1
|
Sun K, Bose D, Singh RK, Pei Y, Robertson ES. The F-box E3 ligase protein FBXO11 regulates EBNA3C-associated degradation of BCL6. J Virol 2024; 98:e0054824. [PMID: 38864622 PMCID: PMC11265398 DOI: 10.1128/jvi.00548-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Most mature B-cell malignancies originate from the malignant transformation of germinal center (GC) B cells. The GC reaction appears to have a role in malignant transformation, in which a major player of the GC reaction is BCL6, a key regulator of this process. We now demonstrate that BCL6 protein levels were dramatically decreased in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines and Burkitt's lymphoma cell lines. Notably, BCL6 degradation was significantly enhanced in the presence of both EBNA3C and FBXO11. Furthermore, the amino-terminal domain of EBNA3C, which contains residues 50-100, interacts directly with FBXO11. The expression of EBNA3C and FBXO11 resulted in a significant induction of cell proliferation. Furthermore, BCL6 protein expression levels were regulated by EBNA3C via the Skp Cullin Fbox (SCF)FBXO11 complex, which mediated its ubiquitylation, and knockdown of FBXO11 suppressed the transformation of lymphoblastoid cell lines. These data provide new insights into the function of EBNA3C in B-cell transformation during GC reaction and raise the possibility of developing new targeted therapies against EBV-associated cancers. IMPORTANCE The novel revelation in our study involves the suppression of BCL6 expression by the essential Epstein-Barr virus (EBV) antigen EBNA3C, shedding new light on our current comprehension of how EBV contributes to lymphomagenesis by impeding the germinal center reaction. It is crucial to note that while several EBV latent proteins are expressed in infected cells, the collaborative mechanisms among these proteins in regulating B-cell development or inducing B-cell lymphoma require additional investigation. Nonetheless, our findings carry significance for the development of emerging strategies aimed at addressing EBV-associated cancers.
Collapse
Affiliation(s)
- Kunfeng Sun
- The Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dipayan Bose
- The Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rajnish Kumar Singh
- The Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Erle S. Robertson
- The Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Combs LR, Combs J, McKenna R, Toth Z. Protein Degradation by Gammaherpesvirus RTAs: More Than Just Viral Transactivators. Viruses 2023; 15:730. [PMID: 36992439 PMCID: PMC10055789 DOI: 10.3390/v15030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the Gammaherpesvirus subfamily that encodes several viral proteins with intrinsic E3 ubiquitin ligase activity or the ability to hijack host E3 ubiquitin ligases to modulate the host's immune response and to support the viral life cycle. This review focuses specifically on how the immediate-early KSHV protein RTA (replication and transcription activator) hijacks the host's ubiquitin-proteasome pathway (UPP) to target cellular and viral factors for protein degradation to allow for robust lytic reactivation. Notably, RTA's targets are either potent transcription repressors or they are activators of the innate and adaptive immune response, which block the lytic cycle of the virus. This review mainly focuses on what is currently known about the role of the E3 ubiquitin ligase activity of KSHV RTA in the regulation of the KSHV life cycle, but we will also discuss the potential role of other gammaherpesviral RTA homologs in UPP-mediated protein degradation.
Collapse
Affiliation(s)
- Lauren R. Combs
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Molecular Mechanisms of Kaposi Sarcoma Development. Cancers (Basel) 2022; 14:cancers14081869. [PMID: 35454776 PMCID: PMC9030761 DOI: 10.3390/cancers14081869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023] Open
Abstract
Simple Summary There are at least four forms of Kaposi’s sarcoma (KS) with the ‘HIV’-related form being the most aggressive and can involve mucosae or visceral organs. Kaposi’s sarcoma-associated herpes virus (KSHV) is the underlying cause of this disease. It can infect endothelial and/or mesenchymal cells and establish a latent phase in host cells in which latency proteins and various non-coding RNAs (ncRNAs) play a complex role in proliferation and angiogenesis. It also undergoes periods of sporadic lytic reactivation that are key for KS progression. Complex interactions with the microenvironment with production of inflammatory cytokines and paracrine signaling is a standout feature of KS development and maintenance. KSHV impairs the immune response by various mechanisms such as the degradation of a variety of proteins involved in immune response or binding to cellular chemokines. Treatment options include classical chemotherapy, but other novel therapies are being investigated. Abstract Kaposi’s sarcoma (KS) is a heterogeneous angioproliferative tumor that generally arises in the skin. At least four forms of this disease have been described, with the ‘HIV’-related form being the most aggressive and can involve mucosae or visceral organs. Three quarters of KS cases occur in sub-Saharan Africa (SSA) as geographic variation is explained by the disparate prevalence of KS-associated herpes virus (KSHV), which is the underlying cause of this disease. It can infect endothelial and/or mesenchymal cells that consequently transdifferentiate to an intermediate state. KSHV establishes a latent phase in host cells in which latency proteins and various non-coding RNAs (ncRNAs) play a complex role in proliferation and angiogenesis. It also undergoes periods of sporadic lytic reactivation triggered by various biological signals in which lytic stage proteins modulate host cell signaling pathways and are key in KS progression. Complex interactions with the microenvironment with production of inflammatory cytokines with paracrine signaling is a standout feature of KS development and maintenance. KSHV impairs the immune response by various mechanisms such as the degradation of a variety of proteins involved in immune response or binding to cellular chemokines. Treatment options include classical chemotherapy, but other novel therapies are being investigated.
Collapse
|
4
|
Karpathiou G, Habougit C, Peoc'h M. STAT6 is not expressed in Kaposi sarcoma. Ann Diagn Pathol 2021; 55:151836. [PMID: 34626935 DOI: 10.1016/j.anndiagpath.2021.151836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Affiliation(s)
| | - Cyril Habougit
- Pathology Department, University Hospital of Saint-Etienne, France
| | - Michel Peoc'h
- Pathology Department, University Hospital of Saint-Etienne, France
| |
Collapse
|
5
|
Dlamini Z, Mbele M, Makhafola TJ, Hull R, Marima R. HIV-Associated Cancer Biomarkers: A Requirement for Early Diagnosis. Int J Mol Sci 2021; 22:ijms22158127. [PMID: 34360891 PMCID: PMC8348540 DOI: 10.3390/ijms22158127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Globally, HIV/AIDS and cancer are increasingly public health problems and continue to exist as comorbidities. The sub-Saharan African region has the largest number of HIV infections. Malignancies previously associated with HIV/AIDS, also known as the AIDS-defining cancers (ADCs) have been documented to decrease, while the non-AIDS defining cancer (NADCs) are on the rise. On the other hand, cancer is a highly heterogeneous disease and precision oncology as the most effective cancer therapy is gaining attraction. Among HIV-infected individuals, the increased risk for developing cancer is due to the immune system of the patient being suppressed, frequent coinfection with oncogenic viruses and an increase in risky behavior such as poor lifestyle. The core of personalised medicine for cancer depends on the discovery and the development of biomarkers. Biomarkers are specific and highly sensitive markers that reveal information that aid in leading to the diagnosis, prognosis and therapy of the disease. This review focuses mainly on the risk assessment, diagnostic, prognostic and therapeutic role of various cancer biomarkers in HIV-positive patients. A careful selection of sensitive and specific HIV-associated cancer biomarkers is required to identify patients at most risk of tumour development, thus improving the diagnosis and prognosis of the disease.
