1
|
Huang HE, Colasanti O, Li TF, Lohmann V. Limited impact of hepatitis A virus 3C protease-mediated cleavage on the functions of NEMO in human hepatocytes. J Virol 2025:e0226424. [PMID: 39853114 DOI: 10.1128/jvi.02264-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
NF-κB essential modulator (NEMO) is critically involved in the induction of interferons (IFNs) and pro-inflammatory cytokines. Hepatitis A virus (HAV) 3C protease was recently identified to cleave NEMO in non-hepatic cells. This study aimed at understanding efficiency and function of HAV 3C-mediated NEMO cleavage in hepatocytes. HAV 3C protease and its precursor 3CD strongly affected NEMO abundance in ectopic expression models, which was not observed in HAV replicon cells and upon HAV infection. Using a cleavage-resistant NEMO mutant, we found that specific cleavage by 3C only marginally contributed to NEMO degradation, whereas the magnitude of the effect was due to cytotoxic effects induced by 3C activity. Cleavage efficiency generally did not suffice to disrupt the type I IFN or NF-κB signaling pathways. Knockout of NEMO indeed abrogated both pathways, whereas efficient knockdown had limited the impact on NEMO-mediated signaling, suggesting that low levels of NEMO are sufficient to maintain antiviral responses in hepatocytes. NEMO cleavage was barely detectable in a cell line harboring a persistent HAV replicon or in HAV-infected cells. HAV infection induced a robust innate immune response, which was not affected by efficient knockdown of NEMO, arguing for a limited potential contribution of NEMO cleavage to innate immune counteraction. Overall, our data suggest that HAV 3C is capable of partially cleaving NEMO as reported. However, since minute expression levels of NEMO were sufficient for induction of innate immunity, inefficient NEMO cleavage by HAV is unlikely to contribute to dampening of innate immune responses in hepatocytes.IMPORTANCEHepatitis A virus (HAV) establishes acute infections of the liver, which are always cleared, while a number of mechanisms have been identified contributing to immune escape. Among those, proteolytic cleavage of NF-κB essential modulator (NEMO) by HAV has been suggested to counteract innate immune responses. This study demonstrates that the HAV 3C protease cleaves NEMO inefficiently and does not result in substantial disruption of antiviral signaling. Importantly, NEMO remains capable of inducing an effective immune response in hepatocytes even at low expression levels. Our findings suggest a limited role for NEMO cleavage in HAV's interaction with host immunity and call for a revision of our understanding of HAV counteraction mechanisms.
Collapse
Affiliation(s)
- Hao-En Huang
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Ombretta Colasanti
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Teng-Feng Li
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Shi Q, Zhang P, Hu Q, Zhang T, Hou R, Yin S, Zou Y, Chen F, Jiao S, Si L, Zheng B, Chen Y, Zhan T, Liu Y, Zhu W, Qi N. Role of TOMM34 on NF-κB activation-related hyperinflammation in severely ill patients with COVID-19 and influenza. EBioMedicine 2024; 108:105343. [PMID: 39276680 PMCID: PMC11418153 DOI: 10.1016/j.ebiom.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Highly pathogenic respiratory RNA viruses such as SARS-CoV-2 and its associated syndrome COVID-19 pose a tremendous threat to the global public health. Innate immune responses to SARS-CoV-2 depend mainly upon the NF-κB-mediated inflammation. Identifying unknown host factors driving the NF-κB activation and inflammation is crucial for the development of immune intervention strategies. METHODS Published single-cell RNA sequencing (scRNA-seq) data was used to analyze the differential transcriptome profiles of bronchoalveolar lavage (BAL) cells between healthy individuals (n = 27) and patients with severe COVID-19 (n = 21), as well as the differential transcriptome profiles of peripheral blood mononuclear cells (PBMCs) between healthy individuals (n = 22) and severely ill patients with COVID-19 (n = 45) or influenza (n = 16). Loss-of-function and gain-of-function assays were performed in diverse viruses-infected cells and male mice models to identify the role of TOMM34 in antiviral innate immunity. FINDINGS TOMM34, together with a list of genes encoding pro-inflammatory cytokines and antiviral immune proteins, was transcriptionally upregulated in circulating monocytes, lung epithelium and innate immune cells from individuals with severe COVID-19 or influenza. Deficiency of TOMM34/Tomm34 significantly impaired the type I interferon responses and NF-κB-mediated inflammation in various human/murine cell lines, murine bone marrow-derived macrophages (BMDMs) and in vivo. Mechanistically, TOMM34 recruits TRAF6 to facilitate the K63-linked polyubiquitination of NEMO upon viral infection, thus promoting the downstream NF-κB activation. INTERPRETATION In this study, viral induction of TOMM34 is positively correlated with the hyperinflammation in severely ill patients with COVID-19 and influenza. Our findings also highlight the physiological role of TOMM34 in the innate antiviral signallings. FUNDING A full list of funding sources can be found in the acknowledgements section.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pengfei Zhang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Tianxin Zhang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Ruixia Hou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shengxiang Yin
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Yilin Zou
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Fenghua Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuang Jiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Lanlan Si
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Bangjin Zheng
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Yichao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Tingzhu Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongxiang Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Wenting Zhu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Nan Qi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| |
Collapse
|
3
|
van Huizen M, Vendrell XM, de Gruyter HLM, Boomaars-van der Zanden AL, van der Meer Y, Snijder EJ, Kikkert M, Myeni SK. The Main Protease of Middle East Respiratory Syndrome Coronavirus Induces Cleavage of Mitochondrial Antiviral Signaling Protein to Antagonize the Innate Immune Response. Viruses 2024; 16:256. [PMID: 38400032 PMCID: PMC10892576 DOI: 10.3390/v16020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a crucial signaling adaptor in the sensing of positive-sense RNA viruses and the subsequent induction of the innate immune response. Coronaviruses have evolved multiple mechanisms to evade this response, amongst others, through their main protease (Mpro), which is responsible for the proteolytic cleavage of the largest part of the viral replicase polyproteins pp1a and pp1ab. Additionally, it can cleave cellular substrates, such as innate immune signaling factors, to dampen the immune response. Here, we show that MAVS is cleaved in cells infected with Middle East respiratory syndrome coronavirus (MERS-CoV), but not in cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This cleavage was independent of cellular negative feedback mechanisms that regulate MAVS activation. Furthermore, MERS-CoV Mpro expression induced MAVS cleavage upon overexpression and suppressed the activation of the interferon-β (IFN-β) and nuclear factor-κB (NF-κB) response. We conclude that we have uncovered a novel mechanism by which MERS-CoV downregulates the innate immune response, which is not observed among other highly pathogenic coronaviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sebenzile K. Myeni
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Miyamoto M, Himeda T, Ishihara K, Okuwa T, Kobayashi D, Nameta M, Karasawa Y, Chunhaphinyokul B, Yoshida Y, Tanaka N, Higuchi M, Komuro A. Theilovirus 3C Protease Cleaves the C-Terminal Domain of the Innate Immune RNA Sensor, Melanoma Differentiation-Associated Gene 5, and Impairs Double-Stranded RNA-Mediated IFN Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:335-347. [PMID: 36525065 DOI: 10.4049/jimmunol.2200565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5), a member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), has pivotal roles in innate immune responses against many positive-stranded RNA viruses, including picornavirus and coronavirus. Upon engagement with dsRNA derived from viral infection, MDA5 initiates coordinated signal transduction leading to type I IFN induction to restrict viral replication. In this study, we describe a targeted cleavage events of MDA5 by the 3C protease from Theilovirus. Upon ectopic expression of theilovirus 3C protease from Saffold virus or Theiler's murine encephalomyelitis virus but not encephalomyocarditis virus, fragments of cleaved MDA5 were observed in a dose-dependent manner. When enzymatically inactive Theilovirus 3C protease was expressed, MDA5 cleavage was completely abrogated. Mass spectrometric analysis identified two cleavage sites at the C terminus of MDA5, cleaving off one of the RNA-binding domains. The same cleavage pattern was observed during Theilovirus infection. The cleavage of MDA5 by Theilovirus protease impaired ATP hydrolysis, RNA binding, and filament assembly on RNA, resulting in dysfunction of MDA5 as an innate immune RNA sensor for IFN induction. Furthermore, the cleavage-resistant MDA5 mutant against the 3C protease showed an enhanced IFN response during Saffold virus infection, indicating that Theilovirus has a strategy to circumvent the antiviral immune response by cleaving MDA5 using 3C protease. In summary, these data suggest MDA5 cleavage by 3C protease as a novel immune evasive strategy of Theilovirus.
