD protein is sufficient to induce synthesis of not only PI4P but also phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylcholine (PC). Synthesis of PI4P requires GBF1 and Arf1. We identified 3CD derivatives: 3CDm and 3CmD, that we used to show that distinct domains of 3CD function upstream of GBF1 and downstream of Arf1 activation. These same 3CD derivatives still supported induction of PIP2 and PC, suggesting that pathways and corresponding mechanisms used to induce these phospholipids are distinct. Phospholipid induction by 3CD is localized to the perinuclear region of the cell, the outcome of which is the proliferation of membranes in this area of the cell. We conclude that a single viral protein can serve as a master regulator of cellular phospholipid and membrane biogenesis, likely by commandeering normal cellular pathways. Picornaviruses replicate their genomes in association with host membranes. Early during infection, existing membranes are used but remodeled to contain a repertoire of lipids best suited for virus multiplication. Later, new membrane synthesis occurs, which requires biosynthesis of phosphatidylcholine in addition to the other more specialized lipids. We have learned that a single picornaviral protein is able to induce membrane biogenesis and decorate these membranes with some of the specialized lipids induced by the virus. A detailed mechanism of induction has been elucidated for one of these lipids. The ability of a single viral protein to commandeer host pathways that lead to membrane biogenesis was unexpected. This discovery reveals a new target for antiviral therapy with the potential to completely derail all aspects of the viral lifecycle requiring membrane biogenesis.
Collapse
Affiliation(s)
- Sravani Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David Aponte-Diaz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Calvin Yeager
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Suresh D. Sharma
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gang Ning
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hyung S. Oh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qingxia Han
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Robert Y. L. Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children’s Hospital, Linkou, Taiwan
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Delorme-Axford E, Abernathy E, Lennemann NJ, Bernard A, Ariosa A, Coyne CB, Kirkegaard K, Klionsky DJ. The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy. Autophagy 2018; 14:898-912. [PMID: 29465287 DOI: 10.1080/15548627.2018.1441648] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic process that promotes survival during stress. Autophagic dysfunction is associated with pathologies such as cancer and neurodegenerative diseases. Thus, autophagy must be strictly modulated at multiple levels (transcriptional, post-transcriptional, translational and post-translational) to prevent deregulation. Relatively little is known about the post-transcriptional control of autophagy. Here we report that the exoribonuclease Xrn1/XRN1 functions as a negative autophagy factor in the yeast Saccharomyces cerevisiae and in mammalian cells. In yeast, chromosomal deletion of XRN1 enhances autophagy and the frequency of autophagosome formation. Loss of Xrn1 results in the upregulation of autophagy-related (ATG) transcripts under nutrient-replete conditions, and this effect is dependent on the ribonuclease activity of Xrn1. Xrn1 expression is regulated by the yeast transcription factor Ash1 in rich conditions. In mammalian cells, siRNA depletion of XRN1 enhances autophagy and the replication of 2 picornaviruses. This work provides insight into the role of the RNA decay factor Xrn1/XRN1 as a post-transcriptional regulator of autophagy.
Collapse
Affiliation(s)
| | - Emma Abernathy
- b Department of Genetics , Stanford University School of Medicine , Stanford , CA , USA
| | | | - Amélie Bernard
- a Life Sciences Institute, University of Michigan , Ann Arbor , MI , USA
| | - Aileen Ariosa
- a Life Sciences Institute, University of Michigan , Ann Arbor , MI , USA
| | - Carolyn B Coyne
- c Department of Pediatrics , University of Pittsburgh , Pittsburgh , PA , USA
| | - Karla Kirkegaard
- b Department of Genetics , Stanford University School of Medicine , Stanford , CA , USA
| | - Daniel J Klionsky
- a Life Sciences Institute, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
26
|
Oncolytic Reovirus Infection Is Facilitated by the Autophagic Machinery. Viruses 2017; 9:v9100266. [PMID: 28934149 PMCID: PMC5691618 DOI: 10.3390/v9100266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Mammalian reovirus is a double-stranded RNA virus that selectively infects and lyses transformed cells, making it an attractive oncolytic agent. Despite clinical evidence for anti-tumor activity, its efficacy as a stand-alone therapy remains to be improved. The success of future trials can be greatly influenced by the identification and the regulation of the cellular pathways that are important for reovirus replication and oncolysis. Here, we demonstrate that reovirus induces autophagy in several cell lines, evident from the formation of Atg5-Atg12 complexes, microtubule-associated protein 1 light chain 3 (LC3) lipidation, p62 degradation, the appearance of acidic vesicular organelles, and LC3 puncta. Furthermore, in electron microscopic images of reovirus-infected cells, autophagosomes were observed without evident association with viral factories. Using UV-inactivated reovirus, we demonstrate that a productive reovirus infection facilitates the induction of autophagy. Importantly, knock-out cell lines for specific autophagy-related genes revealed that the expression of Atg3 and Atg5 but not Atg13 facilitates reovirus replication. These findings highlight a central and Atg13-independent role for the autophagy machinery in facilitating reovirus infection and contribute to a better understanding of reovirus-host interactions.
