1
|
Soo N, Farinre O, Chahroudi A, Boliar S, Goswami R. A gut check: understanding the interplay of the gastrointestinal microbiome and the developing immune system towards the goal of pediatric HIV remission. Retrovirology 2024; 21:15. [PMID: 39425183 PMCID: PMC11490017 DOI: 10.1186/s12977-024-00648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART) in reducing the global incidence of vertical HIV transmissions, more than 120,000 children are still infected with the virus each year. Since ART cannot clear the HIV reservoir that is established soon after infection, children living with HIV (CLWH) are forced to rely on therapy for their lives and suffer from long-term drug-related complications. Pediatric HIV infection, like adult infection, is associated with gut microbial dysbiosis, loss of gut epithelial integrity, bacterial translocation, CD4 + T cell depletion, systemic immune activation, and viral reservoir establishment. However, unlike in adults, HIV that is vertically acquired by infants interacts with a gut microbiome that is continuously evolving while concomitantly shaping the infant's immune ontogeny. Therefore, to determine whether there may be interventions that target the HIV reservoir through microbiome-directed approaches, understanding the complex tripartite interactions between the transmitted HIV, the maturing gut microbiome, and the developing immune system during early life is crucial. Importantly, early life is the time when the gut microbiome of an individual is highly dynamic, and this temporal development of the gut microbiome plays a crucial role in educating the maturing immune system of a child. Therefore, manipulation of the gut microbiome of CLWH to a phenotype that can reduce HIV persistence by fostering an antiviral immune system might be an opportune strategy to achieve ART-free viral suppression in CLWH. This review summarizes the current state of knowledge on the vertical transmission of HIV, the developing gut microbiome of CLWH, and the immune landscape of pediatric elite controllers, and explores the prospect of employing microbial modulation as a potential therapeutic approach to achieve ART-free viral suppression in the pediatric population.
Collapse
Affiliation(s)
- Nicole Soo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Omotayo Farinre
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, 30322, USA
| | - Saikat Boliar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Beliakova-Bethell N. Targeting noncoding RNAs to reactivate or eliminate latent HIV reservoirs. Curr Opin HIV AIDS 2024; 19:47-55. [PMID: 38169367 PMCID: PMC10872953 DOI: 10.1097/coh.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Expression of noncoding RNAs (ncRNAs) is more tissue and cell type-specific than expression of protein-coding genes. Understanding the mechanisms of action of ncRNAs and their roles in HIV replication and latency may inform targets for the latent HIV reservoir reactivation or elimination with high specificity to CD4 + T cells latently infected with HIV. RECENT FINDINGS While the number of studies in the field of ncRNAs and HIV is limited, evidence points to complex interactions between different ncRNAs, protein-coding RNAs, and proteins. Latency-reversing agents modulate the expression of ncRNAs, with some effects being inhibitory for HIV reactivation. An important limitation of basic research on the ncRNA mechanisms of action is the reliance on cell lines. Because of cell type specificity, it is uncertain whether the ncRNAs function similarly in primary cells. SUMMARY Comprehensive functional screens to uncover all ncRNAs that regulate HIV expression and the detailed exploration of their mechanisms of action in relevant cell types are needed to identify promising targets for HIV reservoir clearance. Classes of ncRNAs as a whole rather than individual ncRNAs might represent an attractive target for reservoir elimination. Compound screens for latency reversal should factor in the complexity of their effects on ncRNAs.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- Department of Medicine, University of California at San Diego, CA, USA
- VA San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, CA, USA
| |
Collapse
|
3
|
Okpaise D, Sluis-Cremer N, Rappocciolo G, Rinaldo CR. Cholesterol Metabolism in Antigen-Presenting Cells and HIV-1 Trans-Infection of CD4 + T Cells. Viruses 2023; 15:2347. [PMID: 38140588 PMCID: PMC10747884 DOI: 10.3390/v15122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) provides an effective method for managing HIV-1 infection and preventing the onset of AIDS; however, it is ineffective against the reservoir of latent HIV-1 that persists predominantly in resting CD4+ T cells. Understanding the mechanisms that facilitate the persistence of the latent reservoir is key to developing an effective cure for HIV-1. Of particular importance in the establishment and maintenance of the latent viral reservoir is the intercellular transfer of HIV-1 from professional antigen-presenting cells (APCs-monocytes/macrophages, myeloid dendritic cells, and B lymphocytes) to CD4+ T cells, termed trans-infection. Whereas virus-to-cell HIV-1 cis infection is sensitive to ART, trans-infection is impervious to antiviral therapy. APCs from HIV-1-positive non-progressors (NPs) who control their HIV-1 infection in the absence of ART do not trans-infect CD4+ T cells. In this review, we focus on this unique property of NPs that we propose is driven by a genetically inherited, altered cholesterol metabolism in their APCs. We focus on cellular cholesterol homeostasis and the role of cholesterol metabolism in HIV-1 trans-infection, and notably, the link between cholesterol efflux and HIV-1 trans-infection in NPs.
Collapse
Affiliation(s)
| | | | | | - Charles R. Rinaldo
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (D.O.); (N.S.-C.); (G.R.)
| |
Collapse
|
4
|
Van Zandt AR, MacLean AG. Advances in HIV therapeutics and cure strategies: findings obtained through non-human primate studies. J Neurovirol 2023; 29:389-399. [PMID: 37635184 DOI: 10.1007/s13365-023-01162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Human immunodeficiency virus (HIV), the main contributor of the ongoing AIDS epidemic, remains one of the most challenging and complex viruses to target and eradicate due to frequent genome mutation and immune evasion. Despite the development of potent antiretroviral therapies, HIV remains an incurable infection as the virus persists in latent reservoirs throughout the body. To innovate a safe and effective cure strategy for HIV in humans, animal models are needed to better understand viral proliferation, disease progression, and therapeutic response. Nonhuman primates infected with simian immunodeficiency virus (SIV) provide an ideal model to study HIV infection and pathogenesis as they are closely related to humans genetically and express phenotypically similar immune systems. Examining the clinical outcomes of novel treatment strategies within nonhuman primates facilitates our understanding of HIV latency and advances the development of a true cure to HIV.
Collapse
Affiliation(s)
- Alison R Van Zandt
- Tulane National Primate Research Center, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Covington, LA, USA.
