1
|
Lin S, Zhang Y, Yang J, Yang L, Li X, Bo H, Liu J, Tan M, Zhu W, Wang D, Shu Y. Cross-Species Transmission Potential of H4 Avian Influenza Viruses in China: Epidemiological and Evolutionary Study. Viruses 2024; 16:353. [PMID: 38543719 PMCID: PMC10974465 DOI: 10.3390/v16030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
H4 avian influenza viruses (AIVs) have been widely detected in live poultry markets in China. However, the potential public health impact of H4 AIVs remains largely uncertain. Here, we fully analyzed the distribution and phylogenetic relationship of H4 AIVs in China. We obtained 31 isolates of H4 viruses in China during 2009-2022 through surveillance in poultry-associated environments, such as live poultry markets and poultry farms. Genomic sequence analysis together with publicly available data revealed that frequent reassortment and introduction of H4 AIV from wild birds to poultry may have occurred. We identified 62 genotypes among 127 whole genome sequences of H4 viruses in China, indicating that H4 AIVs had great genetic diversity in China. We also investigated molecular markers and found that drug resistance mutations frequently occurred in the M2 protein and a few mutations related to receptor binding and the host signature in H4 AIVs. Our study demonstrates the cross-species transmission potential of H4 AIVs in China and provides some reference significance for its risk assessment.
Collapse
Affiliation(s)
- Shuxia Lin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (S.L.)
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Jiaying Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (S.L.)
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Min Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza, Key Laboratory for Medical Virology, National Health Commission, Beijing 102206, China; (Y.Z.)
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (S.L.)
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
2
|
Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. J Virol 2022; 96:e0185621. [PMID: 35019727 PMCID: PMC8906417 DOI: 10.1128/jvi.01856-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.
Collapse
|
3
|
Gong X, Hu M, Chen W, Yang H, Wang B, Yue J, Jin Y, Liang L, Ren H. Reassortment Network of Influenza A Virus. Front Microbiol 2021; 12:793500. [PMID: 34975817 PMCID: PMC8716808 DOI: 10.3389/fmicb.2021.793500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) genomes are composed of eight single-stranded RNA segments. Genetic exchange through reassortment of the segmented genomes often endows IAVs with new genetic characteristics, which may affect transmissibility and pathogenicity of the viruses. However, a comprehensive understanding of the reassortment history of IAVs remains lacking. To this end, we assembled 40,296 whole-genome sequences of IAVs for analysis. Using a new clustering method based on Mean Pairwise Distances in the phylogenetic trees, we classified each segment of IAVs into clades. Correspondingly, reassortment events among IAVs were detected by checking the segment clade compositions of related genomes under specific environment factors and time period. We systematically identified 1,927 possible reassortment events of IAVs and constructed their reassortment network. Interestingly, minimum spanning tree of the reassortment network reproved that swine act as an intermediate host in the reassortment history of IAVs between avian species and humans. Moreover, reassortment patterns among related subtypes constructed in this study are consistent with previous studies. Taken together, our genome-wide reassortment analysis of all the IAVs offers an overview of the leaping evolution of the virus and a comprehensive network representing the relationships of IAVs.
Collapse
Affiliation(s)
- Xingfei Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- College of Computer, National University of Defense Technology, Changsha, China
| | - Mingda Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Chen
- College of Computer, National University of Defense Technology, Changsha, China
| | - Haoyi Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- College of Computer, National University of Defense Technology, Changsha, China
| | - Boqian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Yue
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yuan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- Yuan Jin,
| | - Long Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- Long Liang,
| | - Hongguang Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- *Correspondence: Hongguang Ren,
| |
Collapse
|
4
|
Liu Y, Wang X, Zhou J, Shi S, Shen T, Chen L, Zhang M, Liao C, Wang C. Development of PDA Nanoparticles for H9N2 Avian Influenza BPP-V/BP-IV Epitope Peptide Vaccines: Immunogenicity and Delivery Efficiency Improvement. Front Immunol 2021; 12:693972. [PMID: 34386005 PMCID: PMC8353371 DOI: 10.3389/fimmu.2021.693972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
The protection of current influenza vaccines is limited due to the viral antigenic shifts and antigenic drifts. The universal influenza vaccine is a new hotspot in vaccine research that aims to overcome these problems. Polydopamine (PDA), a versatile biomaterial, has the advantages of an excellent biocompatibility, controllable particle size, and distinctive drug loading approach in drug delivery systems. To enhance the immunogenicities and delivery efficiencies of H9N2 avian influenza virus (AIV) epitope peptide vaccines, PDA nanoparticles conjugated with the BPP-V and BP-IV epitope peptides were used to prepare the nano BPP-V and BP-IV epitope peptide vaccines, respectively. The characteristics of the newly developed epitope peptide vaccines were then evaluated, revealing particle sizes ranging from approximately 240 to 290 nm (PDI<0.3), indicating that the synthesized nanoparticles were stable. Simultaneously, the immunoprotective effects of nano BPP-V and BP-IV epitope peptide vaccines were assessed. The nano BPP-V and BP-IV epitope vaccines, especially nano BP-IV epitope vaccine, quickly induced anti-hemagglutinin (HA) antibody production and a sustained immune response, significantly promoted humoral and cellular immune responses, reduced viral lung damage and provided effective protection against AIV viral infection. Together, these results reveal that PDA, as a delivery carrier, can improve the immunogenicities and delivery efficiencies of H9N2 AIV nano epitope vaccines, thereby providing a theoretical basis for the design and development of PDA as a carrier of new universal influenza vaccines.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
6
|
Li J, Chen C, Wei J, Huang H, Peng Y, Bi Y, Liu Y, Yang Y. Delayed peak of human infections and ongoing reassortment of H7N9 avian influenza virus in the newly affected western Chinese provinces during Wave Five. Int J Infect Dis 2019; 88:80-87. [PMID: 31499209 DOI: 10.1016/j.ijid.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Eight additional provinces in western China reported human infections for the first time during the fifth wave of human H7N9 infections. The aim of this study was to analyze the epidemiological and virological characteristics of this outbreak. METHODS The epidemiological data of H7N9 cases from the newly affected western Chinese provinces were collected and analyzed. Full-length genome sequences of H7N9 virus were downloaded from the GenBank and GISAID databases, and phylogenetic, genotyping, and genetic analyses were conducted. RESULTS The peak of human infections in the newly affected western Chinese provinces was delayed by 4 months compared to the eastern Chinese provinces, and both low pathogenic (LP) and highly pathogenic (HP) H7N9-infected cases were found. The LP- and HP-H7N9 virus belonged to 10 different genotypes (including four new genotypes), of which G11 and G3 were the dominant genotypes, respectively. Almost all of these viruses originated from eastern and southern China and were most probably imported from neighboring provinces. Genetic characteristics of the circulating viruses were similar to those of the viruses from previously affected provinces during Wave Five. CONCLUSIONS A delayed peak of human infections was observed in the newly affected western Chinese provinces, and reassortment has been ongoing since the introduction of H7N9 viruses. This study highlights the importance of continued surveillance of the circulation and evolution of H7N9 virus in western China.