Collapse
|
27
|
Lai JKF, Sam IC, Verlhac P, Baguet J, Eskelinen EL, Faure M, Chan YF. 2BC Non-Structural Protein of Enterovirus A71 Interacts with SNARE Proteins to Trigger Autolysosome Formation. Viruses 2017; 9:E169. [PMID: 28677644 PMCID: PMC5537661 DOI: 10.3390/v9070169] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022] Open
Abstract
Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.
Collapse
Affiliation(s)
- Jeffrey K F Lai
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Pauline Verlhac
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France.
- INSERM, U1111, 69007 Lyon, France.
- CNRS, UMR5308, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
- Université Lyon 1, Centre International de Recherche en Infectiologie, 69365 Lyon, France.
| | - Joël Baguet
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France.
- INSERM, U1111, 69007 Lyon, France.
- CNRS, UMR5308, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
- Université Lyon 1, Centre International de Recherche en Infectiologie, 69365 Lyon, France.
| | - Eeva-Liisa Eskelinen
- Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | - Mathias Faure
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France.
- INSERM, U1111, 69007 Lyon, France.
- CNRS, UMR5308, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
- Université Lyon 1, Centre International de Recherche en Infectiologie, 69365 Lyon, France.
- Institut Universitaire de France, 75231 Paris, France.
- Equipe labellisée Fondation pour la Recherche Médicale FRM, 75007 Paris, France.
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
28
|
Wang X, Xu X, Wang W, Yu Z, Wen L, He K, Fan H. MicroRNA-30a-5p promotes replication of porcine circovirus type 2 through enhancing autophagy by targeting 14-3-3. Arch Virol 2017; 162:2643-2654. [PMID: 28530014 DOI: 10.1007/s00705-017-3400-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/31/2017] [Indexed: 12/11/2022]
Abstract
Accumulating evidence demonstrates that autophagy and microRNAs (miRNAs) play key roles in regulating virus-host interactions and can restrict or facilitate viral replication. In the present study we examined whether a functional relationship exists between autophagy, miRNA and porcine circovirus type 2 (PCV2) infection, using several approaches. We demonstrated that there was a positive correlation between PCV2 infection and autophagy in 3D4/21 cells and autophagy induced by PCV2 infection triggered PCV2 replication. Four miRNA were selected by real-time PCR and further studied, but only miR-30a-5p mimic had a significant effect on PCV2 replication. Overexpression of miR-30a-5p significantly enhanced PCV2 infection and autophagy in a dose-dependent manner. Blockage of miR-30a-5p significantly decreased PCV2 replication. We provided further evidence that miR-30a-5p regulate the link between PCV2 infection and host immune system. Furthermore, miR-30a-5p targeted and regulated 14-3-3 gene, which is a regulator of autophagy. Flow cytometry data demonstrated that miR-30a-5p promotes cell cycle arrest at the G2 phase to regulate PCV2 replication and autophagy by interacting directly with 14-3-3, but not with the PCV2 genome. These data not only provide new insights into virus-host interactions during PCV2 infection but also suggest a potential new antiviral therapeutic strategy against PCV2 infection.