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
- Tulane Center for Aging, New Orleans, LA, USA.
| |
Collapse
|
5
|
Lewis CA, Margolis DM, Browne EP. New Concepts in Therapeutic Manipulation of HIV-1 Transcription and Latency: Latency Reversal versus Latency Prevention. Viruses 2023; 15:1677. [PMID: 37632019 PMCID: PMC10459382 DOI: 10.3390/v15081677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapy (ART) has dramatically improved the prognosis for people living with HIV-1, but a cure remains elusive. The largest barrier to a cure is the presence of a long-lived latent reservoir that persists within a heterogenous mix of cell types and anatomical compartments. Efforts to eradicate the latent reservoir have primarily focused on latency reversal strategies. However, new work has demonstrated that the majority of the long-lived latent reservoir is established near the time of ART initiation, suggesting that it may be possible to pair an intervention with ART initiation to prevent the formation of a sizable fraction of the latent reservoir. Subsequent treatment with latency reversal agents, in combination with immune clearance agents, may then be a more tractable strategy for fully clearing the latent reservoir in people newly initiating ART. Here, we summarize molecular mechanisms of latency establishment and maintenance, ongoing efforts to develop effective latency reversal agents, and newer efforts to design latency prevention agents. An improved understanding of the molecular mechanisms involved in both the establishment and maintenance of latency will aid in the development of new latency prevention and reversal approaches to ultimately eradicate the latent reservoir.
Collapse
Affiliation(s)
- Catherine A. Lewis
- University of North Carolina HIV Cure Center, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M. Margolis
- University of North Carolina HIV Cure Center, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward P. Browne
- University of North Carolina HIV Cure Center, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, Li C, Li W. The reservoir of latent HIV. Front Cell Infect Microbiol 2022; 12:945956. [PMID: 35967854 PMCID: PMC9368196 DOI: 10.3389/fcimb.2022.945956] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent reservoir of the human immunodeficiency virus (HIV) is currently the major challenge in curing HIV infection. After HIV infects the human body, the latent HIV is unable to be recognized by the body’s immune system. Currently, the widely adopted antiretroviral therapy (ART) is also unble to eliminate it, thus hindering the progress of HIV treatment. This review discusses the existence of latent HIV vault for HIV treatment, its formation and factors affecting its formation, cell, and tissue localization, methods for detection and removing latent reservoir, to provide a comprehensive understanding of latent HIV vault, in order to assist in the future research and play a potential role in achieving HIV treatment.
Collapse
Affiliation(s)
- Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuan Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| |
Collapse
|
7
|
Kim EH, Manganaro L, Schotsaert M, Brown BD, Mulder LC, Simon V. Development of an HIV reporter virus that identifies latently infected CD4 + T cells. CELL REPORTS METHODS 2022; 2:100238. [PMID: 35784650 PMCID: PMC9243624 DOI: 10.1016/j.crmeth.2022.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/26/2022] [Accepted: 05/24/2022] [Indexed: 04/23/2023]
Abstract
There is no cure for HIV infection, as the virus establishes a latent reservoir, which escapes highly active antiretroviral treatments. One major obstacle is the difficulty identifying cells that harbor latent proviruses. We devised a single-round viral vector that carries a series of versatile reporter molecules that are expressed in an LTR-dependent or LTR-independent manner and make it possible to accurately distinguish productive from latent infection. Using primary human CD4+ T cells, we show that transcriptionally silent proviruses are found in more than 50% of infected cells. The latently infected cells harbor proviruses but lack evidence for multiple spliced transcripts. LTR-silent integrations occurred to variable degrees in all CD4+ T subsets examined, with CD4+ TEM and CD4+ TREG displaying the highest frequency of latent infections. This viral vector permits the interrogation of HIV latency at single-cell resolution, revealing mechanisms of latency establishment and allowing the characterization of effective latency-reversing agents.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lara Manganaro
- INGM, Istituto Nazionale di Genetica Molecolare, ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D. Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lubbertus C.F. Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine at Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Ramirez NGP, Lee J, Zheng Y, Li L, Dennis B, Chen D, Challa A, Planelles V, Westover KD, Alto NM, D'Orso I. ADAP1 promotes latent HIV-1 reactivation by selectively tuning KRAS-ERK-AP-1 T cell signaling-transcriptional axis. Nat Commun 2022; 13:1109. [PMID: 35232997 PMCID: PMC8888757 DOI: 10.1038/s41467-022-28772-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/11/2022] [Indexed: 12/29/2022] Open
Abstract
Immune stimulation fuels cell signaling-transcriptional programs inducing biological responses to eliminate virus-infected cells. Yet, retroviruses that integrate into host cell chromatin, such as HIV-1, co-opt these programs to switch between latent and reactivated states; however, the regulatory mechanisms are still unfolding. Here, we implemented a functional screen leveraging HIV-1's dependence on CD4+ T cell signaling-transcriptional programs and discovered ADAP1 is an undescribed modulator of HIV-1 proviral fate. Specifically, we report ADAP1 (ArfGAP with dual PH domain-containing protein 1), a previously thought neuronal-restricted factor, is an amplifier of select T cell signaling programs. Using complementary biochemical and cellular assays, we demonstrate ADAP1 inducibly interacts with the immune signalosome to directly stimulate KRAS GTPase activity thereby augmenting T cell signaling through targeted activation of the ERK-AP-1 axis. Single cell transcriptomics analysis revealed loss of ADAP1 function blunts gene programs upon T cell stimulation consequently dampening latent HIV-1 reactivation. Our combined experimental approach defines ADAP1 as an unexpected tuner of T cell programs facilitating HIV-1 latency escape.
Collapse
Affiliation(s)
- Nora-Guadalupe P Ramirez
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yue Zheng
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Lianbo Li
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bryce Dennis
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Didi Chen
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Kenneth D Westover
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Neal M Alto
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
9
|
Zhao S, Tsibris A. Leveraging Novel Integrated Single-Cell Analyses to Define HIV-1 Latency Reversal. Viruses 2021; 13:1197. [PMID: 34206546 PMCID: PMC8310207 DOI: 10.3390/v13071197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023] Open
Abstract
While suppressive antiretroviral therapy can effectively limit HIV-1 replication and evolution, it leaves behind a residual pool of integrated viral genomes that persist in a state of reversible nonproductive infection, referred to as the HIV-1 reservoir. HIV-1 infection models were established to investigate HIV-1 latency and its reversal; recent work began to probe the dynamics of HIV-1 latency reversal at single-cell resolution. Signals that establish HIV-1 latency and govern its reactivation are complex and may not be completely resolved at the cellular and regulatory levels by the aggregated measurements of bulk cellular-sequencing methods. High-throughput single-cell technologies that characterize and quantify changes to the epigenome, transcriptome, and proteome continue to rapidly evolve. Combinations of single-cell techniques, in conjunction with novel computational approaches to analyze these data, were developed and provide an opportunity to improve the resolution of the heterogeneity that may exist in HIV-1 reactivation. In this review, we summarize the published single-cell HIV-1 transcriptomic work and explore how cutting-edge advances in single-cell techniques and integrative data-analysis tools may be leveraged to define the mechanisms that control the reversal of HIV-1 latency.