Collapse
Affiliation(s)
- Jin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Chuming Chen
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Huaxin Huang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; University of Chinese Academy of Sciences Medical School, Chinese Academy of Sciences, Beijing 101408, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Lu J, Raghwani J, Pryce R, Bowden TA, Thézé J, Huang S, Song Y, Zou L, Liang L, Bai R, Jing Y, Zhou P, Kang M, Yi L, Wu J, Pybus OG, Ke C. Molecular Evolution, Diversity, and Adaptation of Influenza A(H7N9) Viruses in China. Emerg Infect Dis 2019; 24:1795-1805. [PMID: 30226157 PMCID: PMC6154164 DOI: 10.3201/eid2410.171063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The substantial increase in prevalence and emergence of antigenically divergent or highly pathogenic influenza A(H7N9) viruses during 2016–17 raises concerns about the epizootic potential of these viruses. We investigated the evolution and adaptation of H7N9 viruses by analyzing available data and newly generated virus sequences isolated in Guangdong Province, China, during 2015–2017. Phylogenetic analyses showed that circulating H7N9 viruses belong to distinct lineages with differing spatial distributions. Hemagglutination inhibition assays performed on serum samples from patients infected with these viruses identified 3 antigenic clusters for 16 strains of different virus lineages. We used ancestral sequence reconstruction to identify parallel amino acid changes on multiple separate lineages. We inferred that mutations in hemagglutinin occur primarily at sites involved in receptor recognition or antigenicity. Our results indicate that highly pathogenic strains likely emerged from viruses circulating in eastern Guangdong Province during March 2016 and are associated with a high rate of adaptive molecular evolution.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigenic Variation
- Birds
- China/epidemiology
- Evolution, Molecular
- Genetic Variation
- Genome, Viral
- Genotype
- Geography, Medical
- History, 21st Century
- Humans
- Influenza A Virus, H7N9 Subtype/classification
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/isolation & purification
- Influenza in Birds/epidemiology
- Influenza in Birds/history
- Influenza in Birds/virology
- Influenza, Human/epidemiology
- Influenza, Human/history
- Influenza, Human/virology
- Phylogeny
- RNA, Viral
Collapse
|
8
|
Xiao YL, Ren L, Zhang X, Qi L, Kash JC, Xiao Y, Wu F, Wang J, Taubenberger JK. Deep Sequencing of H7N9 Influenza A Viruses from 16 Infected Patients from 2013 to 2015 in Shanghai Reveals Genetic Diversity and Antigenic Drift. mSphere 2018; 3:e00462-18. [PMID: 30232169 PMCID: PMC6147129 DOI: 10.1128/mspheredirect.00462-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) infections are a major public health concern, including annual epidemics, epizootic outbreaks, and pandemics. A significant IAV epizootic outbreak was the H7N9 avian influenza A outbreak in China, which was first detected in 2013 and which has spread over 5 waves from 2013 to 2017, causing human infections in many different Chinese provinces. Here, RNA from primary clinical throat swab samples from 20 H7N9-infected local patients with different clinical outcomes, who were admitted and treated at one hospital in Shanghai, China, from April 2013 to April 2015, was analyzed. Whole-transcriptome amplification, with positive enrichment of IAV RNA, was performed, all 20 samples were subjected to deep sequencing, and data from 16 samples were analyzed in detail. Many single-nucleotide polymorphisms, including ones not previously reported, and many nonsynonymous changes that could affect hemagglutinin head and stalk antibody binding epitopes were observed. Minor populations representing viral quasispecies, including nonsynonymous hemagglutinin changes shared by antigenically variant H7N9 clades identified in the most recent wave of H7N9 infections in 2016 to 2017, were also identified.IMPORTANCE H7N9 subtype avian influenza viruses caused infections in over 1,400 humans from 2013 to 2017 and resulted in almost 600 deaths. It is important to understand how avian influenza viruses infect and cause disease in humans and to assess their potential for efficient person-to-person transmission. In this study, we used deep sequencing of primary clinical material to assess the evolution and potential for human adaptation of H7N9 influenza viruses.
Collapse
Affiliation(s)
- Yong-Li Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Fan Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Li R, Zhang T, Bai Y, Li H, Wang Y, Bi Y, Chang J, Xu B. Live Poultry Trading Drives China's H7N9 Viral Evolution and Geographical Network Propagation. Front Public Health 2018; 6:210. [PMID: 30140667 PMCID: PMC6094976 DOI: 10.3389/fpubh.2018.00210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
The on-going reassortment, human-adapted mutations, and spillover events of novel A(H7N9) avian influenza viruses pose a significant challenge to public health in China and globally. However, our understanding of the factors that disseminate the viruses and drive their geographic distributions is limited. We applied phylogenic analysis to examine the inter-subtype interactions between H7N9 viruses and the closest H9N2 lineages in China during 2010-2014. We reconstructed and compared the inter-provincial live poultry trading and viral propagation network via phylogeographic approach and network similarity technique. The substitution rates of the isolated viruses in live poultry markets and the characteristics of localized viral evolution were also evaluated. We discovered that viral propagation was geographically-structured and followed the live poultry trading network in China, with distinct north-to-east paths of spread and circular transmission between eastern and southern regions. The epicenter of H7N9 has moved from the Shanghai-Zhejiang region to Guangdong Province was also identified. Besides, higher substitution rate was observed among isolates sampled from live poultry markets, especially for those H7N9 viruses. Live poultry trading in China may have driven the network-structured expansion of the novel H7N9 viruses. From this perspective, long-distance geographic expansion of H7N9 were dominated by live poultry movements, while at local scales, diffusion was facilitated by live poultry markets with highly-evolved viruses.
Collapse
Affiliation(s)
- Ruiyun Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science Beijing Normal University, Beijing, China
| | - Tao Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science Tsinghua University, Beijing, China
| | - Yuqi Bai
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science Tsinghua University, Beijing, China
| | | | - Yong Wang
- Chinese Academy of Surveying and Mapping Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Jianyu Chang
- College of Veterinary Medicine China Agricultural University, Beijing, China
| | - Bing Xu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science Beijing Normal University, Beijing, China.,Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Wu J, Lu J, Faria NR, Zeng X, Song Y, Zou L, Yi L, Liang L, Ni H, Kang M, Zhang X, Huang G, Zhong H, Bowden TA, Raghwani J, He J, He X, Lin J, Koopmans M, Pybus OG, Ke C. Effect of Live Poultry Market Interventions on Influenza A(H7N9) Virus, Guangdong, China. Emerg Infect Dis 2018; 22:2104-2112. [PMID: 27869613 PMCID: PMC5189139 DOI: 10.3201/eid2212.160450] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Since March 2013, three waves of human infection with avian influenza A(H7N9) virus have been detected in China. To investigate virus transmission within and across epidemic waves, we used surveillance data and whole-genome analysis of viruses sampled in Guangdong during 2013-2015. We observed a geographic shift of human A(H7N9) infections from the second to the third waves. Live poultry market interventions were undertaken in epicenter cities; however, spatial phylogenetic analysis indicated that the third-wave outbreaks in central Guangdong most likely resulted from local virus persistence rather than introduction from elsewhere. Although the number of clinical cases in humans declined by 35% from the second to the third waves, the genetic diversity of third-wave viruses in Guangdong increased. Our results highlight the epidemic risk to a region reporting comparatively few A(H7N9) cases. Moreover, our results suggest that live-poultry market interventions cannot completely halt A(H7N9) virus persistence and dissemination.
Collapse
|
11
|
Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts. Int J Mol Sci 2017; 18:ijms18122706. [PMID: 29236050 PMCID: PMC5751307 DOI: 10.3390/ijms18122706] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022] Open
Abstract
In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals.
Collapse
|
12
|
Maljkovic Berry I, Melendrez MC, Li T, Hawksworth AW, Brice GT, Blair PJ, Halsey ES, Williams M, Fernandez S, Yoon IK, Edwards LD, Kuschner R, Lin X, Thomas SJ, Jarman RG. Frequency of influenza H3N2 intra-subtype reassortment: attributes and implications of reassortant spread. BMC Biol 2016; 14:117. [PMID: 28034300 PMCID: PMC5200972 DOI: 10.1186/s12915-016-0337-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that influenza reassortment not only contributes to the emergence of new human pandemics but also plays an important role in seasonal influenza epidemics, disease severity, evolution, and vaccine efficacy. We studied this process within 2091 H3N2 full genomes utilizing a combination of the latest reassortment detection tools and more conventional phylogenetic analyses. RESULTS We found that the amount of H3N2 intra-subtype reassortment depended on the number of sampled genomes, occurred with a steady frequency of 3.35%, and was not affected by the geographical origins, evolutionary patterns, or previous reassortment history of the virus. We identified both single reassortant genomes and reassortant clades, each clade representing one reassortment event followed by successful spread of the reassorted variant in the human population. It was this spread that was mainly responsible for the observed high presence of H3N2 intra-subtype reassortant genomes. The successfully spread variants were generally sampled within one year of their formation, highlighting the risk of their rapid spread but also presenting an opportunity for their rapid detection. Simultaneous spread of several different reassortant lineages was observed, and despite their limited average lifetime, second and third generation reassortment was detected, as well as reassortment between viruses belonging to different vaccine-associated clades, likely displaying differing antigenic properties. Some of the spreading reassortants remained confined to certain geographical regions, while others, sharing common properties in amino acid positions of the HA, NA, and PB2 segments, were found throughout the world. CONCLUSIONS Detailed surveillance of seasonal influenza reassortment patterns and variant properties may provide unique information needed for prediction of spread and construction of future influenza vaccines.