Collapse
Affiliation(s)
- Xiaomin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Xianglan Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
29
|
Infectious Bursal Disease Virus Subverts Autophagic Vacuoles To Promote Viral Maturation and Release. J Virol 2017; 91:JVI.01883-16. [PMID: 27974565 DOI: 10.1128/jvi.01883-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/07/2016] [Indexed: 01/30/2023] Open
Abstract
Autophagy functions as an intrinsic antiviral defense. However, some viruses can subvert or even enhance host autophagic machinery to increase viral replication and pathogenesis. The role of autophagy during avibirnavirus infection, especially late stage infection, remains unclear. In this study, infectious bursal disease virus (IBDV) was used to investigate the role of autophagy in avibirnavirus replication. We demonstrated IBDV induction of autophagy as a significant increase in puncta of LC3+ autophagosomes, endogenous levels of LC3-II, and ultrastructural characteristics typical of autophagosomes during the late stage of infection. Induction of autophagy enhances IBDV replication, whereas inhibition of autophagy impairs viral replication. We also demonstrated that IBDV infection induced autophagosome-lysosome fusion, but without active degradation of their contents. Moreover, inhibition of fusion or of lysosomal hydrolysis activity significantly reduced viral replication, indicating that virions utilized the low-pH environment of acidic organelles to facilitate viral maturation. Using immuno-transmission electron microscopy (TEM), we observed that a large number of intact IBDV virions were arranged in a lattice surrounded by p62 proteins, some of which lay between virions. Additionally, many virions were encapsulated within the vesicular membranes, with an obvious release stage observed by TEM. The autophagic endosomal pathway facilitates low-pH-mediated maturation of viral proteins and membrane-mediated release of progeny virions.IMPORTANCE IBDV is the most extensively studied virus in terms of molecular characteristics and pathogenesis; however, mechanisms underlying the IBDV life cycle require further exploration. The present study demonstrated that autophagy enhances viral replication at the late stage of infection, and the autophagy pathway facilitates IBDV replication complex function and virus assembly, which is critical to completion of the virus life cycle. Moreover, the virus hijacks the autophagic vacuoles to mature in an acidic environment and release progeny virions in a membrane-mediated cell-to-cell manner. This autophagic endosomal pathway is proposed as a new mechanism that facilitates IBDV maturation, release, and reinternalization. This report presents a concordance in exit strategies among some RNA and DNA viruses, which exploit autophagy pathway for their release from cells.
Collapse
|
30
|
Zhai X, Qin Y, Chen Y, Lin L, Wang T, Zhong X, Wu X, Chen S, Li J, Wang Y, Zhang F, Zhao W, Zhong Z. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo. Exp Cell Res 2016; 349:255-263. [PMID: 27793649 DOI: 10.1016/j.yexcr.2016.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022]
Abstract
Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection.
Collapse
Affiliation(s)
- Xia Zhai
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Ying Qin
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Yang Chen
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Lexun Lin
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Tianying Wang
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Xiaoyan Zhong
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Xiaoyu Wu
- Department of Cardiology, The First Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| | - Sijia Chen
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Jing Li
- Center of Electron Microscopy, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Yan Wang
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Fengmin Zhang
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| |
Collapse
|
31
|
Coxsackievirus B3 infection induces autophagic flux, and autophagosomes are critical for efficient viral replication. Arch Virol 2016; 161:2197-205. [DOI: 10.1007/s00705-016-2896-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
32
|
Olagnier D, Amatore D, Castiello L, Ferrari M, Palermo E, Diamond MS, Palamara AT, Hiscott J. Dengue Virus Immunopathogenesis: Lessons Applicable to the Emergence of Zika Virus. J Mol Biol 2016; 428:3429-48. [PMID: 27130436 DOI: 10.1016/j.jmb.2016.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 01/07/2023]
Abstract
Dengue is the leading mosquito-transmitted viral infection in the world. There are more than 390 million new infections annually; while the majority of infected individuals are asymptomatic or develop a self-limited dengue fever, up to 1 million clinical cases develop severe manifestations, including dengue hemorrhagic fever and shock syndrome, resulting in ~25,000 deaths annually, mainly in children. Gaps in our understanding of the mechanisms that contribute to dengue infection and immunopathogenesis have hampered the development of vaccines and antiviral agents. Some of these limitations are highlighted by the explosive re-emergence of another arthropod-borne flavivirus-Zika virus-spread by the same vector, the Aedes aegypti mosquito, that also carries dengue, yellow fever and chikungunya viruses. This review will discuss the early virus-host interactions in dengue infection, with emphasis on the interrelationship between oxidative stress and innate immune pathways, and will provide insight as to how lessons learned from dengue research may expedite therapeutic strategies for Zika virus.
Collapse
Affiliation(s)
- David Olagnier
- Lady Davis Institute, Jewish General Hospital, McGill University Montreal, Canada
| | - Donatella Amatore
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Matteo Ferrari
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Enrico Palermo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University at St. Louis, St. Louis, MO, USA
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - John Hiscott
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
33
|
Orosz L, Megyeri K. Well begun is half done: Rubella virus perturbs autophagy signaling, thereby facilitating the construction of viral replication compartments. Med Hypotheses 2016; 89:16-20. [DOI: 10.1016/j.mehy.2016.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/20/2016] [Indexed: 01/13/2023]
|
34
|
Huang X, Yue Y, Li D, Zhao Y, Qiu L, Chen J, Pan Y, Xi J, Wang X, Sun Q, Li Q. Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy. Sci Rep 2016; 6:22303. [PMID: 26923481 PMCID: PMC4770412 DOI: 10.1038/srep22303] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/11/2016] [Indexed: 12/25/2022] Open
Abstract
Antibody dependent enhancement (ADE) of dengue virus (DENV) infection is identified as the main risk factor of severe Dengue diseases. Through opsonization by subneutralizing or non-neutralizing antibodies, DENV infection suppresses innate cell immunity to facilitate viral replication. However, it is largely unknown whether suppression of type-I IFN is necessary for a successful ADE infection. Here, we report that both DENV and DENV-ADE infection induce an early ISG (NOS2) expression through RLR-MAVS signalling axis independent of the IFNs signaling. Besides, DENV-ADE suppress this early antiviral response through increased autophagy formation rather than induction of IL-10 secretion. The early induced autophagic proteins ATG5-ATG12 participate in suppression of MAVS mediated ISGs induction. Our findings suggest a mechanism for DENV to evade the early antiviral response before IFN signalling activation. Altogether, these results add knowledge about the complexity of ADE infection and contribute further to research on therapeutic strategies.