Collapse
Affiliation(s)
| | - Athe Tsibris
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA;
| |
Collapse
|
10
|
Katusiime MG, Van Zyl GU, Cotton MF, Kearney MF. HIV-1 Persistence in Children during Suppressive ART. Viruses 2021; 13:v13061134. [PMID: 34204740 PMCID: PMC8231535 DOI: 10.3390/v13061134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
There is a growing number of perinatally HIV-1-infected children worldwide who must maintain life-long ART. In early life, HIV-1 infection is established in an immunologically inexperienced environment in which maternal ART and immune dynamics during pregnancy play a role in reservoir establishment. Children that initiated early antiretroviral therapy (ART) and maintained long-term suppression of viremia have smaller and less diverse HIV reservoirs than adults, although their proviral landscape during ART is reported to be similar to that of adults. The ability of these early infected cells to persist long-term through clonal expansion poses a major barrier to finding a cure. Furthermore, the effects of life-long HIV persistence and ART are yet to be understood, but growing evidence suggests that these individuals are at an increased risk for developing non-AIDS-related comorbidities, which underscores the need for an HIV cure.
Collapse
Affiliation(s)
- Mary Grace Katusiime
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, MD 21702, USA;
- Correspondence:
| | - Gert U. Van Zyl
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service Tygerberg, Cape Town 8000, South Africa;
| | - Mark F. Cotton
- Department of Pediatrics and Child Health, Tygerberg Children’s Hospital and Family Center for Research with Ubuntu, Stellenbosch University, Cape Town 7505, South Africa;
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
11
|
B Lymphocytes, but Not Dendritic Cells, Efficiently HIV-1 Trans Infect Naive CD4 + T Cells: Implications for the Viral Reservoir. mBio 2021; 12:mBio.02998-20. [PMID: 33688006 PMCID: PMC8092276 DOI: 10.1128/mbio.02998-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Insight into the establishment and maintenance of HIV-1 infection in resting CD4+ T cell subsets is critical for the development of therapeutics targeting the HIV-1 reservoir. Although the frequency of HIV-1 infection, as quantified by the frequency of HIV-1 DNA, is lower in CD4+ naive T cells (TN) than in the memory T cell subsets, recent studies have shown that TN harbor a large pool of replication-competent virus. Interestingly, however, TN are highly resistant to direct (cis) HIV-1 infection in vitro, in particular to R5-tropic HIV-1, as TN do not express CCR5. In this study, we investigated whether TN could be efficiently HIV-1 trans infected by professional antigen-presenting B lymphocytes and myeloid dendritic cells (DC) in the absence of global T cell activation. We found that B cells, but not DC, have a unique ability to efficiently trans infect TNin vitro In contrast, both B cells and DC mediated HIV-1 trans infection of memory and activated CD4+ T cells. Moreover, we found that TN isolated from HIV-1-infected nonprogressors (NP) harbor significantly disproportionately lower levels of HIV-1 DNA than TN isolated from progressors. This is consistent with our previous finding that antigen-presenting cells (APC) derived from NP do not efficiently trans infect CD4+ T cells due to alterations in APC cholesterol metabolism and cell membrane lipid raft organization. These findings support that B cell-mediated trans infection of TN with HIV-1 has a more profound role than previously considered in establishing the viral reservoir and control of HIV-1 disease progression.IMPORTANCE The latent human immunodeficiency virus type 1 (HIV-1) reservoir in persons on antiretroviral therapy (ART) represents a major barrier to a cure. Although most studies have focused on the HIV-1 reservoir in the memory T cell subset, replication-competent HIV-1 has been isolated from TN, and CCR5-tropic HIV-1 has been recovered from CCR5neg TN from ART-suppressed HIV-1-infected individuals. In this study, we showed that CCR5neg TN are efficiently trans infected with R5-tropic HIV-1 by B lymphocytes, but not by myeloid dendritic cells. Furthermore, we found that TN isolated from NP harbor no or significantly fewer copies of HIV-1 DNA than those from ART-suppressed progressors. These findings support that B cell-mediated trans infection of TN with HIV-1 has a more profound role than previously considered in establishing the viral reservoir and control of HIV-1 disease progression. Understanding the establishment and maintenance of the HIV-1 latent reservoir is fundamental for the design of effective treatments for viral eradication.
Collapse
|
12
|
Zerbato JM, Khoury G, Zhao W, Gartner MJ, Pascoe RD, Rhodes A, Dantanarayana A, Gooey M, Anderson J, Bacchetti P, Deeks SG, McMahon J, Roche M, Rasmussen TA, Purcell DF, Lewin SR. Multiply spliced HIV RNA is a predictive measure of virus production ex vivo and in vivo following reversal of HIV latency. EBioMedicine 2021; 65:103241. [PMID: 33647768 PMCID: PMC7920823 DOI: 10.1016/j.ebiom.2021.103241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND One strategy being pursued to clear latently infected cells that persist in people living with HIV (PLWH) on antiretroviral therapy (ART) is to activate latent HIV infection with a latency reversing agent (LRA). Surrogate markers that accurately measure virus production following an LRA are needed. METHODS We quantified cell-associated unspliced (US), multiply spliced (MS) and supernatant (SN) HIV RNA by qPCR from total and resting CD4+ T cells isolated from seven PLWH on ART before and after treatment ex vivo with different LRAs, including histone deacetylase inhibitors (HDACi). MS and plasma HIV RNA were also quantified from PLWH on ART (n-11) who received the HDACi panobinostat. FINDINGS In total and resting CD4+ T cells from PLWH on ART, detection of US RNA was common while detection of MS RNA was infrequent. Primers used to detect MS RNA, in contrast to US RNA, bound sites of the viral genome that are commonly mutated or deleted in PLWH on ART. Following ex vivo stimulation with LRAs, we identified a strong correlation between the fold change increase in SN and MS RNA, but not the fold change increase in SN and US RNA. In PLWH on ART who received panobinostat, MS RNA was significantly higher in samples with detectable compared to non0detectable plasma HIV RNA. INTERPRETATION Following administration of an LRA, quantification of MS RNA is more likely to reflect an increase in virion production and is therefore a better indicator of meaningful latency reversal. FUNDING NHMRC, NIH DARE collaboratory.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Georges Khoury
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wei Zhao
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Matthew J Gartner
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Rachel D Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Megan Gooey
- HIV Characterisation Laboratory, Victorian Infectious Diseases Reference Laboratory, the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jenny Anderson
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Steven G Deeks
- Department of Medicine, Division of HIV/AIDS, University of California San Francisco, San Francisco, USA
| | - James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Damian Fj Purcell
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
13
|
Obregon-Perko V, Bricker KM, Mensah G, Uddin F, Kumar MR, Fray EJ, Siliciano RF, Schoof N, Horner A, Mavigner M, Liang S, Vanderford T, Sass J, Chan C, Berendam SJ, Bar KJ, Shaw GM, Silvestri G, Fouda GG, Permar SR, Chahroudi A. Simian-Human Immunodeficiency Virus SHIV.C.CH505 Persistence in ART-Suppressed Infant Macaques Is Characterized by Elevated SHIV RNA in the Gut and a High Abundance of Intact SHIV DNA in Naive CD4 + T Cells. J Virol 2020; 95:e01669-20. [PMID: 33087463 PMCID: PMC7944446 DOI: 10.1128/jvi.01669-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.
