1
|
Williams WB, Alam SM, Ofek G, Erdmann N, Montefiori DC, Seaman MS, Wagh K, Korber B, Edwards RJ, Mansouri K, Eaton A, Cain DW, Martin M, Hwang J, Arus-Altuz A, Lu X, Cai F, Jamieson N, Parks R, Barr M, Foulger A, Anasti K, Patel P, Sammour S, Parsons RJ, Huang X, Lindenberger J, Fetics S, Janowska K, Niyongabo A, Janus BM, Astavans A, Fox CB, Mohanty I, Evangelous T, Chen Y, Berry M, Kirshner H, Van Itallie E, Saunders KO, Wiehe K, Cohen KW, McElrath MJ, Corey L, Acharya P, Walsh SR, Baden LR, Haynes BF. Vaccine induction of heterologous HIV-1-neutralizing antibody B cell lineages in humans. Cell 2024; 187:2919-2934.e20. [PMID: 38761800 DOI: 10.1016/j.cell.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
A critical roadblock to HIV vaccine development is the inability to induce B cell lineages of broadly neutralizing antibodies (bnAbs) in humans. In people living with HIV-1, bnAbs take years to develop. The HVTN 133 clinical trial studied a peptide/liposome immunogen targeting B cell lineages of HIV-1 envelope (Env) membrane-proximal external region (MPER) bnAbs (NCT03934541). Here, we report MPER peptide-liposome induction of polyclonal HIV-1 B cell lineages of mature bnAbs and their precursors, the most potent of which neutralized 15% of global tier 2 HIV-1 strains and 35% of clade B strains with lineage initiation after the second immunization. Neutralization was enhanced by vaccine selection of improbable mutations that increased antibody binding to gp41 and lipids. This study demonstrates proof of concept for rapid vaccine induction of human B cell lineages with heterologous neutralizing activity and selection of antibody improbable mutations and outlines a path for successful HIV-1 vaccine development.
Collapse
Affiliation(s)
- Wilton B Williams
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, USA.
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA.
| | - Gilad Ofek
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | | | - David C Montefiori
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke School of Medicine, Durham, NC 27710, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Department of Surgery, Duke School of Medicine, Durham, NC 27710, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | - Mitchell Martin
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - JongIn Hwang
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Aria Arus-Altuz
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Fangping Cai
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | - Nolan Jamieson
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Parth Patel
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Salam Sammour
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Ruth J Parsons
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Xiao Huang
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Jared Lindenberger
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Susan Fetics
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Aurelie Niyongabo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Benjamin M Janus
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Anagh Astavans
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | - Ipsita Mohanty
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Tyler Evangelous
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Yue Chen
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Madison Berry
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Helene Kirshner
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | | | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | | | | | | | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke School of Medicine, Durham, NC 27710, USA; Department of Biochemistry, Duke School of Medicine, Durham, NC 27710, USA
| | - Stephen R Walsh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Duke Global Health Institute, Duke School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Tieu HV, Karuna S, Huang Y, Sobieszczyk ME, Zheng H, Tomaras GD, Montefiori DC, Shen M, DeRosa S, Cohen K, Isaacs MB, Regenold S, Heptinstall J, Seaton KE, Sawant S, Furch B, Pensiero M, Corey L, Bar KJ. Safety and immunogenicity of a recombinant oligomeric gp145 subtype C Env protein (gp145 C.6980) HIV vaccine candidate in healthy, HIV-1-uninfected adult participants in the US. Vaccine 2023; 41:6309-6317. [PMID: 37679276 PMCID: PMC11446254 DOI: 10.1016/j.vaccine.2023.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/21/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND An approach to a preventive HIV vaccine is induction of effective broadly neutralizing antibodies (bnAbs) and effector binding antibodies (bAbs). Preclinical studies suggest that trimeric envelope (Env) proteins may elicit nAbs, which led to the development of the recombinant gp145 subtype C Env protein (gp145 C.6980) immunogen. HVTN 122 was a Phase 1 trial that evaluated the safety, tolerability, and immunogenicity of gp145 C.6980 in adults. METHODS Healthy, HIV-1 seronegative adults received three intramuscular injections of gp145 C.6980 with aluminum hydroxide (alum) at months 0, 2, and 6 at either 300 mcg (high dose, n = 25) or 100 mcg (low dose, n = 15), or placebo/saline (placebo, n = 5). Participants were followed for 12 months. RESULTS Forty-five participants were enrolled. High and low doses of the study protein were well-tolerated, with mild or moderate reactogenicity commonly reported. Only one adverse event (mild injection site pruritis) in one participant (low dose) was considered product-related; there were no dose-limiting toxicities. High and low dose recipients demonstrated robust bAb responses to vaccine-matched consensus gp140 Env and subtype-matched gp120 Env proteins two weeks post-last vaccination (response rates >90 %), while no responses were detected to a heterologous subtype-matched V1V2 antigen. No significant differences were seen between high and low dose groups. Participants in both experimental arms demonstrated nAb response rates of 76.5 % to a tier 1 virus (MW9635.26), but no responses to tier 2 isolates. Env-specific CD4 + T-cell responses were elicited in 36.4 % of vaccine recipients, without significant differences between groups; no participants demonstrated CD8 + T-cell responses. CONCLUSIONS Three doses of novel subtype C gp145 Env protein with alum were safe and well-tolerated. Participants demonstrated bAb, Env-specific CD4 + T-cell, and tier 1 nAb responses, but the regimen failed to induce tier 2 or heterologous nAb responses. CLINICAL TRIALS REGISTRATION NCT03382418.
Collapse
MESH Headings
- Humans
- Adult
- Male
- Female
- AIDS Vaccines/immunology
- AIDS Vaccines/adverse effects
- AIDS Vaccines/administration & dosage
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- env Gene Products, Human Immunodeficiency Virus/immunology
- env Gene Products, Human Immunodeficiency Virus/genetics
- HIV Antibodies/blood
- HIV Antibodies/immunology
- HIV Infections/prevention & control
- HIV Infections/immunology
- Young Adult
- Middle Aged
- HIV-1/immunology
- United States
- Injections, Intramuscular
- Healthy Volunteers
- Immunogenicity, Vaccine
- Adolescent
- Adjuvants, Immunologic/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Hong-Van Tieu
- Laboratory of Infectious Disease Prevention, Lindsley F. Kimball Research Institute, New York Blood Center, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, USA
| | - Hua Zheng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Georgia D Tomaras
- Department of Global Health, University of Washington, Seattle, WA, USA
| | | | - Mingchao Shen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kristen Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Margaret Brewinski Isaacs
- Division of Refugee Health, Administration for Children and Families, Department of Health and Human Services, USA
| | - Stephanie Regenold
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | | | | | - Brianna Furch
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Bell BN, Bruun TUJ, Friedland N, Kim PS. HIV-1 prehairpin intermediate inhibitors show efficacy independent of neutralization tier. Proc Natl Acad Sci U S A 2023; 120:e2215792120. [PMID: 36795752 PMCID: PMC9974412 DOI: 10.1073/pnas.2215792120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
HIV-1 strains are categorized into one of three neutralization tiers based on the relative ease by which they are neutralized by plasma from HIV-1-infected donors not on antiretroviral therapy; tier-1 strains are particularly sensitive to neutralization while tier-2 and tier-3 strains are increasingly difficult to neutralize. Most broadly neutralizing antibodies (bnAbs) previously described target the native prefusion conformation of HIV-1 Envelope (Env), but the relevance of the tiered categories for inhibitors targeting another Env conformation, the prehairpin intermediate, is not well understood. Here, we show that two inhibitors targeting distinct highly conserved regions of the prehairpin intermediate have strikingly consistent neutralization potencies (within ~100-fold for a given inhibitor) against strains in all three neutralization tiers of HIV-1; in contrast, best-in-class bnAbs targeting diverse Env epitopes vary by more than 10,000-fold in potency against these strains. Our results indicate that antisera-based HIV-1 neutralization tiers are not relevant for inhibitors targeting the prehairpin intermediate and highlight the potential for therapies and vaccine efforts targeting this conformation.
Collapse
Affiliation(s)
- Benjamin N. Bell
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
| | - Theodora U. J. Bruun
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Natalia Friedland
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Peter S. Kim
- Sarafan ChEM-H, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
4
|
Enhancing HIV-1 Neutralization by Increasing the Local Concentration of Membrane-Proximal External Region-Directed Broadly Neutralizing Antibodies. J Virol 2023; 97:e0164722. [PMID: 36541800 PMCID: PMC9888200 DOI: 10.1128/jvi.01647-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against the membrane-proximal external region (MPER) of the gp41 component of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) are characterized by long, hydrophobic, heavy chain complementarity-determining region 3s (HCDR3s) that interact with the MPER and some viral membrane lipids to achieve increased local concentrations. Here, we show that increasing the local concentration of MPER-directed bNAbs at the cell surface via binding to the high-affinity Fc receptor FcγRI potentiates their ability to prevent viral entry in a manner analogous to the previously reported observation wherein the lipid-binding activity of MPER bNAbs increases their concentration at the viral surface membrane. However, binding of MPER-directed bNAb 10E8 to FcγRI abolishes the neutralization synergy that is seen with the N-heptad repeat (NHR)-targeting antibody D5_AR and NHR-targeting small molecule enfuvirtide (T20), possibly due to decreased accessibility of the NHR in the FcγRI-10E8-MPER complex. Taken together, our results suggest that lipid-binding activity and FcγRI-mediated potentiation function in concert to improve the potency of MPER-directed bNAbs by increasing their local concentration near the site of viral fusion. Therefore, lipid binding may not be a strict requirement for potent neutralization by MPER-targeting bNAbs, as alternative methods can achieve similar increases in local concentrations while avoiding potential liabilities associated with immunologic host tolerance. IMPORTANCE The trimeric glycoprotein Env, the only viral protein expressed on the surface of HIV-1, is the target of broadly neutralizing antibodies and the focus of most vaccine development efforts. Broadly neutralizing antibodies targeting the membrane proximal external region (MPER) of Env show lipid-binding characteristics, and modulating this interaction affects neutralization. In this study, we tested the neutralization potencies of variants of the MPER-targeting antibody 10E8 with different viral-membrane-binding and host FcγRI-binding capabilities. Our results suggest that binding to both lipid and FcγRI improves the neutralization potency of MPER-directed antibodies by concentrating the antibodies at sites of viral fusion. As such, lipid binding may not be uniquely required for MPER-targeting broadly neutralizing antibodies, as alternative methods to increase local concentration can achieve similar improvements in potency.