Collapse
|
6
|
Silva DMD, Gonçales JP, Silva Júnior JVJ, Lopes TRR, Bezerra LA, Barros de Lorena VM, Duarte Coêlho MRC. Evaluation of IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ cytokines in HIV/HHV-8 coinfection. J Med Virol 2021; 93:4033-4037. [PMID: 32926412 DOI: 10.1002/jmv.26516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022]
Abstract
Imbalance in the immune response is one of the main pathogenic mechanisms of diseases related with human immunodeficiency virus (HIV)/human gammaherpesvirus 8 (HHV-8) coinfection, such as Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), multicentric Castleman disease (MCD) and the Kaposi's sarcoma-associated herpesvirus inflammatory cytokine syndrome (KICS). However, significant changes in pro- and anti-inflammatory cytokine levels may be observed in HIV/HHV-8 individuals who are negative for KS, PEL, MCD, and/or KICS. In this study, serum levels of interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor nucrosis factor α (TNF-α) and interferon γ (IFN-γ) were assessed in 69 HIV and 48 HIV/HHV-8 individuals, all negatives for HHV-8-related diseases. The cytokines were measured by flow cytometry and analyzed by the Mann-Whitney test. The p < .05 and 95% confidence interval were considered in all analyzes. IL-4 (p = .0155), IL-6 (p = .0036), and IL-10 (p = .0036) levels were significantly higher in HIV/HHV-8 patients than in the HIV group. On the other hand, IL-2 (p = .2295), TNF-α (p = .1216) and IFN-γ (p = .1178) did not differ between the groups analyzed. To our knowledge, to date, this is the first report on significant differences in the levels of IL-4 and IL-6 in HIV versus HIV/HHV-8 individuals. Finally, these early findings are important as a prognostic tool and contribute to clarifying the HHV-8-host interaction.
Collapse
Affiliation(s)
- Dayvson Maurício da Silva
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Juliana Prado Gonçales
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - José Valter Joaquim Silva Júnior
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Thaísa Regina Rocha Lopes
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Virology Sector, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Luan Araújo Bezerra
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Maria Rosângela Cunha Duarte Coêlho
- Virology Sector, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Long W, Zhao G, Wu Y, Liu Y. Gallic acid inhibits Kaposi's Sarcoma-associated herpesvirus lytic reactivation by suppressing RTA transcriptional activities. Food Sci Nutr 2021; 9:847-854. [PMID: 33598168 PMCID: PMC7866607 DOI: 10.1002/fsn3.2048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus, has two life cycle modes: the latent and lytic phases. KSHV lytic reactivation is known to be important both for viral propagation and for KSHV-induced tumorigenesis. The KSHV replication and transcription activator (RTA) protein is essential for lytic reactivation. Gallic acid (GA), one of the most abundant phenolic acids in the plant kingdom, has been shown potential chemotherapeutic efficacy against microbial and cancer. However, the effects of GA on KSHV replication and KSHV-induced tumorigenesis have not yet been reported. Here, we report that GA induces apoptotic cell death in BCBL-1 cells in a dose-dependent manner. GA inhibits KSHV reactivation and reduces the production of progeny virus from KSHV-harboring cells. GA inhibits RTA transcriptional activities by suppressing its binding to target gene promoters. These results suggest that GA may represent a novel strategy for the treatment of KSHV infection and KSHV-associated lymphomas.
Collapse
Affiliation(s)
- Wen‐Ying Long
- Central LaboratoryThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| | - Guo‐hua Zhao
- Department of NeurologyThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| | - Yao Wu
- Central LaboratoryThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| | - Ying Liu
- Central LaboratoryThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| |
Collapse
|
8
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
9
|
Broussard G, Damania B. KSHV: Immune Modulation and Immunotherapy. Front Immunol 2020; 10:3084. [PMID: 32117196 PMCID: PMC7025529 DOI: 10.3389/fimmu.2019.03084] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is associated with KS, primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). To ensure its own survival and propagation, KSHV employs an extensive network of viral proteins to subvert the host immune system, resulting in lifelong latent infection. Modulation of cellular and systemic immune defenses allows KSHV to persist in the host, which may eventually lead to the progression of KSHV-associated cancers. Due to KSHV's reliance on modifying immune responses to efficiently infect its host, immunotherapy is an attractive option for treating KSHV-associated malignancies. In this review, we will focus on the mechanisms by which KSHV evades the immune system and the current immune-related clinical strategies to treat KSHV-associated disease.
Collapse
Affiliation(s)
- Grant Broussard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Gu F, Wang C, Wei F, Wang Y, Zhu Q, Ding L, Xu W, Zhu C, Cai C, Qian Z, Yuan Z, Robertson E, Cai Q. STAT6 degradation and ubiquitylated TRIML2 are essential for activation of human oncogenic herpesvirus. PLoS Pathog 2018; 14:e1007416. [PMID: 30532138 PMCID: PMC6287816 DOI: 10.1371/journal.ppat.1007416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023] Open
Abstract
Aberrations in STAT6-mediated signaling are linked to the development of multiple cancer types. Increasing evidence has shown that activation of human oncogenic herpesvirus lytic replication is crucial for viral tumorigenesis. However, the role of STAT6 in herpesvirus lytic replication remains elusive. Here, by using Kaposi’s sarcoma-associated herpesvirus (KSHV) as a model, we revealed that RTA, the master regulator of lytic replication, interacts with STAT6 and promotes lysine 48 (K48) and K63-linked ubiquitylation of STAT6 for degradation via the proteasome and lysosome systems. Moreover, degradation of STAT6 is dramatically associated with the increased ubiquitylated form of tripartite motif family like 2 (TRIML2, a tumor suppressor) for prolonged cell survival and virion production, which is also commonly observed in lytic activation of Epstein-Barr virus, herpes simplex virus 1 and cytomegalovirus. These results suggest that degradation of STAT6 is important for the lytic activation of KSHV and as such, may be an attractive therapeutic target. STAT6 is a transcriptional factor that plays an important role in the extracellular cytokine and virus-mediated immune response. Extensive studies have revealed that the dysregulation of STAT6 is linked to the pathological features of virus-associated cancers. However, the molecular mechanism of STAT6 regulation by tumor viruses is still unknown. Here, we report that the degradation of STAT6 is induced and required for the lytic activation of human herpesviruses including oncogenic γ-herpesviruses (KSHV and EBV) and α/β-herpesviruses (HSV1 and HCMV). Importantly, this effect is highly dependent on the expression of viral lytic antigens (i.e., RTA in KSHV). This study reveals the central role of STAT6 in controlling the switch from latency to lytic replication of herpesviruses.
