1
|
Figueiroa T, Galvão Bueno M, Bento Moura PE, de Oliveira MB, Passos Cordeiro JL, Santos-Cavalcante N, Camacho Antevere Mazzarotto GA, Wallau GL, Corrêa da Silva Junior L, Resende PC, Siqueira MMM, Ogrzewalska M. Alpha and Betacoronavirus Detection in Neotropical Bats from Northeast Brazil Suggests Wide Geographical Distribution and Persistence in Natural Populations. Animals (Basel) 2025; 15:332. [PMID: 39943102 PMCID: PMC11816360 DOI: 10.3390/ani15030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 02/16/2025] Open
Abstract
The emergence of zoonotic viral diseases, notably exemplified by the recent coronavirus disease pandemic in 2019 (COVID-19), underscores the critical need to understand the dynamics of viruses circulating in wildlife populations. This study aimed to investigate the diversity of coronaviruses in bat populations from northeastern Brazil, particularly in the state of Ceará, where little research on bat pathogens has been conducted previously. Bat sampling was performed between March 2021 and March 2022 across three municipalities, resulting in the collection of oral and rectal swabs from 298 captured individuals. Molecular analyses revealed alphacoronaviruses in multiple bat species. Additionally, a novel Betacoronavirus was identified in Artibeus planirostris, which did not fall within an established subgenus. Phylogenetic placement of these new coronavirus sequences suggests that closely related coronavirus lineages can infect a wide range of bat species sampled in distantly related Brazilian states and biomes. No SARS-CoV-2 and influenza A viruses were found in the sampled bats. These findings expand our understanding of coronavirus diversity in Brazilian bats. The detection of coronaviruses in various bat species underscores the importance of bats as reservoirs for these viruses. The absence of SARS-CoV-2 in the sampled bats indicates a lack of spillback events from human or environmental sources. However, the potential for future transmission events underscores the importance of ongoing surveillance and transmission mitigation protocols in wildlife management practices.
Collapse
Affiliation(s)
- Thays Figueiroa
- Fundação Oswaldo Cruz, IOC, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro 21040-900, RJ, Brazil; (T.F.); (L.C.d.S.J.); (P.C.R.); (M.M.M.S.)
| | - Marina Galvão Bueno
- Fundação Oswaldo Cruz, IOC, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Patricia Emilia Bento Moura
- Fundação Oswaldo Cruz, IOC, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Marcione Brito de Oliveira
- Museu Nacional, Departamento de Vertebrados, Setor de Mastozoologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, RJ, Brazil;
| | - José Luís Passos Cordeiro
- Fundação Oswaldo Cruz, Unidade do Ceará, Área de Saúde e Ambiente, Eusébio, Ceará 61773-270, CE, Brazil;
- Plataforma Internacional para Ciência, Tecnologia e Inovação em Saúde (PICTIS), Via do Conhecimento, Edifício Central, 3830-352 Ílhavo, Portugal
| | - Nádia Santos-Cavalcante
- Museu de História Natural do Ceará Prof. Dias da Rocha, Universidade Estadual do Ceará, Pacoti, Ceará 62770-000, CE, Brazil;
- Fundação Oswaldo Cruz, Instituto Lêonidas and Maria Deane (ILDM), Unidade da Amazônia, Manaus 69057-070, AM, Brazil
| | - Giovanny A. Camacho Antevere Mazzarotto
- Fundação Oswaldo Cruz, Unidade do Ceará, Laboratório Analítico de Competências Moleculares e Epidemiológicas, Plataforma de Camelídeos e Produção de Nanocorpos, Eusébio, Ceará 61773-270, CE, Brazil;
| | - Gabriel Luz Wallau
- Fundação Oswaldo Cruz, Departamento de Entomologia e Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM), Cidade Universitária, Recife 50740-465, PE, Brazil;
- Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, 20359 Hamburg, Germany
| | - Leonardo Corrêa da Silva Junior
- Fundação Oswaldo Cruz, IOC, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro 21040-900, RJ, Brazil; (T.F.); (L.C.d.S.J.); (P.C.R.); (M.M.M.S.)
| | - Paola Cristina Resende
- Fundação Oswaldo Cruz, IOC, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro 21040-900, RJ, Brazil; (T.F.); (L.C.d.S.J.); (P.C.R.); (M.M.M.S.)
| | - Marilda M. Mendonça Siqueira
- Fundação Oswaldo Cruz, IOC, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro 21040-900, RJ, Brazil; (T.F.); (L.C.d.S.J.); (P.C.R.); (M.M.M.S.)
| | - Maria Ogrzewalska
- Fundação Oswaldo Cruz, IOC, Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Rio de Janeiro 21040-900, RJ, Brazil; (T.F.); (L.C.d.S.J.); (P.C.R.); (M.M.M.S.)
| |
Collapse
|
2
|
Marques AD, Hogenauer M, Bauer N, Gibison M, DeMarco B, Sherrill-Mix S, Merenstein C, Collman RG, Gagne RB, Bushman FD. Evolution of SARS-CoV-2 in white-tailed deer in Pennsylvania 2021-2024. PLoS Pathog 2025; 21:e1012883. [PMID: 39854608 PMCID: PMC11781694 DOI: 10.1371/journal.ppat.1012883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/30/2025] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
SARS-CoV-2 continues to transmit and evolve in humans and animals. White-tailed deer (Odocoileus virginianus) have been previously identified as a zoonotic reservoir for SARS-CoV-2 with high rates of infection and probable spillback into humans. Here we report sampling 1,127 white-tailed deer (WTD) in Pennsylvania, and a genomic analysis of viral dynamics spanning 1,017 days between April 2021 and January 2024. To assess viral load and genotypes, RNA was isolated from retropharyngeal lymph nodes and analyzed using RT-qPCR and viral whole genome sequencing. Samples showed a 14.64% positivity rate by RT-qPCR. Analysis showed no association of SARS-CoV-2 prevalence with age, sex, or diagnosis with Chronic Wasting Disease. From the 165 SARS-CoV-2 positive WTD, we recovered 25 whole genome sequences and an additional 17 spike-targeted amplicon sequences. The viral variants identified included 17 Alpha, 11 Delta, and 14 Omicron. Alpha largely stopped circulating in humans around September 2021, but persisted in WTD as recently as March of 2023. Phylodynamic analysis of pooled genomic data from Pennsylvania documents at least 12 SARS-CoV-2 spillovers from humans into WTD, including a recent series of Omicron spillovers. Prevalence was higher in WTD in regions with crop coverage rather than forest, suggesting an association with proximity to humans. Analysis of seasonality showed increased prevalence in winter and spring. Multiple examples of recurrent mutations were identified associated with transmissions, suggesting WTD-specific evolutionary pressures. These data document ongoing infections in white-tailed deer, probable onward transmission in deer, and a remarkable rate of new spillovers from humans.
Collapse
Affiliation(s)
- Andrew D. Marques
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew Hogenauer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Natalie Bauer
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Michelle Gibison
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Beatrice DeMarco
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Scott Sherrill-Mix
- Department of Microbiology, Genetics, and Immunology, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald G. Collman
- Division of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania, United States of America
| | - Roderick B. Gagne
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Latinne A, Hu B, Olival KJ, Zhu G, Zhang LB, Li H, Chmura AA, Field HE, Zambrana-Torrelio C, Epstein JH, Li B, Zhang W, Wang LF, Shi ZL, Daszak P. Origin and cross-species transmission of bat coronaviruses in China. Nat Commun 2024; 15:10705. [PMID: 39702450 PMCID: PMC11659393 DOI: 10.1038/s41467-024-55384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. Here we use a Bayesian statistical framework and a large sequence data set from bat-CoVs (including 589 novel CoV sequences) in China to study their macroevolution, cross-species transmission and dispersal. We find that host-switching occurs more frequently and across more distantly related host taxa in alpha- than beta-CoVs, and is more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.
Collapse
Affiliation(s)
- Alice Latinne
- EcoHealth Alliance, New York, New York, USA
- Wildlife Conservation Society, Melanesia Program, Suva, Fiji
| | - Ben Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | - Li-Biao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | - Bei Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | | |
Collapse
|
4
|
Tsengel U, Wu TY, Chen YN. Rapid detection of bat coronaviruses from fecal samples using loop-mediated isothermal amplification assay in the field. J Virol Methods 2024; 330:115035. [PMID: 39299522 DOI: 10.1016/j.jviromet.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The global impact of the COVID-19 pandemic has emphasized the critical need for effective viral diagnostics. Although polymerase chain reaction (PCR) is a well-established nucleotide amplification technique, its limitations, such as the need for expensive equipment and skilled technicians, have led to the exploration of alternative methods, including loop-mediated isothermal amplification (LAMP). Bats, as a crucial natural reservoir of coronaviruses (CoVs), particularly Scotophilus bat coronavirus 512 (Scotophilus bat-CoV 512) prevalent among Taiwan's bat population, are the focus of this study. We aimed to detect Scotophilus bat-CoV 512 from bats in field conditions using loop-mediated isothermal amplification (LAMP) assay for on-site detection. Therefore, our study delves into the specificity of the LAMP reaction, emphasizing the careful design of primers to prevent false positive results. A cross reactivity and primer specificity test involving seven different microorganisms, including closely related bat CoVs and two bacterial species typically found in feces, revealed that the LAMP assay uniquely detected Scotophilus bat-CoV 512. The developed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was optimized for the primers targeting nucleocapsid (N) gene, and the sensitivity test revealed a detection limit of 2.4 × 103 copies/µL. Our findings indicate the potential of the RT-LAMP assay for on-site detection in the field and subsequent laboratory analysis for comprehensive sampling and further research on bat CoV isolation. The surveillance and monitoring of bat CoVs contribute substantially to mitigating human threats, particularly concerning the emergence of new pandemic variants.
Collapse
Affiliation(s)
- Undarmaa Tsengel
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Yi-Ning Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
| |
Collapse
|
5
|
Li R, Tendu A, Kane Y, Omondi V, Ying J, Mao L, Xu S, Xu R, Chen X, Chen Y, Descorps-Declère S, Bienes KM, Fassatoui M, Hughes AC, Berthet N, Wong G. Differential prevalence and risk factors for infection with coronaviruses in bats collected from Yunnan Province, China. One Health 2024; 19:100923. [PMID: 39605930 PMCID: PMC11600012 DOI: 10.1016/j.onehlt.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Coronaviruses (CoVs) pose a threat to human health globally, as highlighted by severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and the COVID-19 pandemic. Bats from the Greater Mekong Subregion (GMS) are an important natural reservoir for CoVs. Here we report the differential prevalence of CoVs in bats within Yunnan Province across biological and ecological variables. We also show the coexistence of CoVs in individual bats and identify an additional putative host for SARS-related CoV, with higher dispersal capacity than other known hosts. Notably, 11 SARS-related coronaviruses (SARSr-CoVs) were discovered in horseshoe bats (family Rhinolophidae) and a Chinese water myotis bat (Myotis laniger) by pan-CoV detection and Illumina sequencing. Our findings facilitate an understanding of the fundamental features of the distribution and circulation of CoVs in nature as well as zoonotic spillover risk in the One health framework.