Collapse
|
5
|
Lakhashe SK, Amacker M, Hariraju D, Vyas HK, Morrison KS, Weiner JA, Ackerman ME, Roy V, Alter G, Ferrari G, Montefiori DC, Tomaras GD, Sawant S, Yates NL, Gast C, Fleury S, Ruprecht RM. Cooperation Between Systemic and Mucosal Antibodies Induced by Virosomal Vaccines Targeting HIV-1 Env: Protection of Indian Rhesus Macaques Against Low-Dose Intravaginal SHIV Challenges. Front Immunol 2022; 13:788619. [PMID: 35273592 PMCID: PMC8902080 DOI: 10.3389/fimmu.2022.788619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
A virosomal vaccine inducing systemic/mucosal anti-HIV-1 gp41 IgG/IgA had previously protected Chinese-origin rhesus macaques (RMs) against vaginal SHIVSF162P3 challenges. Here, we assessed its efficacy in Indian-origin RMs by intramuscular priming/intranasal boosting (n=12/group). Group K received virosome-P1-peptide alone (harboring the Membrane Proximal External Region), Group L combined virosome-rgp41 plus virosome-P1, and Group M placebo virosomes. Vaccination induced plasma binding but no neutralizing antibodies. Five weeks after boosting, all RMs were challenged intravaginally with low-dose SHIVSF162P3 until persistent systemic infection developed. After SHIV challenge #7, six controls were persistently infected versus only one Group L animal (vaccine efficacy 87%; P=0.0319); Group K was not protected. After a 50% SHIV dose increase starting with challenge #8, protection in Group L was lost. Plasmas/sera were analyzed for IgG phenotypes and effector functions; the former revealed that protection in Group L was significantly associated with increased binding to FcγR2/3(A/B) across several time-points, as were some IgG measurements. Vaginal washes contained low-level anti-gp41 IgGs and IgAs, representing a 1-to-5-fold excess over the SHIV inoculum's gp41 content, possibly explaining loss of protection after the increase in challenge-virus dose. Virosomal gp41-vaccine efficacy was confirmed during the initial seven SHIV challenges in Indian-origin RMs when the SHIV inoculum had at least 100-fold more HIV RNA than acutely infected men's semen. Vaccine protection by virosome-induced IgG and IgA parallels the cooperation between systemically administered IgG1 and mucosally applied dimeric IgA2 monoclonal antibodies that as single-agents provided no/low protection - but when combined, prevented mucosal SHIV transmission in all passively immunized RMs.
Collapse
Affiliation(s)
| | - Mario Amacker
- Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland,Mymetics SA, Epalinges, Switzerland
| | - Dinesh Hariraju
- Texas Biomedical Research Institute, San Antonio, TX, United States,New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, United States,Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Hemant K. Vyas
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Kyle S. Morrison
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States,Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Vicky Roy
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States,Massachusetts Consortium on Pathogen Readiness, Boston, MA, United States
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, NC, United States,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - David C. Montefiori
- Department of Surgery, Duke University, Durham, NC, United States,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, NC, United States,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States,Department of Immunology, Duke University, Durham, NC, United States
| | - Sheetal Sawant
- Department of Surgery, Duke University, Durham, NC, United States
| | - Nicole L. Yates
- Department of Surgery, Duke University, Durham, NC, United States
| | | | | | - Ruth M. Ruprecht
- Texas Biomedical Research Institute, San Antonio, TX, United States,New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, United States,Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States,*Correspondence: Ruth M. Ruprecht,
| |
Collapse
|
6
|
Spencer DA, Goldberg BS, Pandey S, Ordonez T, Dufloo J, Barnette P, Sutton WF, Henderson H, Agnor R, Gao L, Bruel T, Schwartz O, Haigwood NL, Ackerman ME, Hessell AJ. Phagocytosis by an HIV antibody is associated with reduced viremia irrespective of enhanced complement lysis. Nat Commun 2022; 13:662. [PMID: 35115533 PMCID: PMC8814042 DOI: 10.1038/s41467-022-28250-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Increasingly, antibodies are being used to treat and prevent viral infections. In the context of HIV, efficacy is primarily attributed to dose-dependent neutralization potency and to a lesser extent Fc-mediated effector functions. It remains unclear whether augmenting effector functions of broadly neutralizing antibodies (bNAbs) may improve their clinical potential. Here, we use bNAb 10E8v4 targeting the membrane external proximal region (MPER) to examine the role of antibody-mediated effector and complement (C’) activity when administered prophylactically against SHIV challenge in rhesus macaques. With sub-protective dosing, we find a 78–88% reduction in post-acute viremia that is associated with 10E8v4-mediated phagocytosis acting at the time of challenge. Neither plasma nor tissue viremic outcomes in vivo is improved with an Fc-modified variant of 10E8v4 enhanced for C’ functions as determined in vitro. These results suggest that effector functions inherent to unmodified 10E8v4 contribute to efficacy against SHIVSF162P3 in the absence of plasma neutralizing titers, while C’ functions are dispensable in this setting, informing design of bNAb modifications for improving protective efficacy. While antibodies neutralize HIV via Fab recognition of viral surface antigens, antibody Fc domains mediate effector functions, including antibody-dependent cellular phagocytosis (ADCP) and cytotoxicity (ADCC), and complement (C') activity. Here, Spencer et al. modify bNAb 10E8v4 to enhance C'-mediated potency in SHIV challenged rhesus macaques to probe its function in protection, showing that in the absence of neutralization, enhancing C' activities in vitro adds no value toward reducing viremia in either blood or tissue.
Collapse
Affiliation(s)
- David A Spencer
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Absci Corp, 1810 SE Mill Plain Blvd., Vancouver, WA, 98683, USA
| | | | - Shilpi Pandey
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Tracy Ordonez
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Institute for Integrative Systems Biology, University of Valencia-CSIC, Calle Catedràtic Agustín Escardino Benlloch 9, 46980, Paterna, Valencia, Spain
| | - Philip Barnette
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - William F Sutton
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Heidi Henderson
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Rebecca Agnor
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lina Gao
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Nancy L Haigwood
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.,Department of Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | - Ann J Hessell
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| |
Collapse
|
7
|
Nduati EW, Gorman MJ, Sein Y, Hermanus T, Yuan D, Oyaro I, Muema DM, Ndung’u T, Alter G, Moore PL. Coordinated Fc-effector and neutralization functions in HIV-infected children define a window of opportunity for HIV vaccination. AIDS 2021; 35:1895-1905. [PMID: 34115644 PMCID: PMC8462450 DOI: 10.1097/qad.0000000000002976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Antibody function has been extensively studied in HIV-infected adults but is relatively understudied in children. Emerging data suggests enhanced development of broadly neutralizing antibodies (bNAbs) in children but Fc effector functions in this group are less well defined. Here, we profiled overall antibody function in HIV-infected children. DESIGN Plasma samples from a cross-sectional study of 50 antiretroviral therapy-naive children (aged 1-11 years) vertically infected with HIV-1 clade A were screened for HIV-specific binding antibody levels and neutralizing and Fc-mediated functions. METHODS Neutralization breadth was determined against a globally representative panel of 12 viruses. HIV-specific antibody levels were determined using a multiplex assay. Fc-mediated antibody functions measured were antibody-dependent: cellular phagocytosis (ADCP); neutrophil phagocytosis (ADNP); complement deposition (ADCD) and natural killer function (ADNK). RESULTS All children had HIV gp120-specific antibodies, largely of the IgG1 subtype. Fifty-four percent of the children exhibited more than 50% neutralization breadth, with older children showing significantly broader neutralization activity. Apart from ADCC, observed only in 16% children, other Fc-mediated functions were common (>58% children). Neutralization breadth correlated with Fc-mediated functions suggesting shared determinants of enhanced antibody function exist. CONCLUSIONS These results are consistent with previous observations that children may develop high levels of neutralization breadth. Furthermore, the striking association between neutralization breadth and Fc effector function suggests that HIV vaccination in children could yield multifunctional antibodies. Paediatric populations may therefore provide an ideal window of opportunity for HIV vaccination strategies.
Collapse
Affiliation(s)
| | | | - Yiakon Sein
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg
| | - Dansu Yuan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ian Oyaro
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Daniel M. Muema
- Africa Health Research Institute, Durban
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Africa Health Research Institute, Durban
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Penny L. Moore
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg
- Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Li D, Edwards RJ, Manne K, Martinez DR, Schäfer A, Alam SM, Wiehe K, Lu X, Parks R, Sutherland LL, Oguin TH, McDanal C, Perez LG, Mansouri K, Gobeil SMC, Janowska K, Stalls V, Kopp M, Cai F, Lee E, Foulger A, Hernandez GE, Sanzone A, Tilahun K, Jiang C, Tse LV, Bock KW, Minai M, Nagata BM, Cronin K, Gee-Lai V, Deyton M, Barr M, Von Holle T, Macintyre AN, Stover E, Feldman J, Hauser BM, Caradonna TM, Scobey TD, Rountree W, Wang Y, Moody MA, Cain DW, DeMarco CT, Denny TN, Woods CW, Petzold EW, Schmidt AG, Teng IT, Zhou T, Kwong PD, Mascola JR, Graham BS, Moore IN, Seder R, Andersen H, Lewis MG, Montefiori DC, Sempowski GD, Baric RS, Acharya P, Haynes BF, Saunders KO. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell 2021; 184:4203-4219.e32. [PMID: 34242577 PMCID: PMC8232969 DOI: 10.1016/j.cell.2021.06.021] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.
Collapse
Affiliation(s)
- Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Lautaro G Perez
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sophie M C Gobeil
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Megan Kopp
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fangping Cai
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Giovanna E Hernandez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aja Sanzone
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kedamawit Tilahun
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chuancang Jiang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Gee-Lai
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Margaret Deyton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Erica Stover
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Trevor D Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - C Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christopher W Woods
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth W Petzold
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | | | | | | | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Rubio AA, Filsinger Interrante MV, Bell BN, Brown CL, Bruun TUJ, LaBranche CC, Montefiori DC, Kim PS. A Derivative of the D5 Monoclonal Antibody That Targets the gp41 N-Heptad Repeat of HIV-1 with Broad Tier-2-Neutralizing Activity. J Virol 2021; 95:e0235020. [PMID: 33980592 PMCID: PMC8274607 DOI: 10.1128/jvi.02350-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
HIV-1 infection is initiated by the viral glycoprotein Env, which, after interaction with cellular coreceptors, adopts a transient conformation known as the prehairpin intermediate (PHI). The N-heptad repeat (NHR) is a highly conserved region of gp41 exposed in the PHI; it is the target of the FDA-approved drug enfuvirtide and of neutralizing monoclonal antibodies (mAbs). However, to date, these mAbs have only been weakly effective against tier-1 HIV-1 strains, which are most sensitive to neutralizing antibodies. Here, we engineered and tested 11 IgG variants of D5, an anti-NHR mAb, by recombining previously described mutations in four of D5's six antibody complementarity-determining regions. One variant, D5_AR, demonstrated 6-fold enhancement in the 50% inhibitory dose (ID50) against lentivirus pseudotyped with HXB2 Env. D5_AR exhibited weak cross-clade neutralizing activity against a diverse set of tier-2 HIV-1 viruses, which are less sensitive to neutralizing antibodies than tier-1 viruses and are the target of current antibody-based vaccine efforts. In addition, the neutralization potency of D5_AR IgG was greatly enhanced in target cells expressing FcγRI, with ID50 values of <0.1 μg/ml; this immunoglobulin receptor is expressed on macrophages and dendritic cells, which are implicated in the early stages of HIV-1 infection of mucosal surfaces. D5 and D5_AR have equivalent neutralization potency in IgG, Fab, and single-chain variable-fragment (scFv) formats, indicating that neutralization is not impacted by steric hindrance. Taken together, these results provide support for vaccine strategies that target the PHI by eliciting antibodies against the gp41 NHR and support investigation of anti-NHR mAbs in nonhuman primate passive immunization studies. IMPORTANCE Despite advances in antiretroviral therapy, HIV remains a global epidemic and has claimed more than 32 million lives. Accordingly, developing an effective HIV vaccine remains an urgent public health need. The gp41 N-heptad repeat (NHR) of the HIV-1 prehairpin intermediate (PHI) is highly conserved (>90%) and is inhibited by the FDA-approved drug enfuvirtide, making it an attractive vaccine target. However, to date, anti-NHR antibodies have not been potent. Here, we engineered D5_AR, a more potent variant of the anti-NHR antibody D5, and established its ability to inhibit HIV-1 strains that are more difficult to neutralize and are more representative of circulating strains (tier-2 strains). The neutralizing activity of D5_AR was greatly potentiated in cells expressing FcγRI; FcγRI is expressed on cells that are implicated at the earliest stages of sexual HIV-1 transmission. Taken together, these results bolster efforts to target the gp41 NHR and the PHI for vaccine development.