Collapse
Affiliation(s)
- Xinwei Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
- Key Laboratory of The Second Affiliated Hospital of Kuming Medical College, Kunming 650101, PR China
| | - Yaofei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Duo Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Yujiao Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Lijuan Qiu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| |
Collapse
|
35
|
Peymani P, Yeganeh B, Sabour S, Geramizadeh B, Fattahi MR, Keyvani H, Azarpira N, Coombs KM, Ghavami S, Lankarani KB. New use of an old drug: chloroquine reduces viral and ALT levels in HCV non-responders (a randomized, triple-blind, placebo-controlled pilot trial). Can J Physiol Pharmacol 2016; 94:613-9. [PMID: 26998724 DOI: 10.1139/cjpp-2015-0507] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus (HCV) infection induces autophagy, but the virus assimilates the autophagic response into its own life cycle. Chloroquine (CQ) is an autophagy inhibitor that is clinically used to treat malaria. The aims of this pilot clinical trial were to evaluate the therapeutic potential and short-term safety of CQ in patients with chronic HCV genotype 1, who were unresponsive to a combination of pegylated interferon alpha and ribavirin. Ten non-responders to previous antiviral treatment(s) were randomized to receive either CQ (150 mg daily for 8 weeks) or placebo, and were followed for 4 weeks after CQ therapy. HCV RNA load and plasma alanine transaminase (ALT) levels were measured at baseline, week 4 (initial response), week 8 (end-of-treatment response), and at the end of 12 weeks. A significant decrease in HCV RNA after the treatments (week 8) was observed in all patients in the CQ group (P = 0.04). However, HCV RNA levels increased within 4 weeks after discontinuation of CQ treatment although they were still lower than baseline. In addition, the ALT normalized during treatment in the CQ group. However, this response was also lost after treatment cessation. This study provides preliminary evidence that CQ is possibly a safe treatment option for HCV non-responders.
Collapse
Affiliation(s)
- Payam Peymani
- a Health Policy Research Center, Building No. 2, Eighth Floor, Shiraz University of Medical Sciences, School of Medicine, Zand Avenue, P.O. Box 71345-1877, Shiraz, Iran
| | - Behzad Yeganeh
- b Program in Physiology & Experimental Medicine, Hospital for Sick Children Research Institute and University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Siamak Sabour
- c Safety Promotion and Injury Prevention Research Center and Department of Clinical Epidemiology, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Bita Geramizadeh
- d Department of Pathology and Organ Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- e Department of Internal Medicine and Gastroenterohepatology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Hossein Keyvani
- f Department of Clinical Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Azarpira
- g Organ Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran
| | - Kevin M Coombs
- h Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saied Ghavami
- i Department of Human Anatomy and Cell Science, St. Boniface Research Centre, Children Hospital Research Institute of Manitoba, Biology of Breathing Theme, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | - Kamran B Lankarani
- a Health Policy Research Center, Building No. 2, Eighth Floor, Shiraz University of Medical Sciences, School of Medicine, Zand Avenue, P.O. Box 71345-1877, Shiraz, Iran
| |
Collapse
|
36
|
Enterovirus 71 induces autophagy by regulating has-miR-30a expression to promote viral replication. Antiviral Res 2015; 124:43-53. [PMID: 26515789 DOI: 10.1016/j.antiviral.2015.09.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/03/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022]
Abstract
Enterovirus 71 (EV71), the etiological agent of hand-foot-and-mouth disease, has increasingly become a public health challenge around the world. Previous studies reported that EV71 infection can induce autophagic machinery to enhance viral replication in vitro and in vivo, but did not address the underlying mechanisms. Increasing evidence suggests that autophagy, in a virus-specific manner, may function to degrade viruses or facilitate viral replication. In this study, we reported that EV71 infection of human epidermoid carcinoma (Hep2) and African green monkey kidney cells (Vero) induced autophagy, which is beneficial for viral replication. Our investigation of the mechanisms revealed that EV71 infection resulted in the reduction of cellular miR-30a, which led to the inhibition of Beclin-1, a key autophagy-promoting gene that plays important roles at the early phase of autophagosome formation. We provided further evidence that by modulating cellular miR-30a level through either overexpression or inhibition, one can inhibit or promote EV71 replication, respectively, through regulating autophagic activity.