Collapse
Affiliation(s)
| | | | - Tao Li
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anthony W Hawksworth
- Operational Infectious Diseases Directorate, Naval Health Research Center, San Diego, CA, USA
| | - Gary T Brice
- Operational Infectious Diseases Directorate, Naval Health Research Center, San Diego, CA, USA
| | - Patrick J Blair
- Operational Infectious Diseases Directorate, Naval Health Research Center, San Diego, CA, USA
| | | | | | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - In-Kyu Yoon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- Present Address: International Vaccine Institute, Seoul, Republic of Korea
| | - Leslie D Edwards
- Office of Medical Services, US Department of State, Washington, DC, USA
| | - Robert Kuschner
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xiaoxu Lin
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | |
Collapse
|
13
|
Quantitative risk analysis of the novel H7N9 virus in environments associated with H9 avian influenza virus, Zhejiang province, China. Epidemiol Infect 2016; 145:133-140. [PMID: 27678396 DOI: 10.1017/s0950268816002168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H9 avian influenza virus played a key role during generation of the novel H7N9 virus. A surveillance programme was conducted to assess the H9 virus in relation to the risk of H7N9 virus contamination in the environment. Risk of H7N9 virus contamination in the presence of H9 virus was higher than without (adjusted odds ratio 4·49, 95% confidence interval 3·79-5·31). Adjusted odds ratios of the H7N9 virus associated with co-presence of H9 virus and interacting factors were 4·93 (rural vs. urban area), 46·80 (live poultry markets vs. other premises), 6·86 (Huzhou vs. Hangzhou prefecture), 40·67 (year 2015 vs. 2013), and 9·63 (sewage from cleaning poultry vs. poultry faeces). Regular surveillance on gene variability of H7N9 and H9 viruses should be conducted and extra measures are needed to reduce co-circulation of H7N9 and H9 viruses in the environment.
Collapse
|
14
|
Fang S, Bai T, Yang L, Wang X, Peng B, Liu H, Geng Y, Zhang R, Ma H, Zhu W, Wang D, Cheng J, Shu Y. Sustained live poultry market surveillance contributes to early warnings for human infection with avian influenza viruses. Emerg Microbes Infect 2016; 5:e79. [PMID: 27485495 PMCID: PMC5034097 DOI: 10.1038/emi.2016.75] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/22/2016] [Accepted: 05/12/2016] [Indexed: 12/27/2022]
Abstract
Sporadic human infections with the highly pathogenic avian influenza (HPAI) A (H5N6) virus have been reported in different provinces in China since April 2014. From June 2015 to January 2016, routine live poultry market (LPM) surveillance was conducted in Shenzhen, Guangdong Province. H5N6 viruses were not detected until November 2015. The H5N6 virus-positive rate increased markedly beginning in December 2015, and viruses were detected in LPMs in all districts of the city. Coincidently, two human cases with histories of poultry exposure developed symptoms and were diagnosed as H5N6-positive in Shenzhen during late December 2015 and early January 2016. Similar viruses were identified in environmental samples collected in the LPMs and the patients. In contrast to previously reported H5N6 viruses, viruses with six internal genes derived from the H9N2 or H7N9 viruses were detected in the present study. The increased H5N6 virus-positive rate in the LPMs and the subsequent human infections demonstrated that sustained LPM surveillance for avian influenza viruses provides an early warning for human infections. Interventions, such as LPM closures, should be immediately implemented to reduce the risk of human infection with the H5N6 virus when the virus is widely detected during LPM surveillance.
Collapse
Affiliation(s)
- Shisong Fang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Tian Bai
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Medical Virology, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Medical Virology, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xin Wang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Bo Peng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Hui Liu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yijie Geng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Renli Zhang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Hanwu Ma
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Medical Virology, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Medical Virology, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jinquan Cheng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory for Medical Virology, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
15
|
Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China. J Virol 2016; 90:5561-5573. [PMID: 27030268 DOI: 10.1128/jvi.03173-15] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/18/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. IMPORTANCE Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China.
Collapse
|
16
|
Fang S, Wang X, Dong F, Jin T, Liu G, Lu X, Peng B, Wu W, Liu H, Kong D, Tang X, Qin Y, Mei S, Xie X, He J, Ma H, Zhang R, Cheng J. Genomic characterization of influenza A (H7N9) viruses isolated in Shenzhen, Southern China, during the second epidemic wave. Arch Virol 2016; 161:2117-32. [PMID: 27169600 DOI: 10.1007/s00705-016-2872-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
There were three epidemic waves of human infection with avian influenza A (H7N9) virus in 2013-2014. While many analyses of the genomic origin, evolution, and molecular characteristics of the influenza A (H7N9) virus have been performed using sequences from the first epidemic wave, genomic characterization of the virus from the second epidemic wave has been comparatively less reported. In this study, an in-depth analysis was performed with respect to the genomic characteristics of 11 H7N9 virus strains isolated from confirmed cases and four H7N9 virus strains isolated from environmental samples in Shenzhen during the second epidemic wave. Phylogenetic analysis demonstrated that six internal segments of the influenza A (H7N9) virus isolated from confirmed cases and environmental samples in Shenzhen were clustered into two different clades and that the origin of the influenza A (H7N9) virus isolated from confirmed cases in Shenzhen was different from that of viruses isolated during the first wave. In addition, H9N2 viruses, which were prevalent in southern China, played an important role in the reassortment of the influenza A (H7N9) virus isolated in Shenzhen. HA-R47K and -T122A, PB2-V139I, PB1-I397M, and NS1-T216P were the signature amino acids of the influenza A (H7N9) virus isolated from confirmed cases in Shenzhen. We found that the HA, NA, M, and PA genes of the A(H7N9) viruses underwent positive selection in the human population. Therefore, enhanced surveillance should be carried out to determine the origin and mode of transmission of the novel influenza A (H7N9) virus and to facilitate the formulation of effective policies for prevention and containment of a human infection epidemics.
Collapse
Affiliation(s)
- Shisong Fang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xin Wang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Fangyuan Dong
- College of Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Tao Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Guang Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xing Lu
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Bo Peng
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Weihua Wu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Hui Liu
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Dongfeng Kong
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xiujuan Tang
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Yanmin Qin
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Shujiang Mei
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Xu Xie
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Jianfan He
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Hanwu Ma
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Renli Zhang
- Major Infectious Disease Control Key Laboratory, Key Reference Laboratory of Pathogen and Biosafety, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Sha J, Chen X, Ren Y, Chen H, Wu Z, Ying D, Zhang Z, Liu S. Differences in the epidemiology and virology of mild, severe and fatal human infections with avian influenza A (H7N9) virus. Arch Virol 2016; 161:1239-59. [PMID: 26887968 PMCID: PMC7101734 DOI: 10.1007/s00705-016-2781-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/30/2016] [Indexed: 11/04/2022]
Abstract
A novel avian influenza A (H7N9) virus caused 5-10 % mild and 30.5 % fatal human infections as of December 10, 2015. In order to investigate the reason for the higher rate of fatal outcome of this infection, this study compared the molecular epidemiology and virology of avian influenza A (H7N9) viruses from mild (N = 14), severe (N = 50) and fatal (N = 35) cases, as well as from non-human hosts (N = 73). The epidemiological results showed that the average age of the people in the mild, severe and fatal groups was 27.6, 52 and 62 years old, respectively (p < 0.001). Males accounted for 42.9 % (6/14), 58.0 % (29/50), and 74.3 % (26/35) of cases in the mild, severe and fatal group respectively (p = 0.094). Median days from onset to start of antiviral treatment were 2, 5 and 7 days in the mild, severe and fatal group, respectively (p = 0.002). The median time from onset to discharge/death was 12, 40 and 19 days in the mild, severe and fatal group, respectively (p < 0.001). Analysis of whole genome sequences showed that PB2 (E627K), NA (R294K) and PA (V100A) mutations were markedly associated with an increased fatality rate, while HA (N276D) and PB2 (N559T) mutations were clearly related to mild cases. There were no differences in the genotypes, adaptation to mammalian hosts, and genetic identity between the three types of infection. In conclusion, advanced age and delayed confirmation of diagnosis and antiviral intervention were risk factors for death. Furthermore, PB2 (E627K), NA (R294K) and PA (V100A) mutations might contribute to a fatal outcome in human H7N9 infection.