Collapse
Affiliation(s)
- Adonis A. Rubio
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biology, Stanford University School of Humanities & Sciences, Stanford, California, USA
| | - Maria V. Filsinger Interrante
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin N. Bell
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Clayton L. Brown
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Theodora U. J. Bruun
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter S. Kim
- Stanford ChEM-H, Stanford University, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
10
|
The high-affinity immunoglobulin receptor FcγRI potentiates HIV-1 neutralization via antibodies against the gp41 N-heptad repeat. Proc Natl Acad Sci U S A 2021; 118:2018027118. [PMID: 33431684 PMCID: PMC7826338 DOI: 10.1073/pnas.2018027118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite decades of research, an effective HIV-1 vaccine remains elusive. One potential vaccine target is the N-heptad repeat (NHR) region of gp41, which is the target of the FDA-approved drug enfuvirtide. However, monoclonal antibodies and antisera targeting this region have only been modestly neutralizing to date. Here, we show that the neutralization potency of the well-characterized anti-NHR antibody D5 is increased >5,000-fold by expression of FcγRI (CD64) on cells. Since FcγRI is expressed on macrophages and dendritic cells, which are implicated in the early establishment of HIV-1 infection following sexual transmission, these results may be important to HIV-1 vaccine development. The HIV-1 gp41 N-heptad repeat (NHR) region of the prehairpin intermediate, which is transiently exposed during HIV-1 viral membrane fusion, is a validated clinical target in humans and is inhibited by the Food and Drug Administration (FDA)-approved drug enfuvirtide. However, vaccine candidates targeting the NHR have yielded only modest neutralization activities in animals; this inhibition has been largely restricted to tier-1 viruses, which are most sensitive to neutralization by sera from HIV-1–infected individuals. Here, we show that the neutralization activity of the well-characterized NHR-targeting antibody D5 is potentiated >5,000-fold in TZM-bl cells expressing FcγRI compared with those without, resulting in neutralization of many tier-2 viruses (which are less susceptible to neutralization by sera from HIV-1–infected individuals and are the target of current antibody-based vaccine efforts). Further, antisera from guinea pigs immunized with the NHR-based vaccine candidate (ccIZN36)3 neutralized tier-2 viruses from multiple clades in an FcγRI-dependent manner. As FcγRI is expressed on macrophages and dendritic cells, which are present at mucosal surfaces and are implicated in the early establishment of HIV-1 infection following sexual transmission, these results may be important in the development of a prophylactic HIV-1 vaccine.
Collapse
|
11
|
Burton DR. A new lease on life for an HIV-neutralizing antibody class and vaccine target. Proc Natl Acad Sci U S A 2021; 118:e2026390118. [PMID: 33504595 PMCID: PMC7896332 DOI: 10.1073/pnas.2026390118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037;
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
| |
Collapse
|
12
|
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front Immunol 2020; 11:603050. [PMID: 33362785 PMCID: PMC7759531 DOI: 10.3389/fimmu.2020.603050] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Caillat C, Guilligay D, Sulbaran G, Weissenhorn W. Neutralizing Antibodies Targeting HIV-1 gp41. Viruses 2020; 12:E1210. [PMID: 33114242 PMCID: PMC7690876 DOI: 10.3390/v12111210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 vaccine research has obtained an enormous boost since the discovery of many broadly neutralizing antibodies (bnAbs) targeting all accessible sites on the HIV-1 envelope glycoprotein (Env). This in turn facilitated high-resolution structures of the Env glycoprotein in complex with bnAbs. Here we focus on gp41, its highly conserved heptad repeat region 1 (HR1), the fusion peptide (FP) and the membrane-proximal external region (MPER). Notably, the broadest neutralizing antibodies target MPER. Both gp41 HR1 and MPER are only fully accessible once receptor-induced conformational changes have taken place, although some studies suggest access to MPER in the close to native Env conformation. We summarize the data on the structure and function of neutralizing antibodies targeting gp41 HR1, FP and MPER and we review their access to Env and their complex formation with gp41 HR1, MPER peptides and FP within native Env. We further discuss MPER bnAb binding to lipids and the role of somatic mutations in recognizing a bipartite epitope composed of the conserved MPER sequence and membrane components. The problematic of gp41 HR1 access and MPER bnAb auto- and polyreactivity is developed in the light of inducing such antibodies by vaccination.
Collapse
Affiliation(s)
- Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Delphine Guilligay
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Guidenn Sulbaran
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, Commissariat à L'énergie Atomique et Aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
| |
Collapse
|
14
|
Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 2019; 10:2968. [PMID: 31921207 PMCID: PMC6930241 DOI: 10.3389/fimmu.2019.02968] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies (Abs) are the major component of the humoral immune response and a key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to in vivo protection against HIV have not been elucidated. In addition to the desired viral capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve engaging immune effector cells to clear infected host cells, immune complexes, and opsonized virus have been proposed as being relevant. These inhibitory mechanisms involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity, phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition. Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial was correlated with the production of non-neutralizing inhibitory Abs, highlighting the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor polymorphisms have been associated with disease progression. These findings further support the need to define which Fc-mediated Ab inhibitory functions leading to protection are critical for HIV vaccine design. Herein, based on our previous review Su & Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific Abs that may potentially contribute to HIV protection.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Iannone
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Raphael Carapito
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|
15
|
Richardson SI, Lambson BE, Crowley AR, Bashirova A, Scheepers C, Garrett N, Abdool Karim S, Mkhize NN, Carrington M, Ackerman ME, Moore PL, Morris L. IgG3 enhances neutralization potency and Fc effector function of an HIV V2-specific broadly neutralizing antibody. PLoS Pathog 2019; 15:e1008064. [PMID: 31841557 PMCID: PMC6936867 DOI: 10.1371/journal.ppat.1008064] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/30/2019] [Accepted: 09/02/2019] [Indexed: 11/19/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) protect against HIV infection in non-human primates and their efficacy may be enhanced through interaction with Fc receptors on immune cells. Antibody isotype is a modulator of this binding with the IgG3 subclass mediating potent Fc effector function and is associated with HIV vaccine efficacy and HIV control. BNAb functions are typically assessed independently of the constant region with which they are naturally expressed. To examine the role of natural isotype in the context of a bNAb lineage we studied CAP256, an HIV-infected individual that mounted a potent V2-specific bNAb response. CAP256 expressed persistently high levels of plasma IgG3 which we found mediated both broad neutralizing activity and potent Fc function. Sequencing of germline DNA and the constant regions of V2-directed bNAbs from this donor revealed the expression of a novel IGHG3 allele as well as IGHG3*17, an allele that produces IgG3 antibodies with increased plasma half-life. Both allelic variants were used to generate CAP256-VRC26.25 and CAP256-VRC26.29 IgG3 bNAbs and these were compared to IgG1 versions. IgG3 variants were shown to have significantly higher phagocytosis and trogocytosis compared to IgG1 versions, which corresponded to increased affinity for FcγRIIa. Neutralization potency was also significantly higher for IgG3 bNAbs, particularly against viruses lacking the N160 glycan. By exchanging hinge regions between subclass variants, we showed that hinge length modulated both neutralization potency and Fc function. This study showed that co-operation between the variable and natural IgG3 constant regions enhanced the polyfunctionality of antibodies, indicating the value of leveraging genetic variation which could be exploited for passive immunity.
Collapse
Affiliation(s)
- Simone I. Richardson
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Bronwen E. Lambson
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Andrew R. Crowley
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Arman Bashirova
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard University, Boston, Massachusetts, United States of America
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Cathrine Scheepers
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States of America
| | - Nonhlanhla N. Mkhize
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard University, Boston, Massachusetts, United States of America
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Penny L. Moore
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
| | - Lynn Morris
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
| |
Collapse
|
16
|
Pinto D, Fenwick C, Caillat C, Silacci C, Guseva S, Dehez F, Chipot C, Barbieri S, Minola A, Jarrossay D, Tomaras GD, Shen X, Riva A, Tarkowski M, Schwartz O, Bruel T, Dufloo J, Seaman MS, Montefiori DC, Lanzavecchia A, Corti D, Pantaleo G, Weissenhorn W. Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host Microbe 2019; 26:623-637.e8. [PMID: 31653484 PMCID: PMC6854463 DOI: 10.1016/j.chom.2019.09.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/27/2019] [Indexed: 11/24/2022]
Abstract
Potent and broadly neutralizing antibodies (bnAbs) are the hallmark of HIV-1 protection by vaccination. The membrane-proximal external region (MPER) of the HIV-1 gp41 fusion protein is targeted by the most broadly reactive HIV-1 neutralizing antibodies. Here, we examine the structural and molecular mechansims of neutralization by anti-MPER bnAb, LN01, which was isolated from lymph-node-derived germinal center B cells of an elite controller and exhibits broad neutralization breadth. LN01 engages both MPER and the transmembrane (TM) region, which together form a continuous helix in complex with LN01. The tilted TM orientation allows LN01 to interact simultaneously with the peptidic component of the MPER epitope and membrane via two specific lipid binding sites of the antibody paratope. Although LN01 carries a high load of somatic mutations, most key residues interacting with the MPER epitope and lipids are germline encoded, lending support for the LN01 epitope as a candidate for lineage-based vaccine development. bNAb LN01 neutralizes 92% of a 118-strain virus panel LN01 targets the HIV-1 gp41 MPER, the TM region, and lipids LN01-complexed MPER forms a continuous helix with TM Most LN01 paratope residues interacting with MPER-TM and lipids are germline encoded
Collapse
Affiliation(s)
- Dora Pinto
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Craig Fenwick
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Chiara Silacci
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Serafima Guseva
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - François Dehez
- LPCT, UMR 7019 Université de Lorraine CNRS, 54500 Vandœuvre-lès-Nancy, France; Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Universiteé de Lorraine CNRS, Vandœuvre-lès-Nancy 54500, France
| | - Christophe Chipot
- LPCT, UMR 7019 Université de Lorraine CNRS, 54500 Vandœuvre-lès-Nancy, France; Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Universiteé de Lorraine CNRS, Vandœuvre-lès-Nancy 54500, France; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sonia Barbieri
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Andrea Minola
- Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Ticino, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Paris Diderot University, Sorbonne Paris Cité, Paris 75013, France
| | | | - Agostino Riva
- Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, Università di Milano, 20157 Milan, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Maciej Tarkowski
- Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, Università di Milano, 20157 Milan, Italy
| | - Olivier Schwartz
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France
| | - Timothée Bruel
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France
| | - Jérémy Dufloo
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France; Paris Diderot University, Sorbonne Paris Cité, Paris 75013, France
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Davide Corti
- Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Ticino, Switzerland.