Collapse
|
37
|
Flavivirus Infection Impairs Peroxisome Biogenesis and Early Antiviral Signaling. J Virol 2015; 89:12349-61. [PMID: 26423946 DOI: 10.1128/jvi.01365-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Flaviviruses are significant human pathogens that have an enormous impact on the global health burden. Currently, there are very few vaccines against or therapeutic treatments for flaviviruses, and our understanding of how these viruses cause disease is limited. Evidence suggests that the capsid proteins of flaviviruses play critical nonstructural roles during infection, and therefore, elucidating how these viral proteins affect cellular signaling pathways could lead to novel targets for antiviral therapy. We used affinity purification to identify host cell proteins that interact with the capsid proteins of West Nile and dengue viruses. One of the cellular proteins that formed a stable complex with flavivirus capsid proteins is the peroxisome biogenesis factor Pex19. Intriguingly, flavivirus infection resulted in a significant loss of peroxisomes, an effect that may be due in part to capsid expression. We posited that capsid protein-mediated sequestration and/or degradation of Pex19 results in loss of peroxisomes, a situation that could result in reduced early antiviral signaling. In support of this hypothesis, we observed that induction of the lambda interferon mRNA in response to a viral RNA mimic was reduced by more than 80%. Together, our findings indicate that inhibition of peroxisome biogenesis may be a novel mechanism by which flaviviruses evade the innate immune system during early stages of infection. IMPORTANCE RNA viruses infect hundreds of millions of people each year, causing significant morbidity and mortality. Chief among these pathogens are the flaviviruses, which include dengue virus and West Nile virus. Despite their medical importance, there are very few prophylactic or therapeutic treatments for these viruses. Moreover, the manner in which they subvert the innate immune response in order to establish infection in mammalian cells is not well understood. Recently, peroxisomes were reported to function in early antiviral signaling, but very little is known regarding if or how pathogenic viruses affect these organelles. We report for the first time that flavivirus infection results in significant loss of peroxisomes in mammalian cells, which may indicate that targeting of peroxisomes is a key strategy used by viruses to subvert early antiviral defenses.
Collapse
|
38
|
Sin J, Mangale V, Thienphrapa W, Gottlieb RA, Feuer R. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology 2015; 484:288-304. [PMID: 26142496 DOI: 10.1016/j.virol.2015.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/23/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses - although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis.
Collapse
Affiliation(s)
- Jon Sin
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Vrushali Mangale
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Wdee Thienphrapa
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Roberta A Gottlieb
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Ralph Feuer
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA.
| |
Collapse
|
39
|
Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration. PLoS Pathog 2015; 11:e1005018. [PMID: 26115100 PMCID: PMC4482621 DOI: 10.1371/journal.ppat.1005018] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
HIV Nef acts as an anti-autophagic maturation factor through interaction with beclin-1 (BECN1). We report that exposure of macrophages to infectious or non-infectious purified HIV induces toll-like receptor 8 (TLR8) and BECN1 dependent dephosphorylation and nuclear translocation of TFEB and that this correlates with an increase in autophagy markers. RNA interference for ATG13, TFEB, TLR8, or BECN1 inhibits this HIV-induced autophagy. However, once HIV establishes a productive infection, TFEB phosphorylation and cytoplasmic sequestration are increased resulting in decreased autophagy markers. Moreover, by 7 d post-infection, autophagy levels are similar to mock infected controls. Conversely, although Nef deleted HIV similarly induces TFEB dephosphorylation and nuclear localization, and increases autophagy, these levels remain elevated during continued productive infection. Thus, the interaction between HIV and TLR8 serves as a signal for autophagy induction that is dependent upon the dephosphorylation and nuclear translocation of TFEB. During permissive infection, Nef binds BECN1 resulting in mammalian target of rapamycin (MTOR) activation, TFEB phosphorylation and cytosolic sequestration, and the inhibition of autophagy. To our knowledge, this is the first report of a virus modulating TFEB localization and helps to explain how HIV modulates autophagy to promote its own replication and cell survival. Under basal conditions, the mammalian target of rapamycin (MTOR) phosphorylates transcription factor EB (TFEB) resulting in its cytoplasmic retention. When MTOR is inhibited, TFEB is dephosphorylated and translocated to the nucleus where it increases autophagy and lysosomal gene expression. As human immunodeficiency virus type 1 (HIV) Nef acts as an anti-autophagic maturation factor through interaction with beclin-1 (BECN1), we investigated the role of Nef and TFEB in the modulation of autophagy during HIV infection of human macrophages. We found that upon exposure to HIV, macrophages elicited an autophagic response through a toll-like receptor 8 (TLR8) and BECN1 dependent dephosphorylation and nuclear translocation of TFEB. However, once HIV infection is established, phosphorylation and cytoplasmic sequestration of TFEB as well as autophagy revert to pre-infection levels. Moreover, this reversion is dependent upon the presence of HIV Nef. Collectively, the data suggests that the interaction between HIV and TLR8 serves as a signal for autophagy induction that is dependent upon the dephosphorylation and nuclear translocation of TFEB. Once HIV establishes a productive infection, Nef binds BECN1 resulting in MTOR activation, TFEB phosphorylation and cytosolic sequestration and the inhibition of autophagy.