Collapse
Affiliation(s)
- Ruiya Li
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexander Tendu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Victor Omondi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Jiaxu Ying
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Lingjing Mao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Shiman Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yanhua Chen
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Kathrina Mae Bienes
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Meriem Fassatoui
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Alice C. Hughes
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Nicolas Berthet
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
- Institut Pasteur, Unité Environnement et Risque Infectieux, Cellule d'Intervention Biologique d'Urgence, 75015 Paris, France
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
6
|
Mohl BP, Blaurock C, Breithaupt A, Riek A, Speakman JR, Hambly C, Bokelmann M, Pei G, Sadeghi B, Dorhoi A, Balkema-Buschmann A. Increased Susceptibility of Rousettus aegyptiacus Bats to Respiratory SARS-CoV-2 Challenge Despite Its Distinct Tropism for Gut Epithelia in Bats. Viruses 2024; 16:1717. [PMID: 39599832 PMCID: PMC11598992 DOI: 10.3390/v16111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Increasing evidence suggests bats are the ancestral hosts of the majority of coronaviruses. In general, coronaviruses primarily target the gastrointestinal system, while some strains, especially Betacoronaviruses with the most relevant representatives SARS-CoV, MERS-CoV, and SARS-CoV-2, also cause severe respiratory disease in humans and other mammals. We previously reported the susceptibility of Rousettus aegyptiacus (Egyptian fruit bats) to intranasal SARS-CoV-2 infection. Here, we compared their permissiveness to an oral infection versus respiratory challenge (intranasal or orotracheal) by assessing virus shedding, host immune responses, tissue-specific pathology, and physiological parameters. While respiratory challenge with a moderate infection dose of 1 × 104 TCID50 caused a systemic infection with oral and nasal shedding of replication-competent virus, the oral challenge only induced nasal shedding of low levels of viral RNA. Even after a challenge with a higher infection dose of 1 × 106 TCID50, no replication-competent virus was detectable in any of the samples of the orally challenged bats. We postulate that SARS-CoV-2 is inactivated by HCl and digested by pepsin in the stomach of R. aegyptiacus, thereby decreasing the efficiency of an oral infection. Therefore, fecal shedding of RNA seems to depend on systemic dissemination upon respiratory infection. These findings may influence our general understanding of the pathophysiology of coronavirus infections in bats.
Collapse
Affiliation(s)
- Björn-Patrick Mohl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| | - Claudia Blaurock
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Alexander Riek
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Doernbergstraße 25, 29223 Celle, Germany;
| | - John R. Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (J.R.S.); (C.H.)
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (J.R.S.); (C.H.)
| | - Marcel Bokelmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (G.P.); (A.D.)
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (G.P.); (A.D.)
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald-Insel Riems, Germany; (B.-P.M.); (C.B.); (M.B.); (B.S.)
| |
Collapse
|
7
|
Kamau AN, Yu JE, Park ES, Rho JR, Hong EJ, Shin HJ. Strenuous expression of porcine epidemic diarrhea virus ORF3 protein suggests host resistance. Vet Microbiol 2024; 297:110193. [PMID: 39116640 DOI: 10.1016/j.vetmic.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Porcine epidemic diarrhea virus is attenuated upon adaptation to cell culture. Exclusively genomic mutations have been traced to the ORF3 gene of the laboratory strains. Previous attempts to express the protein were unsuccessful. We sought to express the ORF3 protein in both mammalian and bacteria cells as a prerequisite for investigation of the protein's role. For prokaryotic expression, two vector systems, pET28-a(+) and pGEX-4T-1 were constructed and expressed in Escherichia coli cells. For eukaryotic analyses, ORF3/pEGFP-C1 vector constructs were expressed in human embryonic, green monkey kidney and mouse fibrous cells. Intriguingly, there was minimal expression of the ORF3 gene. Following a documented hint that truncated ORF3 revealed higher expression, ORF3 gene was truncated. The simple modular architecture research tool analysis predicted two transmembrane domains between amino acid (aa) 41-63 and aa 76-98. Consequently, we generated two fragments; ORF-N (aa 1-98) inclusive of transmembrane domains and ORF3-C (aa 99-224). These truncated sequences were constructed as the whole gene here referred to as ORF3 wild type (wt). Coomassie blue stained gels revealed bands of ORF3-C expressed as a fusion protein of 17.5 and 39 kDa in pET28-a(+) and pGEX-4T-1 vectors, respectively. In contrast, ORF3-N was not. Additionally, ORF3-N induction decreased total cellular proteins suggesting inhibition of protein synthesis or metabolism. Solubility tests carried out at 30 °C, 25 °C and 18 °C showed that ORF3 formed inclusion bodies. Similar findings were observed in mammalian cells. Noteworthy, morphological distortions appeared in mammalian cells expressing ORF3 protein or its truncated mutants suggesting significance in host viability.
Collapse
Affiliation(s)
- Antony Ndirangu Kamau
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, 220 Gungdong, Yuseong, Daejeon 305-764, Republic of Korea; Department of Biochemistry and Biotechnology, The Technical University of Kenya, P.O. Box 52428 - 00200, Haile Selassie Avenue, Nairobi, Kenya
| | - Jung-Eun Yu
- Department of Microbiology & Molecular Biology College of Bioscience & Biotechnology, 220 Gungdong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Eusi-Soon Park
- Department of Microbiology & Molecular Biology College of Bioscience & Biotechnology, 220 Gungdong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Jae-Rang Rho
- Department of Microbiology & Molecular Biology College of Bioscience & Biotechnology, 220 Gungdong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Eui-Ju Hong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, 220 Gungdong, Yuseong, Daejeon 305-764, Republic of Korea
| | - Hyun-Jin Shin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, 220 Gungdong, Yuseong, Daejeon 305-764, Republic of Korea; Research Institute of Veterinary Medicine, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
8
|
Sjodin AR, Willig MR, Rodríguez‐Durán A, Anthony SJ. Rapid taxonomic categorization of short, abundant virus sequences for ecological analyses. Ecol Evol 2024; 14:e11501. [PMID: 38895563 PMCID: PMC11183940 DOI: 10.1002/ece3.11501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Public health concerns about recent viral epidemics have motivated researchers to seek novel ways to understand pathogen infection in native, wildlife hosts. With its deep history of tools and perspectives for understanding the abundance and distribution of organisms, ecology can shed new light on viral infection dynamics. However, datasets allowing deep explorations of viral communities from an ecological perspective are lacking. We sampled 1086 bats from two, adjacent Puerto Rican caves and tested them for infection by herpesviruses, resulting in 3131 short, viral sequences. Using percent identity of nucleotides and a machine learning algorithm (affinity propagation), we categorized herpesviruses into 43 operational taxonomic units (OTUs) to be used in place of species in subsequent ecological analyses. Herpesvirus metacommunities demonstrated long-tailed rank frequency distributions at all analyzed levels of host organization (i.e., individual, population, and community). Although 13 herpesvirus OTUs were detected in more than one host species, OTUs generally exhibited host specificity by infecting a single core host species at a significantly higher prevalence than in all satellite species combined. We describe the natural history of herpesvirus metacommunities in Puerto Rican bats and suggest that viruses follow the general law that communities comprise few common and many rare species. To guide future efforts in the field of viral ecology, hypotheses are presented regarding mechanisms that contribute to these patterns.
Collapse
Affiliation(s)
- Anna R. Sjodin
- Department of Ecology & Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Michael R. Willig
- Department of Ecology & Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Center for Environmental Sciences & Engineering and Institute of the EnvironmentUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Simon J. Anthony
- Center for Infection and ImmunityColumbia UniversityNew YorkNew YorkUSA
- Department of Pathology, Microbiology, and ImmunologyUC Davis School of Veterinary MedicineDavisCaliforniaUSA
| |
Collapse
|
9
|
Goll A, Dutra L, Nowicka J, Sgarabotto E, Venkat V, Apoznański G, Kokurewicz T, Rachwald A, Rabalski L, Alburkat H, Virtanen J, Sironen T, Kant R, Bourret V, Grzybek M. Hibernating vesper bats are a weak source for biomonitoring of coronaviruses. One Health 2024; 18:100733. [PMID: 38694618 PMCID: PMC11061333 DOI: 10.1016/j.onehlt.2024.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/04/2024] Open
Abstract
Background Our study explores the role of bats as reservoirs of coronaviruses. Methods We conducted virological screening of bats hibernating in military bunkers at the Natura 2000 site "Nietoperek" in Western Poland collecting oral and anal swab samples from 138 bats across six species to apply a combination of pan-coronavirus and SARS-CoV-2 specific PCR assays. Results Only one anal swab tested positive for coronavirus. No SARS-CoV-2 was detected in any of the samples. The low prevalence of coronavirus in the studied colony contrasts with higher rates found in other regions and may be influenced by hibernation. Conclusions Hibernating bats may show a low prevalence of coronavirus, potentially due to the hibernation process itself. This finding indicates that hibernating bats may not be the most optimal subjects for screening zoonotic pathogens. However, biomonitoring of bats for emerging and reemerging diseases is recommended for comprehensive epidemiological insights.
Collapse
Affiliation(s)
- Aleksander Goll
- Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland
| | - Lara Dutra
- Department of Virology, Helsinki University, Haartmaniaku 3, Helsinki, Finland
| | - Joanna Nowicka
- Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland
| | - Elena Sgarabotto
- Department of Virology, Helsinki University, Haartmaniaku 3, Helsinki, Finland
| | - Vinaya Venkat
- Department of Virology, Helsinki University, Haartmaniaku 3, Helsinki, Finland
| | - Grzegorz Apoznański
- Department of Vertebrate Ecology and Paleontology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska Street 5b, 51-631 Wrocław, Poland
| | - Tomasz Kokurewicz
- Department of Vertebrate Ecology and Paleontology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska Street 5b, 51-631 Wrocław, Poland
| | - Alek Rachwald
- Forest Ecology Department, Forest Research Institute, Braci Leśnej 3, 05-090 Raszyn, Poland
| | | | - Hussein Alburkat
- Department of Virology, Helsinki University, Haartmaniaku 3, Helsinki, Finland
| | - Jenni Virtanen
- Department of Virology, Helsinki University, Haartmaniaku 3, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Helsinki University, Haartmaniaku 3, Helsinki, Finland
| | - Ravi Kant
- Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland
- Department of Virology, Helsinki University, Haartmaniaku 3, Helsinki, Finland
| | - Vincent Bourret
- Department of Virology, Helsinki University, Haartmaniaku 3, Helsinki, Finland
- INRAE-Université de Toulouse UR 0035 CEFS, 31326 Castanet Tolosan, France
| | - Maciej Grzybek
- Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, Poland
| |
Collapse
|
10
|
Hakmi M, Bouricha EM, Soussi A, Bzioui IA, Belyamani L, Ibrahimi A. Computational Drug Design Strategies for Fighting the COVID-19 Pandemic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1457:199-214. [PMID: 39283428 DOI: 10.1007/978-3-031-61939-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The advent of COVID-19 has brought the use of computer tools to the fore in health research. In recent years, computational methods have proven to be highly effective in a variety of areas, including genomic surveillance, host range prediction, drug target identification, and vaccine development. They were also instrumental in identifying new antiviral compounds and repurposing existing therapeutics to treat COVID-19. Using computational approaches, researchers have made significant advances in understanding the molecular mechanisms of COVID-19 and have developed several promising drug candidates and vaccines. This chapter highlights the critical importance of computational drug design strategies in elucidating various aspects of COVID-19 and their contribution to advancing global drug design efforts during the pandemic. Ultimately, the use of computing tools will continue to play an essential role in health research, enabling researchers to develop innovative solutions to combat new and emerging diseases.