| | - Giuseppe Pantaleo
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France.
| |
Collapse
|
17
|
Rare Detection of Antiviral Functions of Polyclonal IgA Isolated from Plasma and Breast Milk Compartments in Women Chronically Infected with HIV-1. J Virol 2019; 93:JVI.02084-18. [PMID: 30700599 PMCID: PMC6430545 DOI: 10.1128/jvi.02084-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
The humoral response to invading mucosal pathogens comprises multiple antibody isotypes derived from systemic and mucosal compartments. To understand the contribution of each antibody isotype/source to the mucosal humoral response, parallel investigation of the specificities and functions of antibodies within and across isotypes and compartments is required. The role of IgA against HIV-1 is complex, with studies supporting a protective role as well as a role for serum IgA in blocking effector functions. Thus, we explored the fine specificity and function of IgA in both plasma and mucosal secretions important to infant HIV-1 infection, i.e., breast milk. IgA and IgG were isolated from milk and plasma from 20 HIV-1-infected lactating Malawian women. HIV-1 binding specificities, neutralization potency, inhibition of virus-epithelial cell binding, and antibody-mediated phagocytosis were measured. Fine-specificity mapping showed IgA and IgG responses to multiple HIV-1 Env epitopes, including conformational V1/V2 and linear V2, V3, and constant region 5 (C5). Env IgA was heterogeneous between the milk and systemic compartments (Env IgA, τ = 0.00 to 0.63, P = 0.0046 to 1.00). Furthermore, IgA and IgG appeared compartmentalized as there was a lack of correlation between the specificities of Env-specific IgA and IgG (in milk, τ = -0.07 to 0.26, P = 0.35 to 0.83). IgA and IgG also differed in functions: while neutralization and phagocytosis were consistently mediated by milk and plasma IgG, they were rarely detected in IgA from both milk and plasma. Understanding the ontogeny of the divergent IgG and IgA antigen specificity repertoires and their effects on antibody function will inform vaccination approaches targeted toward mucosal pathogens.IMPORTANCE Antibodies within the mucosa are part of the first line of defense against mucosal pathogens. Evaluating mucosal antibody isotypes, specificities, and antiviral functions in relationship to the systemic antibody profile can provide insights into whether the antibody response is coordinated in response to mucosal pathogens. In a natural immunity cohort of HIV-infected lactating women, we mapped the fine specificity and function of IgA in breast milk and plasma and compared these with the autologous IgG responses. Antigen specificities and functions differed between IgG and IgA, with antiviral functions (neutralization and phagocytosis) predominantly mediated by the IgG fraction in both milk and plasma. Furthermore, the specificity of milk IgA differed from that of systemic IgA. Our data suggest that milk IgA and systemic IgA should be separately examined as potential correlates of risk. Preventive vaccines may need to employ different strategies to elicit functional antiviral immunity by both antibody isotypes in the mucosa.
Collapse
|
18
|
Wines BD, Billings H, Mclean MR, Kent SJ, Hogarth PM. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field. Curr HIV Res 2018; 15:202-215. [PMID: 28322167 PMCID: PMC5543561 DOI: 10.2174/1570162x15666170320112247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 12/23/2022]
Abstract
Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| | - Hugh Billings
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia
| | - Milla R Mclean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Victoria, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
19
|
Zhang R, Verkoczy L, Wiehe K, Munir Alam S, Nicely NI, Santra S, Bradley T, Pemble CW, Zhang J, Gao F, Montefiori DC, Bouton-Verville H, Kelsoe G, Larimore K, Greenberg PD, Parks R, Foulger A, Peel JN, Luo K, Lu X, Trama AM, Vandergrift N, Tomaras GD, Kepler TB, Moody MA, Liao HX, Haynes BF. Initiation of immune tolerance-controlled HIV gp41 neutralizing B cell lineages. Sci Transl Med 2017; 8:336ra62. [PMID: 27122615 DOI: 10.1126/scitranslmed.aaf0618] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/28/2016] [Indexed: 01/09/2023]
Abstract
Development of an HIV vaccine is a global priority. A major roadblock to a vaccine is an inability to induce protective broadly neutralizing antibodies (bnAbs). HIV gp41 bnAbs have characteristics that predispose them to be controlled by tolerance. We used gp41 2F5 bnAb germline knock-in mice and macaques vaccinated with immunogens reactive with germline precursors to activate neutralizing antibodies. In germline knock-in mice, bnAb precursors were deleted, with remaining anergic B cells capable of being activated by germline-binding immunogens to make gp41-reactive immunoglobulin M (IgM). Immunized macaques made B cell clonal lineages targeted to the 2F5 bnAb epitope, but 2F5-like antibodies were either deleted or did not attain sufficient affinity for gp41-lipid complexes to achieve the neutralization potency of 2F5. Structural analysis of members of a vaccine-induced antibody lineage revealed that heavy chain complementarity-determining region 3 (HCDR3) hydrophobicity was important for neutralization. Thus, gp41 bnAbs are controlled by immune tolerance, requiring vaccination strategies to transiently circumvent tolerance controls.
Collapse
Affiliation(s)
- Ruijun Zhang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurent Verkoczy
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA. Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA. Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nathan I Nicely
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles W Pemble
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jinsong Zhang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Larimore
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA
| | - Phillip D Greenberg
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica N Peel
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kan Luo
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley M Trama
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nathan Vandergrift
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA. Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA. Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Mayr LM, Su B, Moog C. Non-Neutralizing Antibodies Directed against HIV and Their Functions. Front Immunol 2017; 8:1590. [PMID: 29209323 PMCID: PMC5701973 DOI: 10.3389/fimmu.2017.01590] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
B cells produce a plethora of anti-HIV antibodies (Abs) but only few of them exhibit neutralizing activity. This was long considered a profound limitation for the enforcement of humoral immune responses against HIV-1 infection, especially since these neutralizing Abs (nAbs) are extremely difficult to induce. However, increasing evidence shows that additional non-neutralizing Abs play a significant role in decreasing the viral load, leading to partial and sometimes even total protection. Mechanisms suspected to participate in protection are numerous. They involve the Fc domain of Abs as well as their Fab part, and consequently the induced Ab isotype will be determinant for their functions, as well as the quantity and quality of the Fc-receptors (FcRs) expressed on immune cells. Fc-mediated inhibitory functions, such as Ab-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, aggregation, and even immune activation have been proposed. However, as for nAbs, the non-neutralizing activities are limited to a subset of anti-HIV Abs. An improved in-depth characterization of the Abs displaying these functional responses is required for the development of new vaccination strategies, which aim to selectively trigger the B cells able to induce the right functional Ab combinations both at the right place and at the right time. This review summarizes our current knowledge on non-neutralizing functional inhibitory Abs and discusses the potential benefit of inducing them via vaccination. We also provide new insight into the roles of the FcγR-mediated Ab therapeutics in clinical trials for HIV diseases.
Collapse
Affiliation(s)
- Luzia M Mayr
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Lucar O, Su B, Potard V, Samri A, Autran B, Moog C, Debré P, Vieillard V. Neutralizing Antibodies Against a Specific Human Immunodeficiency Virus gp41 Epitope are Associated With Long-term Non-progressor Status. EBioMedicine 2017; 22:122-132. [PMID: 28712768 PMCID: PMC5552210 DOI: 10.1016/j.ebiom.2017.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
Antibodies (Abs) play a central role in human immunodeficiency virus (HIV) protection due to their multiple functional inhibitory activities. W614A-3S Abs recognize a specific form of a highly conserved motif of the gp41 envelope protein and can elicit viral neutralization to protect CD4+ T cells. Here, we describe in detail the neutralizing profile of W614A-3S Abs in untreated long-term non-progressor (LTNP) HIV-infected patients. W614A-3S Abs were detected in 23.5% (16/68) of untreated LTNP patients compared with <5% (5/104) of HIV-1 progressor patients. The W614A-3S Abs had efficient neutralizing activity that inhibited transmitted founder primary viruses and exhibited Fc-mediated inhibitory functions at low concentrations in primary monocyte-derived macrophages. The neutralizing capacity of W614A-3S Abs was inversely correlated with viral load (r=-0.9013; p<0.0001), viral DNA (r=-0.7696; p=0.0005) and was associated the preservation of high CD4+ T-cell counts and T-cell responses. This study demonstrates that W614A-3S neutralizing Abs may confer a crucial advantage to LTNP patients. These results provide insights for both pathophysiological research and the development of vaccine strategies.
Collapse
Affiliation(s)
- Olivier Lucar
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Bin Su
- U1109 INSERM, FMTS, Université de Strasbourg, Strasbourg, France; Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Valérie Potard
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1136, Paris, France
| | - Assia Samri
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Brigitte Autran
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Christiane Moog
- U1109 INSERM, FMTS, Université de Strasbourg, Strasbourg, France
| | - Patrice Debré
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Vincent Vieillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Increased body of evidence gathered over time indicate that antibodies are capable of many inhibitory mechanisms, virus neutralization being just one of them. Nonneutralizing antibodyactivities interfering with HIV replication can also lead to a decrease in viral load and even in-vivo protection. RECENT FINDINGS It was previously believed that neutralizing antibodies can achieve sterilizing protection mainly by using their neutralization capacities against the infecting virus directly at the portal of virus entry. Recent findings show that protection can be obtained by neutralizing antibodiesat distal sites of virus challenge. In this case, foci of virus infection that escaped from initial inhibition of virus are eliminated presumably by additional nonneutralizing antibody activities. These data inexorably strengthen the diverse functions of antibodies and broaden their role as antiviral mediator. SUMMARY The review summarizes the current knowledge and the difficulties to encompass the numerous functions of antibodies. A complete understanding of the various facets of antibody functions is required to efficiently induce them via next-generation vaccine design.
Collapse
|
23
|
Anderson DJ, Politch JA, Zeitlin L, Hiatt A, Kadasia K, Mayer KH, Ruprecht RM, Villinger F, Whaley KJ. Systemic and topical use of monoclonal antibodies to prevent the sexual transmission of HIV. AIDS 2017; 31:1505-1517. [PMID: 28463876 PMCID: PMC5619647 DOI: 10.1097/qad.0000000000001521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
: Passive immunization, the transfer of antibodies to a nonimmune individual to provide immunological protection, has been used for over 100 years to prevent and treat human infectious diseases. The introduction of techniques to produce human mAbs has revolutionized the field, and a large number of human mAbs have been licensed for the treatment of cancer, autoimmune and inflammatory diseases. With the recent discovery and production of highly potent broadly neutralizing and other multifunctional antibodies to HIV, mAbs are now being considered for HIV therapy and prophylaxis. In this review, we briefly present recent advances in the anti-HIV mAb field and outline strategies for the selection, engineering and production of human mAbs, including the modification of their structure for optimized stability and function. We also describe results from nonhuman primate studies and phase 1 clinical trials that have tested the safety, tolerability, pharmacokinetics, and efficacy of mAb-based HIV prevention strategies, and discuss the future of parenteral and topical mAb administration for the prevention of HIV transmission.