Collapse
|
40
|
Bird SW, Kirkegaard K. Escape of non-enveloped virus from intact cells. Virology 2015; 479-480:444-9. [PMID: 25890822 DOI: 10.1016/j.virol.2015.03.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/18/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022]
Abstract
How do viruses spread from cell to cell? Enveloped viruses acquire their surrounding membranes by budding. If a newly enveloped virus has budded through the plasma membrane, it finds itself outside the cell immediately. If it has budded through the bounding membrane of an internal compartment such as the ER, the virus finds itself in the lumen, from which it can exit the cell via the conventional secretion pathway. Thus, although some enveloped viruses destroy the cells they infect, there is no topological need to do so. On the other hand, naked viruses such as poliovirus lack an external membrane. They are protein-nucleic acid complexes within the cytoplasm or nucleus of the infected cell, like a ribosome, a spliceosome or an aggregate of Huntingtin protein. The simplest way for such a particle to pass through the single lipid bilayer that separates it from the outside of the cell would be to violate the integrity of that bilayer. Thus, it is not surprising that the primary mode of exit for non-enveloped viruses is cell lysis. However, more complex exit strategies are possible, such as the creation of new compartments whose complex topologies allow the exit of cytoplasm and its contents without violating the integrity of the cell. Here we will discuss the non-lytic spread of poliovirus and recent observations of such compartments during viral infection with several different picornaviruses.
Collapse
Affiliation(s)
- Sara W Bird
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
41
|
Abstract
The Picornaviridae represent a large family of small plus-strand RNA viruses that cause a bewildering array of important human and animal diseases. Morphogenesis is the least-understood step in the life cycle of these viruses, and this process is difficult to study because encapsidation is tightly coupled to genome translation and RNA replication. Although the basic steps of assembly have been known for some time, very few details are available about the mechanism and factors that regulate this process. Most of the information available has been derived from studies of enteroviruses, in particular poliovirus, where recent evidence has shown that, surprisingly, the specificity of encapsidation is governed by a viral protein-protein interaction that does not involve an RNA packaging signal. In this review, we make an attempt to summarize what is currently known about the following topics: (i) encapsidation intermediates, (ii) the specificity of encapsidation (iii), viral and cellular factors that are required for encapsidation, (iv) inhibitors of encapsidation, and (v) a model of enterovirus encapsidation. Finally, we compare some features of picornavirus morphogenesis with those of other plus-strand RNA viruses.
Collapse
|
42
|
Jackson WT. Viruses and the autophagy pathway. Virology 2015; 479-480:450-6. [PMID: 25858140 DOI: 10.1016/j.virol.2015.03.042] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/30/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
Abstract
Studies of the cellular autophagy pathway have exploded over the past twenty years. Now appreciated as a constitutive degradative mechanism that promotes cellular homeostasis, autophagy is also required for a variety of developmental processes, cellular stress responses, and immune pathways. Autophagy certainly acts as both an anti-viral and pro-viral pathway, and the roles of autophagy depend on the virus, the cell type, and the cellular environment. The goal of this review is to summarize, in brief, what we know so far about the relationship between autophagy and viruses, particularly for those who are not familiar with the field. With a massive amount of relevant published data, it is simply not possible to be comprehensive, or to provide a complete "parade of viruses", and apologies are offered to researchers whose work is not described herein. Rather, this review is organized around general themes regarding the relationship between autophagy and animal viruses.