Collapse
Affiliation(s)
- Masahiko Miyamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Kazuki Ishihara
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Daiki Kobayashi
- Omics Unit, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University, Niigata, Japan
| | - Yu Karasawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Benyapa Chunhaphinyokul
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University, Niigata, Japan; and
| | - Nobuyuki Tanaka
- Division of Tumor Immunology, Miyagi Cancer Center Research Institute, Medeshima-Shiode, Natori, Miyagi, Japan
| | - Masaya Higuchi
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Akihiko Komuro
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
5
|
Sun L, Feng H, Misumi I, Shirasaki T, Hensley L, González-López O, Shiota I, Chou WC, Ting JPY, Cullen JM, Cowley DO, Whitmire JK, Lemon SM. Viral protease cleavage of MAVS in genetically modified mice with hepatitis A virus infection. J Hepatol 2023; 78:271-280. [PMID: 36152761 DOI: 10.1016/j.jhep.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Consistent with its relatively narrow host species range, hepatitis A virus (HAV) cannot infect C57BL/6 mice. However, in Mavs-/- mice with genetic deficiency of the innate immune signaling adaptor MAVS, HAV replicates robustly in the absence of disease. The HAV 3ABC protease cleaves MAVS in human cells, thereby disrupting virus-induced IFN responses, but it cannot cleave murine MAVS (mMAVS) due to sequence differences at the site of scission. Here, we sought to elucidate the role of 3ABC MAVS cleavage in determining HAV pathogenesis and host species range. METHODS Using CRISPR/Cas9 gene editing, we established two independent lineages of C57BL/6 mice with knock-in mutations altering two amino acids in mMAVS ('mMAVS-VS'), rendering it susceptible to 3ABC cleavage without loss of signaling function. We challenged homozygous Mavsvs/vs mice with HAV, and compared infection outcomes with C57BL/6 and genetically deficient Mavs-/- mice. RESULTS The humanized murine mMAVS-VS protein was cleaved as efficiently as human MAVS when co-expressed with 3ABC in Huh-7 cells. In embyronic fibroblasts from Mavsvs/vs mice, mMAVS-VS was cleaved by ectopically expressed 3ABC, significantly disrupting Sendai virus-induced IFN responses. However, in contrast to Mavs-/- mice with genetic MAVS deficiency, HAV failed to establish infection in Mavsvs/vs mice, even with additional genetic knockout of Trif or Irf1. Nonetheless, when crossed with permissive Ifnar1-/- mice lacking type I IFN receptors, Mavsvs/vsIfnar1-/- mice demonstrated enhanced viral replication coupled with significant reductions in serum alanine aminotransferase, hepatocellular apoptosis, and intrahepatic inflammatory cell infiltrates compared with Ifnar1-/- mice. CONCLUSIONS MAVS cleavage by 3ABC boosts viral replication and disrupts disease pathogenesis, but it is not by itself sufficient to break the host-species barrier to HAV infection in mice. IMPACT AND IMPLICATIONS The limited host range of human hepatitis viruses could be explained by species-specific viral strategies that disrupt innate immune responses. Both hepatitis A virus (HAV) and hepatitis C virus express viral proteases that cleave the innate immune adaptor protein MAVS, in human but not mouse cells. However, the impact of this immune evasion strategy has never been assessed in vivo. Here we show that HAV 3ABC protease cleavage of MAVS enhances viral replication and lessens liver inflammation in mice lacking interferon receptors, but that it is insufficient by itself to overcome the cross-species barrier to infection in mice. These results enhance our understanding of how hepatitis viruses interact with the host and their impact on innate immune responses.
Collapse
Affiliation(s)
- Lu Sun
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ichiro Misumi
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
| | - Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lucinda Hensley
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Itoe Shiota
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
| | - Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA
| | - John M Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Dale O Cowley
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA; Animal Models Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jason K Whitmire
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599 USA; Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
6
|
Liang R, Song H, Wang K, Ding F, Xuan D, Miao J, Fei R, Zhang J. Porcine epidemic diarrhea virus 3CLpro causes apoptosis and collapse of mitochondrial membrane potential requiring its protease activity and signaling through MAVS. Vet Microbiol 2022; 275:109596. [DOI: 10.1016/j.vetmic.2022.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
7
|
Ciaston I, Dobosz E, Potempa J, Koziel J. The subversion of toll-like receptor signaling by bacterial and viral proteases during the development of infectious diseases. Mol Aspects Med 2022; 88:101143. [PMID: 36152458 PMCID: PMC9924004 DOI: 10.1016/j.mam.2022.101143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.
Collapse
Affiliation(s)
- Izabela Ciaston
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Joanna Koziel
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
8
|
Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022; 14:2434. [PMID: 36366532 PMCID: PMC9695474 DOI: 10.3390/v14112434] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
9
|
Yin M, Wen W, Wang H, Zhao Q, Zhu H, Chen H, Li X, Qian P. Porcine Sapelovirus 3C pro Inhibits the Production of Type I Interferon. Front Cell Infect Microbiol 2022; 12:852473. [PMID: 35782136 PMCID: PMC9240219 DOI: 10.3389/fcimb.2022.852473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Porcine sapelovirus (PSV) is the causative pathogen of reproductive obstacles, acute diarrhea, respiratory distress, or severe polioencephalomyelitis in swine. Nevertheless, the pathogenicity and pathogenic mechanism of PSV infection are not fully understood, which hinders disease prevention and control. In this study, we found that PSV was sensitive to type I interferon (IFN-β). However, PSV could not activate the IFN-β promoter and induce IFN-β mRNA expression, indicating that PSV has evolved an effective mechanism to block IFN-β production. Further study showed that PSV inhibited the production of IFN-β by cleaving mitochondrial antiviral signaling (MAVS) and degrading melanoma differentiation-associated gene 5 (MDA5) and TANK-binding kinase 1 (TBK1) through viral 3Cpro. In addition, our study demonstrated that PSV 3Cpro degrades MDA5 and TBK1 through its protease activity and cleaves MAVS through the caspase pathway. Collectively, our results revealed that PSV inhibits the production of type I interferon to escape host antiviral immunity through cleaving and degrading the adaptor molecules.
Collapse
Affiliation(s)
- Mengge Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wei Wen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Haoyuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiongqiong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hechao Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic ProductsAgriculture of the People’s Republic of China, Ministry of Agriculture of the People’s Republic of China, Wuhan, China
- International Research Center for Animal DiseaseTechnology of the People’s Republic of China, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic ProductsAgriculture of the People’s Republic of China, Ministry of Agriculture of the People’s Republic of China, Wuhan, China
- International Research Center for Animal DiseaseTechnology of the People’s Republic of China, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic ProductsAgriculture of the People’s Republic of China, Ministry of Agriculture of the People’s Republic of China, Wuhan, China
- International Research Center for Animal DiseaseTechnology of the People’s Republic of China, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| |
Collapse
|
10
|
Ng TL, Olson EJ, Yoo TY, Weiss HS, Koide Y, Koch PD, Rollins NJ, Mach P, Meisinger T, Bricken T, Chang TZ, Molloy C, Zürcher J, Chang RL, Mitchison TJ, Glass JI, Marks DS, Way JC, Silver PA. High-Content Screening and Computational Prediction Reveal Viral Genes That Suppress the Innate Immune Response. mSystems 2022; 7:e0146621. [PMID: 35319251 PMCID: PMC9040872 DOI: 10.1128/msystems.01466-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
Suppression of the host innate immune response is a critical aspect of viral replication. Upon infection, viruses may introduce one or more proteins that inhibit key immune pathways, such as the type I interferon pathway. However, the ability to predict and evaluate viral protein bioactivity on targeted pathways remains challenging and is typically done on a single-virus or -gene basis. Here, we present a medium-throughput high-content cell-based assay to reveal the immunosuppressive effects of viral proteins. To test the predictive power of our approach, we developed a library of 800 genes encoding known, predicted, and uncharacterized human virus genes. We found that previously known immune suppressors from numerous viral families such as Picornaviridae and Flaviviridae recorded positive responses. These include a number of viral proteases for which we further confirmed that innate immune suppression depends on protease activity. A class of predicted inhibitors encoded by Rhabdoviridae viruses was demonstrated to block nuclear transport, and several previously uncharacterized proteins from uncultivated viruses were shown to inhibit nuclear transport of the transcription factors NF-κB and interferon regulatory factor 3 (IRF3). We propose that this pathway-based assay, together with early sequencing, gene synthesis, and viral infection studies, could partly serve as the basis for rapid in vitro characterization of novel viral proteins. IMPORTANCE Infectious diseases caused by viral pathogens exacerbate health care and economic burdens. Numerous viral biomolecules suppress the human innate immune system, enabling viruses to evade an immune response from the host. Despite our current understanding of viral replications and immune evasion, new viral proteins, including those encoded by uncultivated viruses or emerging viruses, are being unearthed at a rapid pace from large-scale sequencing and surveillance projects. The use of medium- and high-throughput functional assays to characterize immunosuppressive functions of viral proteins can advance our understanding of viral replication and possibly treatment of infections. In this study, we assembled a large viral-gene library from diverse viral families and developed a high-content assay to test for inhibition of innate immunity pathways. Our work expands the tools that can rapidly link sequence and protein function, representing a practical step toward early-stage evaluation of emerging and understudied viruses.