Collapse
Affiliation(s)
- Jianping Sha
- Department of Gastroenterology, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Xiaowen Chen
- Department of Senior Cadres, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Yajin Ren
- Pharmacy Department, The 421 Hospital of Chinese People's Liberation Army, Guangzhou, People's Republic of China
| | - Haijun Chen
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Zuqun Wu
- Department of Respiratory Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Dong Ying
- Department of Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhiruo Zhang
- School of Public Health, Shanghai Jiao Tong University, 227 South Chongqing Road, Huangpu District, Shanghai, 200025, People's Republic of China.
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, People's Republic of China.
| |
Collapse
|
18
|
Yuan R, Zou L, Kang Y, Wu J, Zeng X, Lu J, Liang L, Song Y, Zhang X, Ni H, Lin J, Liao M, Ke C. Reassortment of Avian Influenza A/H6N6 Viruses from Live Poultry Markets in Guangdong, China. Front Microbiol 2016; 7:65. [PMID: 26903958 PMCID: PMC4742543 DOI: 10.3389/fmicb.2016.00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/14/2016] [Indexed: 11/23/2022] Open
Abstract
Since early 2013, H7N9-subtype avian influenza virus (AIV) has caused human infection in eastern China. To evaluate AIV contamination and the public risk of infection, we systematically implemented environmental sampling from live poultry markets in Guangdong Province. Through real-time polymerase chain reaction assays and next-generation sequencing, we generated full nucleotide sequences of all 10 H6N6 AIVs isolated during sampling. Focusing on sequence analyses of hemagglutinin genes of the 10 H6N6 AIVs revealed that the viruses were low pathogenic AIVs with the typical hemagglutinin cleavage site of P-Q-I-E-T-R-G. The hemagglutinin, neuraminidase, and nucleocapsid genes of nine AIVs were of ST2853-like (H6-subtype) lineage, ST192-like (N6-subtype) lineage, and HN573-like (H6-subtype) lineage, respectively; whereas the other five genes were of ST339-like (H6-subtype) lineage. However, the polymerase PB2 and nucleocapsid genes of one strain (HZ057) were of GS/GD-like (H5N1-subtype) and ST339-like lineages. Phylogenic analysis revealed that all eight genes of the 10 viruses belonged to Eurasian avian lineage. Altogether, the 10 AIVs were reassortants of different genetic groups of exchanges with the same virus subtype, thus illustrating the genetic diversity and complexity of H6N6-subtype AIVs in Guangdong Province.
Collapse
Affiliation(s)
- Runyu Yuan
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; World Health Organization Collaborating Centre for Surveillance, Research and Training of Emerging Infectious DiseasesGuangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Lirong Zou
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; World Health Organization Collaborating Centre for Surveillance, Research and Training of Emerging Infectious DiseasesGuangzhou, China
| | - Yinfeng Kang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jie Wu
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; World Health Organization Collaborating Centre for Surveillance, Research and Training of Emerging Infectious DiseasesGuangzhou, China
| | - Xianqiao Zeng
- Guangdong Provincial Institute of Public Health Guangzhou, China
| | - Jing Lu
- Guangdong Provincial Institute of Public Health Guangzhou, China
| | - Lijun Liang
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; World Health Organization Collaborating Centre for Surveillance, Research and Training of Emerging Infectious DiseasesGuangzhou, China
| | - Yingchao Song
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; World Health Organization Collaborating Centre for Surveillance, Research and Training of Emerging Infectious DiseasesGuangzhou, China
| | - Xin Zhang
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; World Health Organization Collaborating Centre for Surveillance, Research and Training of Emerging Infectious DiseasesGuangzhou, China
| | - Hanzhong Ni
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; World Health Organization Collaborating Centre for Surveillance, Research and Training of Emerging Infectious DiseasesGuangzhou, China
| | - Jinyan Lin
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; World Health Organization Collaborating Centre for Surveillance, Research and Training of Emerging Infectious DiseasesGuangzhou, China
| | - Ming Liao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Changwen Ke
- Key Laboratory for Repository and Application of Pathogenic Microbiology, Research Center for Pathogens Detection Technology of Emerging Infectious Diseases, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; World Health Organization Collaborating Centre for Surveillance, Research and Training of Emerging Infectious DiseasesGuangzhou, China
| |
Collapse
|
19
|
Zhu H, Lam TTY, Smith DK, Guan Y. Emergence and development of H7N9 influenza viruses in China. Curr Opin Virol 2016; 16:106-113. [PMID: 26922715 DOI: 10.1016/j.coviro.2016.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023]
Abstract
The occurrence of human infections with avian H7N9 viruses since 2013 demonstrates the continuing pandemic threat posed by the current influenza ecosystem in China. Influenza surveillance and phylogenetic analyses showed that these viruses were generated by multiple interspecies transmissions and reassortments among the viruses resident in domestic ducks and the H9N2 viruses enzootic in chickens. A large population of domestic ducks hosting diverse influenza viruses provided the precondition for these events to occur, while acquiring internal genes from enzootic H9N2 influenza viruses in chickens promoted the spread of these viruses. Human infections effectively act as sentinels, reflecting the intensity of the activity of these viruses in poultry.
Collapse
Affiliation(s)
- Huachen Zhu
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China; Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China.
| | - Tommy Tsan-Yuk Lam
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - David Keith Smith
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Yi Guan
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China; State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China; Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Richard M, Fouchier RAM. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiol Rev 2016; 40:68-85. [PMID: 26385895 PMCID: PMC5006288 DOI: 10.1093/femsre/fuv039] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/13/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022] Open
Abstract
Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
21
|
Cox NJ, Hickling J, Jones R, Rimmelzwaan GF, Lambert LC, Boslego J, Rudenko L, Yeolekar L, Robertson JS, Hombach J, Ortiz JR. Report on the second WHO integrated meeting on development and clinical trials of influenza vaccines that induce broadly protective and long-lasting immune responses: Geneva, Switzerland, 5-7 May 2014. Vaccine 2015; 33:6503-10. [PMID: 26478203 PMCID: PMC8218335 DOI: 10.1016/j.vaccine.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/02/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
On 5-7 May 2014, the World Health Organization (WHO) convened the second integrated meeting on "influenza vaccines that induce broadly protective and long-lasting immune responses". Around 100 invited experts from academia, the vaccine industry, research and development funders, and regulatory and public health agencies attended the meeting. Areas covered included mechanisms of protection in natural influenza-virus infection and vaccine-induced immunity, new approaches to influenza-vaccine design and production, and novel routes of vaccine administration. A timely focus was on how this knowledge could be applied to both seasonal influenza and emerging viruses with pandemic potential such as influenza A (H7N9), currently circulating in China. Special attention was given to the development of possible universal influenza vaccines, given that the Global Vaccine Action Plan calls for at least one licensed universal influenza vaccine by 2020. This report highlights some of the topics discussed and provides an update on studies published since the report of the previous meeting.