Collapse
Affiliation(s)
- Deborah J. Anderson
- Departments of Obstetrics and Gynecology, Microbiology and Medicine, Boston University School of Medicine, Boston, MA
| | - Joseph A. Politch
- Departments of Obstetrics and Gynecology, Microbiology and Medicine, Boston University School of Medicine, Boston, MA
| | | | | | - Kadryn Kadasia
- Department of Molecular Medicine, Boston University School of Medicine, Boston MA
| | | | - Ruth M. Ruprecht
- Texas Biomedical Institute and Southwest National Primate Research Center, San Antonio TX
| | | | | |
Collapse
|
24
|
Astronomo RD, Santra S, Ballweber-Fleming L, Westerberg KG, Mach L, Hensley-McBain T, Sutherland L, Mildenberg B, Morton G, Yates NL, Mize GJ, Pollara J, Hladik F, Ochsenbauer C, Denny TN, Warrier R, Rerks-Ngarm S, Pitisuttithum P, Nitayapan S, Kaewkungwal J, Ferrari G, Shaw GM, Xia SM, Liao HX, Montefiori DC, Tomaras GD, Haynes BF, McElrath JM. Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine 2016; 14:97-111. [PMID: 27919754 PMCID: PMC5161443 DOI: 10.1016/j.ebiom.2016.11.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022] Open
Abstract
HIV-1 infection occurs primarily through mucosal transmission. Application of biologically relevant mucosal models can advance understanding of the functional properties of antibodies that mediate HIV protection, thereby guiding antibody-based vaccine development. Here, we employed a human ex vivo vaginal HIV-1 infection model and a rhesus macaque in vivo intrarectal SHIV challenge model to probe the protective capacity of monoclonal broadly-neutralizing (bnAb) and non-neutralizing Abs (nnAbs) that were functionally modified by isotype switching. For human vaginal explants, we developed a replication-competent, secreted NanoLuc reporter virus system and showed that CD4 binding site bnAbs b12 IgG1 and CH31 IgG1 and IgA2 isoforms potently blocked HIV-1JR-CSF and HIV-1Bal26 infection. However, IgG1 and IgA nnAbs, either alone or together, did not inhibit infection despite the presence of FcR-expressing effector cells in the tissue. In macaques, the CH31 IgG1 and IgA2 isoforms infused before high-dose SHIV challenge were completely to partially protective, respectively, while nnAbs (CH54 IgG1 and CH38 mIgA2) were non-protective. Importantly, in both mucosal models IgG1 isotype bnAbs were more protective than the IgA2 isotypes, attributable in part to greater neutralization activity of the IgG1 variants. These findings underscore the importance of potent bnAb induction as a primary goal of HIV-1 vaccine development.
Collapse
Affiliation(s)
- Rena D Astronomo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sampa Santra
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katharine G Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Linh Mach
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tiffany Hensley-McBain
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Benjamin Mildenberg
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Georgeanna Morton
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Gregory J Mize
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Ranjit Warrier
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Sorachai Nitayapan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Guido Ferrari
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Juliana M McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
25
|
Bradley T, Trama A, Tumba N, Gray E, Lu X, Madani N, Jahanbakhsh F, Eaton A, Xia SM, Parks R, Lloyd KE, Sutherland LL, Scearce RM, Bowman CM, Barnett S, Abdool-Karim SS, Boyd SD, Melillo B, Smith AB, Sodroski J, Kepler TB, Alam SM, Gao F, Bonsignori M, Liao HX, Moody MA, Montefiori D, Santra S, Morris L, Haynes BF. Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine 2016; 12:196-207. [PMID: 27612593 PMCID: PMC5078591 DOI: 10.1016/j.ebiom.2016.08.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023] Open
Abstract
Most HIV-1 vaccines elicit neutralizing antibodies that are active against highly sensitive (tier-1) viruses or rare cases of vaccine-matched neutralization-resistant (tier-2) viruses, but no vaccine has induced antibodies that can broadly neutralize heterologous tier-2 viruses. In this study, we isolated antibodies from an HIV-1-infected individual that targeted the gp41 membrane-proximal external region (MPER) that may have selected single-residue changes in viral variants in the MPER that resulted in neutralization sensitivity to antibodies targeting distal epitopes on the HIV-1 Env. Similarly, a single change in the MPER in a second virus from another infected-individual also conferred enhanced neutralization sensitivity. These gp41 single-residue changes thus transformed tier-2 viruses into tier-1 viruses that were sensitive to vaccine-elicited tier-1 neutralizing antibodies. These data demonstrate that Env amino acid changes within the MPER bnAb epitope of naturally-selected escape viruses can increase neutralization sensitivity to multiple types of neutralizing antibodies, and underscore the critical importance of the MPER for maintaining the integrity of the tier-2 HIV-1 trimer. Amino acid changes in the HIV gp41 MPER can regulate neutralization sensitivity of distal epitopes. MPER antibodies isolated early are resistant to MPER changes that enhance neutralization sensitivity. HIV gp41 MPER is critical for determining overall HIV envelope conformations.
The HIV-1 envelope protein (Env) is the primary target for neutralizing antibodies. Most HIV-1 vaccines elicit neutralizing antibodies that are active against highly neutralization-sensitive (tier-1) or rare vaccine-matched more neutralization-resistant (tier-2) viruses, but no vaccine has induced antibodies that can broadly neutralize heterologous tier-2 viruses. In this study, we identified changes that occurred in two HIV-1-infected individuals in the membrane proximal region of the HIV-1 Env that resulted in neutralization sensitivity to antibodies targeting distal epitopes on the HIV Env. These single-residue changes thus transformed tier-2 viruses into tier-1 viruses, highlighting the importance of MPER residues in maintaining neutralization-resistant virus.
Collapse
Affiliation(s)
- Todd Bradley
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ashley Trama
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Nancy Tumba
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Elin Gray
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Navid Madani
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Krissey E Lloyd
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Cindy M Bowman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan Barnett
- Novartis Vaccines and Diagnostics, Inc., Cambridge, MA, USA
| | - Salim S Abdool-Karim
- Center for AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa; Columbia University, New York, NY 10032, USA
| | | | - Bruno Melillo
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amos B Smith
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Sodroski
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - S Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg 2131, South Africa; Center for AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban 4013, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2131, South Africa
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
26
|
Boesch AW, Brown EP, Ackerman ME. The role of Fc receptors in HIV prevention and therapy. Immunol Rev 2016; 268:296-310. [PMID: 26497529 DOI: 10.1111/imr.12339] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, a wealth of experimental evidence has accumulated supporting the importance of Fc receptor (FcR) ligation in antibody-mediated pathology and protection in many disease states. Here we present the diverse evidence base that has accumulated as to the importance of antibody effector functions in the setting of HIV prevention and therapy, including clinical correlates, genetic associations, viral evasion strategies, and a rapidly growing number of compelling animal model experiments. Collectively, this work identifies antibody interactions with FcR as important to both therapeutic and prophylactic strategies involving both passive and active immunity. These findings mirror those in other fields as investigators continue to work toward identifying the right antibodies and the right effectors to be present at the right sites at the right time.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, USA
| |
Collapse
|
27
|
Cherif M, Amoako-Sakyi D, Dolo A, Pearson JO, Gyan B, Obiri-Yeboah D, Nebie I, Sirima SB, Doumbo O, Troye-Blomberg M, Bakary M. Distribution of FcγR gene polymorphisms among two sympatric populations in Mali: differing allele frequencies, associations with malariometric indices and implications for genetic susceptibility to malaria. Malar J 2016; 15:29. [PMID: 26785902 PMCID: PMC4717667 DOI: 10.1186/s12936-015-1082-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/31/2015] [Indexed: 11/18/2022] Open
Abstract
Background Genetic polymorphisms in the complex gene cluster encoding human Fc-gamma receptors (FcγRs) may influence malaria susceptibility and pathogenesis. Studying genetic susceptibility to malaria is ideal among sympatric populations because the distribution of polymorphic genes among such populations can help in the identification malaria candidate genes. This study determined the distribution of three FcyRs single nucleotide polymorphisms (SNPs) (FcγRIIB-rs1050519, FcγRIIC-rs3933769 and FcγRIIIA-rs396991) among sympatric Fulani and Dogon children with uncomplicated malaria. The association of these SNPs with clinical, malariometric and immunological indices was also tested. Methods This study involved 242 Fulani and Dogon volunteers from Mali age under 15 years. All SNPs were genotyped with predesigned TaqMan® SNP Genotyping Assays. Genotypic and allelic distribution of SNPs was compared across ethnic groups using the Fisher exact test. Variations in clinical, malariometric and immunologic indices between groups were tested with Kruskal–Wallis H, Mann–Whitney U test and Fisher exact test where appropriate. Results The study confirmed known malariometric and immunologic differences between sympatric Fulani and non-Fulani tribes. Parasite density was lower in the Fulani than the Dogon (p < 0.0001). The mutant allele of FcγRIIC (rs3933769) was found more frequently in the Fulani than the Dogon (p < 0.0001) while that of FcγRIIIA (rs396991) occurred less frequently in the Fulani than Dogon (p = 0.0043). The difference in the mutant allele frequency of FcγRIIB (rs1050519) between the two ethnic groups was however not statistically significant (p = 0.064). The mutant allele of rs396991 was associated with high malaria-specific IgG1 and IgG3 in the entire study population and Dogon tribe, p = 0.023 and 0.015, respectively. Parasite burden was lower in carriers of the FcγRIIC (rs3933769) mutant allele than non-carriers in the entire study population (p < 0.0001). Carriers of this allele harboured less than half the parasites found in non-carriers. Conclusion Differences in the allelic frequencies of rs3933769 and rs396991 among Fulani and Dogon indirectly suggest that these SNPs may influence malaria susceptibility and pathogenesis in the study population. The high frequency of the FcγRIIC (rs3933769) mutant allele in the Fulani and its subsequent association with low parasite burden in the entire study population is noteworthy.