Collapse
Affiliation(s)
- Tai L. Ng
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Erika J. Olson
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Tae Yeon Yoo
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - H. Sloane Weiss
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Yukiye Koide
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Peter D. Koch
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Nathan J. Rollins
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Pia Mach
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Tobias Meisinger
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Trenton Bricken
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy Z. Chang
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Colin Molloy
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Jérôme Zürcher
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Roger L. Chang
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Timothy J. Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - John I. Glass
- J. Craig Venter Institute, La Jolla, California, USA
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey C. Way
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
SARS-CoV-2 nsp5 Exhibits Stronger Catalytic Activity and Interferon Antagonism than Its SARS-CoV Ortholog. J Virol 2022; 96:e0003722. [PMID: 35389264 PMCID: PMC9044939 DOI: 10.1128/jvi.00037-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose an enormous threat to economic activity and public health worldwide. Previous studies have shown that the nonstructural protein 5 (nsp5, also called 3C-like protease) of alpha- and deltacoronaviruses cleaves Q231 of the NF-κB essential modulator (NEMO), a key kinase in the RIG-I-like receptor pathway, to inhibit type I interferon (IFN) production. In this study, we found that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleaved NEMO at multiple sites (E152, Q205, and Q231). Notably, SARS-CoV-2 nsp5 exhibited a stronger ability to cleave NEMO than SARS-CoV nsp5. Sequence and structural alignments suggested that an S/A polymorphism at position 46 of nsp5 in SARS-CoV versus SARS-CoV-2 may be responsible for this difference. Mutagenesis experiments showed that SARS-CoV-2 nsp5 (S46A) exhibited poorer cleavage of NEMO than SARS-CoV-2 nsp5 wild type (WT), while SARS-CoV nsp5 (A46S) showed enhanced NEMO cleavage compared with the WT protein. Purified recombinant SARS-CoV-2 nsp5 WT and SARS-CoV nsp5 (A46S) proteins exhibited higher hydrolysis efficiencies than SARS-CoV-2 nsp5 (S46A) and SARS-CoV nsp5 WT proteins in vitro. Furthermore, SARS-CoV-2 nsp5 exhibited stronger inhibition of Sendai virus (SEV)-induced interferon beta (IFN-β) production than SARS-CoV-2 nsp5 (S46A), while introduction of the A46S substitution in SARS-CoV nsp5 enhanced suppression of SEV-induced IFN-β production. Taken together, these data show that S46 is associated with the catalytic activity and IFN antagonism by SARS-CoV-2 nsp5. IMPORTANCE The nsp5-encoded 3C-like protease is the main coronavirus protease, playing a vital role in viral replication and immune evasion by cleaving viral polyproteins and host immune-related molecules. We showed that both SARS-CoV-2 nsp5 and SARS-CoV nsp5 cleave the NEMO at multiple sites (E152, Q205, and Q231). This specificity differs from NEMO cleavage by alpha- and deltacoronaviruses, demonstrating the distinct substrate recognition of SARS-CoV-2 and SARS-CoV nsp5. Compared with SARS-CoV nsp5, SARS-CoV-2 nsp5 encodes S instead of A at position 46. This substitution is associated with stronger catalytic activity, enhanced cleavage of NEMO, and increased interferon antagonism of SARS-CoV-2 nsp5. These data provide new insights into the pathogenesis and transmission of SARS-CoV-2.
Collapse
|
12
|
Coronaviruses Nsp5 Antagonizes Porcine Gasdermin D-Mediated Pyroptosis by Cleaving Pore-Forming p30 Fragment. mBio 2022; 13:e0273921. [PMID: 35012343 PMCID: PMC8749417 DOI: 10.1128/mbio.02739-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses (CoVs) are a family of RNA viruses that typically cause respiratory, enteric, and hepatic diseases in animals and humans. Here, we use porcine epidemic diarrhea virus (PEDV) as a model of CoVs to illustrate the reciprocal regulation between CoV infection and pyroptosis. For the first time, we elucidate the molecular mechanism of porcine gasdermin D (pGSDMD)-mediated pyroptosis and demonstrate that amino acids R238, T239, and F240 within pGSDMD-p30 are critical for pyroptosis. Furthermore, 3C-like protease Nsp5 from SARS-CoV-2, MERS-CoV, PDCoV, and PEDV can cleave pGSDMD at the Q193-G194 junction to produce two fragments unable to trigger pyroptosis. The two cleaved fragments could not inhibit PEDV replication. In addition, Nsp5 from SARS-CoV-2 and MERS-CoV also cleave human GSDMD (hGSDMD). Therefore, we provide clear evidence that PEDV may utilize the Nsp5-GSDMD pathway to inhibit pyroptosis and, thus, facilitate viral replication during the initial period, suggesting an important strategy for the coronaviruses to sustain their infection. IMPORTANCE Recently, GSDMD has been reported as a key executioner for pyroptosis. This study first demonstrates the molecular mechanism of pGSDMD-mediated pyroptosis and that the pGSDMD-mediated pyroptosis protects host cells against PEDV infection. Notably, PEDV employs its Nsp5 to directly cleave pGSDMD in favor of its replication. We found that Nsp5 proteins from other coronaviruses, such as porcine deltacoronavirus, severe acute respiratory syndrome coronavirus 2, and Middle East respiratory syndrome coronavirus, also had the protease activity to cleave human and porcine GSDMD. Thus, we provide clear evidence that the coronaviruses might utilize Nsp5 to inhibit the host pyroptotic cell death and facilitate their replication during the initial period, an important strategy for their sustaining infection. We suppose that GSDMD is an appealing target for the design of anticoronavirus therapies.
Collapse
|
13
|
Zhang K, Lin S, Li J, Deng S, Zhang J, Wang S. Modulation of Innate Antiviral Immune Response by Porcine Enteric Coronavirus. Front Microbiol 2022; 13:845137. [PMID: 35237253 PMCID: PMC8882816 DOI: 10.3389/fmicb.2022.845137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Host’s innate immunity is the front-line defense against viral infections, but some viruses have evolved multiple strategies for evasion of antiviral innate immunity. The porcine enteric coronaviruses (PECs) consist of porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), transmissible gastroenteritis coronavirus (TGEV), and swine acute diarrhea syndrome-coronavirus (SADS-CoV), which cause lethal diarrhea in neonatal pigs and threaten the swine industry worldwide. PECs interact with host cells to inhibit and evade innate antiviral immune responses like other coronaviruses. Moreover, the immune escape of porcine enteric coronaviruses is the key pathogenic mechanism causing infection. Here, we review the most recent advances in the interactions between viral and host’s factors, focusing on the mechanisms by which viral components antagonize interferon (IFN)-mediated innate antiviral immune responses, trying to shed light on new targets and strategies effective for controlling and eliminating porcine enteric coronaviruses.
Collapse
|
14
|
Azad T, Janse van Rensburg HJ, Morgan J, Rezaei R, Crupi MJF, Chen R, Ghahremani M, Jamalkhah M, Forbes N, Ilkow C, Bell JC. Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic. ACS NANOSCIENCE AU 2021; 1:15-37. [PMID: 37579261 PMCID: PMC8370122 DOI: 10.1021/acsnanoscienceau.1c00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Luciferase-based biosensors have a wide range of applications and assay formats, including their relatively recent use in the study of viruses. Split luciferase, bioluminescence resonance energy transfer, circularly permuted luciferase, cyclic luciferase, and dual luciferase systems have all been used to interrogate the structure and function of prominent viruses infecting humans, animals, and plants. The utility of these assays is demonstrated by numerous studies which have not only successfully characterized interactions between viral and host cell proteins but that have also used these systems to identify viral inhibitors. In the present COVID-19 pandemic, luciferase-based biosensors are already playing a critical role in the study of the culprit virus SARS-CoV-2 as well as in the development of serological assays and drug development via high-throughput screening. In this review paper, we provide a summary of existing luciferase-based biosensors and their applications in virology.
Collapse
Affiliation(s)
- Taha Azad
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | | | - Jessica Morgan
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Reza Rezaei
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mathieu J. F. Crupi
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Rui Chen
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mina Ghahremani
- Canada
Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Monire Jamalkhah
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Nicole Forbes
- Centre
for Communicable Diseases and Infection Control, Public Health Agency of Canada, Ottawa K2E 1B6, Canada
| | - Carolina Ilkow
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - John C. Bell
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
15
|
Yi J, Peng J, Ren J, Zhu G, Ru Y, Tian H, Li D, Zheng H. Degradation of Host Proteins and Apoptosis Induced by Foot-and-Mouth Disease Virus 3C Protease. Pathogens 2021; 10:pathogens10121566. [PMID: 34959521 PMCID: PMC8707164 DOI: 10.3390/pathogens10121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD), induced by the foot-and-mouth disease virus (FMDV), is a highly contagious disease of cloven-hoofed animals. Previous studies have reported that FMDV 3C protease could degrade multiple host proteins; however, the degradation mechanism mediated by FMDV 3C is still unclear. Here, we found that transient expression of FMDV 3C degraded various molecules in NF-κB signaling in a dose-dependent manner, and the proteolytic activity of FMDV 3C is important for inducing degradation. Additionally, 3C-overexpression was associated with the induction of apoptosis. In this study, we showed that an apoptosis inhibitor CrmA abolished the ability of 3C to degrade molecules in NF-κB signaling. Further experiments using specific caspase inhibitors confirmed the irrelevance of caspase3, caspase8, and caspase9 activity for degradation induced by 3C. Altogether, these results suggest that FMDV 3C induces the widespread degradation of host proteins through its proteolytic activity and that the apoptosis pathway might be an important strategy to mediate this process. Further exploration of the relationship between apoptosis and degradation induced by 3C could provide novel insights into the pathogenic mechanisms of FMDV.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dan Li
- Correspondence: (D.L.); (H.Z.)
| | | |
Collapse
|
16
|
Xu C, Chen J, Chen X. Host Innate Immunity Against Hepatitis Viruses and Viral Immune Evasion. Front Microbiol 2021; 12:740464. [PMID: 34803956 PMCID: PMC8598044 DOI: 10.3389/fmicb.2021.740464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis viruses are primary causative agents of hepatitis and represent a major source of public health problems in the world. The host innate immune system forms the first line of defense against hepatitis viruses. Hepatitis viruses are sensed by specific pathogen recognition receptors (PRRs) that subsequently trigger the innate immune response and interferon (IFN) production. However, hepatitis viruses evade host immune surveillance via multiple strategies, which help compromise the innate immune response and create a favorable environment for viral replication. Therefore, this article reviews published findings regarding host innate immune sensing and response against hepatitis viruses. Furthermore, we also focus on how hepatitis viruses abrogate the antiviral effects of the host innate immune system.
Collapse
Affiliation(s)
- Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here, we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single-cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factor p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication in vitro. These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. IMPORTANCE The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 variants keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication to be able to develop novel approaches to target SARS-CoV-2 biology.