Collapse
Affiliation(s)
- Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco.
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco.
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
| | - Abdellatif Soussi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145, Genova, Italy
| | - Ilias Abdeslam Bzioui
- Department of Gynecology and Obstetrics, Faculty of Medicine, Abdelmalek Essaâdi University Hospital, Tangier, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Emergency Department, Medical and Pharmacy School, Military Hospital Mohammed V, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Bioinova Research Center, Mohammed Vth University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
11
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
12
|
Rizotto LS, Bueno LM, Corrêa TC, Dos Santos de Moraes MV, de Oliveira Viana A, Silva LMN, Benassi JC, Scagion GP, Lopes BLT, de Assis IB, Ometto T, Dorlass EG, Cunha IN, Melinski RD, Leitão GL, Rodrigues RC, da Silva Pereira IM, D'ark Nunes Dos Santos L, Hingst-Zaher E, de Azevedo Junior SM, Junior WRT, de Araújo J, Durigon EL, Arns CW, Ferreira HL. Genetic diversity of adenovirus in neotropical bats from Brazil. Braz J Microbiol 2023; 54:3221-3230. [PMID: 37653362 PMCID: PMC10689316 DOI: 10.1007/s42770-023-01109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Bats can harbor a diversity of viruses, such as adenovirus. Ten different species of bat adenoviruses (BtAdV A to J) have been previous described worlwide. In Brazil, BtAdV was described in three species of phyllostomid species: Artibeus lituratus, Desmodus rotundus, and Sturnira lilium. There are around 180 bat species in Brazil, with 67% inhabiting the Atlantic Forest, with few information about the circulation of BtAdV in this biome. We aimed to describe the molecular detection and the phylogenetic characterization and suggest a classification of BtAdVs circulating in bats from the Brazilian Atlantic Forest. We collected 382 oral and rectal swabs from 208 bats between 2014-2015 and 2020-2021 from São Paulo, Pernambuco, and Santa Catarina Brazilian states. The adenovirus detection was done by a nested PCR targeting the DNA polymerase gene, and all positive samples were sequenced by the Sanger method. The phylogenetic analyses were based on the amino acid sequences using the MEGA 7 and BEAST software. We obtained 16 positive animals (detection rate 7.7%) belonging to seven bat species: Artibeus lituratus, Carollia perspicillata, Sturnira lilium, Molossus molossus, and the first record of Phyllostomus discolor, Eptesicus diminutus, and Myotis riparius. The phylogenetic analysis based on partial amino acid sequences showed that all obtained AdV sequences belong to the Mastadenovirus genus. We observed a high genetic diversity of BtAdV and identified eleven potential BtAdV species circulating in Brazil (BtAdV K to U). Our results contribute to the epidemiological surveillance of adenovirus, increasing the knowledge about the viral diversity and the distribution of AdV in bats from the Atlantic Forest.
Collapse
Affiliation(s)
- Laís Santos Rizotto
- Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, FMVZ-USP, São Paulo, SP, Brazil
| | - Larissa Mayumi Bueno
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil
| | - Thaís Camilo Corrêa
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil
| | | | | | | | - Julia Cristina Benassi
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil
| | | | | | | | - Tatiana Ometto
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | - Erick Gustavo Dorlass
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | | | | | | | - Roberta Costa Rodrigues
- Laboratory of Ornithology, Department of Biology, Federal Rural University of Pernambuco, UFRPE, Recife, PE, Brazil
| | | | - Lilia D'ark Nunes Dos Santos
- Laboratory of Ornithology, Department of Biology, Federal Rural University of Pernambuco, UFRPE, Recife, PE, Brazil
| | | | | | | | - Jansen de Araújo
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | - Edison Luiz Durigon
- Biomedical Science Institute, University of São Paulo, ICB-USP, São Paulo, SP, Brazil
| | - Clarice Weis Arns
- Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Helena Lage Ferreira
- Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, FMVZ-USP, São Paulo, SP, Brazil.
- Department of Veterinary Medicine, University of São Paulo, FZEA-USP, 225 Av. Duque de Caxias Norte, Pirassununga, SP, Brazil.
| |
Collapse
|
13
|
Guo M, Zhao K, Peng X, He X, Deng J, Wang B, Yang X, Zhang L. Pangolin HKU4-related coronaviruses found in greater bamboo bats from southern China. Virol Sin 2023; 38:868-876. [PMID: 37967719 PMCID: PMC10786669 DOI: 10.1016/j.virs.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
Coronavirus (CoV) spillover originating from game animals, particularly pangolins, is currently a significant concern. Meanwhile, vigilance is urgently needed for coronaviruses carried by bats, which are known as natural reservoirs of many coronaviruses. In this study, we collected 729 anal swabs of 20 different bat species from nine locations in Yunnan and Guangdong provinces, southern China, in 2016 and 2017, and described the molecular characteristics and genetic diversity of alphacoronaviruses (αCoVs) and betacoronaviruses (βCoVs) found in these bats. Using RT-PCR, we identified 58 (8.0%) bat CoVs in nine bat species from six locations. Furthermore, using the Illumina platform, we obtained two representative full-length genomes of the bat CoVs, namely TyRo-CoV-162275 and TyRo-CoV-162269. Sequence analysis showed that TyRo-CoV-162275 shared the highest identity with Malayan pangolin (Manis javanica) HKU4-related coronaviruses (MjHKU4r-CoVs) from Guangxi Province, whereas TyRo-CoV-162269 was closely related to HKU33-CoV discovered in a greater bamboo bat (Tylonycteris robustula) from Guizhou Province. Notably, TyRo-CoV-162275 has a putative furin protease cleavage site in its S protein and is likely to utilize human dipeptidyl peptidase-4 (hDPP4) as a cell-entry receptor, similar to MERS-CoV. To the best of our knowledge, this is the first report of a bat HKU4r-CoV strain containing a furin protease cleavage site. These findings expand our understanding of coronavirus geographic and host distributions.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Kai Zhao
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650023, China
| | - Xingwen Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Jin Deng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650023, China; Hubei Jiangxia Lab, Wuhan, 430071, China.
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
| |
Collapse
|
14
|
Liu B, Zhao P, Xu P, Han Y, Wang Y, Chen L, Wu Z, Yang J. A comprehensive dataset of animal-associated sarbecoviruses. Sci Data 2023; 10:681. [PMID: 37805633 PMCID: PMC10560225 DOI: 10.1038/s41597-023-02558-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023] Open
Abstract
Zoonotic spillover of sarbecoviruses (SarbeCoVs) from non-human animals to humans under natural conditions has led to two large-scale pandemics, the severe acute respiratory syndrome (SARS) pandemic in 2003 and the ongoing COVID-19 pandemic. Knowledge of the genetic diversity, geographical distribution, and host specificity of SarbeCoVs is therefore of interest for pandemic surveillance and origin tracing of SARS-CoV and SARS-CoV-2. This study presents a comprehensive repository of publicly available animal-associated SarbeCoVs, covering 1,535 viruses identified from 63 animal species distributed in 43 countries worldwide (as of February 14,2023). Relevant meta-information, such as host species, sampling time and location, was manually curated and included in the dataset to facilitate further research on the potential patterns of viral diversity and ecological characteristics. In addition, the dataset also provides well-annotated sequence sets of receptor-binding domains (RBDs) and receptor-binding motifs (RBMs) for the scientific community to highlight the potential determinants of successful cross-species transmission that could be aid in risk estimation and strategic design for future emerging infectious disease control and prevention.
Collapse
Affiliation(s)
- Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Peng Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| |
Collapse
|
15
|
Han Y, Xu P, Wang Y, Zhao W, Zhang J, Zhang S, Wang J, Jin Q, Wu Z. Panoramic analysis of coronaviruses carried by representative bat species in Southern China to better understand the coronavirus sphere. Nat Commun 2023; 14:5537. [PMID: 37684236 PMCID: PMC10491624 DOI: 10.1038/s41467-023-41264-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Bats, recognized as considerable reservoirs for coronaviruses (CoVs), serve as natural hosts for several highly pathogenic CoVs, including SARS-CoV and SARS-CoV-2. Investigating the bat CoV community provides insights into the origin for highly pathogenic CoVs and highlights bat CoVs with potential spillover risks. This study probes the evolution, recombination, host range, geographical distribution, and cross-species transmission characteristics of bat CoVs across China and its associated CoVs in other regions. Through detailed research on 13,064 bat samples from 14 provinces of China, 1141 CoV strains are found across 10 subgenera and one unclassified Alpha-CoV, generating 399 complete genome sequences. Within bat CoVs, 11 new CoV species are identified and 425 recombination events are detected. Bats in southern China, particularly in Yunnan province, exhibit a pronounced diversity of CoVs. Limited sampling and low detection rates exist for CoVs in Myotacovirus, Nyctacovirus, Hibecovirus, Nobecovirus in China. The genus Myotis is highlighted as a potential ancestral host for Alpha-CoV, with the genus Hipposideros suggested as a likely progenitor host for bat-associated Beta-CoV, indicating the complexity of cross-species transmission dynamics. Through the comprehensive analysis, this study enriches the understanding of bat CoVs and offers a valuable resource for future research.
Collapse
Affiliation(s)
- Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Gonzalez-Isunza G, Jawaid MZ, Liu P, Cox DL, Vazquez M, Arsuaga J. Using machine learning to detect coronaviruses potentially infectious to humans. Sci Rep 2023; 13:9319. [PMID: 37291260 PMCID: PMC10248971 DOI: 10.1038/s41598-023-35861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Establishing the host range for novel viruses remains a challenge. Here, we address the challenge of identifying non-human animal coronaviruses that may infect humans by creating an artificial neural network model that learns from spike protein sequences of alpha and beta coronaviruses and their binding annotation to their host receptor. The proposed method produces a human-Binding Potential (h-BiP) score that distinguishes, with high accuracy, the binding potential among coronaviruses. Three viruses, previously unknown to bind human receptors, were identified: Bat coronavirus BtCoV/133/2005 and Pipistrellus abramus bat coronavirus HKU5-related (both MERS related viruses), and Rhinolophus affinis coronavirus isolate LYRa3 (a SARS related virus). We further analyze the binding properties of BtCoV/133/2005 and LYRa3 using molecular dynamics. To test whether this model can be used for surveillance of novel coronaviruses, we re-trained the model on a set that excludes SARS-CoV-2 and all viral sequences released after the SARS-CoV-2 was published. The results predict the binding of SARS-CoV-2 with a human receptor, indicating that machine learning methods are an excellent tool for the prediction of host expansion events.