Collapse
Affiliation(s)
- Feng Gu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Chong Wang
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuyan Wang
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Qing Zhu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Ling Ding
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wenjia Xu
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology &Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Caixia Zhu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Cankun Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology &Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhenghong Yuan
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Erle Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Department of Microbiology, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Qiliang Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
11
|
Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog 2018; 14:e1007062. [PMID: 29746587 PMCID: PMC5963815 DOI: 10.1371/journal.ppat.1007062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/22/2018] [Accepted: 04/27/2018] [Indexed: 12/26/2022] Open
Abstract
Kaposi’s sarcoma associated herpesvirus (KSHV) infection stabilizes hypoxia inducible factors (HIFs). The interaction between KSHV encoded factors and HIFs plays a critical role in KSHV latency, reactivation and associated disease phenotypes. Besides modulation of large-scale signaling, KSHV infection also reprograms the metabolic activity of infected cells. However, the mechanism and cellular pathways modulated during these changes are poorly understood. We performed comparative RNA sequencing analysis on cells with stabilized hypoxia inducible factor 1 alpha (HIF1α) of KSHV negative or positive background to identify changes in global and metabolic gene expression. Our results show that hypoxia induces glucose dependency of KSHV positive cells with high glucose uptake and high lactate release. We identified the KSHV-encoded vGPCR, as a novel target of HIF1α and one of the main viral antigens of this metabolic reprogramming. Bioinformatics analysis of vGPCR promoter identified 9 distinct hypoxia responsive elements which were activated by HIF1α in-vitro. Expression of vGPCR alone was sufficient for induction of changes in the metabolic phenotype similar to those induced by KSHV under hypoxic conditions. Silencing of HIF1α rescued the hypoxia associated phenotype of KSHV positive cells. Analysis of the host transcriptome identified several common targets of hypoxia as well as KSHV encoded factors and other synergistically activated genes belonging to cellular pathways. These include those involved in carbohydrate, lipid and amino acids metabolism. Further DNA methyltranferases, DNMT3A and DNMT3B were found to be regulated by either KSHV, hypoxia, or both synergistically at the transcript and protein levels. This study showed distinct and common, as well as synergistic effects of HIF1α and KSHV-encoded proteins on metabolic reprogramming of KSHV-infected cells in the hypoxia. Hypoxia inducible factors (HIFs) play a critical role in survival and growth of cancerous cells, in addition to modulating cellular metabolism. Kaposi’s sarcoma associated herpesvirus (KSHV) infection stabilizes HIFs. Several factors encoded by KSHV are known to interact with up or downstream targets of HIFs. However, the process by which KSHV infection leads to stabilized HIF1α and modulation of the cellular metabolism is not understood. Comparative RNA sequencing analysis on cells with stabilized hypoxia inducible factor 1 alpha (HIF1α), of KSHV negative or positive cells led to identification of changes in global and metabolic gene expression. Our results show that hypoxia induces glucose dependency of KSHV positive cells with high glucose uptake and high lactate release. KSHV-encoded vGPCR was identified as a novel target of HIF1α regulation and a major viral antigen involved in metabolic reprogramming. Silencing of HIF1α rescued the hypoxia associated phenotype of KSHV positive cells. Analysis of the host transcriptome identified several common targets of hypoxia and KSHV-encoded factors, as well as other synergistically activated genes belonging to cellular metabolic pathways. This study showed unique, common and the synergistic effects of both HIF1α and KSHV-encoded proteins on metabolic reprogramming of KSHV-infected cells in hypoxia.
Collapse
|
12
|
Tsai CY, Chen CY, Chiou YH, Shyu HW, Lin KH, Chou MC, Huang MH, Wang YF. Epigallocatechin-3-Gallate Suppresses Human Herpesvirus 8 Replication and Induces ROS Leading to Apoptosis and Autophagy in Primary Effusion Lymphoma Cells. Int J Mol Sci 2017; 19:ijms19010016. [PMID: 29267216 PMCID: PMC5795967 DOI: 10.3390/ijms19010016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/02/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, has been shown to induce cell death in cancer cells. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by human herpesvirus 8 (HHV8). In this study, we examined the role of EGCG on PEL cells in cell death and HHV8 replication. We performed trypan blue exclusion assay to assess the cell viability of PEL cells, flow cytometry analysis to examine the cell cycle distribution and reactive oxygen species (ROS) generation, caspase-3 activity to assay apoptosis, acridine orange staining to determine autophagy, and immunoblotting to detect the protein levels involved in apoptosis and autophagy as well as mitogen activated protein kinases (MAPKs) activation upon EGCG treatment. The expression of the HHV8 lytic gene was determined by luciferase reporter assay and reverse transcription-PCR, and viral progeny production was determined by PCR. Results revealed that EGCG induced cell death and ROS generation in PEL cells in a dose-dependent manner. N-acetylcysteine (NAC) inhibited the EGCG-induced ROS and rescued the cell from EGCG-induced cell death. Even though EGCG induced ROS generation in PEL cells, it reduced the production of progeny virus from PEL cells without causing HHV8 reactivation. These results suggest that EGCG may represent a novel strategy for the treatment of HHV8 infection and HHV8-associated lymphomas.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Department of Medical Laboratory Science and Biotechnology, Fooyin-University, Kaohsiung 83102, Taiwan.
| | - Chang-Yu Chen
- Department of Medical Laboratory Science and Biotechnology, Fooyin-University, Kaohsiung 83102, Taiwan.
| | - Yee-Hsuan Chiou
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 83102, Taiwan.