Collapse
|
18
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
19
|
Tsu BV, Fay EJ, Nguyen KT, Corley MR, Hosuru B, Dominguez VA, Daugherty MD. Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Front Immunol 2021; 12:769543. [PMID: 34790204 PMCID: PMC8591160 DOI: 10.3389/fimmu.2021.769543] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Many pathogens encode proteases that serve to antagonize the host immune system. In particular, viruses with a positive-sense single-stranded RNA genome [(+)ssRNA], including picornaviruses, flaviviruses, and coronaviruses, encode proteases that are not only required for processing viral polyproteins into functional units but also manipulate crucial host cellular processes through their proteolytic activity. Because these proteases must cleave numerous polyprotein sites as well as diverse host targets, evolution of these viral proteases is expected to be highly constrained. However, despite this strong evolutionary constraint, mounting evidence suggests that viral proteases such as picornavirus 3C, flavivirus NS3, and coronavirus 3CL, are engaged in molecular 'arms races' with their targeted host factors, resulting in host- and virus-specific determinants of protease cleavage. In cases where protease-mediated cleavage results in host immune inactivation, recurrent host gene evolution can result in avoidance of cleavage by viral proteases. In other cases, such as recently described examples in NLRP1 and CARD8, hosts have evolved 'tripwire' sequences that mimic protease cleavage sites and activate an immune response upon cleavage. In both cases, host evolution may be responsible for driving viral protease evolution, helping explain why viral proteases and polyprotein sites are divergent among related viruses despite such strong evolutionary constraint. Importantly, these evolutionary conflicts result in diverse protease-host interactions even within closely related host and viral species, thereby contributing to host range, zoonotic potential, and pathogenicity of viral infection. Such examples highlight the importance of examining viral protease-host interactions through an evolutionary lens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew D. Daugherty
- Division of Biological Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
20
|
Delphin M, Desmares M, Schuehle S, Heikenwalder M, Durantel D, Faure-Dupuy S. How to get away with liver innate immunity? A viruses' tale. Liver Int 2021; 41:2547-2559. [PMID: 34520597 DOI: 10.1111/liv.15054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
In their never-ending quest towards persistence within their host, hepatitis viruses have developed numerous ways to counteract the liver innate immunity. This review highlights the different and common mechanisms employed by these viruses to (i) establish in the liver (passive entry or active evasion from immune recognition) and (ii) actively inhibit the innate immune response (ie modulation of pattern recognition receptor expression and/or signalling pathways, modulation of interferon response and modulation of immune cells count or phenotype).
Collapse
Affiliation(s)
- Marion Delphin
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Manon Desmares
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Svenja Schuehle
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France.,DEVweCAN Laboratory of Excellence, Lyon, France
| | - Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
21
|
Ishizaka A, Koga M, Mizutani T, Lim LA, Adachi E, Ikeuchi K, Ueda R, Aoyagi H, Tanaka S, Kiyono H, Matano T, Aizaki H, Yoshio S, Mita E, Muramatsu M, Kanto T, Tsutsumi T, Yotsuyanagi H. Prolonged Gut Dysbiosis and Fecal Excretion of Hepatitis A Virus in Patients Infected with Human Immunodeficiency Virus. Viruses 2021; 13:v13102101. [PMID: 34696531 PMCID: PMC8539651 DOI: 10.3390/v13102101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis A virus (HAV) causes transient acute infection, and little is known of viral shedding via the duodenum and into the intestinal environment, including the gut microbiome, from the period of infection until after the recovery of symptoms. Therefore, in this study, we aimed to comprehensively observe the amount of virus excreted into the intestinal tract, the changes in the intestinal microbiome, and the level of inflammation during the healing process. We used blood and stool specimens from patients with human immunodeficiency virus who were infected with HAV during the HAV outbreak in Japan in 2018. Moreover, we observed changes in fecal HAV RNA and quantified the plasma cytokine level and gut microbiome by 16S rRNA analysis from clinical onset to at least 6 months after healing. HAV was detected from clinical onset up to a period of more than 150 days. Immediately after infection, many pro-inflammatory cytokines were elicited, and some cytokines showed different behaviors. The intestinal microbiome changed significantly after infection (dysbiosis), and the dysbiosis continued for a long time after healing. These observations suggest that the immunocompromised state is associated with prolonged viral shedding into the intestinal tract and delayed recovery of the intestinal environment.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.)
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
- Japan Foundation for AIDS Prevention, Tokyo 101-0064, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.)
| | - Taketoshi Mizutani
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.)
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
- Correspondence: (T.M.); (H.Y.)
| | - Lay Ahyoung Lim
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (L.A.L.); (E.A.); (K.I.)
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (L.A.L.); (E.A.); (K.I.)
| | - Kazuhiko Ikeuchi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (L.A.L.); (E.A.); (K.I.)
| | - Ryuta Ueda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (R.U.); (H.A.); (H.A.); (M.M.)
| | - Haruyo Aoyagi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (R.U.); (H.A.); (H.A.); (M.M.)
| | - Satoshi Tanaka
- Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan; (S.T.); (E.M.)
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
- Department of AIDS Vaccine Development, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (R.U.); (H.A.); (H.A.); (M.M.)
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan; (S.Y.); (T.K.)
| | - Eiji Mita
- Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan; (S.T.); (E.M.)
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (R.U.); (H.A.); (H.A.); (M.M.)
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan; (S.Y.); (T.K.)
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.)
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.)
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (L.A.L.); (E.A.); (K.I.)
- Correspondence: (T.M.); (H.Y.)
| |
Collapse
|
22
|
Identification of Potential Drug Targets of Broad-Spectrum Inhibitors with a Michael Acceptor Moiety Using Shotgun Proteomics. Viruses 2021; 13:v13091756. [PMID: 34578337 PMCID: PMC8473112 DOI: 10.3390/v13091756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
The Michael addition reaction is a spontaneous and quick chemical reaction that is widely applied in various fields. This reaction is performed by conjugating an addition of nucleophiles with α, β-unsaturated carbonyl compounds, resulting in the bond formation of C-N, C-S, C-O, and so on. In the development of molecular materials, the Michael addition is not only used to synthesize chemical compounds but is also involved in the mechanism of drug action. Several covalent drugs that bond via Michael addition are regarded as anticarcinogens and anti-inflammatory drugs. Although drug development is mainly focused on pharmaceutical drug discovery, target-based discovery can provide a different perspective for drug usage. However, considerable time and labor are required to define a molecular target through molecular biological experiments. In this review, we systematically examine the chemical structures of current FDA-approved antiviral drugs for potential Michael addition moieties with α, β-unsaturated carbonyl groups, which may exert an unidentified broad-spectrum inhibitory mechanism to target viral or host factors. We thus propose that profiling the targets of antiviral agents, such as Michael addition products, can be achieved by employing a high-throughput LC-MS approach to comprehensively analyze the interaction between drugs and targets, and the subsequent drug responses in the cellular environment to facilitate drug repurposing and/or identify potential adverse effects, with a particular emphasis on the pros and cons of this shotgun proteomic approach.
Collapse
|
23
|
Pintó RM, Pérez-Rodríguez FJ, Costafreda MI, Chavarria-Miró G, Guix S, Ribes E, Bosch A. Pathogenicity and virulence of hepatitis A virus. Virulence 2021; 12:1174-1185. [PMID: 33843464 PMCID: PMC8043188 DOI: 10.1080/21505594.2021.1910442] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis A is an acute infection of the liver, which is mostly asymptomatic in children and increases the severity with age. Although in most patients the infection resolves completely, in a few of them it may follow a prolonged or relapsed course or even a fulminant form. The reason for these different outcomes is unknown, but it is generally accepted that host factors such as the immunological status, age and the occurrence of underlaying hepatic diseases are the main determinants of the severity. However, it cannot be ruled out that some virus traits may also contribute to the severe clinical outcomes. In this review, we will analyze which genetic determinants of the virus may determine virulence, in the context of a paradigmatic virus in terms of its genomic, molecular, replicative, and evolutionary features.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Francisco-Javier Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain.,Present Address: Division of Infectious Diseases, Laboratory of Virology, University of Geneva Hospitals, Geneva, Switzerland
| | - Maria-Isabel Costafreda
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Gemma Chavarria-Miró
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Enric Ribes
- Enteric Virus Laboratory, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Yi J, Peng J, Yang W, Zhu G, Ren J, Li D, Zheng H. Picornavirus 3C - a protease ensuring virus replication and subverting host responses. J Cell Sci 2021; 134:134/5/jcs253237. [PMID: 33692152 DOI: 10.1242/jcs.253237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The protease 3C is encoded by all known picornaviruses, and the structural features related to its protease and RNA-binding activities are conserved; these contribute to the cleavage of viral polyproteins and the assembly of the viral RNA replication complex during virus replication. Furthermore, 3C performs functions in the host cell through its interaction with host proteins. For instance, 3C has been shown to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and to inactivate key factors in innate immunity signaling pathways, inhibiting the production of interferon and inflammatory cytokines. Importantly, 3C maintains virus infection by subtly subverting host cell death and modifying critical molecules in host organelles. This Review focuses on the molecular mechanisms through which 3C mediates physiological processes involved in virus-host interaction, thus highlighting the picornavirus-mediated pathogenesis caused by 3C.