Collapse
Affiliation(s)
| | - Katherine M Bricker
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gloria Mensah
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ferzan Uddin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Nils Schoof
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anna Horner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shan Liang
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thomas Vanderford
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Julian Sass
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Stella J Berendam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Genevieve G Fouda
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Venanzi Rullo E, Pinzone MR, Cannon L, Weissman S, Ceccarelli M, Zurakowski R, Nunnari G, O'Doherty U. Persistence of an intact HIV reservoir in phenotypically naive T cells. JCI Insight 2020; 5:133157. [PMID: 33055422 PMCID: PMC7605525 DOI: 10.1172/jci.insight.133157] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART), HIV persists in a latent form and remains a hurdle to eradication. CD4+ T lymphocytes harbor the majority of the HIV reservoir, but the role of individual subsets remains unclear. CD4+ T cells were sorted into central, transitional, effector memory, and naive T cells. We measured HIV DNA and performed proviral sequencing of more than 1900 proviruses in 2 subjects at 2 and 9 years after ART initiation to estimate the contribution of each subset to the reservoir. Although our study was limited to 2 subjects, we obtained comparable findings with publicly available sequences. While the HIV integration levels were lower in naive compared with memory T cells, naive cells were a major contributor to the intact proviral reservoir. Notably, proviral sequences isolated from naive cells appeared to be unique, while those retrieved from effector memory cells were mainly clonal. The number of clones increased as cells differentiated from a naive to an effector memory phenotype, suggesting naive cells repopulate the effector memory reservoir as previously shown for central memory cells. Naive T cells contribute substantially to the intact HIV reservoir and represent a significant hurdle for HIV eradication.
Collapse
Affiliation(s)
- Emmanuele Venanzi Rullo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - LaMont Cannon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Virginia, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Ceccarelli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Zerbato JM, McMahon DK, Sobolewski MD, Mellors JW, Sluis-Cremer N. Naive CD4+ T Cells Harbor a Large Inducible Reservoir of Latent, Replication-competent Human Immunodeficiency Virus Type 1. Clin Infect Dis 2020; 69:1919-1925. [PMID: 30753360 DOI: 10.1093/cid/ciz108] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The latent human immunodeficiency virus type 1 (HIV-1) reservoir represents a major barrier to a cure. Based on the levels of HIV-1 DNA in naive (TN) vs resting memory CD4+ T cells, it is widely hypothesized that this reservoir resides primarily within memory cells. Here, we compared virus production from TN and central memory (TCM) CD4+ T cells isolated from HIV-1-infected individuals on suppressive therapy. METHODS CD4+ TN and TCM cells were purified from the blood of 7 HIV-1-infected individuals. We quantified total HIV-1 DNA in the CD4+ TN and TCM cells. Extracellular virion-associated HIV-1 RNA or viral outgrowth assays were used to assess latency reversal following treatment with anti-CD3/CD28 monoclonal antibodies (mAbs), phytohaemagglutinin/interleukin-2, phorbol 12-myristate 13-acetate/ionomycin, prostratin, panobinostat, or romidepsin. RESULTS HIV-1 DNA was significantly higher in TCM compared to TN cells (2179 vs 684 copies/106 cells, respectively). Following exposure to anti-CD3/CD28 mAbs, virion-associated HIV-1 RNA levels were similar between TCM and TN cells (15 135 vs 18 290 copies/mL, respectively). In 4/7 donors, virus production was higher for TN cells independent of the latency reversing agent used. Replication-competent virus was recovered from both TN and TCM cells. CONCLUSIONS Although the frequency of HIV-1 infection is lower in TN compared to TCM cells, as much virus is produced from the TN population after latency reversal. This finding suggests that quantifying HIV-1 DNA alone may not predict the size of the inducible latent reservoir and that TN cells may be an important reservoir of latent HIV-1.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Deborah K McMahon
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Michelle D Sobolewski
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| |
Collapse
|
16
|
Olwenyi OA, Acharya A, Routhu NK, Pierzchalski K, Jones JW, Kane MA, Sidell N, Mohan M, Byrareddy SN. Retinoic Acid Improves the Recovery of Replication-Competent Virus from Latent SIV Infected Cells. Cells 2020; 9:E2076. [PMID: 32932813 PMCID: PMC7565696 DOI: 10.3390/cells9092076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
The accurate estimation and eradication of Human Immunodeficiency Virus (HIV) viral reservoirs is limited by the incomplete reactivation of cells harboring the latent replication-competent virus. We investigated whether the in vitro and in vivo addition of retinoic acid (RA) enhances virus replication and improves the detection of latent virus. Peripheral blood mononuclear cells (PBMCs) from naive and anti-retroviral therapy (ART)-treated SIV-infected rhesus macaques (RMs) were cultured in vitro with anti-CD3/CD28 + IL-2 in the presence/absence of RA. Viral RNA and p27 levels were quantified using RT-qPCR and ELISA, respectively. Viral reservoirs were estimated using the Tat/Rev-Induced Limited Dilution Assay (TILDA) and Quantitative Viral Outgrowth Assay (QVOA). In vitro and in vivo measures revealed that there was also an increase in viral replication in RA-treated versus without RA conditions. In parallel, the addition of RA to either CD3/CD28 or phorbol myristate acetate (PMA)/ionomycin during QVOA and TILDA, respectively, was shown to augment reactivation of the replication-competent viral reservoir in anti-retroviral therapy (ART)-suppressed RMs as shown by a greater than 2.3-fold increase for QVOA and 1 to 2-fold increments for multi-spliced RNA per million CD4+ T cells. The use of RA can be a useful approach to enhance the efficiency of current protocols used for in vitro and potentially in vivo estimates of CD4+ T cell latent reservoirs. In addition, flow cytometry analysis revealed that RA improved estimates of various viral reservoir assays by eliciting broad CD4 T-cell activation as demonstrated by elevated CD25 and CD38 but reduced CD69 and PD-1 expressing cells.