Collapse
Affiliation(s)
- Mariama Cherif
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso. .,Polytechnic University of Bobo Dioulasso, Bobo Dioulasso, Burkina Faso.
| | - Daniel Amoako-Sakyi
- Department of Microbiology and Immunology, College of Health and Allied Sciences, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana. .,Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
| | - Amagana Dolo
- Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odonto-Stomatology, Malaria Research and Training Centre, USTTB, Bamako, Mali.
| | - Jan-Olov Pearson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Ben Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
| | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, College of Health and Allied Sciences, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Issa Nebie
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.
| | - Ogobara Doumbo
- Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odonto-Stomatology, Malaria Research and Training Centre, USTTB, Bamako, Mali.
| | - Marita Troye-Blomberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Maiga Bakary
- Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Odonto-Stomatology, Malaria Research and Training Centre, USTTB, Bamako, Mali.
| |
Collapse
|
28
|
Choi JG, Bharaj P, Abraham S, Ma H, Yi G, Ye C, Dang Y, Manjunath N, Wu H, Shankar P. Multiplexing seven miRNA-Based shRNAs to suppress HIV replication. Mol Ther 2015; 23:310-20. [PMID: 25358251 PMCID: PMC4445613 DOI: 10.1038/mt.2014.205] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/17/2014] [Indexed: 11/09/2022] Open
Abstract
Multiplexed miRNA-based shRNAs (shRNA-miRs) could have wide potential to simultaneously suppress multiple genes. Here, we describe a simple strategy to express a large number of shRNA-miRs using minimal flanking sequences from multiple endogenous miRNAs. We found that a sequence of 30 nucleotides flanking the miRNA duplex was sufficient for efficient processing of shRNA-miRs. We inserted multiple shRNAs in tandem, each containing minimal flanking sequence from a different miRNA. Deep sequencing of transfected cells showed accurate processing of individual shRNA-miRs and that their expression did not decrease with the distance from the promoter. Moreover, each shRNA was as functionally competent as its singly expressed counterpart. We used this system to express one shRNA-miR targeting CCR5 and six shRNA-miRs targeting the HIV-1 genome. The lentiviral construct was pseudotyped with HIV-1 envelope to allow transduction of both resting and activated primary CD4 T cells. Unlike one shRNA-miR, the seven shRNA-miR transduced T cells nearly abrogated HIV-1 infection in vitro. Additionally, when PBMCs from HIV-1 seropositive individuals were transduced and transplanted into NOD/SCID/IL-2R γc(-/-) mice (Hu-PBL model) efficient suppression of endogenous HIV-1 replication with restoration of CD4 T cell counts was observed. Thus, our multiplexed shRNA appears to provide a promising gene therapeutic approach for HIV-1 infection.
Collapse
Affiliation(s)
- Jang-Gi Choi
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Preeti Bharaj
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Sojan Abraham
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Hongming Ma
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Guohua Yi
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Chunting Ye
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Ying Dang
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - N Manjunath
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Haoquan Wu
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Premlata Shankar
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
29
|
Lederle A, Su B, Holl V, Penichon J, Schmidt S, Decoville T, Laumond G, Moog C. Neutralizing antibodies inhibit HIV-1 infection of plasmacytoid dendritic cells by an FcγRIIa independent mechanism and do not diminish cytokines production. Sci Rep 2014; 4:5845. [PMID: 25132382 PMCID: PMC4135332 DOI: 10.1038/srep05845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/23/2014] [Indexed: 01/11/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) expressing FcγRIIa are antigen-presenting cells able to link innate and adaptive immunity and producing various cytokines and chemokines. Although highly restricted, they are able to replicate HIV-1. We determined the activity of anti-HIV-1 neutralizing antibodies (NAb) and non-neutralizing inhibitory antibodies (NNIAb) on the infection of primary pDC by HIV-1 primary isolates and analyzed cytokines and chemokines production. Neutralization assay was performed with primary pDC in the presence of serial antibodies (Ab) concentrations. In parallel, we measured the release of cytokines and chemokines by ELISA and CBA Flex assay. We found that NAb, but not NNIAb, inhibit HIV-1 replication in pDC. This inhibitory activity was lower than that detected for myeloid dendritic cells (mDC) infection and independent of FcγRIIa expressed on pDC. Despite the complete protection, IFN-α production was detected in the supernatant of pDC treated with NAb VRC01, 4E10, PGT121, 10-1074, 10E8, or polyclonal IgG44 but not with NAb b12. Production of MIP-1α, MIP-1β, IL-6, and TNF-α by pDC was also maintained in the presence of 4E10, b12 and VRC01. These findings suggest that pDC can be protected from HIV-1 infection by both NAb and IFN-α release triggered by the innate immune response during infection.
Collapse
Affiliation(s)
- Alexandre Lederle
- 1] INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France [2]
| | - Bin Su
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Vincent Holl
- 1] INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France [2]
| | - Julien Penichon
- 1] INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France [2]
| | - Sylvie Schmidt
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Thomas Decoville
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Géraldine Laumond
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France
| |
Collapse
|
30
|
Li SS, Gilbert PB, Tomaras GD, Kijak G, Ferrari G, Thomas R, Pyo CW, Zolla-Pazner S, Montefiori D, Liao HX, Nabel G, Pinter A, Evans DT, Gottardo R, Dai JY, Janes H, Morris D, Fong Y, Edlefsen PT, Li F, Frahm N, Alpert MD, Prentice H, Rerks-Ngarm S, Pitisuttithum P, Kaewkungwal J, Nitayaphan S, Robb ML, O'Connell RJ, Haynes BF, Michael NL, Kim JH, McElrath MJ, Geraghty DE. FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial. J Clin Invest 2014; 124:3879-90. [PMID: 25105367 DOI: 10.1172/jci75539] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/19/2014] [Indexed: 02/02/2023] Open
Abstract
The phase III RV144 HIV-1 vaccine trial estimated vaccine efficacy (VE) to be 31.2%. This trial demonstrated that the presence of HIV-1-specific IgG-binding Abs to envelope (Env) V1V2 inversely correlated with infection risk, while the presence of Env-specific plasma IgA Abs directly correlated with risk of HIV-1 infection. Moreover, Ab-dependent cellular cytotoxicity responses inversely correlated with risk of infection in vaccine recipients with low IgA; therefore, we hypothesized that vaccine-induced Fc receptor-mediated (FcR-mediated) Ab function is indicative of vaccine protection. We sequenced exons and surrounding areas of FcR-encoding genes and found one FCGR2C tag SNP (rs114945036) that associated with VE against HIV-1 subtype CRF01_AE, with lysine at position 169 (169K) in the V2 loop (CRF01_AE 169K). Individuals carrying CC in this SNP had an estimated VE of 15%, while individuals carrying CT or TT exhibited a VE of 91%. Furthermore, the rs114945036 SNP was highly associated with 3 other FCGR2C SNPs (rs138747765, rs78603008, and rs373013207). Env-specific IgG and IgG3 Abs, IgG avidity, and neutralizing Abs inversely correlated with CRF01_AE 169K HIV-1 infection risk in the CT- or TT-carrying vaccine recipients only. These data suggest a potent role of Fc-γ receptors and Fc-mediated Ab function in conferring protection from transmission risk in the RV144 VE trial.
Collapse
|
31
|
Su B, Moog C. Which Antibody Functions are Important for an HIV Vaccine? Front Immunol 2014; 5:289. [PMID: 24995008 PMCID: PMC4062070 DOI: 10.3389/fimmu.2014.00289] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/03/2014] [Indexed: 01/18/2023] Open
Abstract
HIV antibody (Ab) functions capable of preventing mucosal cell-free or cell-to-cell HIV transmission are critical for the development of effective prophylactic and therapeutic vaccines. In addition to CD4(+) T cells, other potential HIV-target cell types including antigen-presenting cells (APCs) (dendritic cells, macrophages) residing at mucosal sites are infected. Moreover, the interactions between APCs and HIV lead to HIV cell-to-cell transmission. Recently discovered broadly neutralizing antibodies (NAbs) are able to neutralize a broad spectrum of HIV strains, inhibit cell-to-cell transfer, and efficiently protect from infection in the experimentally challenged macaque model. However, the 31% protection observed in the RV144 vaccine trial in the absence of detectable NAbs in blood samples pointed to the possible role of additional Ab inhibitory functions. Increasing evidence suggests that IgG Fcγ receptor (FcγR)-mediated inhibition of Abs present at the mucosal site may play a role in protection against HIV mucosal transmission. Moreover, mucosal IgA Abs may be determinant in protection against HIV sexual transmission. Therefore, defining Ab inhibitory functions that could lead to protection is critical for further HIV vaccine design. Here, we review different inhibitory properties of HIV-specific Abs and discuss their potential role in protection against HIV sexual transmission.
Collapse
Affiliation(s)
- Bin Su
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| |
Collapse
|
32
|
Role of Fc in antibody-mediated protection from ricin toxin. Toxins (Basel) 2014; 6:1512-25. [PMID: 24811206 PMCID: PMC4052250 DOI: 10.3390/toxins6051512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022] Open
Abstract
We have studied the role of the antibody (Ab) Fc region in mediating protection from ricin toxicity. We compared the in vitro and in vivo effects of intact Ig and of Fab fragments derived from two different neutralizing Ab preparations, one monoclonal, the other polyclonal. Consistent results were obtained from each, showing little difference between Ig and Fab in terms of antigen binding and in vitro neutralization, but with relatively large differences in protection of animals. We also studied whether importing Ab into the cell by Fc receptors enhanced the intracellular neutralization of ricin toxin. We found that the imported Ab was found in the ER and Golgi, a compartment traversed by ricin, as it traffics through the cell, but intracellular Ab did not contribute to the neutralization of ricin. These results indicate that the Fc region of antibody is important for in vivo protection, although the mechanism of enhanced protection by intact Ig does not appear to operate at the single cell level. When using xenogeneic antibodies, the diminished immunogenicity of Fab/F(ab’)2 preparations should be balanced against possible loss of protective efficacy.
Collapse
|
33
|
The FcγR of humans and non-human primates and their interaction with IgG: implications for induction of inflammation, resistance to infection and the use of therapeutic monoclonal antibodies. Curr Top Microbiol Immunol 2014; 382:321-52. [PMID: 25116107 DOI: 10.1007/978-3-319-07911-0_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considerable effort has focused on the roles of the individual members of the FcγR receptor (FcγR) family in inflammatory diseases and humoral immunity. Recent work has revealed major roles in infection and in particular HIV pathogenesis and immunity. In addition, FcγR functions underpin the action of many of the successful therapeutic monoclonal antibodies. This emphasises the need for a greater understanding of FcγR function in humans and in the NHP which provides a key model for human immunity and preclinical testing of antibodies. We discuss recent key aspects of the human FcγR receptor biology and structure to define differences and similarities in activity between the human and macaque Fc receptors. These differences and similarities nuance the interpretation of infection and vaccine studies in the macaque. Indeed passive IgG antibody protection in lentivirus infection models in the macaque provided early evidence for the role of Fc receptors in anti-HIV immunity that have subsequently gained support from human vaccine trials. None-the-less the diverse functions and cellular contexts of FcγR receptor expression ensure there is much still to understand of the protective and deleterious effects of FcγRs in HIV infection. Careful comparative studies of human and non-human primate FcγRs will facilitate our appreciation of what attributes of HIV specific IgG antibodies, either acquired naturally or via vaccination, are most important for protection.