| | - Huey-Wen Shyu
- Department of Medical Laboratory Science and Biotechnology, Fooyin-University, Kaohsiung 83102, Taiwan.
| | - Kuan-Hua Lin
- Department of Medical Laboratory Science and Biotechnology, Fooyin-University, Kaohsiung 83102, Taiwan.
| | - Miao-Chen Chou
- Department of Medical Laboratory Science and Biotechnology, Fooyin-University, Kaohsiung 83102, Taiwan.
| | - Mei-Han Huang
- Department of Medical Laboratory Science and Biotechnology, Fooyin-University, Kaohsiung 83102, Taiwan.
| | - Yi-Fen Wang
- Department of Medical Laboratory Science and Biotechnology, Fooyin-University, Kaohsiung 83102, Taiwan.
| |
Collapse
|
13
|
The regulatory role of protein phosphorylation in human gammaherpesvirus associated cancers. Virol Sin 2017; 32:357-368. [PMID: 29116588 PMCID: PMC6704201 DOI: 10.1007/s12250-017-4081-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Activation of specific sets of protein kinases by intracellular signal molecules
has become more and more apparent in the past decade. Phosphorylation, one of key
posttranslational modification events, is activated by kinase or regulatory protein
and is vital for controlling many physiological functions of eukaryotic cells such
as cell proliferation, differentiation, malignant transformation, and signal
transduction mediated by external stimuli. Moreovers, the reversible modification of
phosphorylation and dephosphorylation can result in different features of the target
substrate molecules including DNA binding, protein-protein interaction, subcellular
location and enzymatic activity, and is often hijacked by viral infection.
Epstein-Barr virus (EBV) and Kaposi’s sarcomaassociated herpesvirus (KSHV), two
human oncogenic gamma-herpesviruses, are shown to tightly associate with many
malignancies. In this review, we summarize the recent progresses on understanding of
molecular properties and regulatory modes of cellular and viral proteins
phosphorylation influenced by these two tumor viruses, and highlight the potential
therapeutic targets and strategies against their related cancers. ![]()
Collapse
|
14
|
Sarkar R, Verma SC. Egr-1 regulates RTA transcription through a cooperative involvement of transcriptional regulators. Oncotarget 2017; 8:91425-91444. [PMID: 29207655 PMCID: PMC5710935 DOI: 10.18632/oncotarget.20648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) regulates the host cellular environment to establish life-long persistent infection by manipulating cellular signaling pathways, with approximately 1- 5% of cells undergoing lytic reactivation during the course of infection. Egr-1 (Early Growth Response Factor-1) is one such cellular transcription factor, which gets phosphorylated during the lytic phase of viral life cycle to perpetrate its function. This study demonstrates the mechanism of how Egr-1 mediates transcription of the immediate early gene, RTA (Replication and transcription activator), which is the lytic switch gene of KSHV. Egr-1 depleted KSHV infected cells exhibited reduced expression of RTA. Also, an increase in Egr-1 phosphorylation led to a higher virion production, which was suppressed in the presence of p38 and Raf inhibitors. Reporter assays showed that coexpression of Egr-1 and CBP (CREB-binding protein) enhances RTA promoter activity as compared to the expression of either Egr-1 or CBP alone. Binding of Egr-1 and CBP at RTA promoter was analyzed by chromatin immunoprecipitation assay (ChIP), which showed an enhanced accumulation during viral reactivation. Mutation in Egr-1 binding site of the RTA promoter eliminated Egr-1 response on promoter activation. Furthermore, de novo infection of THP-1 (monocytic) and HUVECs (endothelial) cells showed an upregulation of Egr-1 phosphorylation, whereas depletion of Egr-1 reduced the mRNA levels of RTA during primary infection. Together, these results demonstrate a cooperative role of Egr-1 and CBP in mediating RTA transcription, which significantly improves our understanding of the involvement of cellular factors controlling RTA transcription in KSHV pathogenesis.
Collapse
Affiliation(s)
- Roni Sarkar
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
15
|
Profiling of cellular microRNA responses during the early stages of KSHV infection. Arch Virol 2017; 162:3293-3303. [PMID: 28707270 DOI: 10.1007/s00705-017-3478-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/07/2017] [Indexed: 01/23/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes a variety of cancers, including Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). Host cellular microRNAs (miRNAs) play important post-transcriptional regulatory roles in gene expression and can greatly influence virus-host cell interactions. This study investigated cellular miRNA expression profiles operating in response to early stages of KSHV infection of human Burkitt lymphoma B cells (BJAB). We employed deep sequencing to analyze miRNA expression in KSHV-infected BJAB cells 15 min post infection (PI) and compared this to uninfected BJAB cells. A total of 32 known miRNAs and 28 novel miRNA candidates were differentially expressed in KSHV-infected compared to uninfected BJAB cells. Interestingly, miRNA expression profiles during the early stages of viral infection yielded comparable results when UV-inactivated KSHV was used. The deep sequencing results were further confirmed by performing real-time reverse transcription PCR. The target genes predicted to be regulated by both the known and novel miRNAs are mainly involved in assisting virus entry, inducing critical cell signaling, initiating transcription of immediate early genes, promoting latent infection, and modulating the host immune response. For the first time, we provide insight into the host cellular miRNA expression profiles in response to early stages of KSHV infection of human B cells. Furthermore, this study offers a valuable basis for further investigation on the roles of cellular miRNAs in the KSHV entry process.
Collapse
|
16
|
Pan C, Wang W, Yuan H, Yang L, Chen B, Li D, Chen J. The immediate early protein WSV187 can influence viral replication via regulation of JAK/STAT pathway in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:89-96. [PMID: 28232015 DOI: 10.1016/j.dci.2017.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
The world production of shrimp is seriously affected by the white spot syndrome virus (WSSV). Viral immediate-early (IE) genes encode regulatory proteins critical for the viral lifecycle. In spite of their importance, only five out of the 21 identified WSSV IE genes are functionally characterized. Here, we report the use of Drosophila melanogaster as a model to explore the role of WSSV IE gene wsv187. In vivo expression of WSV187 in transgenic flies show WSV187 localized in the cytoplasm. Overexpression of wsv187 results wing defects consistent with phenotypes observed in JAK/STAT exacerbated flies. After artificial infection of the DCV virus, the flies expressing wsv187 showed a lower viral load, a higher survival rate and an up-regulated STAT92E expression. These data demonstrate wsv187 plays a role in the controlling of virus replication by activating host JAK/STAT pathway.