Collapse
Affiliation(s)
| | - M Zaki Jawaid
- Department of Physics, University of California, Davis, USA
| | - Pengyu Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Daniel L Cox
- Department of Physics, University of California, Davis, USA
| | - Mariel Vazquez
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
- Department of Mathematics, University of California, Davis, CA, USA
| | - Javier Arsuaga
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
- Department of Mathematics, University of California, Davis, CA, USA.
| |
Collapse
|
17
|
Cohen LE, Fagre AC, Chen B, Carlson CJ, Becker DJ. Coronavirus sampling and surveillance in bats from 1996-2019: a systematic review and meta-analysis. Nat Microbiol 2023; 8:1176-1186. [PMID: 37231088 PMCID: PMC10234814 DOI: 10.1038/s41564-023-01375-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
The emergence of SARS-CoV-2 highlights a need for evidence-based strategies to monitor bat viruses. We performed a systematic review of coronavirus sampling (testing for RNA positivity) in bats globally. We identified 110 studies published between 2005 and 2020 that collectively reported positivity from 89,752 bat samples. We compiled 2,274 records of infection prevalence at the finest methodological, spatiotemporal and phylogenetic level of detail possible from public records into an open, static database named datacov, together with metadata on sampling and diagnostic methods. We found substantial heterogeneity in viral prevalence across studies, reflecting spatiotemporal variation in viral dynamics and methodological differences. Meta-analysis identified sample type and sampling design as the best predictors of prevalence, with virus detection maximized in rectal and faecal samples and by repeat sampling of the same site. Fewer than one in five studies collected and reported longitudinal data, and euthanasia did not improve virus detection. We show that bat sampling before the SARS-CoV-2 pandemic was concentrated in China, with research gaps in South Asia, the Americas and sub-Saharan Africa, and in subfamilies of phyllostomid bats. We propose that surveillance strategies should address these gaps to improve global health security and enable the origins of zoonotic coronaviruses to be identified.
Collapse
Affiliation(s)
- Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Binqi Chen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
18
|
Wu Z, Han Y, Wang Y, Liu B, Zhao L, Zhang J, Su H, Zhao W, Liu L, Bai S, Dong J, Sun L, Zhu Y, Zhou S, Song Y, Sui H, Yang J, Wang J, Zhang S, Qian Z, Jin Q. A comprehensive survey of bat sarbecoviruses across China in relation to the origins of SARS-CoV and SARS-CoV-2. Natl Sci Rev 2023; 10:nwac213. [PMID: 37425654 PMCID: PMC10325003 DOI: 10.1093/nsr/nwac213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 09/10/2023] Open
Abstract
SARS-CoV and SARS-CoV-2 have been thought to originate from bats. In this study, we screened pharyngeal and anal swabs from 13 064 bats collected between 2016 and 2021 at 703 locations across China for sarbecoviruses, covering almost all known southern hotspots, and found 146 new bat sarbecoviruses. Phylogenetic analyses of all available sarbecoviruses show that there are three different lineages-L1 as SARS-CoV-related CoVs (SARSr-CoVs), L2 as SARS-CoV-2-related CoVs (SC2r-CoVs) and novel L-R (recombinants of L1 and L2)-present in Rhinolophus pusillus bats, in the mainland of China. Among the 146 sequences, only four are L-Rs. Importantly, none belong in the L2 lineage, indicating that circulation of SC2r-CoVs in China might be very limited. All remaining 142 sequences belong in the L1 lineage, of which YN2020B-G shares the highest overall sequence identity with SARS-CoV (95.8%). The observation suggests endemic circulations of SARSr-CoVs, but not SC2r-CoVs, in bats in China. Geographic analysis of the collection sites in this study, together with all published reports, indicates that SC2r-CoVs may be mainly present in bats of Southeast Asia, including the southern border of Yunnan province, but absent in all other regions within China. In contrast, SARSr-CoVs appear to have broader geographic distribution, with the highest genetic diversity and sequence identity to human sarbecoviruses along the southwest border of China. Our data provide the rationale for further extensive surveys in broader geographical regions within, and beyond, Southeast Asia in order to find the most recent ancestors of human sarbecoviruses.
Collapse
Affiliation(s)
- Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Lamei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Shibin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yafang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Yiping Song
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Hongtao Sui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 110730, China
| |
Collapse
|
19
|
Kwon T, Gaudreault NN, Cool K, McDowell CD, Morozov I, Richt JA. Stability of SARS-CoV-2 in Biological Fluids of Animals. Viruses 2023; 15:v15030761. [PMID: 36992470 PMCID: PMC10058514 DOI: 10.3390/v15030761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Since its first emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve genetically, jump species barriers, and expand its host range. There is growing evidence of interspecies transmission including infection of domestic animals and widespread circulation in wildlife. However, knowledge of SARS-CoV-2 stability in animal biological fluids and their role in transmission is still limited as previous studies focused on human biological fluids. Therefore, this study aimed to determine the SARS-CoV-2 stability in biological fluids from three animal species, cats, sheep and white-tailed deer (WTD). Saliva, feces, 10% fecal suspensions, and urine of cats, sheep, and WTD were mixed with a known concentration of virus and incubated under indoor and three different climatic conditions. Our results show that the virus was stable for up to 1 day in the saliva of cats, sheep, and WTD regardless of the environmental conditions. The virus remained infectious for up to 6 days in feces and 15 days in fecal suspension of WTD, whereas the virus was rather unstable in cat and sheep feces and fecal suspensions. We found the longest survival of SARS-CoV-2 in the urine of cats, sheep, and WTD. Furthermore, side-by-side comparison with different SARS-CoV-2 strains showed that the Alpha, Delta, and Omicron variants of concern were less stable than the ancestral Wuhan-like strain in WTD fecal suspension. The results of our study provide valuable information for assessing the potential role of various animal biological fluids in SARS-CoV-2 transmission.
Collapse
|
20
|
Intestinal Tropism of a Betacoronavirus ( Merbecovirus) in Nathusius's Pipistrelle Bat ( Pipistrellus nathusii), Its Natural Host. J Virol 2023; 97:e0009923. [PMID: 36856426 PMCID: PMC10062147 DOI: 10.1128/jvi.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The emergence of several bat coronavirus-related disease outbreaks in human and domestic animals has fueled surveillance of coronaviruses in bats worldwide. However, little is known about how these viruses interact with their natural hosts. We demonstrate a Betacoronavirus (subgenus Merbecovirus), PN-βCoV, in the intestine of its natural host, Nathusius's Pipistrelle Bat (Pipistrellus nathusii), by combining molecular and microscopy techniques. Eighty-eight P. nathusii bat carcasses were tested for PN-βCoV RNA by RT-qPCR, of which 25 bats (28%) tested positive. PN-βCoV RNA was more often detected in samples of the intestinal tract than in other sample types. In addition, viral RNA loads were higher in intestinal samples compared to other sample types, both on average and in each individual bat. In one bat, we demonstrated Merbecovirus antigen and PN-βCoV RNA expression in intestinal epithelium and the underlying connective tissue using immunohistochemistry and in situ hybridization, respectively. These results indicate that PN-βCoV has a tropism for the intestinal epithelium of its natural host, Nathusius's Pipistrelle Bat, and imply that the fecal-oral route is a possible route of transmission. IMPORTANCE Virtually all mammal species circulate coronaviruses. Most of these viruses will infect one host species; however, coronaviruses are known to include species that can infect multiple hosts, for example the well-known virus that caused a pandemic, SARS-CoV-2. Chiroptera (bats) include over 1,400 different species, which are expected to harbor a great variety of coronaviruses. However, we know very little about how any of these coronaviruses interact with their bat hosts; for example, we do not know their modes of transmissions, or which cells they infect. Thus, we have a limited understanding of coronavirus infections in this important host group. The significance of our study is that we learned that a bat coronavirus that occurs in a common bat species in Europe has a tropism for the intestines. This implies the fecal-oral route is a likely transmission route.
Collapse
|
21
|
Jones A, Zhang D, Massey SE, Deigin Y, Nemzer LR, Quay SC. Discovery of a novel merbecovirus DNA clone contaminating agricultural rice sequencing datasets from Wuhan, China. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528210. [PMID: 36865340 PMCID: PMC9979991 DOI: 10.1101/2023.02.12.528210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
HKU4-related coronaviruses are a group of betacoronaviruses belonging to the same merbecovirus subgenus as Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV), which causes severe respiratory illness in humans with a mortality rate of over 30%. The high genetic similarity between HKU4-related coronaviruses and MERS-CoV makes them an attractive subject of research for modeling potential zoonotic spillover scenarios. In this study, we identify a novel coronavirus contaminating agricultural rice RNA sequencing datasets from Wuhan, China. The datasets were generated by the Huazhong Agricultural University in early 2020. We were able to assemble the complete viral genome sequence, which revealed that it is a novel HKU4-related merbecovirus. The assembled genome is 98.38% identical to the closest known full genome sequence, Tylonycteris pachypus bat isolate BtTp-GX2012. Using in silico modeling, we identified that the novel HKU4-related coronavirus spike protein likely binds to human dipeptidyl peptidase 4 (DPP4), the receptor used by MERS-CoV. We further identified that the novel HKU4-related coronavirus genome has been inserted into a bacterial artificial chromosome in a format consistent with previously published coronavirus infectious clones. Additionally, we have found a near complete read coverage of the spike gene of the MERS-CoV reference strain HCoV-EMC/2012, and identify the likely presence of a HKU4-related-MERS chimera in the datasets. Our findings contribute to the knowledge of HKU4-related coronaviruses and document the use of a previously unpublished HKU4 reverse genetics system in apparent MERS-CoV related gain-of-function research. Our study also emphasizes the importance of improved biosafety protocols in sequencing centers and coronavirus research facilities.
Collapse
|
22
|
Fuertes MA, Alonso C. New Short RNA Motifs Potentially Relevant in the SARS-CoV-2 Genome. Curr Genomics 2023; 23:424-440. [PMID: 37920558 PMCID: PMC10173420 DOI: 10.2174/1389202924666230202152351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background The coronavirus disease has led to an exhaustive exploration of the SARS-CoV-2 genome. Despite the amount of information accumulated, the prediction of short RNA motifs encoding peptides mediating protein-protein or protein-drug interactions has received limited attention. Objective The study aims to predict short RNA motifs that are interspersed in the SARS-CoV-2 genome. Methods A method in which 14 trinucleotide families, each characterized by being composed of triplets with identical nucleotides in all possible configurations, was used to find short peptides with biological relevance. The novelty of the approach lies in using these families to search how they are distributed across genomes of different CoV genera and then to compare the distributions of these families with each other. Results We identified distributions of trinucleotide families in different CoV genera and also how they are related, using a selection criterion that identified short RNA motifs. The motifs were reported to be conserved in SARS-CoVs; in the remaining CoV genomes analysed, motifs contained, exclusively, different configurations of the trinucleotides A, T, G and A, C, G. Eighty-eight short RNA motifs, ranging in length from 12 to 49 nucleotides, were found: 50 motifs in the 1a polyprotein-encoding orf, 27 in the 1b polyprotein-encoding orf, 5 in the spike-encoding orf, and 6 in the nucleocapsid-encoding orf. Although some motifs (~27%) were found to be intercalated or attached to functional peptides, most of them have not yet been associated with any known functions. Conclusion Some of the trinucleotide family distributions in different CoV genera are not random; they are present in short peptides that, in many cases, are intercalated or attached to functional sites of the proteome.