Collapse
Affiliation(s)
- William T Jackson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53211, United States.
| |
Collapse
|
43
|
Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 2015; 209:100-17. [PMID: 25836277 DOI: 10.1016/j.virusres.2015.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects chronically more than 150 million humans worldwide. Chronic HCV infection causes severe liver disease and hepatocellular carcinoma. While immune response-mediated events are major players in HCV pathogenesis, the impact that viral replication has on cellular homeostasis is increasingly recognized as a necessary contributor to pathological manifestations of HCV infection such as steatosis, insulin-resistance or liver cancer. In this review, we will briefly overview the different cellular stress pathways that are induced by hepatitis C virus infection, the response that the cell promotes to attempt regaining homeostasis or to induce dysfunctional cell death, and how the virus co-opts these response mechanisms to promote both viral replication and survival of the infected cell. We will review the role of unfolded protein and oxidative stress responses as well as the role of auto- and mitophagy in HCV infection. Finally, we will discuss the recent discovery of a cellular chaperone involved in stress responses, the sigma-1 receptor, as a cellular factor required at the onset of HCV infection and the potential molecular events underlying the proviral role of this cellular factor in HCV infection.
Collapse
|
44
|
Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol 2015; 129:337-62. [PMID: 25367385 DOI: 10.1007/s00401-014-1361-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022]
Abstract
Autophagy delivers cytoplasmic components and organelles to lysosomes for degradation. This pathway serves to degrade nonfunctional or unnecessary organelles and aggregate-prone and oxidized proteins to produce substrates for energy production and biosynthesis. Macroautophagy delivers large aggregates and whole organelles to lysosomes by first enveloping them into autophagosomes that then fuse with lysosomes. Chaperone-mediated autophagy (CMA) degrades proteins containing the KFERQ-like motif in their amino acid sequence, by transporting them from the cytosol across the lysosomal membrane into the lysosomal lumen. Autophagy is especially important for the survival and homeostasis of postmitotic cells like neurons, because these cells are not able to dilute accumulating detrimental substances and damaged organelles by cell division. Our current knowledge on the autophagic pathways and molecular mechanisms and regulation of autophagy will be summarized in this review. We will describe the physiological functions of macroautophagy and CMA in neuronal cells. Finally, we will summarize the current evidence showing that dysfunction of macroautophagy and/or CMA contributes to neuronal diseases. We will give an overview of our current knowledge on the role of autophagy in aging neurons, and focus on the role of autophagy in four types of neurodegenerative diseases, i.e., amyotrophic lateral sclerosis and frontotemporal dementia, prion diseases, lysosomal storage diseases, and Parkinson's disease.
Collapse
|
45
|
Greninger AL. Picornavirus–Host Interactions to Construct Viral Secretory Membranes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:189-212. [DOI: 10.1016/bs.pmbts.2014.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
V'kovski P, Al-Mulla H, Thiel V, Neuman BW. New insights on the role of paired membrane structures in coronavirus replication. Virus Res 2014; 202:33-40. [PMID: 25550072 PMCID: PMC7114427 DOI: 10.1016/j.virusres.2014.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
Coronavirus replication is tied to formation of double-membrane organelles (DMOs). DMO-making genes are conserved across the Nidovirales. Here, we interpret recent experiments on the role and importance of coronavirus DMOs.
The replication of coronaviruses, as in other positive-strand RNA viruses, is closely tied to the formation of membrane-bound replicative organelles inside infected cells. The proteins responsible for rearranging cellular membranes to form the organelles are conserved not just among the Coronaviridae family members, but across the order Nidovirales. Taken together, these observations suggest that the coronavirus replicative organelle plays an important role in viral replication, perhaps facilitating the production or protection of viral RNA. However, the exact nature of this role, and the specific contexts under which it is important have not been fully elucidated. Here, we collect and interpret the recent experimental evidence about the role and importance of membrane-bound organelles in coronavirus replication.
Collapse
Affiliation(s)
- Philip V'kovski
- Federal Institute of Virology and Immunology, Mittelhäusern, Bern, Switzerland; Graduate School for Biomedical Sciences, University of Bern, Switzerland
| | - Hawaa Al-Mulla
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom; University of Baghdad, College of Science, Baghdad, Iraq
| | - Volker Thiel
- Federal Institute of Virology and Immunology, Mittelhäusern, Bern, Switzerland; Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Benjamin W Neuman
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom.