Collapse
|
34
|
Moog C, Dereuddre-Bosquet N, Teillaud JL, Biedma ME, Holl V, Van Ham G, Heyndrickx L, Van Dorsselaer A, Katinger D, Vcelar B, Zolla-Pazner S, Mangeot I, Kelly C, Shattock RJ, Le Grand R. Protective effect of vaginal application of neutralizing and nonneutralizing inhibitory antibodies against vaginal SHIV challenge in macaques. Mucosal Immunol 2014; 7:46-56. [PMID: 23591718 DOI: 10.1038/mi.2013.23] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
Definition of antibody (Ab) functions capable of preventing mucosal HIV transmission may be critical to both effective vaccine development and the prophylactic use of monoclonal Abs. Although direct antibody-mediated neutralization is highly effective against cell-free virus, increasing evidence suggests an important role for immunoglobulin G (IgG) Fcγ receptor (FcγR)-mediated inhibition of HIV replication. Thus, a panel of well-known neutralizing (NAbs) and nonneutralizing Abs (NoNAbs) were screened for their ability to block HIV acquisition and replication in vitro in either an independent or FcγR-dependent manner. Abs displaying the highest Fc-mediated inhibitory activity in various in vitro assays were selected, formulated for topical vaginal application in a microbicide gel, and tested for their antiviral activity against SHIVSF162P3 vaginal challenge in non-human primates (NHPs). A combination of three NAbs, 2G12, 2F5, and 4E10, fully prevented simian/human immunodeficiency virus (SHIV) vaginal transmission in 10 out of 15 treated NHPs, whereas a combination of two NoNAbs, 246-D and 4B3, although having no impact on SHIV acquisition, reduced plasma viral load. These results indicate that anti-HIV Abs with distinct neutralization and inhibitory functions differentially affect in vivo HIV acquisition and replication, by interfering with early viral replication and dissemination. Therefore, combining diverse Ab properties may potentiate the protective effects of anti-HIV-Ab-based strategies.
Collapse
Affiliation(s)
- C Moog
- U1110 INSERM/UNISTRA, Institute of Virology, Strasbourg, France
| | - N Dereuddre-Bosquet
- 1] CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France [2] UMR-E1, Université Paris Sud-11, Orsay, France
| | - J-L Teillaud
- INSERM UMR-S 872, Cordeliers Research Center, Paris Descartes University, Pierre et Marie Curie University, Paris, France
| | - M E Biedma
- U1110 INSERM/UNISTRA, Institute of Virology, Strasbourg, France
| | - V Holl
- U1110 INSERM/UNISTRA, Institute of Virology, Strasbourg, France
| | - G Van Ham
- Institute of Tropical Medicine and University of Antwerp, Antwerp, Belgium
| | - L Heyndrickx
- Institute of Tropical Medicine and University of Antwerp, Antwerp, Belgium
| | | | - D Katinger
- Polymun Scientific GmbH, Klosterneuburg, Austria
| | - B Vcelar
- Polymun Scientific GmbH, Klosterneuburg, Austria
| | - S Zolla-Pazner
- NYU School of Medicine and New York Veterans Affairs Medical Center, New York, New York, USA
| | - I Mangeot
- 1] CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France [2] UMR-E1, Université Paris Sud-11, Orsay, France
| | - C Kelly
- Clinical and Diagnostic Sciences, King's College, London, UK
| | - R J Shattock
- Department of Medicine, Imperial College, London, UK
| | - R Le Grand
- 1] CEA, Division of Immuno-Virology, iMETI, DSV, Fontenay-aux-Roses, France [2] UMR-E1, Université Paris Sud-11, Orsay, France
| |
Collapse
|
35
|
McLinden RJ, LaBranche CC, Chenine AL, Polonis VR, Eller MA, Wieczorek L, Ochsenbauer C, Kappes JC, Perfetto S, Montefiori DC, Michael NL, Kim JH. Detection of HIV-1 neutralizing antibodies in a human CD4⁺/CXCR4⁺/CCR5⁺ T-lymphoblastoid cell assay system. PLoS One 2013; 8:e77756. [PMID: 24312168 PMCID: PMC3842913 DOI: 10.1371/journal.pone.0077756] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
Sensitive assays are needed to meaningfully assess low levels of neutralizing antibodies (NAbs) that may be important for protection against the acquisition of HIV-1 infection in vaccine recipients. The current assay of choice uses a non-lymphoid cell line (TZM-bl) that may lack sensitivity owing to over expression of CD4 and CCR5. We used transfection of a human CD4+/CXCR4+/α4β7+ T-lymphoblastoid cell line (A3.01) with a CMV IE promoter-driven CCR5neo vector to stably express CCR5. The resulting line, designated A3R5, is permissive to a wide range of CCR5-tropic circulating strains of HIV-1, including HIV-1 molecular clones containing a Tat-inducible Renilla luciferase reporter gene and expressing multiple Env subtypes. Flow cytometric analysis found CCR5 surface expression on A3R5 cells to be markedly less than TZM-bl but similar to CD3.8 stimulated PBMC. More importantly, neutralization mediated by a diverse panel of monoclonal antibodies, HIV-1 positive polyclonal sera and sCD4 was consistently greater in A3R5 compared to TZM-bl cells. The A3R5 cell line provides a novel approach to guide the development and qualification of promising new HIV-1 vaccine immunogens.
Collapse
Affiliation(s)
- Robert J. McLinden
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Celia C. LaBranche
- Department of Surgery, Duke U. Medical Center, Durham, North Carolina, United States of America
| | - Agnès-Laurence Chenine
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Victoria R. Polonis
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Michael A. Eller
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Lindsay Wieczorek
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, United States of America
| | - Stephen Perfetto
- Vaccine Research Center, NIH, Bethesda, Maryland, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke U. Medical Center, Durham, North Carolina, United States of America
| | - Nelson L. Michael
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- Military HIV- Research Program, WRAIR, Silver Spring, Maryland, United States of America
| |
Collapse
|
36
|
Neutralizing IgG at the portal of infection mediates protection against vaginal simian/human immunodeficiency virus challenge. J Virol 2013; 87:11604-16. [PMID: 23966410 DOI: 10.1128/jvi.01361-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralizing antibodies may have critical importance in immunity against human immunodeficiency virus type 1 (HIV-1) infection. However, the amount of protective antibody needed at mucosal surfaces has not been fully established. Here, we evaluated systemic and mucosal pharmacokinetics (PK) and pharmacodynamics (PD) of 2F5 IgG and 2F5 Fab fragments with respect to protection against vaginal challenge with simian-human immunodeficiency virus-BaL in macaques. Antibody assessment demonstrated that 2F5 IgG was more potent than polymeric forms (IgM and IgA) across a range of cellular and tissue models. Vaginal challenge studies demonstrated a dose-dependent protection for 2F5 IgG and no protection with 2F5 Fab despite higher vaginal Fab levels at the time of challenge. Animals receiving 50 or 25 mg/kg of body weight 2F5 IgG were completely protected, while 3/5 animals receiving 5 mg/kg were protected. In the control animals, infection was established by a minimum of 1 to 4 transmitted/founder (T/F) variants, similar to natural human infection by this mucosal route; in the two infected animals that had received 5 mg 2F5 IgG, infection was established by a single T/F variant. Serum levels of 2F5 IgG were more predictive of sterilizing protection than measured vaginal levels. Fc-mediated antiviral activity did not appear to influence infection of primary target cells in cervical explants. However, PK studies highlighted the importance of the Fc portion in tissue biodistribution. Data presented in this study may be important in modeling serum levels of neutralizing antibodies that need to be achieved by either vaccination or passive infusion to prevent mucosal acquisition of HIV-1 infection in humans.
Collapse
|
37
|
Abstract
The detailed examination of the antibody repertoire from RV144 provides a unique template for understanding potentially protective antibody functions. Some potential immune correlates of protection were untested in the correlates analyses due to inherent assay limitations, as well as the need to keep the correlates analysis focused on a limited number of endpoints to achieve statistical power. In an RV144 pilot study, we determined that RV144 vaccination elicited antibodies that could bind infectious virions (including the vaccine strains HIV-1 CM244 and HIV-1 MN and an HIV-1 strain expressing transmitted/founder Env, B.WITO.c). Among vaccinees with the highest IgG binding antibody profile, the majority (78%) captured the infectious vaccine strain virus (CM244), while a smaller proportion of vaccinees (26%) captured HIV-1 transmitted/founder Env virus. We demonstrated that vaccine-elicited HIV-1 gp120 antibodies of multiple specificities (V3, V2, conformational C1, and gp120 conformational) mediated capture of infectious virions. Although capture of infectious HIV-1 correlated with other humoral immune responses, the extent of variation between these humoral responses and virion capture indicates that virion capture antibodies occupy unique immunological space.
Collapse
|
38
|
Cruz LJ, Rueda F, Tacken P, Albericio F, Torensma R, Figdor CG. Enhancing immunogenicity and cross-reactivity of HIV-1 antigens by in vivo targeting to dendritic cells. Nanomedicine (Lond) 2013; 7:1591-610. [PMID: 23148541 DOI: 10.2217/nnm.12.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Current retroviral treatments have reduced AIDS to a chronic disease for most patients. However, given drug-related side effects, the emergence of drug-resistant strains and the persistence of viral replication, the development of alternative treatments is a pressing need. This review focuses on recent developments in HIV immunotherapy treatments, with particular emphasis on current vaccination strategies for optimizing the induction of an effective immune response by the recruitment of dendritic cells. In addition to cell-based therapies, targeted strategies aiming to deliver synthetic HIV peptides to dendritic cell-specific receptors in vivo will be discussed.
Collapse
Affiliation(s)
- Luis J Cruz
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Antibody-DEPENDENT, FcγRI-mediated neutralization of HIV-1 in TZM-bl cells occurs independently of phagocytosis. J Virol 2013; 87:5287-90. [PMID: 23408628 DOI: 10.1128/jvi.00278-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that expression of human FcγRI on TZM-bl cells potentiates neutralization by gp41 membrane-proximal external region (MPER)-specific antibodies. Here we show that lysosomotropic reagents known to block phagocytosis do not diminish this effect. We also show that FcγRI occasionally potentiates neutralization by antibodies against the V3 loop of gp120 and cluster I of gp41. We conclude that FcγRI provides a kinetic advantage for neutralizing antibodies against partially cryptic epitopes independent of phagocytosis.
Collapse
|
40
|
|
41
|
Abstract
Passive transfer of neutralizing antibodies against HIV-1 can prevent infection in macaques and seems to delay HIV-1 rebound in humans. Anti-HIV antibodies are therefore of great interest for vaccine design. However, the basis for their in vivo activity has been difficult to evaluate systematically because of a paucity of small animal models for HIV infection. Here we report a genetically humanized mouse model that incorporates a luciferase reporter for rapid quantitation of HIV entry. An antibody's ability to block viral entry in this in vivo model is a function of its bioavailability, direct neutralizing activity, and effector functions.