Collapse
Affiliation(s)
- Jiamin Yi
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Jiangling Peng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Guoqiang Zhu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Jingjing Ren
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
25
|
Hepatitis A virus-induced hsa-miR-146a-5p attenuates IFN-β signaling by targeting adaptor protein TRAF6. Arch Virol 2021; 166:789-799. [PMID: 33459883 DOI: 10.1007/s00705-021-04952-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
Hepatitis A virus (HAV), a unique hepatotropic human picornavirus, is the causative agent of acute hepatitis A in humans. Some studies have shown that HAV antagonizes the innate immune response by disrupting interferon-beta (IFN-β) signaling by viral proteins. However, whether microRNAs (miRNAs), a class of non-coding RNAs, are involved in the antagonism of IFN-β induction upon HAV infection is still unclear. In this study, we investigated the effects and mechanisms by which HAV-induced miRNAs antagonize IFN-β signaling. A variety of analytical methods, including miRNA microarray, RT-qPCR, dual-luciferase reporter assay, and Western blotting, were performed using HAV-infected cells. The results indicated that HAV infection upregulates the expression of hsa-miR-146a-5p, which in turn partially suppresses the induction of IFN-β synthesis, thereby promoting viral replication. Mechanistically, TRAF6 (TNF receptor-associated factor 6), a key adaptor protein in the RIG-I/MDA5-mediated IFN-I signaling pathway, is targeted and degraded by hsa-miR-146a-5p. As TRAF6 is necessary for IFN-β induction, inhibition of this protein attenuates IFN-β signaling. Taken together, the results from this study indicated that HAV disrupts RIG-I/MDA5-mediated IFN-I signaling partially through the cleavage of the essential adaptor molecule TRAF6 via hsa-miR-146a-5p.
Collapse
|
26
|
Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD. Diverse viral proteases activate the NLRP1 inflammasome. eLife 2021; 10:60609. [PMID: 33410748 PMCID: PMC7857732 DOI: 10.7554/elife.60609] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
The NLRP1 inflammasome is a multiprotein complex that is a potent activator of inflammation. Mouse NLRP1B can be activated through proteolytic cleavage by the bacterial Lethal Toxin (LeTx) protease, resulting in degradation of the N-terminal domains of NLRP1B and liberation of the bioactive C-terminal domain, which includes the caspase activation and recruitment domain (CARD). However, natural pathogen-derived effectors that can activate human NLRP1 have remained unknown. Here, we use an evolutionary model to identify several proteases from diverse picornaviruses that cleave human NLRP1 within a rapidly evolving region of the protein, leading to host-specific and virus-specific activation of the NLRP1 inflammasome. Our work demonstrates that NLRP1 acts as a 'tripwire' to recognize the enzymatic function of a wide range of viral proteases and suggests that host mimicry of viral polyprotein cleavage sites can be an evolutionary strategy to activate a robust inflammatory immune response. The immune system recognizes disease-causing microbes, such as bacteria and viruses, and removes them from the body before they can cause harm. When the immune system first detects these foreign invaders, a multi-part structure known as the inflammasome launches an inflammatory response to help fight the microbes off. Several sensor proteins can activate the inflammasome, including one in mice called NLRP1B. This protein has evolved a specialized site that can be cut by a bacterial toxin. Once cleaved, this region acts like a biological tripwire and sparks NLRP1B into action, allowing the sensor to activate the inflammasome system. Humans have a similar protein called NLRP1, but it is unclear whether this protein has also evolved a tripwire region that can sense microbial proteins. To answer this question, Tsu, Beierschmitt et al. set out to find whether NLRP1 can be activated by viruses in the Picornaviridae family, which are responsible for diseases like polio, hepatitis A, and the common cold. This revealed that NLRP1 contains a cleavage site for enzymes produced by some, but not all, of the viruses in the picornavirus family. Further experiments confirmed that when a picornavirus enzyme cuts through this region during a viral infection, it triggers NLRP1 to activate the inflammasome and initiate an immune response. The enzymes from different viruses were also found to cleave human NLRP1 at different sites, and the protein’s susceptibility to cleavage varied between different animal species. For instance, Tsu, Beierschmitt et al. discovered that NLRP1B in mice is also able to sense picornaviruses, and that different enzymes activate and cleave NLRP1B and NLRP1 to varying degrees: this affected how well the two proteins are expected to be able to sense specific viral infections. This variation suggests that there is an ongoing evolutionary arms-race between viral proteins and the immune system: as viral proteins change and new ones emerge, NLRP1 rapidly evolves new tripwire sites that allow it to sense the infection and launch an inflammatory response. What happens when NLRP1B activates the inflammasome during a viral infection is still an open question. The discovery that mouse NLRP1B shares features with human NLRP1 could allow the development of animal models to study the role of the tripwire in antiviral defenses and the overactive inflammation associated with some viral infections. Understanding the types of viruses that activate the NLRP1 inflammasome, and the outcomes of the resulting immune response, may have implications for future treatments of viral infections.
Collapse
Affiliation(s)
- Brian V Tsu
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| | | | - Andrew P Ryan
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| | - Rimjhim Agarwal
- Division of Immunology & Pathogenesis, University of California Berkeley, Berkeley, United States
| | - Patrick S Mitchell
- Division of Immunology & Pathogenesis, University of California Berkeley, Berkeley, United States.,Department of Microbiology, University of Washington, Seattle, United States
| | - Matthew D Daugherty
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| |
Collapse
|
27
|
Ng CS, Stobart CC, Luo H. Innate immune evasion mediated by picornaviral 3C protease: Possible lessons for coronaviral 3C-like protease? Rev Med Virol 2021; 31:1-22. [PMID: 33624382 PMCID: PMC7883238 DOI: 10.1002/rmv.2206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 is the etiological agent of the ongoing pandemic of coronavirus disease-2019, a multi-organ disease that has triggered an unprecedented global health and economic crisis. The virally encoded 3C-like protease (3CLpro ), which is named after picornaviral 3C protease (3Cpro ) due to their similarities in substrate recognition and enzymatic activity, is essential for viral replication and has been considered as the primary drug target. However, information regarding the cellular substrates of 3CLpro and its interaction with the host remains scarce, though recent work has begun to shape our understanding more clearly. Here we summarized and compared the mechanisms by which picornaviruses and coronaviruses have evolved to evade innate immune surveillance, with a focus on the established role of 3Cpro in this process. Through this comparison, we hope to highlight the potential action and mechanisms that are conserved and shared between 3Cpro and 3CLpro . In this review, we also briefly discussed current advances in the development of broad-spectrum antivirals targeting both 3Cpro and 3CLpro .
Collapse
Affiliation(s)
- Chen Seng Ng
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Honglin Luo
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
28
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
29
|
Wang P, Bai J, Liu X, Wang M, Wang X, Jiang P. Tomatidine inhibits porcine epidemic diarrhea virus replication by targeting 3CL protease. Vet Res 2020; 51:136. [PMID: 33176871 PMCID: PMC7656508 DOI: 10.1186/s13567-020-00865-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes lethal diarrhea in suckling piglets, leading to severe economic losses worldwide. There is an urgent need to find new therapeutic methods to prevent and control PEDV. Not only is there a shortage of commercial anti-PEDV drugs, but available commercial vaccines fail to protect against highly virulent PEDV variants. We screened an FDA-approved library of 911 natural products and found that tomatidine, a steroidal alkaloid extracted from the skin and leaves of tomatoes, demonstrates significant inhibition of PEDV replication in Vero and IPEC-J2 cells in vitro. Molecular docking and molecular dynamics analysis predicted interactions between tomatidine and the active pocket of PEDV 3CL protease, which were confirmed by fluorescence spectroscopy and isothermal titration calorimetry (ITC). The inhibiting effect of tomatidine on 3CL protease was determined using cleavage visualization and FRET assay. Tomatidine-mediated blocking of 3CL protease activity in PEDV-infected cells was examined by western blot detection of the viral polyprotein in PEDV-infected cells. It indicates that tomatidine inhibits PEDV replication mainly by targeting 3CL protease. In addition, tomatidine also has antiviral activity against transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome virus (PRRSV), encephalo myocarditis virus (EMCV) and seneca virus A (SVA) in vitro. These results may be helpful in developing a new prophylactic and therapeutic strategy against PEDV and other swine disease infections.
Collapse
Affiliation(s)
- Pengcheng Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuewei Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mi Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
30
|
Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell Mol Life Sci 2020; 78:1423-1444. [PMID: 33084946 PMCID: PMC7576986 DOI: 10.1007/s00018-020-03671-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Antiviral responses of interferons (IFNs) are crucial in the host immune response, playing a relevant role in controlling viralw infections. Three types of IFNs, type I (IFN-α, IFN-β), II (IFN-γ) and III (IFN-λ), are classified according to their receptor usage, mode of induction, biological activity and amino acid sequence. Here, we provide a comprehensive review of type I IFN responses and different mechanisms that viruses employ to circumvent this response. In the first part, we will give an overview of the different induction and signaling cascades induced in the cell by IFN-I after virus encounter. Next, highlights of some of the mechanisms used by viruses to counteract the IFN induction will be described. And finally, we will address different mechanism used by viruses to interference with the IFN signaling cascade and the blockade of IFN induced antiviral activities.