Collapse
Affiliation(s)
- Changkun Pan
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| | - Huifang Yuan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Lirong Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Baoru Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Dengfeng Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| |
Collapse
|
17
|
Nuclear Localization and Cleavage of STAT6 Is Induced by Kaposi's Sarcoma-Associated Herpesvirus for Viral Latency. PLoS Pathog 2017; 13:e1006124. [PMID: 28099521 PMCID: PMC5242515 DOI: 10.1371/journal.ppat.1006124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence implies that STAT6 plays an important role in both the adaptive and innate immune responses to virus infection. Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus agent associated with several human malignancies, including Kaposi’s sarcoma (KS) and primary effusion lymphomas (PELs). Previously, we demonstrated that KSHV blocks IL-4-induced STAT6 phosphorylation and retains a basal IL-13/STAT6 constitutive activation for cell survival and proliferation. However, the mechanism by which KSHV regulates STAT6 remains largely unknown. Here, we found that KSHV-encoded LANA interacts with STAT6 and promotes nuclear localization of STAT6 independent of the tyrosine 641-phosphorylation state. Moreover, nuclear localization of STAT6 is also dramatically increased in KS tissue. The latent antigen LANA induces serine protease-mediated cleavage of STAT6 in the nucleus, where the cleaved STAT6 lacking transactivation domain functions as a dominant-negative regulator to repress transcription of Replication and Transcription Activator (RTA) and in turn shut off viral lytic replication. Blockade of STAT6 by small interference RNA dramatically enhances expression of RTA, and in turn reduces KSHV-infected endothelial cell growth and colony formation. Taken together, these results suggest that nuclear localization and cleavage of STAT6 is important for modulating the viral latency and pathogenesis of KSHV. STAT6, a member of the signal transducer and activator of transcription (STAT) family, has been shown to play an important role in viral infection. STAT6 activation is linked to reactivation of oncogenic herpesvirus and their associated cancers. However, the precise mechanism by which KSHV modulates STAT6 regulation remains unclear. In the present study, we demonstrate that KSHV induces nuclear localization and cleavage of STAT6 in both KSHV-infected B lymphoma and endothelial cells. Importantly, this effect is dependent on LANA (a key latent antigen) expression and leads to inhibition of viral lytic replication. Herein, we provide a previously uncharacterized description of how STAT6 plays an inhibitory role in the pathogenesis of oncogenic viruses.
Collapse
|
18
|
Wei F, Gan J, Wang C, Zhu C, Cai Q. Cell Cycle Regulatory Functions of the KSHV Oncoprotein LANA. Front Microbiol 2016; 7:334. [PMID: 27065950 PMCID: PMC4811921 DOI: 10.3389/fmicb.2016.00334] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
Manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment during infection. Kaposi’s sarcoma-associated herpesvirus (KSHV), the primary etiological agent of several human malignancies including Kaposi’s sarcoma, and primary effusion lymphoma, encodes several oncoproteins that deregulate normal physiology of cell cycle machinery to persist with endothelial cells and B cells and subsequently establish a latent infection. During latency, only a small subset of viral proteins is expressed. Latency-associated nuclear antigen (LANA) is one of the latent antigens shown to be essential for transformation of endothelial cells in vitro. It has been well demonstrated that LANA is critical for the maintenance of latency, episome DNA replication, segregation and gene transcription. In this review, we summarize recent studies and address how LANA functions as an oncoprotein to steer host cell cycle-related events including proliferation and apoptosis by interacting with various cellular and viral factors, and highlight the potential therapeutic strategy of disrupting LANA-dependent signaling as targets in KSHV-associated cancers.
Collapse
Affiliation(s)
- Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Jin Gan
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University Shanghai, China
| | - Chong Wang
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University Shanghai, China
| | - Caixia Zhu
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University Shanghai, China
| | - Qiliang Cai
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University Shanghai, China
| |
Collapse
|
19
|
Purushothaman P, Dabral P, Gupta N, Sarkar R, Verma SC. KSHV Genome Replication and Maintenance. Front Microbiol 2016; 7:54. [PMID: 26870016 PMCID: PMC4740845 DOI: 10.3389/fmicb.2016.00054] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/12/2016] [Indexed: 12/04/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8) is a major etiological agent for multiple severe malignancies in immune-compromised patients. KSHV establishes lifetime persistence in the infected individuals and displays two distinct life cycles, generally a prolonged passive latent, and a short productive or lytic cycle. During latent phase, the viral episome is tethered to the host chromosome and replicates once during every cell division. Latency-associated nuclear antigen (LANA) is a predominant multifunctional nuclear protein expressed during latency, which plays a central role in episome tethering, replication and perpetual segregation of the episomes during cell division. LANA binds cooperatively to LANA binding sites (LBS) within the terminal repeat (TR) region of the viral episome as well as to the cellular nucleosomal proteins to tether viral episome to the host chromosome. LANA has been shown to modulate multiple cellular signaling pathways and recruits various cellular proteins such as chromatin modifying enzymes, replication factors, transcription factors, and cellular mitotic framework to maintain a successful latent infection. Although, many other regions within the KSHV genome can initiate replication, KSHV TR is important for latent DNA replication and possible segregation of the replicated episomes. Binding of LANA to LBS favors the recruitment of various replication factors to initiate LANA dependent DNA replication. In this review, we discuss the molecular mechanisms relevant to KSHV genome replication, segregation, and maintenance of latency.
Collapse
Affiliation(s)
- Pravinkumar Purushothaman
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Namrata Gupta
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roni Sarkar
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
20
|
Constitutive Activation of Interleukin-13/STAT6 Contributes to Kaposi's Sarcoma-Associated Herpesvirus-Related Primary Effusion Lymphoma Cell Proliferation and Survival. J Virol 2015; 89:10416-26. [PMID: 26246572 DOI: 10.1128/jvi.01525-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/29/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway has been associated with numerous human malignancies, including primary effusion lymphomas (PELs). PEL, a cancerous proliferation of B cells, is caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Previously we identified constitutive phosphorylation of STAT6 on tyrosine 641 (p-STAT6(C)) in PEL cell lines BC3 and BCBL1; however, the molecular mechanism leading to this activation remains unclear. Here we demonstrate that STAT6 activation tightly correlates with interleukin-13 (IL-13) secretion, JAK1/2 tyrosine phosphorylation, and reduced expression of SHP1 due to KSHV infection. Moreover, p-STAT6(C) and reduction of SHP1 were also observed in KS patient tissue. Notably, blockade of IL-13 by antibody neutralization dramatically inhibits PEL cell proliferation and survival. Taken together, these results suggest that IL-13/STAT6 signaling is modulated by KSHV to promote host cell proliferation and viral pathogenesis. IMPORTANCE STAT6 is a member of signal transducer and activator of transcription (STAT) family, whose activation is linked to KSHV-associated cancers. The mechanism through which STAT6 is modulated by KSHV remains unclear. In this study, we demonstrated that constitutive activation of STAT6 in KSHV-associated PEL cells results from interleukin-13 (IL-13) secretion and reduced expression of SHP1. Importantly, we also found that depletion of IL-13 reduces PEL cell growth and survival. This discovery provides new insight that IL-13/STAT6 plays an essential role in KSHV pathogenesis.