| |
Collapse
|
47
|
Targeting autophagy in skin diseases. J Mol Med (Berl) 2014; 93:31-8. [PMID: 25404245 DOI: 10.1007/s00109-014-1225-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
Abstract
Autophagy is a major intracellular degradative process by which cytoplasmic materials are sequestered in double-membraned vesicles and degraded upon fusion with lysosomes. Under normal circumstances, basal autophagy is necessary to maintain cellular homeostasis by scavenging dysfunctional or damaged organelles or proteins. In addition to its vital homeostatic role, this degradation pathway has been implicated in many different cellular processes such as cell apoptosis, inflammation, pathogen clearance, and antigen presentation and thereby has been linked to a variety of human disorders, including metabolic conditions, neurodegenerative diseases, cancers, and infectious diseases. The skin, the largest organ of the body, serves as the first line of defense against many different environmental insults; however, only a few studies have examined the effect of autophagy on the pathogenesis of skin diseases. This review provides an overview of the mechanisms of autophagy and highlights recent findings relevant to the role of autophagy in skin diseases and strategies for therapeutic modulation.
Collapse
|
48
|
Blanchard E, Roingeard P. Virus-induced double-membrane vesicles. Cell Microbiol 2014; 17:45-50. [PMID: 25287059 PMCID: PMC5640787 DOI: 10.1111/cmi.12372] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 12/27/2022]
Abstract
Many viruses that replicate in the cytoplasm compartmentalize their genome replication and transcription in specific subcellular microenvironments or organelle‐like structures, to increase replication efficiency and protect against host cell defences. Recent studies have investigated the complex membrane rearrangements induced by diverse positive‐strand RNA viruses, which are of two morphotypes : membrane invagination towards the lumen of the endoplasmic reticulum (ER) or other specifically targeted organelles and double‐membrane vesicles (DMVs) formed by extrusion of the ER membrane. DMVs resemble small autophagosomes and the viruses inducing these intriguing organelles are known to promote autophagy, suggesting a potential link between DMVs and the autophagic pathway. In this review, we summarize recent findings concerning the biogenesis, architecture and role of DMVs in the life cycle of viruses from different families and discuss their possible connection to autophagy or other related pathways.
Collapse
Affiliation(s)
- Emmanuelle Blanchard
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, Cedex 37032, France
| | | |
Collapse
|
49
|
Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity. Protein Cell 2014; 5:912-27. [PMID: 25311841 PMCID: PMC4259884 DOI: 10.1007/s13238-014-0104-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/01/2014] [Indexed: 12/21/2022] Open
Abstract
Autophagy plays important roles in modulating viral replication and antiviral immune response. Coronavirus infection is associated with the autophagic process, however, little is known about the mechanisms of autophagy induction and its contribution to coronavirus regulation of host innate responses. Here, we show that the membrane-associated papain-like protease PLP2 (PLP2-TM) of coronaviruses acts as a novel autophagy-inducing protein. Intriguingly, PLP2-TM induces incomplete autophagy process by increasing the accumulation of autophagosomes but blocking the fusion of autophagosomes with lysosomes. Furthermore, PLP2-TM interacts with the key autophagy regulators, LC3 and Beclin1, and promotes Beclin1 interaction with STING, the key regulator for antiviral IFN signaling. Finally, knockdown of Beclin1 partially reverses PLP2-TM's inhibitory effect on innate immunity which resulting in decreased coronavirus replication. These results suggested that coronavirus papain-like protease induces incomplete autophagy by interacting with Beclin1, which in turn modulates coronavirus replication and antiviral innate immunity.
Collapse
|
50
|
Liu B, Liu C, Zhao X, Shen W, Qian L, Wei Y, Kong X. Establishment of a cell line with stable expression of mCherry-EGFP tandem fluorescent-tagged LC3B for studying the impact of HIV-1 infection on autophagic flux. J Virol Methods 2014; 209:95-102. [PMID: 25241145 DOI: 10.1016/j.jviromet.2014.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 02/05/2023]
Abstract
Increasing evidence indicates that HIV-1 infection has an impact on cell autophagy, and a susceptible cell line is required for studying the relationship of HIV-1 with autophagy. However, there is limited information on the optimal cell line to evaluate the changes of autophagy affected by HIV infection. In this study cell line TZM-tfLC3B was constructed to express mCherry-EGFP tandem fluorescent tagged LC3B (tfLC3B) by stable transfection of tfLC3B as well as allowing X4/R5 tropic HIV-1 replication. The monitoring of autophagic flux in TZM-tfLC3B was achieved by observing fluorescent puncta. HIV-1 virus-like particles lacking replicative nucleic acid could induce autophagy in TZM-tfLC3B in an envelope glycoprotein dependent manner. These data suggest that TZM-tfLC3B will be a useful tool for studying the HIV-1-induced autophagy modulation of host cells.
Collapse
Affiliation(s)
- Bin Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| | - Xuechao Zhao
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| | - Wenyuan Shen
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| | - Lingyu Qian
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, China.
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| |
Collapse
|