Collapse
Affiliation(s)
- Miguel Angel Fuertes
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, Madrid, 28049, Spain
| | - Carlos Alonso
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, Madrid, 28049, Spain
| |
Collapse
|
23
|
Identification of coronaviruses in bats and rodents in northern and central Argentina. Arch Virol 2023; 168:78. [PMID: 36740659 PMCID: PMC9899506 DOI: 10.1007/s00705-023-05703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/10/2023] [Indexed: 02/07/2023]
Abstract
Due to the present pandemic situation and the many animal species that are epidemiologically involved, there has been a surge of renewed interest in investigating the coronavirus (CoV) population circulating in wildlife, especially bats and rodents, which are potential reservoirs of new human pathogens. In Argentina, information about the viruses present in these mammals is very limited. To investigate the presence of coronaviruses in this country, we obtained 457 samples from hematophagous, insectivorous, and frugivorous bats and rodents from two regions of Argentina. We report here the detection of alphacoronavirus sequences in three groups of bats as well as in rodents. Phylogenetic analysis showed the closest relationships to alphacoronaviruses from Brazil.
Collapse
|
24
|
Nabi F, Ahmad O, Khan YA, Nabi A, Md Amiruddin H, Abul Qais F, Masroor A, Hisamuddin M, Uversky VN, Khan RH. Computational studies on phylogeny and drug designing using molecular simulations for COVID-19. J Biomol Struct Dyn 2022; 40:10753-10762. [PMID: 34278954 DOI: 10.1080/07391102.2021.1947895] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the first appearance of a novel coronavirus pneumonia (NCP) caused by a novel human coronavirus, and especially after the infection started its rapid spread over the world causing the COVID-19 (coronavirus disease 2019) pandemics, a very substantial part of the scientific community is engaged in the intensive research dedicated to finding of the potential therapeutics to cure this disease. As repurposing of existing drugs represents the only instant solution for those infected with the virus, we have been working on utilization of the structure-based virtual screening method to find some potential medications. In this study, we screened a library of 646 FDA approved drugs against the receptor-binding domain of the SARS-CoV-2 spike (S) protein and the main protease of this virus. Scoring functions revealed that some of the anticancer drugs (such as Pazopanib, Irinotecan, and Imatinib), antipsychotic drug (Risperidone), and antiviral drug (Raltegravir) have a potential to interact with both targets with high efficiency. Further we performed molecular dynamics simulations to understand the evolution in protein upon interaction with drug. Also, we have performed a phylogenetic analysis of 43 different coronavirus strains infecting 12 different mammalian species.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Yawar Ali Khan
- Department of Bioengeenering, Intergral University, Lucknow, India
| | - Anas Nabi
- Department of Computer Science, Vivekanand College of Technology and Management, Aligarh, India
| | - Hashmi Md Amiruddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia.,Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
25
|
No molecular evidence for influenza A virus and coronavirus in bats belonging to the families Phyllostomidae, Vespertilionidae, and Molossidae in the state of São Paulo, Brazil. Braz J Microbiol 2022; 54:523-529. [PMID: 36422849 PMCID: PMC9685036 DOI: 10.1007/s42770-022-00878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
This study aimed to evaluate, by molecular methods, the presence of influenza A virus (IAV) and coronavirus in non-hematophagous bats collected in the state of São Paulo, Brazil. Samples of lung tissue and small intestine from 105 bats belonging to three families (Phyllostomidae, Vespertilionidae, and Molossidae) were collected in 22 municipalities in the state of São Paulo. Genetic identification of bats species was performed by amplification and sequencing of a fragment of 710 bp of the mitochondrial COI gene. In the detection of IAV, genomes were performed by RT-PCR, aiming at the amplification of a 245-bp fragment of the IAV matrix (M) protein gene. For coronaviruses, two fragments of 602 and 440 bp corresponding to segments along the gene encoding the RNA-dependent RNA polymerase (RdRp) were targeted. The detection limit for each of the PCRs was also determined. All samples analyzed here were negative for both viruses, and the lower limit of detection of the PCRs for the amplification of influenza virus A and coronavirus was estimated at 3.5 × 103 and 4.59 genomic copies per microliter, respectively. Although bats have been shown to harbor a large number of pathogens, the results of the present study support the theory that virus circulation in bats in the wild often occurs at low viral loads and that our understanding of the complex infectious dynamics of these viruses in wild conditions is still limited.
Collapse
|
26
|
Santiago-Rodriguez TM, Hollister EB. Unraveling the viral dark matter through viral metagenomics. Front Immunol 2022; 13:1005107. [PMID: 36189246 PMCID: PMC9523745 DOI: 10.3389/fimmu.2022.1005107] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are part of the microbiome and have essential roles in immunology, evolution, biogeochemical cycles, health, and disease progression. Viruses influence a wide variety of systems and processes, and the continued discovery of novel viruses is anticipated to reveal new mechanisms influencing the biology of diverse environments. While the identity and roles of viruses continue to be discovered and understood through viral metagenomics, most of the sequences in virome datasets cannot be attributed to known viruses or may be only distantly related to species already described in public sequence databases, at best. Such viruses are known as the viral dark matter. Ongoing discoveries from the viral dark matter have provided insights into novel viruses from a variety of environments, as well as their potential in immunological processes, virus evolution, health, disease, therapeutics, and surveillance. Increased understanding of the viral dark matter will continue with a combination of cultivation, microscopy, sequencing, and bioinformatic efforts, which are discussed in the present review.
Collapse
|
27
|
Armero A, Li R, Bienes KM, Chen X, Li J, Xu S, Chen Y, Hughes AC, Berthet N, Wong G. Myotis fimbriatus Virome, a Window to Virus Diversity and Evolution in the Genus Myotis. Viruses 2022; 14:1899. [PMID: 36146706 PMCID: PMC9505981 DOI: 10.3390/v14091899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Significant efforts have been made to characterize viral diversity in bats from China. Many of these studies were prospective and focused mainly on Rhinolophus bats that could be related to zoonotic events. However, other species of bats that are part of ecosystems identified as virus diversity hotspots have not been studied in-depth. We analyzed the virome of a group of Myotis fimbriatus bats collected from the Yunnan Province during 2020. The virome of M. fimbriatus revealed the presence of families of pathogenic viruses such as Coronavirus, Astrovirus, Mastadenovirus, and Picornavirus, among others. The viral sequences identified in M. fimbriatus were characterized by significant divergence from other known viral sequences of bat origin. Complex phylogenetic landscapes implying a tendency of co-specificity and relationships with viruses from other mammals characterize these groups. The most prevalent and abundant virus in M. fimbriatus individuals was an alphacoronavirus. The genome of this virus shows evidence of recombination and is likely the product of ancestral host-switch. The close phylogenetic and ecological relationship of some species of the Myotis genus in China may have played an important role in the emergence of this alphacoronavirus.
Collapse
Affiliation(s)
- Alix Armero
- Unit of Discovery and Molecular Characterization of Pathogens, Centre for Microbes, Development, and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruiya Li
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kathrina Mae Bienes
- Unit of Discovery and Molecular Characterization of Pathogens, Centre for Microbes, Development, and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Chen
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong 666303, China
| | - Jihao Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong 666303, China
| | - Shiman Xu
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhua Chen
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Alice C. Hughes
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong 666303, China
| | - Nicolas Berthet
- Unit of Discovery and Molecular Characterization of Pathogens, Centre for Microbes, Development, and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Cellule d’Intervention Biologique d’Urgence, Unité Environnement et Risque Infectieux, Institut Pasteur, 75015 Paris, France
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
28
|
Li L, Zhang L, Zhou J, He X, Yu Y, Liu P, Huang W, Xiang Z, Chen J. Epidemiology and Genomic Characterization of Two Novel SARS-Related Coronaviruses in Horseshoe Bats from Guangdong, China. mBio 2022; 13:e0046322. [PMID: 35467426 PMCID: PMC9239062 DOI: 10.1128/mbio.00463-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and SARS-CoV-2, the causative agents of SARS, which broke out in 2003, and coronavirus disease 2019 (COVID-2019), which broke out in 2019, probably originated in Rhinolophus sinicus and R. affinis, respectively. Rhinolophus bats are important hosts for coronaviruses. Many SARS-related coronaviruses (SARSr-CoVs) have been detected in bats from different areas of China; however, the diversity of bat SARSr-CoVs is increasing, and their transmission mechanisms have attracted much attention. Here, we report the findings of SARSr-CoVs in R. sinicus and R. affinis from South China from 2008 to 2021. The full-length genome sequences of the two novel SARSr-CoVs obtained from Guangdong shared 83 to 88% and 71 to 72% nucleotide identities with human SARS-CoV and SARS-CoV-2, respectively, while sharing high similarity with human SARS-CoV in hypervariable open reading frame 8 (ORF8). Significant recombination occurred between the two novel SARSr-CoVs. Phylogenetic analysis showed that the two novel bat SARSr-CoVs from Guangdong were more distant than the bat SARSr-CoVs from Yunnan to human SARS-CoV. We found that transmission in bats contributes more to virus diversity than time. Although our results of the sequence analysis of the receptor-binding motif (RBM) and the expression pattern of angiotensin-converting enzyme 2 (ACE2) inferred that these viruses could not directly infect humans, risks still exist after some unpredictable mutations. Thus, this study increased our understanding of the genetic diversity and transmission of SARSr-CoVs carried by bats in the field. IMPORTANCE Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 probably originated from the SARS-related coronaviruses (SARSr-CoVs) carried by Rhinolophus bats from Yunnan, China. Systematic investigations of the reservoir hosts carrying SARSr-CoVs in Guangdong and the reservoir distribution and transmission are urgently needed to prevent future outbreaks. Here, we detected SARSr-CoV in Rhinolophus bat samples from Guangdong in 2009 and 2021 and found that the transmission of SARSr-CoV from different host populations contributes more to increased virus diversity than time. Bat SARSr-CoVs in Guangdong had genetic diversity, and Guangdong was also the hot spot for SARSr-CoVs. We once again prove that R. sinicus plays an important role in the maintenance of the SARS-CoVs. Besides, the SARSr-CoVs are mainly transmitted through the intestines in bats, and these SARSr-CoVs found in Guangdong could not use human ACE2 (hACE2), but whether they can pass through intermediate hosts or directly infect humans requires further research. Our findings demonstrate the ability of SARSr-CoVs to spread across species.
Collapse
Affiliation(s)
- Linmiao Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yepin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Wenzhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zuofu Xiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Mechanisms of host type I interferon response modulation by the nucleocapsid proteins of alpha- and betacoronaviruses. Arch Virol 2022; 167:1925-1930. [PMID: 35763067 PMCID: PMC9244355 DOI: 10.1007/s00705-022-05513-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022]
Abstract
Coronaviruses can have a devastating impact on the health of humans and animals. Porcine epidemic diarrhea virus (PEDV) causes extremely high fatality rates in neonatal piglets, whereas severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic in humans. As a critical component of the host antiviral innate immune response, type I interferon production and signaling play a very important role, especially in the initial phase of the antiviral responses. Coronaviruses have evolved multiple ways to counteract type I interferon responses. Although the primary functions of the nucleocapsid protein are to facilitate viral RNA replication and package viral genomic RNA into virions, recent studies have shown that the nucleocapsid protein is also involved in virus-host interactions. The aim of this review is to summarize our current understanding of how the nucleocapsid proteins of PEDV and SARS-CoV-2 modulate type I interferon responses. This knowledge will be useful for developing strategies to combat coronavirus infections.