Collapse
|
21
|
Reverse-Phase Microarray Analysis Reveals Novel Targets in Lymph Nodes of Bacillus anthracis Spore-Challenged Mice. PLoS One 2015; 10:e0129860. [PMID: 26091359 PMCID: PMC4474663 DOI: 10.1371/journal.pone.0129860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/12/2015] [Indexed: 11/26/2022] Open
Abstract
Anthrax is a frequently fatal infection of many animal species and men. The causative agent Bacillus anthracis propagates through the lymphatic system of the infected host; however, the specific interactions of the host and microbe within the lymphatics are incompletely understood. We report the first description of the phosphoprotein signaling in the lymph nodes of DBA/2 mice using a novel technique combining the reverse-phase microarray with the laser capture microdissesction. Mice were challenged into foot pads with spores of toxinogenic, unencapsulated Sterne strain. The spores quickly migrated to the regional popliteal lymph nodes and spread to the bloodstream as early as 3 h post challenge. All mice died before 72 h post challenge from the systemic disease accompanied by a widespread LN tissue damage by bacteria, including the hemorrhagic necrotizing lymphadenitis, infiltration of CD11b+ and CD3+ cells, and massive proliferation of bacteria in lymph nodes. A macrophage scavenger receptor CD68/macrosialin was upregulated and found in association with vegetative bacteria likely as a marker of their prior interaction with macrophages. The major signaling findings among the 65 tested proteins included the reduced MAPK signaling, upregulation of STAT transcriptional factors, and altered abundance of a number of pro- and anti-apoptotic proteins with signaling properties opposing each other. Downregulation of ERK1/2 was associated with the response of CD11b+ macrophages/dendritic cells, while upregulation of the pro-apoptotic Puma indicated a targeting of CD3+ T-cells. A robust upregulation of the anti-apoptotic survivin was unexpected because generally it is not observed in adult tissues. Taken together with the activation of STATs it may reflect a new pathogenic mechanism aimed to delay the onset of apoptosis. Our data emphasize a notion that the net biological outcome of disease is determined by a cumulative impact of factors representing the microbial insult and the protective capacity of the host.
Collapse
|
22
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) primarily persists as a latent episome in infected cells. During latent infection, only a limited number of viral genes are expressed that help to maintain the viral episome and prevent lytic reactivation. The latent KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin marks at the promoter-regulatory region of the major immediate-early gene promoter. Various stimuli can induce chromatin modifications to an active euchromatic epigenetic mark, leading to the expression of genes required for the transition from the latent to the lytic phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene expression triggers a cascade of events, resulting in the modulation of various cellular pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA replication of KSHV. In this review we will discuss some of the pivotal genetic and epigenetic factors that control KSHV reactivation from the transcriptionally restricted latent program.
Collapse
|
23
|
Uppal T, Jha HC, Verma SC, Robertson ES. Chromatinization of the KSHV Genome During the KSHV Life Cycle. Cancers (Basel) 2015; 7:112-42. [PMID: 25594667 PMCID: PMC4381254 DOI: 10.3390/cancers7010112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.
Collapse
Affiliation(s)
- Timsy Uppal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Hem C Jha
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Banerjee S, Jha HC, Robertson ES. Regulation of the metastasis suppressor Nm23-H1 by tumor viruses. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:207-24. [PMID: 25199839 DOI: 10.1007/s00210-014-1043-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 12/16/2022]
Abstract
Metastasis is the most common cause of cancer mortality. To increase the survival of patients, it is necessary to develop more effective methods for treating as well as preventing metastatic diseases. Recent advancement of knowledge in cancer metastasis provides the basis for development of targeted molecular therapeutics aimed at the tumor cell or its interaction with the host microenvironment. Metastasis suppressor genes (MSGs) are promising targets for inhibition of the metastasis process. During the past decade, functional significance of these genes, their regulatory pathways, and related downstream effector molecules have become a major focus of cancer research. Nm23-H1, first in the family of Nm23 human homologues, is a well-characterized, anti-metastatic factor linked with a large number of human malignancies. Mounting evidence to date suggests an important role for Nm23-H1 in reducing virus-induced tumor cell motility and migration. A detailed understanding of the molecular association between oncogenic viral antigens with Nm23-H1 may reveal the underlying mechanisms for tumor virus-associated malignancies. In this review, we will focus on the recent advances to our understanding of the molecular basis of oncogenic virus-induced progression of tumor metastasis by deregulation of Nm23-H1.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
25
|
Kaposi's sarcoma-associated herpesvirus-encoded LANA contributes to viral latent replication by activating phosphorylation of survivin. J Virol 2014; 88:4204-17. [PMID: 24478433 DOI: 10.1128/jvi.03855-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus casually linked to Kaposi's sarcoma (KS), multicentric Castleman's disease (MCD), and primary effusion lymphoma (PEL). Previously, we showed that LANA encoded by KSHV upregulates expression of survivin, a member of the inhibitor of apoptosis (IAP) family. This leads to an increase in the rate of cell proliferation of KSHV-infected B cells. LANA is required for tethering of the KSHV episome to the host chromosomes and efficiently segregates the viral genomes into dividing tumor cells. Here we show that LANA interacts with Aurora kinase B (AK-B) and induces phosphorylation of survivin at residue T34. Phosphorylation of survivin specifically on residue T34 enhances the activity of p300 and inhibits the activity of histone deacetylase 1 (HDAC-1), which then leads to an increase in acetylation of histone H3 on the viral genome. Phosphorylation of survivin specifically on residue T34 upregulates the activities of histone acetyltransferases and deacetylases, which then leads to an increase in viral copy number in KSHV-infected B cells. This results in a boost of KSHV replication in latently infected B-lymphoma cells. The studies showed that LANA can also function to regulate viral replication prior to mitosis of the latently infected cells, suggesting that LANA possesses a novel role in regulating KSHV replication in infected B cells. IMPORTANCE This work represents a report of KSHV latent protein LANA and its interactions with AK-B leading to induction of phosphorylation of the oncoprotein survivin at residue T34. Phosphorylation of survivin specifically on residue T34 upregulates the activities of histone acetyltransferases and deacetylases. This leads to an increase in viral copy number in KSHV-infected B cells. These studies support a role for LANA in regulating KSHV replication through posttranslation modification in KSHV-infected B cells.