Collapse
Affiliation(s)
- Nancy J Cox
- Influenza Division, National Center for Infectious Diseases, 1600 Clifton Road NE, Atlanta, GA 30333, United States
| | | | - Rebecca Jones
- Working in Tandem Ltd, Cambridge CB1 7AB, United Kingdom
| | - Guus F Rimmelzwaan
- Department of Virology, Erasmus Medical Center, Dr Molewaterplein 50, Rotterdam CE 3015, The Netherlands
| | - Linda C Lambert
- Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, NIAID/NIH/DHHS, 5601 Fishers Lane, Bethesda, MD 20892, United States
| | - John Boslego
- PATH, 445 Massachusetts Avenue, NW Suite 1000, Washington, DC 20001, United States
| | - Larisa Rudenko
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, 12 Acad. Pavlov Street, St Petersburg 197376, Russian Federation
| | - Leena Yeolekar
- Vaccine Production, Serum Institute of India, 212/2 Hadapsar, Pune, India
| | | | - Joachim Hombach
- Initiative for Vaccine Research (IVR), Immunization, Vaccines and Biologicals (IVB), World Health Organization, Switzerland
| | - Justin R Ortiz
- Initiative for Vaccine Research (IVR), Immunization, Vaccines and Biologicals (IVB), World Health Organization, Switzerland
| |
Collapse
|
22
|
Su W, Wang C, Luo J, Zhao Y, Wu Y, Chen L, Zhao N, Li M, Xing C, Liu H, Zhang H, Chang YF, Li T, Ding H, Wan X, He H. Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus. Cell Rep 2015; 12:1831-41. [PMID: 26344762 DOI: 10.1016/j.celrep.2015.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/24/2015] [Accepted: 08/07/2015] [Indexed: 01/11/2023] Open
Abstract
Since 2013, avian influenza A(H7N9) viruses have diversified into multiple lineages by dynamically reassorting with other viruses, especially H9N2, in Chinese poultry. Despite concerns about the pandemic threat posed by H7N9 viruses, little is known about the biological properties of H7N9 viruses that may recruit internal genes from genetically distinct H9N2 viruses circulating among wild birds. Here, we generated 63 H7N9 reassortants derived from an avian H7N9 and a wild-bird-origin H9N2 virus. Compared with the wild-type parent, 25/63 reassortants had increased pathogenicity in mice. A reassortant containing PB1 of the H9N2 virus was highly lethal to mice and chickens but was not transmissible to guinea pigs by airborne routes; however, three substitutions associated with adaptation to mammals conferred airborne transmission to the virus. The emergence of the H7N9-pandemic reassortant virus highlights that continuous monitoring of H7N9 viruses is needed, especially at the domestic poultry/wild bird interface.
Collapse
Affiliation(s)
- Wen Su
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Chengmin Wang
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Luo
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuliang Zhao
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wu
- Department of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang 310021, China
| | - Lin Chen
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Na Zhao
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Xing
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Liu
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Zhang
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yung-fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY 14853-5786, USA
| | - Tianxian Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hua Ding
- Department of Infectious Diseases, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang 310021, China
| | - Xiufeng Wan
- Department of Basic Sciences, College of Veterinary Medicine, and Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Hongxuan He
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets. J Virol 2015. [PMID: 26202239 DOI: 10.1128/jvi.01444-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Poultry exposure is a major risk factor for human H7N9 zoonotic infections, for which the mode of transmission remains unclear. We studied the transmission of genetically related poultry and human H7N9 influenza viruses differing by four amino acids, including the host determinant PB2 residue 627. A/Silkie chicken/HK/1772/2014 (SCk1772) and A/HK/3263/14 (HK3263) replicated to comparable titers in chickens, with superior oropharyngeal over cloacal shedding; both viruses transmitted efficiently among chickens via direct contact but inefficiently via the airborne route. Interspecies transmission via the airborne route was observed for ferrets exposed to the SCk1772- or HK3263-infected chickens, while low numbers of copies of influenza viral genome were detected in the air, predominantly at particle sizes larger than 4 μm. In ferrets, the human isolate HK3263 replicated to higher titers and transmitted more efficiently via direct contact than SCk1772. We monitored "intrahost" and "interhost" adaptive changes at PB2 residue 627 during infection and transmission of the Sck1772 that carried E627 and HK3263 that carried V/K/E polymorphism at 60%, 20%, and 20%, respectively. For SCk1772, positive selection for K627 over E627 was observed in ferrets during the chicken-to-ferret or ferret-to-ferret transmission. For HK3263 that contained V/K/E polymorphism, mixed V627 and E627 genotypes were transmitted among chickens while either V627 or K627 was transmitted to ferrets with a narrow transmission bottleneck. Overall, our results suggest direct contact as the main mode for H7N9 transmission and identify the PB2-V627 genotype with uncompromised fitness and transmissibility in both avian and mammalian species. IMPORTANCE We studied the modes of H7N9 transmission, as this information is crucial for developing effective control measures for prevention. Using chicken (SCk1772) and human (HK3263) H7N9 isolates that differed by four amino acids, including the host determinant PB2 residue 627, we observed that both viruses transmitted efficiently among chickens via direct contact but inefficiently via the airborne route. Chicken-to-ferret transmission via the airborne route was observed, along with the detection of viral genome in the air at low copy numbers. In ferrets, HK3263 transmitted more efficiently than SCk1772 via direct contact. During the transmission of SCk1772 that contained E and HK3263 that contained V/K/E polymorphism at PB2 residue 627, positive selections of E627 and K627 were observed in chickens and ferrets, respectively. In addition, PB2-V627 was transmitted and stably maintained in both avian and mammalian species. Our results support applying intervention strategies that minimize direct and indirect contact at the poultry markets during epidemics.
Collapse
|
24
|
Sun Y, Wang H, Lou X, Mao H, Yan Y, Chen E, Wang X, Li Z, Gao J, Fu X, Chen Z, Feng Y, Chen Z, Zhang Y. Living poultry markets in rural area: Human infection with H7N9 virus re-emerges in Zhejiang Province, China, in winter 2014. J Clin Virol 2015; 70:16-22. [PMID: 26305813 DOI: 10.1016/j.jcv.2015.06.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/04/2015] [Accepted: 06/18/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Avian influenza A H7N9 virus, previously undetected in humans, has caused infections in many areas in China since February 2013. Here we report the re-emergence of a case of H7N9 in rural Jiaxing city, Zhejiang Province, in the winter of 2014. OBJECTIVES To understand (1) the clinical syndrome, epidemiological and virological characteristics of this case; (2) the importance of controlling live poultry markets (LPMs) in rural areas. STUDY DESIGN There is one patient and 16 contacts, including 4 family members living in the same household, and 12 medical personnel. Pharyngeal swabs and serum samples were collected from the patient and her contacts. Environment samples were also obtained from the local LPMs. We conducted detailed clinical and epidemiological investigations and laboratory work, including viral RNA extraction, RT-PCR detection and sequencing. Characteristic and phylogenetic analyses were performed using the obtained sequences. RESULTS H7N9s were detected in environmental samples collected in LPMs in Jiaxing, Zhejiang. Unknown mutations were discovered in amino acids in the sample from the patient. The strain from the patient was in a clade different from isolates obtained in 2013 in phylogenetic trees of HA, NA and PB2. CONCLUSIONS A severe case of H7N9 was identified in early winter, 2014. Epidemiological and clinical tests were consistent with patterns reported previously, while laboratory findings showed the virus to be different. Live poultry markets in rural Zhejiang Province are in need of closer supervision and enhanced management.