Collapse
Affiliation(s)
- Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
| | - Nanda Kishore Routhu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Institute, San Antonio, TX 78227, USA;
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
17
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
18
|
Genetic Diversity, Compartmentalization, and Age of HIV Proviruses Persisting in CD4 + T Cell Subsets during Long-Term Combination Antiretroviral Therapy. J Virol 2020; 94:JVI.01786-19. [PMID: 31776273 DOI: 10.1128/jvi.01786-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/20/2019] [Indexed: 02/02/2023] Open
Abstract
The HIV reservoir, which comprises diverse proviruses integrated into the genomes of infected, primarily CD4+ T cells, is the main barrier to developing an effective HIV cure. Our understanding of the genetics and dynamics of proviruses persisting within distinct CD4+ T cell subsets, however, remains incomplete. Using single-genome amplification, we characterized subgenomic proviral sequences (nef region) from naive, central memory, transitional memory, and effector memory CD4+ T cells from five HIV-infected individuals on long-term combination antiretroviral therapy (cART) and compared these to HIV RNA sequences isolated longitudinally from archived plasma collected prior to cART initiation, yielding HIV data sets spanning a median of 19.5 years (range, 10 to 20 years) per participant. We inferred a distribution of within-host phylogenies for each participant, from which we characterized proviral ages, phylogenetic diversity, and genetic compartmentalization between CD4+ T cell subsets. While three of five participants exhibited some degree of proviral compartmentalization between CD4+ T cell subsets, combined analyses revealed no evidence that any particular CD4+ T cell subset harbored the longest persisting, most genetically diverse, and/or most genetically distinctive HIV reservoir. In one participant, diverse proviruses archived within naive T cells were significantly younger than those in memory subsets, while for three other participants we observed no significant differences in proviral ages between subsets. In one participant, "old" proviruses were recovered from all subsets, and included one sequence, estimated to be 21.5 years old, that dominated (>93%) their effector memory subset. HIV eradication strategies will need to overcome within- and between-host genetic complexity of proviral landscapes, possibly via personalized approaches.IMPORTANCE The main barrier to HIV cure is the ability of a genetically diverse pool of proviruses, integrated into the genomes of infected CD4+ T cells, to persist despite long-term suppressive combination antiretroviral therapy (cART). CD4+ T cells, however, constitute a heterogeneous population due to their maturation across a developmental continuum, and the genetic "landscapes" of latent proviruses archived within them remains incompletely understood. We applied phylogenetic techniques, largely novel to HIV persistence research, to reconstruct within-host HIV evolutionary history and characterize proviral diversity in CD4+ T cell subsets in five individuals on long-term cART. Participants varied widely in terms of proviral burden, genetic diversity, and age distribution between CD4+ T cell subsets, revealing that proviral landscapes can differ between individuals and between infected cell types within an individual. Our findings expose each within-host latent reservoir as unique in its genetic complexity and support personalized strategies for HIV eradication.
Collapse
|
19
|
HIV-1-Infected CD4+ T Cells Facilitate Latent Infection of Resting CD4+ T Cells through Cell-Cell Contact. Cell Rep 2020; 24:2088-2100. [PMID: 30134170 DOI: 10.1016/j.celrep.2018.07.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/01/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023] Open
Abstract
HIV-1 is transmitted between T cells through the release of cell-free particles and through cell-cell contact. Cell-to-cell transmission is more efficient than cell-free virus transmission, mediates resistance to immune responses, and facilitates the spread of virus among T cells. However, whether HIV cell-to-cell transmission influences the establishment of HIV-1 latency has not been carefully explored. We developed an HIV-1 latency model based on the transmission of HIV-1 directly to resting CD4+ T cells by cell-cell contact. This model recapitulates the spread of HIV-1 in T-cell-dense anatomical compartments. We demonstrate that productively infected activated CD4+ T cells transmit HIV-1 to resting CD4+ T cells in a cell-contact-dependent manner. However, proviruses generated in this fashion are more difficult to induce compared to proviruses generated by cell-free infection, suggesting that cell-to-cell transmission influences the establishment and maintenance of latent infection in resting CD4+ T cells.
Collapse
|
20
|
Role of Dendritic Cells in Exposing Latent HIV-1 for the Kill. Viruses 2019; 12:v12010037. [PMID: 31905690 PMCID: PMC7019604 DOI: 10.3390/v12010037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
The development of effective yet nontoxic strategies to target the latent human immunodeficiency virus-1 (HIV-1) reservoir in antiretroviral therapy (ART)-suppressed individuals poses a critical barrier to a functional cure. The ‘kick and kill’ approach to HIV eradication entails proviral reactivation during ART, coupled with generation of cytotoxic T lymphocytes (CTLs) or other immune effectors equipped to eliminate exposed infected cells. Pharmacological latency reversal agents (LRAs) that have produced modest reductions in the latent reservoir ex vivo have not impacted levels of proviral DNA in HIV-infected individuals. An optimal cure strategy incorporates methods that facilitate sufficient antigen exposure on reactivated cells following the induction of proviral gene expression, as well as the elimination of infected targets by either polyfunctional HIV-specific CTLs or other immune-based strategies. Although conventional dendritic cells (DCs) have been used extensively for the purpose of inducing antigen-specific CTL responses in HIV-1 clinical trials, their immunotherapeutic potential as cellular LRAs has been largely ignored. In this review, we discuss the challenges associated with current HIV-1 eradication strategies, as well as the unharnessed potential of ex vivo-programmed DCs for both the ‘kick and kill’ of latent HIV-1.