Collapse
|
26
|
Cai Q, Banerjee S, Cervini A, Lu J, Hislop AD, Dzeng R, Robertson ES. IRF-4-mediated CIITA transcription is blocked by KSHV encoded LANA to inhibit MHC II presentation. PLoS Pathog 2013; 9:e1003751. [PMID: 24204280 PMCID: PMC3814934 DOI: 10.1371/journal.ppat.1003751] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023] Open
Abstract
Peptides presentation to T cells by MHC class II molecules is of importance in initiation of immune response to a pathogen. The level of MHC II expression directly influences T lymphocyte activation and is often targeted by various viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) encoded LANA is known to evade MHC class I peptide processing, however, the effect of LANA on MHC class II remains unclear. Here, we report that LANA down-regulates MHC II expression and presentation by inhibiting the transcription of MHC II transactivator (CIITA) promoter pIII and pIV in a dose-dependent manner. Strikingly, although LANA knockdown efficiently disrupts the inhibition of CIITA transcripts from its pIII and pIV promoter region, the expression of HLA-DQβ but no other MHC II molecules was significantly restored. Moreover, we revealed that the presentation of HLA-DQβ enhanced by LANA knockdown did not help LANA-specific CD4+ T cell recognition of PEL cells, and the inhibition of CIITA by LANA is independent of IL-4 or IFN-γ signaling but dependent on the direct interaction of LANA with IRF-4 (an activator of both the pIII and pIV CIITA promoters). This interaction dramatically blocked the DNA-binding ability of IRF-4 on both pIII and pIV promoters. Thus, our data implies that LANA can evade MHC II presentation and suppress CIITA transcription to provide a unique strategy of KSHV escape from immune surveillance by cytotoxic T cells.
Collapse
Affiliation(s)
- Qiliang Cai
- MOE&MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Shuvomoy Banerjee
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Amanda Cervini
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Jie Lu
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Andrew D. Hislop
- School of Cancer Sciences and Medical Research Council Centre for Immune Regulation, The University of Birmingham, Birmingham, United Kingdom
| | - Richard Dzeng
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program of Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
27
|
Lin SJ, Hsia HL, Liu WJ, Huang JY, Liu KF, Chen WY, Yeh YC, Huang YT, Lo CF, Kou GH, Wang HC. Spawning stress triggers WSSV replication in brooders via the activation of shrimp STAT. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:128-135. [PMID: 22564859 DOI: 10.1016/j.dci.2012.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 05/31/2023]
Abstract
In the early days of shrimp aquaculture, wild-captured brooders usually spawned repeatedly once every 2-4days. However, since the first outbreaks of white spot disease (WSD) nearly 20years ago, captured female brooders often died soon after a single spawning. Although these deaths were clearly attributable to WSD, it has always been unclear how spawning stress could lead to an outbreak of the disease. Using real-time qPCR, we show here that while replication of the white spot syndrome virus (WSSV; the causative agent of WSD) is triggered by spawning, there was no such increase in the levels of another shrimp DNA virus, IHHNV (infectious hypodermal and hematopoietic necrosis virus). We also show that levels of activated STAT are increased in brooders during and after spawning, which is important because shrimp STAT is known to transactivate the expression of the WSSV immediate early gene ie1. Lastly, we used dsRNA silencing experiment to show that both WSSV ie1 gene expression and WSSV genome copy number were reduced significantly after shrimp STAT was knocked-down. This is the first report to demonstrate in vivo that shrimp STAT is important for WSSV replication and that spawning stress increases activated STAT, which in turn triggers WSSV replication in WSSV-infected brooders.
Collapse
Affiliation(s)
- Shin-Jen Lin
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei 106, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kaposi's sarcoma-associated herpesvirus-encoded LANA recruits topoisomerase IIβ for latent DNA replication of the terminal repeats. J Virol 2012; 86:9983-94. [PMID: 22761383 DOI: 10.1128/jvi.00839-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The latency-associated nuclear antigen (LANA) encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) plays a major role in maintaining latency and is critical for the perpetual segregation of viral episomes to the progeny nuclei of newly divided cells. LANA binds to KSHV terminal repeat (TR) DNA and tethers the viral episomes to host chromosomes through the association of chromatin-bound cellular proteins. TR elements serve as potential origin sites of KSHV replication and have been shown to play important roles in latent DNA replication and transcription of adjacent genes. Affinity chromatography and proteomics analysis using KSHV TR DNA and the LANA binding site as the affinity column identified topoisomerase IIβ (TopoIIβ) as a LANA-interacting protein. Here, we show that TopoIIβ forms complexes with LANA that colocalize as punctuate bodies in the nucleus of KSHV-infected cells. The specific TopoIIβ binding region of LANA has been identified to its N terminus and the first 32 amino acid residues containing the nucleosome-binding region crucial for binding. Moreover, this region could also act as a dominant negative to disrupt association of TopoIIβ with LANA. TopoIIβ plays an important role in LANA-dependent latent DNA replication, as addition of ellipticine, a selective inhibitor of TopoII, negatively regulated replication mediated by the TR. DNA break labeling and chromatin immunoprecipitation assay using biotin-16-dUTP and terminal deoxynucleotide transferase showed that TopoIIβ mediates a transient DNA break on viral DNA. These studies confirm that LANA recruits TopoIIβ at the origins of latent replication to unwind the DNA for replication.