Collapse
|
31
|
Zhang X, Zhu Z, Wang C, Yang F, Cao W, Li P, Du X, Zhao F, Liu X, Zheng H. Foot-and-Mouth Disease Virus 3B Protein Interacts with Pattern Recognition Receptor RIG-I to Block RIG-I-Mediated Immune Signaling and Inhibit Host Antiviral Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2207-2221. [PMID: 32917788 PMCID: PMC7533709 DOI: 10.4049/jimmunol.1901333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/10/2020] [Indexed: 12/23/2022]
Abstract
Foot-and-mouth disease is a highly contagious disease of pigs, sheep, goats, bovine, and various wild cloven-hoofed animals caused by foot-and-mouth disease virus (FMDV) that has given rise to significant economic loss to global livestock industry. FMDV 3B protein is an important determinant of virulence of the virus. Modifications in 3B protein of FMDV considerably decrease virus yield. In the current study, we demonstrated the significant role of 3B protein in suppression of type I IFN production and host antiviral response in both human embryonic kidney HEK293T cells and porcine kidney PK-15 cells. We found that 3B protein interacted with the viral RNA sensor RIG-I to block RIG-I-mediated immune signaling. 3B protein did not affect the expression of RIG-I but interacted with RIG-I to block the interaction between RIG-I and the E3 ubiquitin ligase TRIM25, which prevented the TRIM25-mediated, Lys63-linked ubiquitination and activation of RIG-I. This inhibition of RIG-I-mediated immune signaling by 3B protein decreased IFN-β, IFN-stimulated genes, and proinflammatory cytokines expression, which in turn promoted FMDV replication. All of the three nonidentical copies of 3B could inhibit type I IFN production, and the aa 17A in each copy of 3B was involved in suppression of IFN-related antiviral response during FMDV infection in porcine cells. Together, our results indicate the role of 3B in suppression of host innate immune response and reveal a novel antagonistic mechanism of FMDV that is mediated by 3B protein.
Collapse
Affiliation(s)
- Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Pengfei Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiaoli Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China; and
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| |
Collapse
|
32
|
Zhang X, Paget M, Wang C, Zhu Z, Zheng H. Innate immune evasion by picornaviruses. Eur J Immunol 2020; 50:1268-1282. [PMID: 32767562 DOI: 10.1002/eji.202048785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
The family Picornaviridae comprises a large number of viruses that cause disease in broad spectrum of hosts, which have posed serious public health concerns worldwide and led to significant economic burden. A comprehensive understanding of the virus-host interactions during picornavirus infections will help to prevent and cure these diseases. Upon picornavirus infection, host pathogen recognition receptors (PRRs) sense viral RNA to activate host innate immune responses. The activated PRRs initiate signal transduction through a series of adaptor proteins, which leads to activation of several kinases and transcription factors, and contributes to the consequent expression of interferons (IFNs), IFN-inducible antiviral genes, as well as various inflammatory cytokines and chemokines. In contrast, to maintain viral replication and spread, picornaviruses have evolved several elegant strategies to block innate immune signaling and hinder host antiviral response. In this review, we will summarize the recent progress of how the members of family Picornaviridae counteract host immune response through evasion of PRRs detection, blocking activation of adaptor molecules and kinases, disrupting transcription factors, as well as counteraction of antiviral restriction factors. Such knowledge of immune evasion will help us better understand the pathogenesis of picornaviruses, and provide insights into developing antiviral strategies and improvement of vaccines.
Collapse
Affiliation(s)
- Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Max Paget
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, U.S.A.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, U.S.A.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, U.S.A
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| |
Collapse
|
33
|
Cell Culture Systems and Drug Targets for Hepatitis A Virus Infection. Viruses 2020; 12:v12050533. [PMID: 32408660 PMCID: PMC7291253 DOI: 10.3390/v12050533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis A virus (HAV) infection is one of the major causes of acute hepatitis, and this infection occasionally causes acute liver failure. HAV infection is associated with HAV-contaminated food and water as well as sexual transmission among men who have sex with men. Although an HAV vaccine has been developed, outbreaks of hepatitis A and life-threatening severe HAV infections are still observed worldwide. Therefore, an improved HAV vaccine and anti-HAV drugs for severe hepatitis A should be developed. Here, we reviewed cell culture systems for HAV infection, and other issues. This review may help with improving the HAV vaccine and developing anti-HAV drugs.
Collapse
|
34
|
Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020; 9:pathogens9050367. [PMID: 32403318 PMCID: PMC7281546 DOI: 10.3390/pathogens9050367] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.
Collapse
|
35
|
Chen S, Tian J, Li Z, Kang H, Zhang J, Huang J, Yin H, Hu X, Qu L. Feline Infectious Peritonitis Virus Nsp5 Inhibits Type I Interferon Production by Cleaving NEMO at Multiple Sites. Viruses 2019; 12:v12010043. [PMID: 31905881 PMCID: PMC7019732 DOI: 10.3390/v12010043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in cats. The type I interferon (type I IFN)-mediated immune responses provide host protection from infectious diseases. Several coronaviruses have been reported to evolve diverse strategies to evade host IFN response. However, whether feline infectious peritonitis virus (FIPV) antagonizes the type I IFN signaling remains unclear. In this study, we demonstrated that FIPV strain DF2 infection not only failed to induce interferon-β (IFN-β) and interferon-stimulated gene (ISG) production, but also inhibited Sendai virus (SEV) or polyinosinic-polycytidylic acid (poly(I:C))-induced IFN-β production. Subsequently, we found that one of the non-structural proteins encoded by the FIPV genome, nsp5, interrupted type I IFN signaling in a protease-dependent manner by cleaving the nuclear factor κB (NF-κB) essential modulator (NEMO) at three sites—glutamine132 (Q132), Q205, and Q231. Further investigation revealed that the cleavage products of NEMO lost the ability to activate the IFN-β promoter. Mechanistically, the nsp5-mediated NEMO cleavage disrupted the recruitment of the TRAF family member-associated NF-κB activator (TANK) to NEMO, which reduced the phosphorylation of interferon regulatory factor 3 (IRF3), leading to the inhibition of type I IFN production. Our research provides new insights into the mechanism for FIPV to counteract host innate immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoliang Hu
- Correspondence: (X.H.); (L.Q.); Tel.: +86-451-5105-1785 (X.H.); +86-451-5105-1788 (L.Q.)
| | - Liandong Qu
- Correspondence: (X.H.); (L.Q.); Tel.: +86-451-5105-1785 (X.H.); +86-451-5105-1788 (L.Q.)
| |
Collapse
|
36
|
Sun D, Wen X, Wang M, Mao S, Cheng A, Yang X, Jia R, Chen S, Yang Q, Wu Y, Zhu D, Liu M, Zhao X, Zhang S, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Chen X. Apoptosis and Autophagy in Picornavirus Infection. Front Microbiol 2019; 10:2032. [PMID: 31551969 PMCID: PMC6733961 DOI: 10.3389/fmicb.2019.02032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Cell death is a fundamental process in maintaining cellular homeostasis, which can be either accidental or programed. Programed cell death depends on the specific signaling pathways, resulting in either lytic or non-lytic morphology. It exists in two primary forms: apoptosis and autophagic cell death. Apoptosis is a non-lytic and selective cell death program, which is executed by caspases in response to non-self or external stimuli. In contrast, autophagy is crucial for maintaining cellular homeostasis via the degradation and recycling of cellular components. These two mechanisms also function in the defense against pathogen attack. However, picornaviruses have evolved to utilize diverse strategies and target critical components to regulate the apoptotic and autophagic processes for optimal replication and the release from the host cell. Although an increasing number of investigations have shown that the apoptosis and autophagy are altered in picornavirus infection, the mechanism by which viruses take advantage of these two processes remains unknown. In this review, we discuss the mechanisms of picornavirus executes cellular apoptosis and autophagy at the molecular level and the relationship between these interactions and viral pathogenesis.
Collapse
Affiliation(s)
- Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Feng H, Sander AL, Moreira-Soto A, Yamane D, Drexler JF, Lemon SM. Hepatovirus 3ABC proteases and evolution of mitochondrial antiviral signaling protein (MAVS). J Hepatol 2019; 71:25-34. [PMID: 30876947 PMCID: PMC6581616 DOI: 10.1016/j.jhep.2019.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Unlike other hepatitis viruses that have infected primates for millions of years, hepatitis A virus (HAV) likely entered human populations only 10-12 thousand years ago after jumping from a rodent host. The phylogeny of modern hepatoviruses that infect rodents and bats suggest that multiple similar host shifts have occurred in the past. The factors determining such shifts are unknown, but the capacity to overcome innate antiviral responses in a foreign species is likely key. METHODS We assessed the capacity of diverse hepatovirus 3ABC proteases to cleave mitochondrial antiviral signaling protein (MAVS) and disrupt antiviral signaling in HEK293 and human hepatocyte-derived cell lines. We also applied maximum-likelihood and Bayesian algorithms to identify sites of diversifying selection in MAVS orthologs from 75 chiropteran, rodent and primate species. RESULTS 3ABC proteases from bat, but not rodent hepatoviruses efficiently cleaved human MAVS at Glu463/Gly464, disrupting virus activation of the interferon-β promoter, whereas human HAV 3ABC cleaved at Gln427/Val428. In contrast, MAVS orthologs from rodents and bats were resistant to cleavage by 3ABC proteases of cognate hepatoviruses and in several cases human HAV. A search for diversifying selection among MAVS orthologs from all 3 orders revealed 90 of ∼540 residues to be under positive selection, including residues in chiropteran MAVS that align with the site of cleavage of human MAVS by bat 3ABC proteases. CONCLUSIONS 3ABC protease cleavage of MAVS is a conserved attribute of hepatoviruses, acting broadly across different mammalian species and associated with evidence of diversifying selection at cleavage sites in rodent and bat MAVS orthologs. The capacity of hepatoviruses to disrupt MAVS-mediated innate immune responses has shaped evolution of both hepatoviruses and their hosts, and facilitates cross-species transmission of hepatitis A. LAY SUMMARY Hepatitis A virus, a common cause of acute hepatitis globally, is likely to have evolved from a virus that jumped from a rodent species to humans within the last 10-12 thousand years. Here we show that distantly related hepatoviruses, that infect bats and rodents today, express proteases that disrupt innate antiviral responses in human cells. This conserved attribute of hepatoviruses may have contributed to that ancient host species shift.