Collapse
|
21
|
Zhao J, Nguyen LNT, Nguyen LN, Dang X, Cao D, Khanal S, Schank M, Thakuri BKC, Ogbu SC, Morrison ZD, Wu XY, Li Z, Zou Y, El Gazzar M, Ning S, Wang L, Moorman JP, Yao ZQ. ATM Deficiency Accelerates DNA Damage, Telomere Erosion, and Premature T Cell Aging in HIV-Infected Individuals on Antiretroviral Therapy. Front Immunol 2019; 10:2531. [PMID: 31781094 PMCID: PMC6856652 DOI: 10.3389/fimmu.2019.02531] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022] Open
Abstract
HIV infection leads to a phenomenon of inflammaging, in which chronic inflammation induces an immune aged phenotype, even in individuals on combined antiretroviral therapy (cART) with undetectable viremia. In this study, we investigated T cell homeostasis and telomeric DNA damage and repair machineries in cART-controlled HIV patients at risk for inflammaging. We found a significant depletion of CD4 T cells, which was inversely correlated with the cell apoptosis in virus-suppressed HIV subjects compared to age-matched healthy subjects (HS). In addition, HIV CD4 T cells were prone to DNA damage that extended to chromosome ends-telomeres, leading to accelerated telomere erosion-a hallmark of cell senescence. Mechanistically, the DNA double-strand break (DSB) sensors MRE11, RAD50, and NBS1 (MRN complex) remained intact, but both expression and activity of the DNA damage checkpoint kinase ataxia-telangiectasia mutated (ATM) and its downstream checkpoint kinase 2 (CHK2) were significantly suppressed in HIV CD4 T cells. Consistently, ATM/CHK2 activation, DNA repair, and cellular functions were also impaired in healthy CD4 T cells following ATM knockdown or exposure to the ATM inhibitor KU60019 in vitro, recapitulating the biological effects observed in HIV-derived CD4 T cells in vivo. Importantly, ectopic expression of ATM was essential and sufficient to reduce the DNA damage, apoptosis, and cellular dysfunction in HIV-derived CD4 T cells. These results demonstrate that failure of DSB repair due to ATM deficiency leads to increased DNA damage and renders CD4 T cells prone to senescence and apoptotic death, contributing to CD4 T cell depletion or dysfunction in cART-controlled, latent HIV infection.
Collapse
Affiliation(s)
- Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Bal Krishna Chand Thakuri
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Stella C. Ogbu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Zheng D. Morrison
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Zhengke Li
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yue Zou
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| |
Collapse
|
22
|
Terahara K, Iwabuchi R, Hosokawa M, Nishikawa Y, Takeyama H, Takahashi Y, Tsunetsugu-Yokota Y. A CCR5 + memory subset within HIV-1-infected primary resting CD4 + T cells is permissive for replication-competent, latently infected viruses in vitro. BMC Res Notes 2019; 12:242. [PMID: 31036079 PMCID: PMC6489248 DOI: 10.1186/s13104-019-4281-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Resting CD4+ T cells are major reservoirs of latent HIV-1 infection, and may be formed during the early phase of the infection. Although CCR5-tropic (R5) HIV-1 is highly transmissible during the early phase, newly infected individuals have usually been exposed to a mixture of R5 and CXCR4-tropic (X4) viruses, and X4 viral DNA is also detectable in the host. Our aim was to identify which subsets of resting CD4+ T cells contribute to forming the latent reservoir in the presence of both X4 and R5 viruses. RESULTS Primary resting CD4+ naïve T (TN) cells, CCR5- memory T (TM) cells, and CCR5+ TM cells isolated by flow cytometry were infected simultaneously with X4 and R5 HIV-1, which harbored different reporter genes, and were cultured in the resting condition. Flow cytometry at 3 days post-infection demonstrated that X4 HIV-1+ cells were present in all three subsets of cells, whereas R5 HIV-1+ cells were present preferentially in CCR5+ TM cells, but not in TN cells. Following CD3/CD28-mediated activation at 3 days post-infection, numbers of R5 HIV-1+ cells and X4 HIV-1+ cells increased significantly only in the CCR5+ TM subset, suggesting that it provides a major reservoir of replication-competent, latently infected viruses.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Ryutaro Iwabuchi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masahito Hosokawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yohei Nishikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo, 144-8535, Japan
| |
Collapse
|
23
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
24
|
Jean MJ, Fiches G, Hayashi T, Zhu J. Current Strategies for Elimination of HIV-1 Latent Reservoirs Using Chemical Compounds Targeting Host and Viral Factors. AIDS Res Hum Retroviruses 2019; 35:1-24. [PMID: 30351168 DOI: 10.1089/aid.2018.0153] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since the implementation of combination antiretroviral therapy (cART), rates of HIV type 1 (HIV-1) mortality, morbidity, and newly acquired infections have decreased dramatically. In fact, HIV-1-infected individuals under effective suppressive cART approach normal life span and quality of life. However, long-term therapy is required because the virus establish a reversible state of latency in memory CD4+ T cells. Two principle strategies, namely "shock and kill" approach and "block and lock" approach, are currently being investigated for the eradication of these HIV-1 latent reservoirs. Actually, both of these contrasting approaches are based on the use of small-molecule compounds to achieve the cure for HIV-1. In this review, we discuss the recent progress that has been made in designing and developing small-molecule compounds for both strategies.
Collapse
Affiliation(s)
- Maxime J. Jean
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Guillaume Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tsuyoshi Hayashi
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
25
|
Agosto LM, Henderson AJ. CD4 + T Cell Subsets and Pathways to HIV Latency. AIDS Res Hum Retroviruses 2018; 34:780-789. [PMID: 29869531 DOI: 10.1089/aid.2018.0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Latent infection of CD4+ T cells is the main barrier to eradicating HIV-1 infection from infected patients. The cellular and molecular mechanisms involved in the establishment and maintenance of latent infection are directly linked to the transcriptional program of the different CD4+ T cell subsets targeted by the virus. In this review, we provide an overview of how T cell activation, T cell differentiation into functional subsets, and the mode of initial viral infection influence HIV proviral transcription and entry into latency.