Collapse
Affiliation(s)
- Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Henghui Wang
- Jiaxing Center for Disease Control and Prevention, Dongyang, Zhejiang, China
| | - Xiuyu Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yong Yan
- Jiaxing Center for Disease Control and Prevention, Dongyang, Zhejiang, China
| | - Enfu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xinying Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhen Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jian Gao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiaofei Fu
- Jiaxing Center for Disease Control and Prevention, Dongyang, Zhejiang, China
| | - Zhongwen Chen
- Jiaxing Center for Disease Control and Prevention, Dongyang, Zhejiang, China
| | - Youjun Feng
- Center for Infection & Immunity, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiping Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China; Center for Infection & Immunity, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
25
|
Lam TTY, Zhou B, Wang J, Chai Y, Shen Y, Chen X, Ma C, Hong W, Chen Y, Zhang Y, Duan L, Chen P, Jiang J, Zhang Y, Li L, Poon LLM, Webby RJ, Smith DK, Leung GM, Peiris JSM, Holmes EC, Guan Y, Zhu H. Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature 2015; 522:102-5. [PMID: 25762140 DOI: 10.1038/nature14348] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Abstract
Since 2013 the occurrence of human infections by a novel avian H7N9 influenza virus in China has demonstrated the continuing threat posed by zoonotic pathogens. Although the first outbreak wave that was centred on eastern China was seemingly averted, human infections recurred in October 2013 (refs 3-7). It is unclear how the H7N9 virus re-emerged and how it will develop further; potentially it may become a long-term threat to public health. Here we show that H7N9 viruses have spread from eastern to southern China and become persistent in chickens, which has led to the establishment of multiple regionally distinct lineages with different reassortant genotypes. Repeated introductions of viruses from Zhejiang to other provinces and the presence of H7N9 viruses at live poultry markets have fuelled the recurrence of human infections. This rapid expansion of the geographical distribution and genetic diversity of the H7N9 viruses poses a direct challenge to current disease control systems. Our results also suggest that H7N9 viruses have become enzootic in China and may spread beyond the region, following the pattern previously observed with H5N1 and H9N2 influenza viruses.
Collapse
Affiliation(s)
- Tommy Tsan-Yuk Lam
- 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [3] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Boping Zhou
- State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Jia Wang
- 1] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Yujuan Chai
- 1] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Yongyi Shen
- 1] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Xinchun Chen
- State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Chi Ma
- 1] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Wenshan Hong
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China
| | - Yin Chen
- Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Yanjun Zhang
- Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Lian Duan
- 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [3] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Peiwen Chen
- 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China
| | - Junfei Jiang
- 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Yu Zhang
- 1] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Lifeng Li
- 1] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Leo Lit Man Poon
- 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Richard J Webby
- Division of Virology, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David K Smith
- 1] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Gabriel M Leung
- Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Joseph S M Peiris
- 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yi Guan
- 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [3] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| | - Huachen Zhu
- 1] State Key Laboratory of Emerging Infectious Diseases (HKU-Shenzhen Branch), Shenzhen Third People's Hospital, Shenzhen 518112, China [2] Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College (SUMC), Shantou 515041, China [3] Centre of Influenza Research, School of Public Health, The University of Hong Kong (HKU), Hong Kong, China
| |
Collapse
|
26
|
Kang M, He J, Song T, Rutherford S, Wu J, Lin J, Huang G, Tan X, Zhong H. Environmental Sampling for Avian Influenza A(H7N9) in Live-Poultry Markets in Guangdong, China. PLoS One 2015; 10:e0126335. [PMID: 25933138 PMCID: PMC4416787 DOI: 10.1371/journal.pone.0126335] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/01/2015] [Indexed: 12/03/2022] Open
Abstract
Background To provide an increased understanding of avian influenza A(H7N9) activity in live-poultry market in space and time and hence improve H7N9 epidemic control, an ongoing environmental sampling program in multiple live-poultry markets across Guangdong, China was conducted during March 2013–June 2014. Methods A total of 625 live-poultry markets throughout 21 prefecture areas took part in the study. A total of 10 environmental sites in markets for sampling were identified to represent 4 different poultry-related activity areas. At least 10 environmental samples were collected from each market every month. The real time RT-PCR was performed to detect the avian influenza A(H7N9) virus. Field survey was conducted to investigate the sanitation status of live-poultry markets. Results There were 109 human infections with H7N9 avian influenza in Guangdong, of which 37 (34%) died. A total of 18741 environmental swabs were collected and subjected to real-time RT-PCR test, of which 905(4.83%) were found positive for H7N9 virus. There were 201 (32.16%) markets affected by H7N9 in 16 prefecture areas. The detection of H7N9 virus in markets spiked in winter months. 63.33% markets (38/60) had no physical segregation for poultry holding, slaughter or sale zones. Closing live-poultry market significantly decreased the H7N9 detection rate from 14.83% (112/755) to 1.67% (5/300). Conclusions This study indicates the importance of live-poultry market surveillance based on environmental sampling for H7N9 Avian Influenza control. Improving live-poultry market management and sanitation and changing consumer practices are critical to reduce the risk of H7N9 infection.
Collapse
Affiliation(s)
- Min Kang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, People’s Republic of China
| | - Jianfeng He
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, People’s Republic of China
| | - Tie Song
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, People’s Republic of China
| | - Shannon Rutherford
- Centre for Environment and Population Health, School of Environment, Griffith University, Brisbane, Australia
| | - Jie Wu
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, People’s Republic of China
| | - Jinyan Lin
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, People’s Republic of China
| | - Guofeng Huang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, People’s Republic of China
| | - Xiaohua Tan
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, People’s Republic of China
| | - Haojie Zhong
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
27
|
Characterization of influenza A (H7N9) viruses isolated from human cases imported into Taiwan. PLoS One 2015; 10:e0119792. [PMID: 25748033 PMCID: PMC4351886 DOI: 10.1371/journal.pone.0119792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/28/2015] [Indexed: 12/03/2022] Open
Abstract
A novel avian influenza A (H7N9) virus causes severe human infections and was first identified in March 2013 in China. The H7N9 virus has exhibited two epidemiological peaks of infection, occurring in week 15 of 2013 and week 5 of 2014. Taiwan, which is geographically adjacent to China, faces a large risk of being affected by this virus. Through extensive surveillance, launched in April 2013, four laboratory-confirmed H7N9 cases imported from China have been identified in Taiwan. The H7N9 virus isolated from imported case 1 in May 2013 (during the first wave) was found to be closest genetically to a virus from wild birds and differed from the prototype virus, A/Anhui/1/2013, in the MP gene. The other three imported cases were detected in December 2013 and April 2014 (during the second wave). The viruses isolated from cases 2 and 4 were similar in the compositions of their 6 internal genes and distinct from A/Anhui/1/2013 in the PB2 and MP genes, whereas the virus isolated from case 3 exhibited a novel reassortment that has not been identified previously and was different from A/Anhui/1/2013 in the PB2, PA and MP genes. The four imported H7N9 viruses share similar antigenicity with A/Anhui/1/2013, and their HA and NA genes grouped together in their respective phylogenies. In contrast with the HA and NA genes, which exhibited a smaller degree of diversity, the internal genes were heterogeneous and provided potential distinctions between transmission sources in terms of both geography and hosts. It is important to strengthen surveillance of influenza and to share viral genetic data in real-time for reducing the threat of rapid and continuing evolution of H7N9 viruses.