Collapse
Affiliation(s)
- Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Andrés Moreira-Soto
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Daisuke Yamane
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), Berlin, Germany
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Chen J, Wang D, Sun Z, Gao L, Zhu X, Guo J, Xu S, Fang L, Li K, Xiao S. Arterivirus nsp4 Antagonizes Interferon Beta Production by Proteolytically Cleaving NEMO at Multiple Sites. J Virol 2019; 93:e00385-19. [PMID: 30944180 PMCID: PMC6613749 DOI: 10.1128/jvi.00385-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 12/24/2022] Open
Abstract
Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-β) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-β production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-β production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-β transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-β-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.
Collapse
Affiliation(s)
- Jiyao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zheng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Li Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyu Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shangen Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
39
|
Venuti A, Musarra-Pizzo M, Pennisi R, Tankov S, Medici MA, Mastino A, Rebane A, Sciortino MT. HSV-1\EGFP stimulates miR-146a expression in a NF-κB-dependent manner in monocytic THP-1 cells. Sci Rep 2019; 9:5157. [PMID: 30914680 PMCID: PMC6435682 DOI: 10.1038/s41598-019-41530-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
The nuclear factor κB (NF-κB) pathway plays a key role in innate and adaptive immunity, cell proliferation and survival, inflammation and tumors development. MiR-146a is an immune system regulator that has anti-inflammatory function in multiple cell types and conditions. Here we demonstrate activation of canonical NF-κB pathway in monocytic cells upon HSV-1 replication. By constructing and using a recombinant HSV-1\EGFP virus, we monitored the capability of the virus to recruit NF-κB and we report that the phosphorylation of p65 protein correlates with an active virus replication at single-cell level. In addition, we found that upregulation of miR-146a during viral replication is strictly dependent on NF-κB activation and correlates with tight control of the interleukin-1 receptor-associate kinase 1 (IRAK1). Accordingly, THP-1 DN IκBα cells, expressing a dominant negative mIκBα, did not show upregulation of miR-146a upon HSV-1 infection. Our data suggest that the expression of miRNA-146a modulates NF-κB activation through targeting IRAK1 during HSV-1 replication in THP-1 cells.
Collapse
Affiliation(s)
- Assunta Venuti
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Viale F, Stagno d'Alcontres, 31, Messina, 98166, Italy.
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon, France.
| | - Maria Musarra-Pizzo
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Viale F, Stagno d'Alcontres, 31, Messina, 98166, Italy
| | - Rosamaria Pennisi
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Viale F, Stagno d'Alcontres, 31, Messina, 98166, Italy
| | - Stoyan Tankov
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maria Antonietta Medici
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Viale F, Stagno d'Alcontres, 31, Messina, 98166, Italy
| | - Antonio Mastino
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Viale F, Stagno d'Alcontres, 31, Messina, 98166, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maria Teresa Sciortino
- Department of Chemical Biological Pharmaceutical and Environmental Sciences, University of Messina, Viale F, Stagno d'Alcontres, 31, Messina, 98166, Italy.
| |
Collapse
|
40
|
Feng Z, Lemon SM. Innate Immunity to Enteric Hepatitis Viruses. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033464. [PMID: 29686040 DOI: 10.1101/cshperspect.a033464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although hepatitis A virus (HAV) and hepatitis E virus (HEV) are both positive-strand RNA viruses that replicate in the cytoplasm of hepatocytes, there are important differences in the ways they induce and counteract host innate immune responses. HAV is remarkably stealthy because of its ability to evade and disrupt innate signaling pathways that lead to interferon production. In contrast, HEV does not block interferon production. Instead, it persists in the presence of an interferon response. These differences may provide insight into HEV persistence in immunocompromised patients, an emerging health problem in developed countries.
Collapse
Affiliation(s)
- Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio 43205
| | - Stanley M Lemon
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
41
|
Koonpaew S, Teeravechyan S, Frantz PN, Chailangkarn T, Jongkaewwattana A. PEDV and PDCoV Pathogenesis: The Interplay Between Host Innate Immune Responses and Porcine Enteric Coronaviruses. Front Vet Sci 2019; 6:34. [PMID: 30854373 PMCID: PMC6395401 DOI: 10.3389/fvets.2019.00034] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Enteropathogenic porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), members of the coronavirus family, account for the majority of lethal watery diarrhea in neonatal pigs in the past decade. These two viruses pose significant economic and public health burdens, even as both continue to emerge and reemerge worldwide. The ability to evade, circumvent or subvert the host’s first line of defense, namely the innate immune system, is the key determinant for pathogen virulence, survival, and the establishment of successful infection. Unfortunately, we have only started to unravel the underlying viral mechanisms used to manipulate host innate immune responses. In this review, we gather current knowledge concerning the interplay between these viruses and components of host innate immunity, focusing on type I interferon induction and signaling in particular, and the mechanisms by which virus-encoded gene products antagonize and subvert host innate immune responses. Finally, we provide some perspectives on the advantages gained from a better understanding of host-pathogen interactions. This includes their implications for the future development of PEDV and PDCoV vaccines and how we can further our knowledge of the molecular mechanisms underlying virus pathogenesis, virulence, and host coevolution.
Collapse
Affiliation(s)
- Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
42
|
Morazzani EM, Compton JR, Leary DH, Berry AV, Hu X, Marugan JJ, Glass PJ, Legler PM. Proteolytic cleavage of host proteins by the Group IV viral proteases of Venezuelan equine encephalitis virus and Zika virus. Antiviral Res 2019; 164:106-122. [PMID: 30742841 DOI: 10.1016/j.antiviral.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/13/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
The alphaviral nonstructural protein 2 (nsP2) cysteine proteases (EC 3.4.22.-) are essential for the proteolytic processing of the nonstructural (ns) polyprotein and are validated drug targets. A common secondary role of these proteases is to antagonize the effects of interferon (IFN). After delineating the cleavage site motif of the Venezuelan equine encephalitis virus (VEEV) nsP2 cysteine protease, we searched the human genome to identify host protein substrates. Here we identify a new host substrate of the VEEV nsP2 protease, human TRIM14, a component of the mitochondrial antiviral-signaling protein (MAVS) signalosome. Short stretches of homologous host-pathogen protein sequences (SSHHPS) are present in the nonstructural polyprotein and TRIM14. A 25-residue cyan-yellow fluorescent protein TRIM14 substrate was cleaved in vitro by the VEEV nsP2 protease and the cleavage site was confirmed by tandem mass spectrometry. A TRIM14 cleavage product also was found in VEEV-infected cell lysates. At least ten other Group IV (+)ssRNA viral proteases have been shown to cleave host proteins involved in generating the innate immune responses against viruses, suggesting that the integration of these short host protein sequences into the viral protease cleavage sites may represent an embedded mechanism of IFN antagonism. This interference mechanism shows several parallels with those of CRISPR/Cas9 and RNAi/RISC, but with a protease recognizing a protein sequence common to both the host and pathogen. The short host sequences embedded within the viral genome appear to be analogous to the short phage sequences found in a host's CRISPR spacer sequences. To test this algorithm, we applied it to another Group IV virus, Zika virus (ZIKV), and identified cleavage sites within human SFRP1 (secreted frizzled related protein 1), a retinal Gs alpha subunit, NT5M, and Forkhead box protein G1 (FOXG1) in vitro. Proteolytic cleavage of these proteins suggests a possible link between the protease and the virus-induced phenotype of ZIKV. The algorithm may have value for selecting cell lines and animal models that recapitulate virus-induced phenotypes, predicting host-range and susceptibility, selecting oncolytic viruses, identifying biomarkers, and de-risking live virus vaccines. Inhibitors of the proteases that utilize this mechanism may both inhibit viral replication and alleviate suppression of the innate immune responses.
Collapse
Affiliation(s)
- Elaine M Morazzani
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Jaimee R Compton
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Dagmar H Leary
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | | | - Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, MD 20850, USA
| | - Juan J Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, MD 20850, USA
| | - Pamela J Glass
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Patricia M Legler
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
43
|
Lanford RE, Walker CM, Lemon SM. Nonhuman Primate Models of Hepatitis A Virus and Hepatitis E Virus Infections. Cold Spring Harb Perspect Med 2019; 9:a031815. [PMID: 29686041 PMCID: PMC6360867 DOI: 10.1101/cshperspect.a031815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although phylogenetically unrelated, human hepatitis viruses share an exclusive or near exclusive tropism for replication in differentiated hepatocytes. This narrow tissue tropism may contribute to the restriction of the host ranges of these viruses to relatively few host species, mostly nonhuman primates. Nonhuman primate models thus figure prominently in our current understanding of the replication and pathogenesis of these viruses, including the enterically transmitted hepatitis A virus (HAV) and hepatitis E virus (HEV), and have also played major roles in vaccine development. This review draws comparisons of HAV and HEV infection from studies conducted in nonhuman primates, and describes how such studies have contributed to our current understanding of the biology of these viruses.
Collapse
Affiliation(s)
- Robert E Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas 782227
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University, Columbus, Ohio 43205
| | - Stanley M Lemon
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7030
| |
Collapse
|
44
|
Banerjee K, Bhat R, Rao VUB, Nain A, Rallapalli KL, Gangopadhyay S, Singh RP, Banerjee M, Jayaram B. Toward development of generic inhibitors against the 3C proteases of picornaviruses. FEBS J 2019; 286:765-787. [PMID: 30461192 PMCID: PMC7164057 DOI: 10.1111/febs.14707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 09/20/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
Development of novel antivirals, which requires knowledge of the viral life cycle in molecular detail, is a daunting task, involving extensive investments, and frequently resulting in failure. As there exist significant commonalities among virus families in the manner of host interaction, identifying and targeting common rather than specific features may lead to the development of broadly useful antivirals. Here, we have targeted the 3C protease of Hepatitis A Virus (HAV), a feco-orally transmitted virus of the family Picornaviridae, for identification of potential antivirals. The 3C protease is a viable drug target as it is required by HAV, as well as by other picornaviruses, for post-translational proteolysis of viral polyproteins and for inhibiting host innate immune pathways. Computational screening, followed by chemical synthesis and experimental validation resulted in identification of a few compounds which, at low micromolar concentrations, could inhibit HAV 3C activity. These compounds were further tested experimentally against the 3C protease of Human Rhinovirus, another member of the Picornaviridae family, with comparable results. Computational studies on 3C proteases from other members of the picornavirus family have indicated that the compounds identified could potentially be generic inhibitors for picornavirus 3C proteases.