Collapse
|
30
|
Li R, Tian X, Pang J, Li L, Yuan J, Tian Z, Wang Z. Point-of-Care Tests for Rapid Detection of Porcine Epidemic Diarrhea Virus: A Systematic Review and Meta-Analysis. Viruses 2022; 14:v14071355. [PMID: 35891337 PMCID: PMC9321219 DOI: 10.3390/v14071355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 12/21/2022] Open
Abstract
The timely and accurate diagnosis of porcine epidemic diarrhea virus (PEDV) infection is crucial to reduce the risk of viral transmission. Therefore, the objective of this review was to evaluate the overall diagnostic accuracy of rapid point-of-care tests (POCTs) for PEDV. Studies published before 7 January 2022 were identified by searching PubMed, EMBASE, Springer Link, and Web of Science databases, using subject headings or keywords related to point of care and rapid test diagnostic for PEDV and PED. Two investigators independently extracted data, rated risk of bias, and assessed the quality using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The bivariate model and the hierarchical summary receiver operating characteristic (HSROC) model were used for performing the meta-analysis. Threshold effect, subgroup analysis, and meta-regression were applied to explore heterogeneity. Of the 2908 records identified, 24 eligible studies involving 3264 specimens were enrolled in the meta-analysis, including 11 studies on evaluation of lateral flow immunochromatography assay (ICA)-based, and 13 on nucleic acid isothermal amplification (NAIA)-based POCTs. The overall pooled sensitivity, specificity and diagnostic odds ratio (DOR) were 0.95 (95% CI: 0.92–0.97), 0.96 (95% CI 0.88–0.99) and 480 (95% CI 111–2074), respectively; for ICA-based POCTs and the corresponding values for NAIA-based, POCTs were 0.97 (95% CI 0.94–0.99), 0.98 (95% CI 0.91–0.99) and 1517 (95% CI 290–7943), respectively. The two tests showed highly comparable and satisfactory diagnostic performance in clinical utility. These results support current recommendations for the use of rapid POC tests when PEDV is suspected.
Collapse
Affiliation(s)
- Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China
- Correspondence:
| | - Junzeng Pang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Linyue Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Jiakang Yuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| | - Zhuangzhuang Tian
- School of International Education, Xinxiang Medical University, Xinxiang 453003, China;
| | - Ziliang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.P.); (L.L.); (J.Y.); (Z.W.)
| |
Collapse
|
31
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a profound impact on human health, economic well-being, and societal function. It is essential that we use this generational experience to better understand the processes that underpin the emergence of COVID-19 and other zoonotic diseases. Herein, I review the mechanisms that determine why and how viruses emerge in new hosts, as well as the barriers to this process. I show that traditional studies of virus emergence have an inherent anthropocentric bias, with disease in humans considered the inevitable outcome of virus emergence, when in reality viruses are integral components of a global ecosystem characterized by continual host jumping with humans also transmitting their viruses to other animals. I illustrate these points using coronaviruses, including severe acute respiratory syndrome coronavirus 2, as a case study. I also outline the potential steps that can be followed to help mitigate and prevent future pandemics, with combating climate change a central component. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
32
|
Hassanin A. Variation in synonymous nucleotide composition among genomes of sarbecoviruses and consequences for the origin of COVID-19. Gene X 2022; 835:146641. [PMID: 35700806 PMCID: PMC9200079 DOI: 10.1016/j.gene.2022.146641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
The subgenus Sarbecovirus includes two human viruses, SARS-CoV and SARS-CoV-2, respectively responsible for the SARS epidemic and COVID-19 pandemic, as well as many bat viruses and two pangolin viruses. Here, the synonymous nucleotide composition (SNC) of Sarbecovirus genomes was analysed by examining third codon-positions, dinucleotides, and degenerate codons. The results show evidence for the eight following groups: (i) SARS-CoV related coronaviruses (SCoVrC including many bat viruses from China), (ii) SARS-CoV-2 related coronaviruses (SCoV2rC; including five bat viruses from Cambodia, Thailand and Yunnan), (iii) pangolin sarbecoviruses, (iv) three bat sarbecoviruses showing evidence of recombination between SCoVrC and SCoV2rC genomes, (v) two highly divergent bat sarbecoviruses from Yunnan, (vi) the bat sarbecovirus from Japan, (vii) the bat sarbecovirus from Bulgaria, and (viii) the bat sarbecovirus from Kenya. All these groups can be diagnosed by specific nucleotide compositional features except the one concerned by recombination between SCoVrC and SCoV2rC. In particular, SCoV2rC genomes have less cytosines and more uracils at third codon-positions than other sarbecoviruses, whereas the genomes of pangolin sarbecoviruses show more adenines at third codon-positions. I suggest that taxonomic differences in the imbalanced nucleotide pools available in host cells during viral replication can explain the eight groups of SNC here detected among Sarbecovirus genomes. A related effect due to hibernating bats and their latitudinal distribution is also discussed. I conclude that the two independent host switches from Rhinolophus bats to pangolins resulted in convergent mutational constraints and that SARS-CoV-2 emerged directly from a horseshoe bat sarbecovirus.
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, EPHE, MNHN, UA, Paris, France.
| |
Collapse
|
33
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|
34
|
Common SM, Shadbolt T, Walsh K, Sainsbury AW. The risk from SARS-CoV-2 to bat species in england and mitigation options for conservation field workers. Transbound Emerg Dis 2022; 69:694-705. [PMID: 33570837 PMCID: PMC8014681 DOI: 10.1111/tbed.14035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 01/08/2023]
Abstract
The newly evolved coronavirus, SARS-CoV-2, which has precipitated a global COVID-19 pandemic among the human population, has been shown to be associated with disease in captive wild animals. Bats (Chiroptera) have been shown to be susceptible to experimental infection and therefore may be at risk from disease when in contact with infected people. Numerous conservation fieldwork activities are undertaken across the United Kingdom bringing potentially infected people into close proximity with bats. In this study, we analysed the risks of disease from SARS-CoV-2 to free-living bat species in England through fieldworkers undertaking conservation activities and ecological survey work, using a qualitative, transparent method devised for assessing threats of disease to free-living wild animals. The probability of exposure of bats to SARS-CoV-2 through fieldwork activities was estimated to range from negligible to high, depending on the proximity between bats and people during the activity. The likelihood of infection after exposure was estimated to be high and the probability of dissemination of the virus through bat populations medium. The likelihood of clinical disease occurring in infected bats was low, and therefore, the ecological, economic and environmental consequences were predicted to be low. The overall risk estimation was low, and therefore, mitigation measures are advisable. There is uncertainty in the pathogenicity of SARS-CoV-2 in bats and therefore in the risk estimation. Disease risk management measures are suggested, including the use of personal protective equipment, good hand hygiene and following the existing government advice. The disease risk analysis should be updated as information on the epidemiology of SARS-CoV-2 and related viruses in bats improves. The re-analysis may be informed by health surveillance of free-living bats.
Collapse
Affiliation(s)
| | - Tammy Shadbolt
- Institute of ZoologyZoological Society of LondonLondonUK
| | | | | |
Collapse
|
35
|
Genetic Characteristics and Pathogenicity of a Novel Porcine Epidemic Diarrhea Virus with a Naturally Occurring Truncated ORF3 Gene. Viruses 2022; 14:v14030487. [PMID: 35336894 PMCID: PMC8955810 DOI: 10.3390/v14030487] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the major pathogen that causes diarrhea and high mortality in newborn piglets, with devastating impact on the pig industry. To further understand the molecular epidemiology and genetic diversity of PEDV field strains, in this study the complete genomes of four PEDV variants (HN2021, CH-HNYY-2018, CH-SXWS-2018, and CH-HNKF-2016) obtained from immunized pig farms in central China between 2016 to 2021 were characterized and analyzed. Phylogenetic analysis of the genome and S gene showed that the four strains identified in the present study had evolved into the subgroup G2a, but were distant from the vaccine strain CV777. Additionally, it was noteworthy that a new PEDV strain (named HN2021) belonging to the G2a PEDV subgroup was successfully isolated in vitro and it was further confirmed by RT-PCR that this isolate had a large natural deletion at 207–373 nt of the ORF3 gene, which has never been reported before. Particularly, in terms of pathogenicity evaluation, colostrum deprivation piglets challenged with PEDV HN2021 showed severe diarrhea and high mortality, confirming that PEDV HN2021 was a virulent strain. Hence, PEDV strain HN2021 of subgroup G2a presents a promising vaccine candidate for the control of recurring porcine epidemic diarrhea (PED) in China. This study lays the foundation for better understanding of the genetic evolution and molecular pathogenesis of PEDV.
Collapse
|
36
|
Dey D, Singh S, Khan S, Martin M, Schnicker NJ, Gakhar L, Pierce BG, Hasan SS. An extended motif in the SARS-CoV-2 spike modulates binding and release of host coatomer in retrograde trafficking. Commun Biol 2022; 5:115. [PMID: 35136165 PMCID: PMC8825798 DOI: 10.1038/s42003-022-03063-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
β-Coronaviruses such as SARS-CoV-2 hijack coatomer protein-I (COPI) for spike protein retrograde trafficking to the progeny assembly site in endoplasmic reticulum-Golgi intermediate compartment (ERGIC). However, limited residue-level details are available into how the spike interacts with COPI. Here we identify an extended COPI binding motif in the spike that encompasses the canonical K-x-H dibasic sequence. This motif demonstrates selectivity for αCOPI subunit. Guided by an in silico analysis of dibasic motifs in the human proteome, we employ mutagenesis and binding assays to show that the spike motif terminal residues are critical modulators of complex dissociation, which is essential for spike release in ERGIC. αCOPI residues critical for spike motif binding are elucidated by mutagenesis and crystallography and found to be conserved in the zoonotic reservoirs, bats, pangolins, camels, and in humans. Collectively, our investigation on the spike motif identifies key COPI binding determinants with implications for retrograde trafficking. The cytosolic tail of β-coronavirus spike proteins contains dibasic motifs that must be able to bind to the host’s coatomer protein-I (COPI) for trafficking and be released for viral assembly in the ER-Golgi intermediate compartment. The critical residues in both the spike cytosolic tail and COPI are identified that modulate the association-dissociation kinetics.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saif Khan
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,PAQ Therapeutics, Cambridge, MA, USA
| | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA. .,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA. .,Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, USA.
| |
Collapse
|
37
|
Gomes BM, Rebelo CB, Alves de Sousa L. Public health, surveillance systems and preventive medicine in an interconnected world. One Health 2022. [DOI: 10.1016/b978-0-12-822794-7.00006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Life after COVID-19: Future directions? COVID-19 PANDEMIC 2022. [PMCID: PMC8175769 DOI: 10.1016/b978-0-323-82860-4.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The humans’ vulnerability and fragility have been demonstrated during pandemics, and as a community, will need proper preparation. The coronavirus outbreak was first reported at the end of 2019 and declared a pandemic by the World Health Organization. Around the world, the response to the virus outbreak has been different. The detection, traceability, and the response for different countries have been delayed, causing the overwhelming of the health systems. However, some other nations exercised various strategies to contain the infection’s dissemination and recorded a low number of cases. The different measures taken, including contact tracing, lockdown, case detection, social distancing, and quarantine strategies, helped control the disease’s spreading. Only time will tell how well the world faced the outbreak. We also suggest the future directions that the global community should take to manage and mitigate the emergency.