Collapse
Affiliation(s)
- Luis M. Agosto
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Andrew J. Henderson
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
26
|
Masson JJR, Cherry CL, Murphy NM, Sada-Ovalle I, Hussain T, Palchaudhuri R, Martinson J, Landay AL, Billah B, Crowe SM, Palmer CS. Polymorphism rs1385129 Within Glut1 Gene SLC2A1 Is Linked to Poor CD4+ T Cell Recovery in Antiretroviral-Treated HIV+ Individuals. Front Immunol 2018; 9:900. [PMID: 29867928 PMCID: PMC5966582 DOI: 10.3389/fimmu.2018.00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023] Open
Abstract
Untreated HIV infection is associated with progressive CD4+ T cell depletion, which is generally recovered with combination antiretroviral therapy (cART). However, a significant proportion of cART-treated individuals have poor CD4+ T cell reconstitution. We investigated associations between HIV disease progression and CD4+ T cell glucose transporter-1 (Glut1) expression. We also investigated the association between these variables and specific single nucleotide polymorphisms (SNPs) within the Glut1 regulatory gene AKT (rs1130214, rs2494732, rs1130233, and rs3730358) and in the Glut1-expressing gene SLC2A1 (rs1385129 and rs841853) and antisense RNA 1 region SLC2A1-AS1 (rs710218). High CD4+Glut1+ T cell percentage is associated with rapid CD4+ T cell decline in HIV-positive treatment-naïve individuals and poor T cell recovery in HIV-positive individuals on cART. Evidence suggests that poor CD4+ T cell recovery in treated HIV-positive individuals is linked to the homozygous genotype (GG) associated with SLC2A1 SNP rs1385129 when compared to those with a recessive allele (GA/AA) (odds ratio = 4.67; P = 0.04). Furthermore, poor response to therapy is less likely among Australian participants when compared against American participants (odds ratio: 0.12; P = 0.01) despite there being no difference in prevalence of a specific genotype for any of the SNPs analyzed between nationalities. Finally, CD4+Glut1+ T cell percentage is elevated among those with a homozygous dominant genotype for SNPs rs1385129 (GG) and rs710218 (AA) when compared to those with a recessive allele (GA/AA and AT/TT respectively) (P < 0.04). The heterozygous genotype associated with AKT SNP 1130214 (GT) had a higher CD4+Glut1+ T cell percentage when compared to the dominant homozygous genotype (GG) (P = 0.0068). The frequency of circulating CD4+Glut1+ T cells and the rs1385129 SLC2A1 SNP may predict the rate of HIV disease progression and CD4+ T cell recovery in untreated and treated infection, respectively.
Collapse
Affiliation(s)
- Jesse J R Masson
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Catherine L Cherry
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicholas M Murphy
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Preimplantation Genetic Diagnosis, Monash IVF, Melbourne, VIC, Australia
| | - Isabel Sada-Ovalle
- Unidad de Investigación Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Tabinda Hussain
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Riya Palchaudhuri
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Jeffrey Martinson
- Department of Immunology-Microbiology, Rush University Medical Centre, Chicago, IL, United States
| | - Alan L Landay
- Department of Immunology-Microbiology, Rush University Medical Centre, Chicago, IL, United States
| | - Baki Billah
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Panagoulias I, Karagiannis F, Aggeletopoulou I, Georgakopoulos T, Argyropoulos CP, Akinosoglou K, Gogos C, Skoutelis A, Mouzaki A. Ets-2 Acts As a Transcriptional Repressor of the Human Immunodeficiency Virus Type 1 through Binding to a Repressor-Activator Target Sequence of 5'-LTR. Front Immunol 2018; 8:1924. [PMID: 29354130 PMCID: PMC5758550 DOI: 10.3389/fimmu.2017.01924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/15/2017] [Indexed: 01/02/2023] Open
Abstract
HIV-1 is transcriptionally active in activated T helper (Th)-cells and inactive in naive or resting memory Th-cells. Ets-2 is a preinduction transcriptional repressor of the IL-2 gene in naive Th-cells and a candidate transcriptional repressor of HIV-1 in the same cells, because the −279 to −250 upstream region of HIV-1-LTR [repressor–activator target sequence (RATS)], that participates in HIV-1-LTR transcriptional silencing, encompasses the AAGGAG Ets-2 binding site. In this proof of concept study, we investigated whether Ets-2 represses the expression of HIV-1. To assess whether Ets-2 can repress HIV-1 transcriptional activation acting through RATS, we transfected Jurkat cells with an Ets-2 overexpression plasmid (pCDNA3-ets-2) or Ets-2 silencing plasmids (ets-2-shRNA) and, as target genes, plasmids carrying the whole HIV-1-LTR sequence (HIV-1-LTR-CAT) or two copies of the RATS sequence (2× RATS-CAT) or a point mutation in the Ets-2 binding site (2× mutantRATS-CAT) or CMV-CAT (control). Ets-2 overexpression resulted in a significant reduction of HIV-1-LTR-CAT and 2× RATS-CAT activities in stimulated cells, but not of the 2× mutantRATS-CAT or CMV-CAT. Ets-2 silencing led to increased activities of HIV-1-LTR-CAT and 2× RATS-CAT in unstimulated cells, but had no effect on the activities of 2× mutantRATS-CAT and CMV-CAT. To assess Ets-2 binding to HIV-1-LTR–RATS in naive Th-cells, we isolated naive Th-cell nuclear proteins and passed them through an Ets-2 antibody column; electrophoretic mobility shift assays were performed using an RATS probe mixed with consecutive protein eluates. Ets-2 bound to the HIV-1-LTR–RATS in a dose-dependent manner. To assess Ets-2 binding to RATS in vivo, Jurkat cells were transfected with 2× RATS-CAT and stained for the Ets-2 protein and the RATS sequence by combining immunofluorescence and fluorescence in situ hybridization techniques. In unstimulated cells, Ets-2 bound to RATS, whereas no binding was observed in stimulated cells. To test for RATS specificity, the same experiments were performed with 2× mutantRATS-CAT, and no binding of Ets-2 was observed. The results were corroborated by chromatin immunoprecipitation assays performed with the same cells. Our results show that Ets-2 is a transcriptional repressor of HIV-1. Repression of HIV-LTR-RATS mediated by Ets-2 may account for the low-level transcription and replication of HIV-1 in naive Th-cells, and contribute to the viral latency and maintenance of viral reservoirs in patients, despite long-term therapy.