Collapse
|
42
|
Sagar M, Akiyama H, Etemad B, Ramirez N, Freitas I, Gummuluru S. Transmembrane domain membrane proximal external region but not surface unit-directed broadly neutralizing HIV-1 antibodies can restrict dendritic cell-mediated HIV-1 trans-infection. J Infect Dis 2012; 205:1248-57. [PMID: 22396600 DOI: 10.1093/infdis/jis183] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although broadly neutralizing antibodies (bNAbs) have been shown to block a diverse array of cell-free human immunodeficiency type 1 (HIV-1) infections, it remains unclear whether these antibodies exhibit similar potency against mature dendritic cell (mDC)-mediated HIV-1 trans-infection. METHODS Sensitivity to bNAbs targeting HIV-1 envelope surface unit gp120 (VRCO1, PG16, b12, and 2G12) and transmembrane domain gp41 (4E10 and 2F5) was examined for both cell-free and mDC-mediated infections of TZM-bl and CD4(+) T cells. RESULTS Compared with cell-free infection, mDC-mediated infection was significantly less susceptible to gp120-directed bNAbs for the majority of virus isolates. A b12 antigen-binding fragment blocked both cell-free and mDC-mediated infection with equal efficiency. In contrast, cell-free and mDC-associated viruses were equally sensitive to gp41-directed bNAbs. Anti-gp41 bNAbs bound to the surface of mDCs and localized at the mDC-T cell synaptic junctions in the absence of virus. CONCLUSIONS Anti-gp41 bNAbs have the potential to inhibit mDC-mediated HIV-1 infection because they bind plasma membranes prior to the formation of an infectious synapse, positioning them to neutralize subsequent virus transfer. As opposed to gp120-directed antibodies, anti-gp41 bNAbs might prevent HIV-1 infection if transmission or spread at the initial site of invasion occurs from a DC-associated source.
Collapse
Affiliation(s)
- Manish Sagar
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
43
|
HIV-1 virus-like particles bearing pure env trimers expose neutralizing epitopes but occlude nonneutralizing epitopes. J Virol 2012; 86:3574-87. [PMID: 22301141 DOI: 10.1128/jvi.06938-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypothetically, since native HIV-1 Env trimers are exclusively recognized by neutralizing antibodies, they might induce the neutralizing antibodies in a vaccine setting. This idea has not been evaluated due to the difficulty of separating trimers from nonfunctional Env (uncleaved gp160 and gp41 stumps). The latter are immunodominant and induce nonneutralizing antibodies. We previously showed that nonfunctional Env can be selectively cleared from virus-like particle (VLP) surfaces by enzyme digests (E. T. Crooks, T. Tong(,) K. Osawa, and J. M. Binley, J.Virol. 85:5825, 2011). Here, we investigated the effects of these digests on the antigenicity of VLPs and their sensitivity to neutralization. Before digestion, WT VLPs (bearing wild-type Env) and UNC VLPs (bearing uncleaved gp160) were recognized by various Env-specific monoclonal antibodies (MAbs), irrespective of their neutralizing activity, a result which is consistent with the presence of nonfunctional Env. After digestion, only neutralizing MAbs recognized WT VLPs, consistent with selective removal of nonfunctional Env (i.e., "trimer VLPs"). Digests eliminated the binding of all MAbs to UNC VLPs, again consistent with removal of nonfunctional Env. An exception was MAb 2F5, which weakly bound to digested UNC VLPs and bald VLPs (bearing no Env), perhaps due to lipid cross-reactivity. Trimer VLPs were infectious, and their neutralization sensitivity was largely comparable to that of undigested WT VLPs. However, they were ∼100-fold more sensitive to the MAbs 4E10 and Z13e1, suggesting increased exposure of the gp41 base. Importantly, a scatterplot analysis revealed a strong correlation between MAb binding and neutralization of trimer VLPs. This suggests that trimer VLPs bear essentially pure native trimer that should allow its unfettered evaluation in a vaccine setting.
Collapse
|
44
|
|
45
|
Morris L, Chen X, Alam M, Tomaras G, Zhang R, Marshall DJ, Chen B, Parks R, Foulger A, Jaeger F, Donathan M, Bilska M, Gray ES, Abdool Karim SS, Kepler TB, Whitesides J, Montefiori D, Moody MA, Liao HX, Haynes BF. Isolation of a human anti-HIV gp41 membrane proximal region neutralizing antibody by antigen-specific single B cell sorting. PLoS One 2011; 6:e23532. [PMID: 21980336 PMCID: PMC3184076 DOI: 10.1371/journal.pone.0023532] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 07/19/2011] [Indexed: 11/19/2022] Open
Abstract
Broadly neutralizing antibodies are not commonly produced in HIV-1 infected individuals nor by experimental HIV-1 vaccines. When these antibodies do occur, it is important to be able to isolate and characterize them to provide clues for vaccine design. CAP206 is a South African subtype C HIV-1-infected individual previously shown to have broadly neutralizing plasma antibodies targeting the envelope gp41 distal membrane proximal external region (MPER). We have now used a fluoresceinated peptide tetramer antigen with specific cell sorting to isolate a human neutralizing monoclonal antibody (mAb) against the HIV-1 envelope gp41 MPER. The isolated recombinant mAb, CAP206-CH12, utilized a portion of the distal MPER (HXB2 amino acid residues, 673-680) and neutralized a subset of HIV-1 pseudoviruses sensitive to CAP206 plasma antibodies. Interestingly, this mAb was polyreactive and used the same germ-line variable heavy (V(H)1-69) and variable kappa light chain (V(K)3-20) gene families as the prototype broadly neutralizing anti-MPER mAb, 4E10 (residues 672-680). These data indicate that there are multiple immunogenic targets in the C-terminus of the MPER of HIV-1 gp41 envelope and suggests that gp41 neutralizing epitopes may interact with a restricted set of naive B cells during HIV-1 infection.
Collapse
Affiliation(s)
- Lynn Morris
- Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cross-reactive HIV-1-neutralizing human monoclonal antibodies identified from a patient with 2F5-like antibodies. J Virol 2011; 85:11401-8. [PMID: 21880764 DOI: 10.1128/jvi.05312-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding broadly HIV-1-neutralizing human monoclonal antibodies (MAbs) are highly divergent from their germ line counterparts. We have hypothesized that such high levels of somatic hypermutation could pose a challenge for elicitation of the broadly neutralizing (bn) Abs and that identification of less somatically mutated bn Abs may help in the design of effective vaccine immunogens. In a quest for such bn Abs, phage- and yeast-displayed antibody libraries, constructed using peripheral blood mononuclear cells (PBMCs) from a patient with bn serum containing Abs targeting the epitope of the bn MAb 2F5, were panned against peptides containing the 2F5 epitope and against the HIV-1 gp140(JR-FL). Two MAbs (m66 and m66.6) were identified; the more mutated variant (m66.6) exhibited higher HIV-1-neutralizing activity than m66, although it was weaker than 2F5 in a TZM-bl cell assay. Binding of both MAbs to gp41 alanine substitution mutant peptides required the DKW(664-666) core of the 2F5 epitope and two additional upstream residues (L(660,663)). The MAbs have long (21-residue) heavy-chain third complementarity-determining regions (CDR-H3s), and m66.6 (but not m66) exhibited polyspecific reactivity to self- and non-self-antigens. Both m66 and m66.6 are significantly less divergent from their germ line Ab counterparts than 2F5--they have a total of 11 and 18 amino acid changes, respectively, from the closest VH and Vκ germ line gene products compared to 25 for 2F5. These new MAbs could help explore the complex maturation pathways involved in broad neutralization and its relationship with auto- and polyreactivity and may aid design of vaccine immunogens and development of therapeutics against HIV-1 infection.
Collapse
|
47
|
A panel of IgG1 b12 variants with selectively diminished or enhanced affinity for Fcγ receptors to define the role of effector functions in protection against HIV. J Virol 2011; 85:10572-81. [PMID: 21849450 DOI: 10.1128/jvi.05541-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Passive transfer of neutralizing antibodies is effective in protecting rhesus macaques against simian/human immunodeficiency virus (SHIV) challenge. In addition to neutralization, effector functions of the crystallizable fragment (Fc) of antibodies are involved in antibody-mediated protection against a number of viruses. We recently showed that interaction between the Fc fragment of the broadly neutralizing antibody IgG1 b12 and cellular Fcγ receptors (FcγRs) plays an important role in protection against SHIV infection in rhesus macaques. The specific nature of this Fc-dependent protection is largely unknown. To investigate, we generated a panel of 11 IgG1 b12 antibody variants with selectively diminished or enhanced affinity for the two main activating FcγRs, FcγRIIa and FcγRIIIa. All 11 antibody variants bind gp120 and neutralize virus as effectively as does wild-type b12. Binding studies using monomeric (enzyme-linked immunosorbent assay [ELISA] and surface plasmon resonance [SPR]) and cellularly expressed Fcγ receptors show decreased (up to 5-fold) and increased (up to 90-fold) binding to FcγRIIa and FcγRIIIa with this newly generated panel of antibodies. In addition, there was generally a good correlation between b12 variant affinity for Fcγ receptor and variant function in antibody-dependent cell-mediated virus inhibition (ADCVI), phagocytosis, NK cell activation assays, and antibody-dependent cellular cytotoxicity (ADCC) assays. In future studies, these b12 variants will enable the investigation of the protective role of individual FcγRs in HIV infection.
Collapse
|
48
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
49
|
Infection of human peripheral blood mononuclear cells by erythrocyte-bound HIV-1: Effects of antibodies and complement. Virology 2011; 412:441-7. [DOI: 10.1016/j.virol.2011.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/21/2011] [Accepted: 01/31/2011] [Indexed: 11/23/2022]
|
50
|
The broadly neutralizing HIV-1 IgG 2F5 elicits gp41-specific antibody-dependent cell cytotoxicity in a FcγRI-dependent manner. AIDS 2011; 25:751-9. [PMID: 21330910 DOI: 10.1097/qad.0b013e32834507bd] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A role for antibody-dependent cellular cytotoxicity (ADCC) in controlling initial development of HIV-1 infection is supported by a growing number of studies. 2F5, a broadly HIV-1-neutralizing IgG specific for HIV-1 envelope gp41, has been extensively studied in vitro and in vivo for its neutralizing and transcytosis-blocking activities. In the present paper, we have studied the in vitro ADCC potential of 2F5. DESIGN We have developed an ADCC model based on either monocytic cell line THP1 or monocytes, both FcγRI(+) FcγRIII(-) as effector cells, and natural killer resistant-CEM (NKr-CEM) either coated with HIV envelope subunit, or stably expressing an X4 tropic HIV-1 envelope as target cells. Finally, in order to better simulate the in vivo situation, we used R5-tropic JR-CSF HIV-1-infected NKr-CEM as targets. METHODS ADCC was monitored using a fluorescently based, nonradioactive, easy to use assay. RESULTS 2F5 triggered ADCC of HIV-1 envelope subunit coated cells. Remarkably, 2F5 at ng/ml concentration elicited ADCC of both X4-tropic HIV-1 envelope-expressing cells, and R5-HIV-infected cells. ADCC relied on binding to the FcγRI on effector cell and was abolished by preincubation of 2F5 with its cognate epitope ELDKWA. CONCLUSION The capacity of the broadly neutralizing 2F5 to elicit ADCC, and thereby linking adaptive and innate immunity, expands its prophylactic potential. Raising antibodies to the membrane proximal region of HIV-1 envelope with similar ADCC properties, in addition to neutralization, should be taken into account in HIV-1 vaccine design.
Collapse
|