Collapse
|
39
|
Urushadze L, Babuadze G, Shi M, Escobar LE, Mauldin MR, Natradeze I, Machablishvili A, Kutateladze T, Imnadze P, Nakazawa Y, Velasco-Villa A. A Cross Sectional Sampling Reveals Novel Coronaviruses in Bat Populations of Georgia. Viruses 2021; 14:v14010072. [PMID: 35062276 PMCID: PMC8778869 DOI: 10.3390/v14010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022] Open
Abstract
Mammal-associated coronaviruses have a long evolutionary history across global bat populations, which makes them prone to be the most likely ancestral origins of coronavirus-associated epidemics and pandemics globally. Limited coronavirus research has occurred at the junction of Europe and Asia, thereby investigations in Georgia are critical to complete the coronavirus diversity map in the region. We conducted a cross-sectional coronavirus survey in bat populations at eight locations of Georgia, from July to October of 2014. We tested 188 anal swab samples, remains of previous pathogen discovery studies, for the presence of coronaviruses using end-point pan-coronavirus RT-PCR assays. Samples positive for a 440 bp amplicon were Sanger sequenced to infer coronavirus subgenus or species through phylogenetic reconstructions. Overall, we found a 24.5% positive rate, with 10.1% for Alphacoronavirus and 14.4% for Betacoronavirus. Albeit R. euryale, R. ferrumequinum, M. blythii and M. emarginatus were found infected with both CoV genera, we could not rule out CoV co-infection due to limitation of the sequencing method used and sample availability. Based on phylogenetic inferences and genetic distances at nucleotide and amino acid levels, we found one putative new subgenus and three new species of Alphacoronavirus, and two new species of Betacoronavirus.
Collapse
Affiliation(s)
- Lela Urushadze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
| | - George Babuadze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
- Biological Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Main Campus, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Mang Shi
- Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601, USA;
| | - Matthew R. Mauldin
- Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA; (M.R.M.); (Y.N.)
| | - Ioseb Natradeze
- Institute of Zoology, Campus S, Ilia State University, Tbilisi 0162, Georgia;
| | - Ann Machablishvili
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
| | - Tamar Kutateladze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
| | - Paata Imnadze
- National Center for Disease Control and Public Health, Tbilisi 0198, Georgia; (L.U.); (G.B.); (A.M.); (T.K.); (P.I.)
- Department of Public Health and Epidemiology, Faculty of Medicine, Main Campus, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Yoshinori Nakazawa
- Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA; (M.R.M.); (Y.N.)
| | - Andres Velasco-Villa
- Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA; (M.R.M.); (Y.N.)
- Correspondence:
| |
Collapse
|
40
|
Zeiss CJ, Compton S, Veenhuis RT. Animal Models of COVID-19. I. Comparative Virology and Disease Pathogenesis. ILAR J 2021; 62:35-47. [PMID: 33836527 PMCID: PMC8083356 DOI: 10.1093/ilar/ilab007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has fueled unprecedented development of animal models to understand disease pathogenesis, test therapeutics, and support vaccine development. Models previously developed to study severe acute respiratory syndrome coronavirus (SARS-CoV) have been rapidly deployed to study SARS-CoV-2. However, it has become clear that despite the common use of ACE2 as a receptor for both viruses, the host range of the 2 viruses does not entirely overlap. Distinct ACE2-interacting residues within the receptor binding domain of SARS-CoV and SARS-CoV-2, as well as species differences in additional proteases needed for activation and internalization of the virus, are likely sources of host differences between the 2 viruses. Spontaneous models include rhesus and cynomolgus macaques, African Green monkeys, hamsters, and ferrets. Viral shedding and transmission studies are more frequently reported in spontaneous models. Mice can be infected with SARS-CoV; however, mouse and rat ACE2 does not support SARS-CoV-2 infection. Murine models for COVID-19 are induced through genetic adaptation of SARS-CoV-2, creation of chimeric SARS-CoV and SARS-CoV-2 viruses, use of human ACE2 knock-in and transgenic mice, and viral transfection of wild-type mice with human ACE2. Core aspects of COVID-19 are faithfully reproduced across species and model. These include the acute nature and predominantly respiratory source of viral shedding, acute transient and nonfatal disease with a largely pulmonary phenotype, similar short-term immune responses, and age-enhanced disease. Severity of disease and tissue involvement (particularly brain) in transgenic mice varies by promoter. To date, these models have provided a remarkably consistent template on which to test therapeutics, understand immune responses, and test vaccine approaches. The role of comorbidity in disease severity and the range of severe organ-specific pathology in humans remains to be accurately modeled.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Susan Compton
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
41
|
Zoonotic disease and virome diversity in bats. Curr Opin Virol 2021; 52:192-202. [PMID: 34954661 PMCID: PMC8696223 DOI: 10.1016/j.coviro.2021.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023]
Abstract
The emergence of zoonotic viral diseases in humans commonly reflects exposure to mammalian wildlife. Bats (order Chiroptera) are arguably the most important mammalian reservoir for zoonotic viruses, with notable examples including Severe Acute Respiratory Syndrome coronaviruses 1 and 2, Middle East Respiratory Syndrome coronavirus, henipaviruses and lyssaviruses. Herein, we outline our current knowledge on the diversity of bat viromes, particularly through the lens of metagenomic next-generation sequencing and in the context of disease emergence. A key conclusion is that although bats harbour abundant virus diversity, the vast majority of bat viruses have not emerged to cause disease in new hosts such that bats are better regarded as critical but endangered components of global ecosystems.
Collapse
|
42
|
Petrovan SO, Aldridge DC, Bartlett H, Bladon AJ, Booth H, Broad S, Broom DM, Burgess ND, Cleaveland S, Cunningham AA, Ferri M, Hinsley A, Hua F, Hughes AC, Jones K, Kelly M, Mayes G, Radakovic M, Ugwu CA, Uddin N, Veríssimo D, Walzer C, White TB, Wood JL, Sutherland WJ. Post COVID-19: a solution scan of options for preventing future zoonotic epidemics. Biol Rev Camb Philos Soc 2021. [PMID: 34231315 DOI: 10.17605/osf.io/5jx3g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
The crisis generated by the emergence and pandemic spread of COVID-19 has thrown into the global spotlight the dangers associated with novel diseases, as well as the key role of animals, especially wild animals, as potential sources of pathogens to humans. There is a widespread demand for a new relationship with wild and domestic animals, including suggested bans on hunting, wildlife trade, wet markets or consumption of wild animals. However, such policies risk ignoring essential elements of the problem as well as alienating and increasing hardship for local communities across the world, and might be unachievable at scale. There is thus a need for a more complex package of policy and practical responses. We undertook a solution scan to identify and collate 161 possible options for reducing the risks of further epidemic disease transmission from animals to humans, including potential further SARS-CoV-2 transmission (original or variants). We include all categories of animals in our responses (i.e. wildlife, captive, unmanaged/feral and domestic livestock and pets) and focus on pathogens (especially viruses) that, once transmitted from animals to humans, could acquire epidemic potential through high rates of human-to-human transmission. This excludes measures to prevent well-known zoonotic diseases, such as rabies, that cannot readily transmit between humans. We focused solutions on societal measures, excluding the development of vaccines and other preventive therapeutic medicine and veterinary medicine options that are discussed elsewhere. We derived our solutions through reading the scientific literature, NGO position papers, and industry guidelines, collating our own experiences, and consulting experts in different fields. Herein, we review the major zoonotic transmission pathways and present an extensive list of options. The potential solutions are organised according to the key stages of the trade chain and encompass solutions that can be applied at the local, regional and international scales. This is a set of options targeted at practitioners and policy makers to encourage careful examination of possible courses of action, validating their impact and documenting outcomes.
Collapse
Affiliation(s)
- Silviu O Petrovan
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - David C Aldridge
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Harriet Bartlett
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Andrew J Bladon
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Hollie Booth
- Interdisciplinary Centre for Conservation Science, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Steven Broad
- TRAFFIC, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Donald M Broom
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Neil D Burgess
- UNEP-WCMC, 219 Huntington Road, Cambridge, CB3 0DL, U.K
- GLOBE Institute, University of Copenhagen, Oester Voldgade 5-7, Copenhagen, 1350, Denmark
| | - Sarah Cleaveland
- Institute of Biodiversity, College of Medical, Veterinary and Life Sciences, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | | | - Maurizio Ferri
- Italian Society of Preventive Veterinary Medicine (Simevep), Via Nizza 11, Rome, 00198, Italy
| | - Amy Hinsley
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Fangyuan Hua
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, P.R. China
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, 666303, P.R. China
| | - Kate Jones
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Moira Kelly
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - George Mayes
- MacArthur Barstow & Gibbs Veterinary Surgeons, 36 Hanbury Road, Droitwich, WR9 8PW, U.K
| | - Milorad Radakovic
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Chinedu A Ugwu
- Africa Centre of Excellence for Genomics of Infectious Disease, Redeemers' University Ede, Osun State, Nigeria
| | - Nasir Uddin
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, 666303, P.R. China
| | - Diogo Veríssimo
- Interdisciplinary Centre for Conservation Science, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, 92027, U.S.A
| | - Christian Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, Vienna, A-1160, Austria
- Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY, U.S.A
| | - Thomas B White
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - James L Wood
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - William J Sutherland
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| |
Collapse
|
43
|
Pamplona J, Solano R, Soler C, Sabat M. Epidemiological approximation of the enteric manifestation and possible fecal-oral transmission in COVID-19: a preliminary systematic review. Eur J Gastroenterol Hepatol 2021; 33:e21-e29. [PMID: 32956179 DOI: 10.1097/meg.0000000000001934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recent appearance of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has led to the publication of the first evidence on gastrointestinal symptoms (GIS), the possible enteric involvement of the virus and the detection of RNA in stool, with its possible implication in the fecal-oral transmission of coronavirus disease 2019 (COVID-19). We aimed to conduct a systematic review to describe the epidemiological scientific evidence on GIS, enteric involvement and fecal excretion of SARS-CoV-2 viral RNA and to discuss the possible fecal-oral transmission pathway of COVID-19.
Collapse
Affiliation(s)
| | | | - Cristina Soler
- Internal Medicine Service, Santa Caterina Hospital, Girona, Spain
| | - Miriam Sabat
- Gastroenterology Service, Santa Caterina Hospital, Girona
| |
Collapse
|
44
|
Khandker SS, Godman B, Jawad MI, Meghla BA, Tisha TA, Khondoker MU, Haq MA, Charan J, Talukder AA, Azmuda N, Sharmin S, Jamiruddin MR, Haque M, Adnan N. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines (Basel) 2021; 9:1387. [PMID: 34960133 PMCID: PMC8708628 DOI: 10.3390/vaccines9121387] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 vaccines are indispensable, with the number of cases and mortality still rising, and currently no medicines are routinely available for reducing morbidity and mortality, apart from dexamethasone, although others are being trialed and launched. To date, only a limited number of vaccines have been given emergency use authorization by the US Food and Drug Administration and the European Medicines Agency. There is a need to systematically review the existing vaccine candidates and investigate their safety, efficacy, immunogenicity, unwanted events, and limitations. The review was undertaken by searching online databases, i.e., Google Scholar, PubMed, and ScienceDirect, with finally 59 studies selected. Our findings showed several types of vaccine candidates with different strategies against SARS-CoV-2, including inactivated, mRNA-based, recombinant, and nanoparticle-based vaccines, are being developed and launched. We have compared these vaccines in terms of their efficacy, side effects, and seroconversion based on data reported in the literature. We found mRNA vaccines appeared to have better efficacy, and inactivated ones had fewer side effects and similar seroconversion in all types of vaccines. Overall, global variant surveillance and systematic tweaking of vaccines, coupled with the evaluation and administering vaccines with the same or different technology in successive doses along with homologous and heterologous prime-booster strategy, have become essential to impede the pandemic. Their effectiveness appreciably outweighs any concerns with any adverse events.