Collapse
Affiliation(s)
- Kamalika Banerjee
- Kusuma School of Biological SciencesIndian Institute of TechnologyHauz KhasIndia
| | - Ruchika Bhat
- Department of ChemistryIndian Institute of TechnologyHauz KhasIndia
- Supercomputing Facility for Bioinformatics & Computational BiologyIndian Institute of TechnologyHauz KhasIndia
| | | | - Anshu Nain
- Kusuma School of Biological SciencesIndian Institute of TechnologyHauz KhasIndia
| | - Kartik Lakshmi Rallapalli
- Department of ChemistryIndian Institute of TechnologyHauz KhasIndia
- Present address:
Department of Chemistry and BiochemistryUniversity of California San Diego9500 Gilman DrLa JollaCA92093USA
| | - Sohona Gangopadhyay
- Department of ChemistryIndian Institute of TechnologyHauz KhasIndia
- Present address:
Chemical DivisionGeological Survey of India15‐16 Jhalana DungriWestern RegionJaipur302004India
| | - R. P. Singh
- Department of ChemistryIndian Institute of TechnologyHauz KhasIndia
| | - Manidipa Banerjee
- Kusuma School of Biological SciencesIndian Institute of TechnologyHauz KhasIndia
| | - Bhyravabhotla Jayaram
- Kusuma School of Biological SciencesIndian Institute of TechnologyHauz KhasIndia
- Department of ChemistryIndian Institute of TechnologyHauz KhasIndia
- Supercomputing Facility for Bioinformatics & Computational BiologyIndian Institute of TechnologyHauz KhasIndia
| |
Collapse
|
45
|
Hirai-Yuki A, Whitmire JK, Joyce M, Tyrrell DL, Lemon SM. Murine Models of Hepatitis A Virus Infection. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031674. [PMID: 29661811 DOI: 10.1101/cshperspect.a031674] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanistic analyses of hepatitis A virus (HAV)-induced pathogenesis have long been thwarted by the lack of tractable small animal models that recapitulate disease observed in humans. Several approaches have shown success, including infection of chimeric mice with human liver cells. Other recent studies show that HAV can replicate to high titer in mice lacking expression of the type I interferon (IFN) receptor (IFN-α/β receptor) or mitochondrial antiviral signaling (MAVS) protein. Mice deficient in the IFN receptor show critical features of type A hepatitis in humans when challenged with human HAV, including histological evidence of liver damage, leukocyte infiltration, and the release of liver enzymes into blood. Acute pathogenesis is caused by MAVS-dependent signaling that leads to intrinsic apoptosis of hepatocytes.
Collapse
Affiliation(s)
- Asuka Hirai-Yuki
- Division of Experimental Animal Research, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Jason K Whitmire
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599.,Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, Canada.,Li Ka Shing Institute for Virology, University of Alberta, Edmonton T6G 2E1, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, Canada.,Li Ka Shing Institute for Virology, University of Alberta, Edmonton T6G 2E1, Canada
| | - Stanley M Lemon
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27517
| |
Collapse
|
46
|
Wang Y, Ma L, Stipkovits L, Szathmary S, Li X, Liu Y. The Strategy of Picornavirus Evading Host Antiviral Responses: Non-structural Proteins Suppress the Production of IFNs. Front Microbiol 2018; 9:2943. [PMID: 30619109 PMCID: PMC6297142 DOI: 10.3389/fmicb.2018.02943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
Viral infections trigger the innate immune system to produce interferons (IFNs), which play important role in host antiviral responses. Co-evolution of viruses with their hosts has favored development of various strategies to evade the effects of IFNs, enabling viruses to survive inside host cells. One such strategy involves inhibition of IFN signaling pathways by non-structural proteins. In this review, we provide a brief overview of host signaling pathways inducing IFN production and their suppression by picornavirus non-structural proteins. Using this strategy, picornaviruses can evade the host immune response and replicate inside host cells.
Collapse
Affiliation(s)
- Yining Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lina Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | | | | | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
47
|
Shin EC, Jeong SH. Natural History, Clinical Manifestations, and Pathogenesis of Hepatitis A. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031708. [PMID: 29440324 DOI: 10.1101/cshperspect.a031708] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis A virus (HAV) is transmitted by the fecal-oral route and is a major cause of acute viral hepatitis. The clinical manifestations of HAV infection range from asymptomatic infection to acute liver failure (ALF), but do not include progression to chronic hepatitis. Risk factors for severe acute hepatitis A are older age (>40 years) and preexisting liver disease. Some patients may show atypical clinical features such as relapsing hepatitis, prolonged cholestasis, or extrahepatic manifestations. Almost all hepatitis A patients spontaneously recover with supportive care. However, in the case of ALF (<1%), intensive care and urgent decision on liver transplantation are required. Liver injury during hepatitis A is not directly caused by HAV but is known to be caused by immune-mediated mechanisms. In this review, the natural history and clinical manifestations of hepatitis A are described. In addition, mechanisms of immunopathogenesis in hepatitis A are discussed.
Collapse
Affiliation(s)
- Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Sook-Hyang Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, College of Medicine, Seoul National University, Seongnam, Gyeonggido 13620, Republic of Korea
| |
Collapse
|
48
|
Cao X, Xue YJ, Du JL, Xu Q, Yang XC, Zeng Y, Wang BB, Wang HZ, Liu J, Cai KZ, Ma ZR. Induction and Suppression of Innate Antiviral Responses by Hepatitis A Virus. Front Microbiol 2018; 9:1865. [PMID: 30174659 PMCID: PMC6107850 DOI: 10.3389/fmicb.2018.01865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/25/2018] [Indexed: 12/25/2022] Open
Abstract
Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β), serving as the first line of defense against viruses. However, HAV has developed various strategies to compromise the innate immune system and promote viral propagation within the host cells. The long coevolution of HAV in hosts has prompted the development of effective immune antagonism strategies that actively fight against host antiviral responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress on the interaction between HAV and the host, especially focusing on how HAV abrogates the antiviral effects of the innate immune system.
Collapse
Affiliation(s)
- Xin Cao
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu-jia Xue
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Jiang-long Du
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Qiang Xu
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Xue-cai Yang
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Yan Zeng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bo-bo Wang
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Hai-zhen Wang
- Hebi Precision Medical Research Institute, People's Hospital of Hebi, Hebi, China
| | - Jing Liu
- Department of Medical OncologyPeople's Hospital of Hebi, Hebi, China
| | - Kui-zheng Cai
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| | - Zhong-ren Ma
- College of Life Science and Engineering, Northwest Minzu University, Engineering & Technology Research Center for Animal Cell, Lanzhou, China
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Lanzhou, China
| |
Collapse
|
49
|
Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism. Viruses 2018; 10:v10080409. [PMID: 30081579 PMCID: PMC6115930 DOI: 10.3390/v10080409] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is an important transcription factor that induces the expression of antiviral genes and viral genes. NF-κB activation needs the activation of NF-κB upstream molecules, which include receptors, adaptor proteins, NF-κB (IκB) kinases (IKKs), IκBα, and NF-κB dimer p50/p65. To survive, viruses have evolved the capacity to utilize various strategies that inhibit NF-κB activity, including targeting receptors, adaptor proteins, IKKs, IκBα, and p50/p65. To inhibit NF-κB activation, viruses encode several specific NF-κB inhibitors, including NS3/4, 3C and 3C-like proteases, viral deubiquitinating enzymes (DUBs), phosphodegron-like (PDL) motifs, viral protein phosphatase (PPase)-binding proteins, and small hydrophobic (SH) proteins. Finally, we briefly describe the immune evasion mechanism of human immunodeficiency virus 1 (HIV-1) by inhibiting NF-κB activity in productive and latent infections. This paper reviews a viral mechanism of immune evasion that involves the suppression of NF-κB activation to provide new insights into and references for the control and prevention of viral diseases.
Collapse
|
50
|
Kloc A, Rai DK, Rieder E. The Roles of Picornavirus Untranslated Regions in Infection and Innate Immunity. Front Microbiol 2018; 9:485. [PMID: 29616004 PMCID: PMC5870040 DOI: 10.3389/fmicb.2018.00485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 11/17/2022] Open
Abstract
Viral genomes have evolved to maximize their potential of overcoming host defense mechanisms and to induce a variety of disease syndromes. Structurally, a genome of a virus consists of coding and noncoding regions, and both have been shown to contribute to initiation and progression of disease. Accumulated work in picornaviruses has stressed out the importance of the noncoding RNAs, or untranslated 5′- and 3′-regions (UTRs), in both replication and translation of viral genomes. Unsurprisingly, defects in these processes have been reported to cause viral attenuation and affect viral pathogenicity. However, substantial evidence suggests that these untranslated RNAs may influence the outcome of the host innate immune response. This review discusses the involvement of 5′- and 3′-terminus UTRs in induction and regulation of host immunity and its consequences for viral life cycle and virulence.
Collapse
Affiliation(s)
- Anna Kloc
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Devendra K Rai
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| |
Collapse
|