Collapse
|
28
|
Farooqui A, Leon AJ, Huang L, Wu S, Cai Y, Lin P, Chen W, Fang X, Zeng T, Liu Y, Zhang L, Su T, Chen W, Ghedin E, Zhu H, Guan Y, Kelvin DJ. Genetic diversity of the 2013-14 human isolates of influenza H7N9 in China. BMC Infect Dis 2015; 15:109. [PMID: 25880069 PMCID: PMC4352237 DOI: 10.1186/s12879-015-0829-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/11/2015] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Influenza H7N9 has become an endemic pathogen in China where circulating virus is found extensively in wild birds and domestic poultry. Two epidemic waves of Human H7N9 infections have taken place in Eastern and South Central China during the years of 2013 and 2014. In this study, we report on the first four human cases of influenza H7N9 in Shantou, Guangdong province, which occurred during the second H7N9 wave, and the subsequent analysis of the viral isolates. METHODS Viral genomes were subjected to multisegment amplification and sequenced in an Illumina MiSeq. Later, phylogenetic analyses of influenza H7N9 viruses were performed to establish the evolutionary context of the disease in humans. RESULTS The sequences of the isolates from Shantou have closer evolutionary proximity to the predominant Eastern H7N9 cluster (similar to A/Shanghai/1/2013 (H7N9)) than to the Southern H7N9 cluster (similar to A/Guangdong/1/2013 (H7N9)). CONCLUSIONS Two distinct phylogenetic groups of influenza H7N9 circulate currently in China and cause infections in humans as a consequence of cross-species spillover from the avian disease. The Eastern cluster, which includes the four isolates from Shantou, presents a wide geographic distribution and overlaps with the more restricted area of circulation of the Southern cluster. Continued monitoring of the avian disease is of critical importance to better understand and predict the epidemiological behaviour of the human cases.
Collapse
Affiliation(s)
- Amber Farooqui
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
| | - Alberto J Leon
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
- Division of Experimental Therapeutics, University Health Network, Toronto, Ontario, Canada.
| | - Linxi Huang
- Intensive Care Unit, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Suwu Wu
- Intensive Care Unit, Shantou Central Hospital, Shantou, Guangdong, China.
| | - Yingmu Cai
- Department of Laboratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Pengzhou Lin
- Intensive Care Unit, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Weihong Chen
- Intensive Care Unit, Shantou Central Hospital, Shantou, Guangdong, China.
| | - Xibin Fang
- Intensive Care Unit, Shantou Central Hospital, Shantou, Guangdong, China.
| | - Tiansheng Zeng
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
| | - Yisu Liu
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
| | - Li Zhang
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
| | - Ting Su
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
| | - Weibin Chen
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, Global Institute of Public Health, New York University, New York, USA.
| | - Huachen Zhu
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China.
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| | - Yi Guan
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, China.
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| | - David J Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong, 515041, China.
- Division of Experimental Therapeutics, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
29
|
Yang ZF, Mok CKP, Liu XQ, Li XB, He JF, Guan WD, Xu YH, Pan WQ, Chen LY, Lin YP, Wu SG, Pan SH, Huang JC, Ding GY, Zheng K, Ke CW, Lin JY, Zhang YH, Lee HHY, Liu WK, Yang CG, Zhou R, Peiris JSM, Li YM, Chen RC, Chen L, Zhong NS. Clinical, virological and immunological features from patients infected with re-emergent avian-origin human H7N9 influenza disease of varying severity in Guangdong province. PLoS One 2015; 10:e0117846. [PMID: 25723593 PMCID: PMC4344233 DOI: 10.1371/journal.pone.0117846] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/01/2015] [Indexed: 11/29/2022] Open
Abstract
Background The second wave of avian influenza H7N9 virus outbreak in humans spread to the Guangdong province of China by August of 2013 and this virus is now endemic in poultry in this region. Methods Five patients with H7N9 virus infection admitted to our hospital during August 2013 to February 2014 were intensively investigated. Viral load in the respiratory tract was determined by quantitative polymerase chain reaction (Q-PCR) and cytokine levels were measured by bead-based flow cytometery. Results Four patients survived and one died. Viral load in different clinical specimens was correlated with cytokine levels in plasma and broncho-alveolar fluid (BALF), therapeutic modalities used and clinical outcome. Intravenous zanamivir appeared to be better than peramivir as salvage therapy in patients who failed to respond to oseltamivir. Higher and more prolonged viral load was found in the sputum or endotracheal aspirates compared to throat swabs. Upregulation of proinflammatory cytokines IP-10, MCP-1, MIG, MIP-1α/β, IL-1β and IL-8 was found in the plasma and BALF samples. The levels of cytokines in the plasma and viral load were correlated with disease severity. Reactivation of herpes simplex virus type 1(HSV-1) was found in three out of five patients (60%). Conclusion Expectorated sputum or endotracheal aspirate specimens are preferable to throat swabs for detecting and monitoring H7N9 virus. Severity of the disease was correlated to the viral load in the respiratory tract as well as the extents of cytokinemia. Reactivation of HSV-1 may contribute to clinical outcome.
Collapse
Affiliation(s)
- Zi Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chris Ka Pun Mok
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xiao Qing Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Bo Li
- Health quarantine (BSL-3) Lab, Guangdong Inspection and Quarantine Technology Center, Guangzhou, China
| | - Jian Feng He
- Guangdong Center for Disease Control and Prevention, Guangzhou, China
| | - Wen Da Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yong Hao Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Qi Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Yan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yong Ping Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shi Guan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Si Hua Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ji Cheng Huang
- Health quarantine (BSL-3) Lab, Guangdong Inspection and Quarantine Technology Center, Guangzhou, China
| | - Guo Yun Ding
- Health quarantine (BSL-3) Lab, Guangdong Inspection and Quarantine Technology Center, Guangzhou, China
| | - Kui Zheng
- Health quarantine (BSL-3) Lab, Guangdong Inspection and Quarantine Technology Center, Guangzhou, China
| | - Chang Wen Ke
- Guangdong Center for Disease Control and Prevention, Guangzhou, China
| | - Jin Yan Lin
- Guangdong Center for Disease Control and Prevention, Guangzhou, China
| | - Yong Hui Zhang
- Guangdong Center for Disease Control and Prevention, Guangzhou, China
| | - Horace Hok Yeung Lee
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wen Kuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chun Guang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Joseph Sriyal Malik Peiris
- Centre of Influenza Research, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- * E-mail: (RCC); (YML); (JSMP)
| | - Yi Min Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- * E-mail: (RCC); (YML); (JSMP)
| | - Rong Chang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- * E-mail: (RCC); (YML); (JSMP)
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nan Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Wu D, Zou S, Bai T, Li J, Zhao X, Yang L, Liu H, Li X, Yang X, Xin L, Xu S, Zou X, Li X, Wang A, Guo J, Sun B, Huang W, Zhang Y, Li X, Gao R, Shen B, Chen T, Dong J, Wei H, Wang S, Li Q, Li D, Wu G, Feng Z, Gao GF, Wang Y, Wang D, Fan M, Shu Y. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection. Sci Rep 2015; 5:7630. [PMID: 25591105 PMCID: PMC4295517 DOI: 10.1038/srep07630] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022] Open
Abstract
Live poultry markets are a source of human infection with avian influenza A (H7N9) virus. On February 21, 2014, a poultry farmer infected with H7N9 virus was identified in Jilin, China, and H7N9 and H9N2 viruses were isolated from the patient's farm. Reassortment between these subtype viruses generated five genotypes, one of which caused the human infection. The date of H7N9 virus introduction to the farm is estimated to be between August 21, 2013 (95% confidence interval [CI] June 6, 2013-October 6, 2013) and September 25, 2013 (95% CI May 28, 2013-January 4, 2014), suggesting that the most likely source of virus introduction was the first batch of poultry purchased in August 2013. The reassortment event that led to the human virus may have occurred between January 2, 2014 (95% CI November 8, 2013-February 12, 2014) and February 12, 2014 (95% CI January 19, 2014-February 18, 2014). Our findings demonstrate that poultry farms could be a source of reassortment between H7N9 virus and H9N2 virus as well as human infection, which emphasizes the importance to public health of active avian influenza surveillance at poultry farms.