Collapse
Affiliation(s)
- Shahad Saif Khandker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK;
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md. Irfan Jawad
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Bushra Ayat Meghla
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Taslima Akter Tisha
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Mohib Ullah Khondoker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Community Medicine, Gonoshasthaya Samaj Vittik Medical College, Savar 1344, Bangladesh
| | - Md. Ahsanul Haq
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India;
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Nafisa Azmuda
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Shahana Sharmin
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Mohd. Raeed Jamiruddin
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sugai Besi, Kuala Lumpur 57000, Malaysia
| | - Nihad Adnan
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| |
Collapse
|
45
|
Zhou Z, Qiu Y, Ge X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. ANIMAL DISEASES 2021; 1:5. [PMID: 34778878 PMCID: PMC8062217 DOI: 10.1186/s44149-021-00005-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The frequent emergence of coronavirus (CoV) epidemics has seriously threatened public health and stock farming. The major hosts for CoVs are birds and mammals. Although most CoVs inhabit their specific natural hosts, some may occasionally cross the host barrier to infect livestock and even people, causing a variety of diseases. Since the beginning of the new century, increasing attention has been given to research on CoVs due to the emergence of highly pathogenic and genetically diverse CoVs that have caused several epidemics, including the recent COVID-19 pandemic. CoVs belong to the Coronaviridae family of the Nidovirales order. Recently, advanced techniques for viral detection and viral genome analyses have enabled characterization of many new nidoviruses than ever and have greatly expanded the Nidovirales order with new classification and nomenclature. Here, we first provide an overview of the latest research progress in the classification of the Nidovirales order and then introduce the host range, genetic variation, genomic pattern and pathogenic features of epidemic CoVs and other epidemic viruses. This information will promote understanding of the phylogenetic relationship and infectious transmission of various pathogenic nidoviruses, including epidemic CoVs, which will benefit virological research and viral disease control.
Collapse
Affiliation(s)
- Zhijian Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| | - Xingyi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| |
Collapse
|
46
|
Geng R, Zhou P. Severe acute respiratory syndrome (SARS) related coronavirus in bats. ANIMAL DISEASES 2021; 1:4. [PMID: 34778877 PMCID: PMC8062212 DOI: 10.1186/s44149-021-00004-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/06/2021] [Indexed: 11/25/2022] Open
Abstract
Three major human coronavirus disease outbreaks, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and 2019 coronavirus disease (COVID-19), occurred in the twenty-first century and were caused by different coronaviruses (CoVs). All these viruses are considered to have originated from bats and transmitted to humans through intermediate hosts. SARS-CoV-1 and SARS-CoV-2, disease agent of COVID-19, shared around 80% genomic similarity, and thus belong to SARS-related CoVs. As a natural reservoir of viruses, bats harbor numerous other SARS-related CoVs that could potentially infect humans around the world, causing SARS or COVID-19 like outbreaks in the future. In this review, we summarized the current knowledge of CoVs on geographical distribution, genetic diversity, cross-species transmission potential and possible pathogenesis in humans, aiming for a better understanding of bat SARS-related CoVs in the context of prevention and control.
Collapse
Affiliation(s)
- Rong Geng
- CAS key laboratory of special pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- CAS key laboratory of special pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
TAMTA SHIKA, VINODHKUMAR OR, KARTHIKEYAN A, DUBAL ZB, KHAN SHARUN, A SAIED ABDULRAHMAN, DHAWAN MANISH, DHAMA KULDEEP, MALIK YS. Epidemiological profiling of SARS-CoV-2 with focus on one-health approaches in mitigating COVID-19 pandemic. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i10.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Of the 1,415 human pathogens identified, 175 are responsible for causing emerging diseases, 132 are zoonotic and majority of the diseases are categorized as emerging or re-emerging. Emerging novel Coronavirus (COVID- 19) is one of them, and it is responsible for causing social and economically critical disease in both humans and animals. This review presents the understanding of epidemiological characteristics of the COVID-19 pandemic related to host, agent, and the environment with transmission and spread of the disease for better prevention of the COVID-19. The inclination of the viruses to spillover between different species and determining the number of the reservoir of coronaviruses in an entirely new host to create infection is of emerging importance. The understanding of disease patterns will potentiate our expertise to alert how, when, and where the potential epidemic will occur. One health approach involves co-operation from all the sectors, including healthcare (medical and veterinary), environmental, pharmaceutical, educational, research, police, and administration, to combat the COVID-19 pandemic and reduce the public health threat.
Collapse
|
48
|
Do HQ, Nguyen VG, Chung CU, Jeon YS, Shin S, Jang KC, Pham LBH, Kong A, Kim CU, Park YH, Park BK, Chung HC. Genomic Characterization of a Novel Alphacoronavirus Isolated from Bats, Korea, 2020. Viruses 2021; 13:v13102041. [PMID: 34696471 PMCID: PMC8540747 DOI: 10.3390/v13102041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus, an important zoonotic disease, raises concerns of future pandemics. The bat is considered a source of noticeable viruses resulting in human and livestock infections, especially the coronavirus. Therefore, surveillance and genetic analysis of coronaviruses in bats are essential in order to prevent the risk of future diseases. In this study, the genome of HCQD-2020, a novel alphacoronavirus detected in a bat (Eptesicus serotinus), was assembled and described using next-generation sequencing and bioinformatics analysis. The comparison of the whole-genome sequence and the conserved amino acid sequence of replicated proteins revealed that the new strain was distantly related with other known species in the Alphacoronavirus genus. Phylogenetic construction indicated that this strain formed a separated branch with other species, suggesting a new species of Alphacoronavirus. Additionally, in silico prediction also revealed the risk of cross-species infection of this strain, especially in the order Artiodactyla. In summary, this study provided the genetic characteristics of a possible new species belonging to Alphacoronavirus.
Collapse
Affiliation(s)
- Hai-Quynh Do
- Virology Lab, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
| | - Van-Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Chul-Un Chung
- Department of Life Science, Dongguk University, Gyeongju 38066, Korea;
- Correspondence: (C.-U.C.); (B.-K.P.); (H.-C.C.); Tel.: +82-2-880-1255 (C.-U.C., B.-K.P. & H.-C.C.); Fax: +82-2-885-0263 (C.-U.C., B.-K.P. & H.-C.C.)
| | - Yong-Shin Jeon
- Department of Life Science, Dongguk University, Gyeongju 38066, Korea;
| | - Sook Shin
- Noah Biotech Research Unit, Noah Biotech Co. Ltd, Suwon 16612, Korea; (S.S.); (K.-C.J.); (Y.-H.P.)
| | - Kuem-Chan Jang
- Noah Biotech Research Unit, Noah Biotech Co. Ltd, Suwon 16612, Korea; (S.S.); (K.-C.J.); (Y.-H.P.)
| | - Le Bich Hang Pham
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam;
| | - Aeri Kong
- Department of Medical Science, University of California, Los Angeles, CA 90095, USA;
| | - Cheong-Ung Kim
- Department of Veterinary Medicine Microbology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
| | - Yong-Ho Park
- Noah Biotech Research Unit, Noah Biotech Co. Ltd, Suwon 16612, Korea; (S.S.); (K.-C.J.); (Y.-H.P.)
| | - Bong-Kyun Park
- Virology Lab, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
- Correspondence: (C.-U.C.); (B.-K.P.); (H.-C.C.); Tel.: +82-2-880-1255 (C.-U.C., B.-K.P. & H.-C.C.); Fax: +82-2-885-0263 (C.-U.C., B.-K.P. & H.-C.C.)
| | - Hee-Chun Chung
- Virology Lab, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
- Correspondence: (C.-U.C.); (B.-K.P.); (H.-C.C.); Tel.: +82-2-880-1255 (C.-U.C., B.-K.P. & H.-C.C.); Fax: +82-2-885-0263 (C.-U.C., B.-K.P. & H.-C.C.)
| |
Collapse
|
49
|
Fang M, Hu W, Liu B. Characterization of bat coronaviruses: a latent global threat. J Vet Sci 2021; 22:e72. [PMID: 34553517 PMCID: PMC8460465 DOI: 10.4142/jvs.2021.22.e72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
It has been speculated that bats serve as reservoirs of a huge variety of emerging coronaviruses (CoVs) that have been responsible for severe havoc in human health systems as well as negatively affecting human economic and social systems. A prime example is the currently active severe acute respiratory syndrome (SARS)-CoV2, which presumably originated from bats, demonstrating that the risk of a new outbreak of bat coronavirus is always latent. Therefore, an in-depth investigation to better comprehend bat CoVs has become an important issue within the international community, a group that aims to attenuate the consequences of future outbreaks. In this review, we present a concise introduction to CoVs found in bats and discuss their distribution in Southeast Asia. We also discuss the unique adaptation features in bats that confer the ability to be a potential coronavirus reservoir. In addition, we review the bat coronavirus-linked diseases that have emerged in the last two decades. Finally, we propose key factors helpful in the prediction of a novel coronavirus outbreak and present the most recent methods used to forecast an evolving outbreak.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China
- Jiangxi Lvke Agriculture and Animal Husbandry Technology Co., Ltd, Yichun 336000, Jiangxi, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun 336000, Jiangxi, China.
| |
Collapse
|
50
|
Zhu Z, Meng K, Liu G, Meng G. A database resource and online analysis tools for coronaviruses on a historical and global scale. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5909701. [PMID: 33009914 PMCID: PMC7665380 DOI: 10.1093/database/baaa070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 01/07/2023]
Abstract
The recent outbreak of COVID-19 caused by a new zoonotic origin coronavirus (SARS-CoV-2 or 2019-nCoV) has sound the alarm for the potential spread of epidemic coronavirus crossing species. With the urgent needs to assist disease control and to provide invaluable scientific information, we developed the coronavirus database (CoVdb), an online genomic, proteomic and evolutionary analysis platform. CoVdb has brought together genomes of more than 5000 coronavirus strains, which were collected from 1941 to 2020, in more than 60 countries and in hosts belonging to more than 30 species, ranging from fish to human. CoVdb presents comprehensive genomic information, such as gene function, subcellular localization, topology and protein structure. To facilitate coronavirus research, CoVdb also provides flexible search approaches and online tools to view and analyze protein structure, to perform multiple alignments, to automatically build phylogenetic trees and to carry on evolutionary analyses. CoVdb can be accessed freely at http://covdb.popgenetics.net. Hopefully, it will accelerate the progress to develop medicines or vaccines to control the pandemic of COVID-19.
Collapse
Affiliation(s)
- Zhenglin Zhu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Kaiwen Meng
- College of Veterinary Medicine, China Agricultural University, HaiDian District, Beijing, 100094, China
| | - Gexin Liu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, HaiDian District, Beijing, 100094, China
| |
Collapse
|