Collapse
Affiliation(s)
- Ioannis Panagoulias
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Fotios Karagiannis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Tassos Georgakopoulos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos P Argyropoulos
- Division of Nephrology, Department of Internal Medicine, Medical School, University of New Mexico, Albuquerque, NM, United States
| | - Karolina Akinosoglou
- Infectious Diseases Unit, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Charalambos Gogos
- Infectious Diseases Unit, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Athanasios Skoutelis
- Department of Internal Medicine and Infectious Diseases Unit, Evangelismos General Hospital, Athens, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
28
|
Yaseen MM, Abuharfeil NM, Yaseen MM, Shabsoug BM. The role of polymorphonuclear neutrophils during HIV-1 infection. Arch Virol 2017; 163:1-21. [PMID: 28980078 DOI: 10.1007/s00705-017-3569-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
It is well-recognized that human immunodeficiency virus type-1 (HIV-1) mainly targets CD4+ T cells and macrophages. Nonetheless, during the past three decades, a huge number of studies have reported that HIV-1 can directly or indirectly target other cellular components of the immune system including CD8+ T cells, B cells, dendritic cells, natural killer cells, and polymorphonuclear neutrophils (PMNs), among others. PMNs are the most abundant leukocytes in the human circulation, and are known to play principal roles in the elimination of invading pathogens, regulating different immune responses, healing of injured tissues, and maintaining mucosal homeostasis. Until recently, little was known about the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression. This is because early studies focused on neutropenia and recurrent microbial infections, particularly, during advanced disease. However, recent studies have extended the investigation area to cover new aspects of the interactions between HIV-1 and PMNs. This review aims to summarize these advances and address the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression to better understand the pathophysiology of HIV-1 infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Medical Laboratory Sciences, College of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Mahmoud Yaseen
- Public Health, College of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Barakat Mohammad Shabsoug
- Chemical Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
29
|
Nonnucleoside Reverse Transcriptase Inhibitors Reduce HIV-1 Production from Latently Infected Resting CD4 + T Cells following Latency Reversal. Antimicrob Agents Chemother 2017; 61:AAC.01736-16. [PMID: 27993846 DOI: 10.1128/aac.01736-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 01/06/2023] Open
Abstract
Therapeutic strategies that target the latent HIV-1 reservoir in resting CD4+ T cells of infected individuals are always administered in the presence of combination antiretroviral therapy. Using a primary cell of HIV-1 latency, we evaluated whether different antiviral drug classes affected latency reversal (as assessed by extracellular virus production) by anti-CD3/CD28 monoclonal antibodies or bryostatin 1. We found that the nonnucleoside reverse transcriptase inhibitors efavirenz and rilpivirine significantly decreased HIV-1 production, by ≥1 log.
Collapse
|
30
|
Amaral AJ, Andrade J, Foxall RB, Matoso P, Matos AM, Soares RS, Rocha C, Ramos CG, Tendeiro R, Serra-Caetano A, Guerra-Assunção JA, Santa-Marta M, Gonçalves J, Gama-Carvalho M, Sousa AE. miRNA profiling of human naive CD4 T cells links miR-34c-5p to cell activation and HIV replication. EMBO J 2017; 36:346-360. [PMID: 27993935 PMCID: PMC5286376 DOI: 10.15252/embj.201694335] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023] Open
Abstract
Cell activation is a vital step for T-cell memory/effector differentiation as well as for productive HIV infection. To identify novel regulators of this process, we used next-generation sequencing to profile changes in microRNA expression occurring in purified human naive CD4 T cells in response to TCR stimulation and/or HIV infection. Our results demonstrate, for the first time, the transcriptional up-regulation of miR-34c-5p in response to TCR stimulation in naive CD4 T cells. The induction of this miR was further consistently found to be reduced by both HIV-1 and HIV-2 infections. Overexpression of miR-34c-5p led to changes in the expression of several genes involved in TCR signaling and cell activation, confirming its role as a novel regulator of naive CD4 T-cell activation. We additionally show that miR-34c-5p promotes HIV-1 replication, suggesting that its down-regulation during HIV infection may be part of an anti-viral host response.
Collapse
Affiliation(s)
- Andreia J Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Jorge Andrade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Russell B Foxall
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paula Matoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Matos
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Rui S Soares
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cheila Rocha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Christian G Ramos
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Rita Tendeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Serra-Caetano
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - José A Guerra-Assunção
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, UK
| | - Mariana Santa-Marta
- Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - João Gonçalves
- Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Margarida Gama-Carvalho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
31
|
Tsunetsugu-Yokota Y, Kobayahi-Ishihara M, Wada Y, Terahara K, Takeyama H, Kawana-Tachikawa A, Tokunaga K, Yamagishi M, Martinez JP, Meyerhans A. Homeostatically Maintained Resting Naive CD4 + T Cells Resist Latent HIV Reactivation. Front Microbiol 2016; 7:1944. [PMID: 27990142 PMCID: PMC5130990 DOI: 10.3389/fmicb.2016.01944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/18/2016] [Indexed: 02/03/2023] Open
Abstract
Homeostatic proliferation (HSP) is a major mechanism by which long-lived naïve and memory CD4+ T cells are maintained in vivo and suggested to contribute to the persistence of the latent HIV-1 reservoir. However, while many in vitro latency models rely on CD4+ T cells that were initially differentiated via T-cell receptor (TCR) stimulation into memory/effector cells, latent infection of naïve resting CD4+ T cells maintained under HSP conditions has not been fully addressed. Here, we describe an in vitro HSP culture system utilizing the cytokines IL-7 and IL-15 that allows studying latency in naïve resting CD4+ T cells. CD4+ T cells isolated from several healthy donors were infected with HIV pseudotypes expressing GFP and cultured under HSP conditions or TCR conditions as control. Cell proliferation, phenotype, and GFP expression were analyzed by flow cytometry. RNA expression was quantified by qRT-PCR. Under HSP culture conditions, latently HIV-1 infected naïve cells are in part maintained in the non-dividing (= resting) state. Although a few HIV-1 provirus+ cells were present in these resting GFP negative cells, the estimated level of GFP transcripts per infected cell seems to indicate a block at the post-transcriptional level. Interestingly, neither TCR nor the prototypic HDAC inhibitor SAHA were able to reactivate HIV-1 provirus from these cells. This lack of reactivation was not due to methylation of the HIV LTR. These results point to a mechanism of HIV control in HSP-cultured resting naïve CD4+ T cells that may be distinct from that in TCR-stimulated memory/effector T cells.
Collapse
Affiliation(s)
- Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Human Sciences, Tokyo University of TechnologyTokyo, Japan; Department of Immunology, National Institute of Infectious DiseasesTokyo, Japan
| | | | - Yamato Wada
- Department of Immunology, National Institute of Infectious DiseasesTokyo, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda UniversityTokyo, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases Tokyo, Japan
| | - Makoto Yamagishi
- Graduate School of Frontier Sciences, University of Tokyo Tokyo, Japan
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, University Pompeu Fabra Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, University Pompeu FabraBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
| |
Collapse
|