Collapse
Affiliation(s)
- Donglin Wu
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Tian Bai
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Jing Li
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Hongmin Liu
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Xiaodan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Xianda Yang
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Shuang Xu
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Xiaohui Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Ao Wang
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Junfeng Guo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Bingxin Sun
- Changchun Prefecture Center for Disease Prevention and Control, Jilin, China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Xiang Li
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Bo Shen
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Shiwen Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Qun Li
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dexin Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Guizhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Zijian Feng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - George F Gao
- 1] Chinese Center for Disease Control and Prevention, Beijing, China [2] CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Ming Fan
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| |
Collapse
|
31
|
Wu D, Zou S, Bai T, Li J, Zhao X, Yang L, Liu H, Li X, Yang X, Xin L, Xu S, Zou X, Li X, Wang A, Guo J, Sun B, Huang W, Zhang Y, Li X, Gao R, Shen B, Chen T, Dong J, Wei H, Wang S, Li Q, Li D, Wu G, Feng Z, Gao GF, Wang Y, Wang D, Fan M, Shu Y. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection. Sci Rep 2015. [PMID: 25591105 DOI: 10.1038/srep07630.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Live poultry markets are a source of human infection with avian influenza A (H7N9) virus. On February 21, 2014, a poultry farmer infected with H7N9 virus was identified in Jilin, China, and H7N9 and H9N2 viruses were isolated from the patient's farm. Reassortment between these subtype viruses generated five genotypes, one of which caused the human infection. The date of H7N9 virus introduction to the farm is estimated to be between August 21, 2013 (95% confidence interval [CI] June 6, 2013-October 6, 2013) and September 25, 2013 (95% CI May 28, 2013-January 4, 2014), suggesting that the most likely source of virus introduction was the first batch of poultry purchased in August 2013. The reassortment event that led to the human virus may have occurred between January 2, 2014 (95% CI November 8, 2013-February 12, 2014) and February 12, 2014 (95% CI January 19, 2014-February 18, 2014). Our findings demonstrate that poultry farms could be a source of reassortment between H7N9 virus and H9N2 virus as well as human infection, which emphasizes the importance to public health of active avian influenza surveillance at poultry farms.
Collapse
Affiliation(s)
- Donglin Wu
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Tian Bai
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Jing Li
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Hongmin Liu
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Xiaodan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Xianda Yang
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Li Xin
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Shuang Xu
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Xiaohui Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Ao Wang
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Junfeng Guo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Bingxin Sun
- Changchun Prefecture Center for Disease Prevention and Control, Jilin, China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Xiang Li
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Bo Shen
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Jie Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Shiwen Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Qun Li
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dexin Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Guizhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Zijian Feng
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - George F Gao
- 1] Chinese Center for Disease Control and Prevention, Beijing, China [2] CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| | - Ming Fan
- Jilin Provincial Center for Disease Prevention and Control, Jilin, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China
| |
Collapse
|
32
|
Jin Y, Yu D, Ren H, Yin Z, Huang Z, Hu M, Li B, Zhou W, Yue J, Liang L. Phylogeography of Avian influenza A H9N2 in China. BMC Genomics 2014; 15:1110. [PMID: 25511561 PMCID: PMC4523017 DOI: 10.1186/1471-2164-15-1110] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background During the past two decades, avian influenza A H9N2 viruses have spread geographically and ecologically in China. Other than its current role in causing outbreaks in poultry and sporadic human infections by direct transmission, H9N2 virus could also serve as an progenitor for novel human avian influenza viruses including H5N1, H7N9 and H10N8. Hence, H9N2 virus is becoming a notable threat to public health. However, despite multiple lineages and genotypes that were detected by previous studies, the migration dynamics of the H9N2 virus in China is unclear. Increasing such knowledge would help us better prevent and control H9N2 as well as other future potentially threatening viruses from spreading across China. The objectives of this study were to determine the source, migration patterns, and the demography history of avian influenza A H9N2 virus that circulated in China. Results Using Bayesian phylogeography framework, we showed that the H9N2 virus in mainland China may have originated from the Hong Kong Special Administrative Region (SAR). Southern China, most likely the Guangdong province acts as the primary epicentre for multiple H9N2 strains spreading across the whole country, and eastern China, most likely the Jiangsu province, acts as an important secondary source to seed outbreaks. Our demography inference suggests that during the long-term migration process, H9N2 evolved into multiple diverse lineages and then experienced a selective sweep, which reduced its genetic diversity. Importantly, such a selective sweep may pose a greater threat to public health because novel strains confer higher fitness advantages than strains being replaced and could generate new viruses through reassortment. Conclusion Our analyses indicate that migratory birds, poultry trade and transportation have all contributed to the spreading of the H9N2 virus in China. The ongoing migration and evolution of H9N2, which poses a constant threat to the human population, highlights the need for a more comprehensive surveillance of wild birds and for the enhancement of biosafety for China’s poultry industry. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1110) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Dong Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Hongguang Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Zhiqiu Yin
- School of Life Sciences, Anhui University, Anhui, 230601, China.
| | - Zhisong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Mingda Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Beiping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Wei Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Yue
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Long Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
33
|
Husain M. Avian influenza A (H7N9) virus infection in humans: Epidemiology, evolution, and pathogenesis. INFECTION GENETICS AND EVOLUTION 2014; 28:304-12. [DOI: 10.1016/j.meegid.2014.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/09/2022]
|
34
|
Complete Genome Sequence of a Novel Reassortant Avian Influenza H9N9 Virus Isolated from Chicken in Eastern China. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00932-14. [PMID: 25291762 PMCID: PMC4175197 DOI: 10.1128/genomea.00932-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The genome sequence of the strain A/chicken/Changzhou/C08/2013 (H9N9) shows that the hemagglutinin (HA) genes of this strain are closely related to those of the strain A/chicken/Shanghai/1107/2013 (H9N2) and share 99.2% nucleotide homology, while the other seven genes had the greatest sequence identities with the novel H7N9 virus. We speculate that this strain may be a novel natural reassortant avian influenza virus (AIV).
Collapse
|
35
|
Family clusters of avian influenza A H7N9 virus infection in Guangdong Province, China. J Clin Microbiol 2014; 53:22-8. [PMID: 25339399 DOI: 10.1128/jcm.02322-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since its first identification, the epizootic avian influenza A H7N9 virus has continued to cause infections in China. Two waves were observed during this outbreak. No cases were reported from Guangdong Province during the first wave, but this province became one of the prime outbreak sites during the second wave. In order to identify the transmission potential of this continuously evolving infectious virus, our research group monitored all clusters of H7N9 infections during the second wave of the epidemic in Guangdong Province. Epidemiological, clinical, and virological data on these patients were collected and analyzed. Three family clusters including six cases of H7N9 infection were recorded. The virus caused severe disease in two adult patients but only mild symptoms for all four pediatric patients. All patients reported direct poultry or poultry market exposure history. Relevant environment samples collected according to their reported exposures tested H7N9 positive. Virus isolates from patients in the same cluster shared high sequence similarities. In conclusion, although continually evolving, the currently circulating H7N9 viruses in Guangdong Province have not yet demonstrated the capacity for efficient and sustained person-to-person transmission.
Collapse
|
36
|
Occurrence and reassortment of avian influenza A (H7N9) viruses derived from coinfected birds in China. J Virol 2014; 88:13344-51. [PMID: 25210174 DOI: 10.1128/jvi.01777-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Over the course of two waves of infection, H7N9 avian influenza A virus has caused 436 human infections and claimed 170 lives in China as of July 2014. To investigate the prevalence and genetic diversity of H7N9, we surveyed avian influenza viruses in poultry in Jiangsu province within the outbreak epicenter. We found frequent occurrence of H7N9/H9N2 coinfection in chickens. Molecular clock phylogenetic analysis confirms coinfection by H7N9/H9N2 viruses and also reveals that the identity of the H7N9 outbreak lineage is confounded by ongoing reassortment between outbreak viruses and diverse H9N2 viruses in domestic birds. Experimental inoculation of a coinfected sample in cell culture yielded two reassortant H7N9 strains with polymerase segments from the original H9N2 strain. Ongoing reassortment between the H7N9 outbreak lineage and diverse H9N2 viruses may generate new strains with the potential to infect humans, highlighting the need for continued viral surveillance in poultry and humans. IMPORTANCE We found frequent occurrence of H7N9/H9N2 coinfection in chickens. The H7N9 outbreak lineage is confounded by ongoing reassortment between H7N9 and H9N2 viruses. The importance of H9N2 viruses as the source of novel avian influenza virus infections in humans requires continuous attention.
Collapse
|