Collapse
|
29
|
Identification of host-chromosome binding sites and candidate gene targets for Kaposi's sarcoma-associated herpesvirus LANA. J Virol 2012; 86:5752-62. [PMID: 22419807 DOI: 10.1128/jvi.07216-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
LANA is essential for tethering the Kaposi's sarcoma-associated herpesvirus (KSHV) genome to metaphase chromosomes and for modulating host-cell gene expression, but the binding sites in the host-chromosome remain unknown. Here, we use LANA-specific chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to identify LANA binding sites in the viral and host-cell genomes of a latently infected pleural effusion lymphoma cell line BCBL1. LANA bound with high occupancy to the KSHV genome terminal repeats (TR) and to a few minor binding sites in the KSHV genome, including the LANA promoter region. We identified 256 putative LANA binding site peaks with P < 0.01 and overlap in two independent ChIP-Seq experiments. We validated several of the high-occupancy binding sites by conventional ChIP assays and quantitative PCR. Candidate cellular LANA binding motifs were identified and assayed for binding to purified recombinant LANA protein in vitro but bound with low affinity compared to the viral TR binding site. More than half of the LANA binding sites (170/256) could be mapped to within 2.5 kb of a cellular gene transcript. Pathways and Gene Ontogeny (GO) analysis revealed that LANA binds to genes within the p53 and tumor necrosis factor (TNF) regulatory network. Further analysis revealed partial overlap of LANA and STAT1 binding sites in several gamma interferon (IFN-γ)-regulated genes. We show that ectopic expression of LANA can downmodulate IFN-γ-mediated activation of a subset of genes, including the TAP1 peptide transporter and proteasome subunit beta type 9 (PSMB9), both of which are required for class I antigen presentation. Our data provide a potential mechanism through which LANA may regulate several host cell pathways by direct binding to gene regulatory elements.
Collapse
|
30
|
Dyson OF, Walker LR, Whitehouse A, Cook PP, Akula SM. Resveratrol inhibits KSHV reactivation by lowering the levels of cellular EGR-1. PLoS One 2012; 7:e33364. [PMID: 22428032 PMCID: PMC3299779 DOI: 10.1371/journal.pone.0033364] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/12/2012] [Indexed: 12/22/2022] Open
Abstract
In the field of herpesvirus research, the exact molecular mechanism by which such viruses reactivate from latency remains elusive. Kaposi's sarcoma-associated herpesvirus (KSHV) primarily exists in a latent state, while only 1–3% of cells support lytic infection at any specific time. KSHV reactivation from latency is an exceedingly intricate process mediated by the integration of viral and cellular factors. Previously, our lab has described early growth response-1 (Egr-1) as an essential component for the KSHV reactivation process via its ability to mediate transcription of KSHV ORF50, the gene encoding for replication and transcription activator (RTA), a viral component known to control the switch from latent to lytic infection. In here, electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) experiments revealed that Egr-1 binds KSHV ORF50 promoter (ORF50P) in at least two different GC-rich binding domains. Expression profiles of cellular egr-1 and KSHV-encoded ORF50 follow a similar pattern during de novo KSHV infection. Over-expressing Egr-1, a signaling component downstream of Raf>MEK>ERK1/2, in KSHV-infected cells activates KSHV lytic replication. Through performing more physiologically relevant experiments, we analyzed the effect of a dietary supplement containing resveratrol on KSHV-infected cells. Our results, for the first time, demonstrate resveratrol to act in lowering ERK1/2 activity and expression of Egr-1 in KSHV-infected cells, resulting in the suppression of virus reactivation from latency. Taken together, these findings will undoubtedly contribute to future studies on not only combating KSHV related disease conditions, but also on other herpesviruses-induced pathogenesis.
Collapse
Affiliation(s)
- Ossie F. Dyson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Lia R. Walker
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Adrian Whitehouse
- Faculty of Biological Sciences, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
31
|
Lu J, Verma SC, Cai Q, Saha A, Dzeng RK, Robertson ES. The RBP-Jκ binding sites within the RTA promoter regulate KSHV latent infection and cell proliferation. PLoS Pathog 2012; 8:e1002479. [PMID: 22253595 PMCID: PMC3257303 DOI: 10.1371/journal.ppat.1002479] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/27/2011] [Indexed: 01/10/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is tightly linked to at least two lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). However, the development of KSHV-mediated lymphoproliferative disease is not fully understood. Here, we generated two recombinant KSHV viruses deleted for the first RBP-Jκ binding site (RTA1st) and all three RBP-Jκ binding sites (RTAall) within the RTA promoter. Our results showed that RTA1st and RTAall recombinant viruses possess increased viral latency and a decreased capability for lytic replication in HEK 293 cells, enhancing colony formation and proliferation of infected cells. Furthermore, recombinant RTA1st and RTAall viruses showed greater infectivity in human peripheral blood mononuclear cells (PBMCs) relative to wt KSHV. Interestingly, KSHV BAC36 wt, RTA1st and RTAall recombinant viruses infected both T and B cells and all three viruses efficiently infected T and B cells in a time-dependent manner early after infection. Also, the capability of both RTA1st and RTAall recombinant viruses to infect CD19+ B cells was significantly enhanced. Surprisingly, RTA1st and RTAall recombinant viruses showed greater infectivity for CD3+ T cells up to 7 days. Furthermore, studies in Telomerase-immortalized human umbilical vein endothelial (TIVE) cells infected with KSHV corroborated our data that RTA1st and RTAall recombinant viruses have enhanced ability to persist in latently infected cells with increased proliferation. These recombinant viruses now provide a model to explore early stages of primary infection in human PBMCs and development of KSHV-associated lymphoproliferative diseases. Kaposi's sarcoma-associated herpesvirus (KSHV) is tightly linked to at least two lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). The life cycle of KSHV consists of latent and lytic phase. RTA is the master switch for viral lytic replication. In this study, we first show that recombinant viruses deleted for the RBP-Jκ sites within the RTA promoter have a decreased capability for lytic replication, and thus enhanced colony formation and proliferation of infected cells. Interestingly, the recombinant viruses show greater infectivity in human peripheral blood mononuclear cells (PBMCs). The recombinant viruses also infected CD19+ B cells and CD3+ T cells with increased efficiency in a time-dependent manner and now provide a model which can be used to explore the early stages of primary infection in human PBMCs, as well as the development of KSHV-associated lymphoproliferative diseases.
Collapse
Affiliation(s)
- Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Subhash C. Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Nevada, United States of America
| | - Qiliang Cai
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abhik Saha
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard Kuo Dzeng
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Kim Y, Kwon EK, Jeon JH, So I, Kim IG, Choi MS, Kim IS, Choi JK, Jung JU, Cho NH. Activation of the STAT6 transcription factor in Jurkat T-cells by the herpesvirus saimiri Tip protein. J Gen Virol 2011; 93:330-340. [PMID: 22012462 DOI: 10.1099/vir.0.036087-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Herpesvirus saimiri (HVS), a T-lymphotropic monkey herpesvirus, induces fulminant T-cell lymphoma in non-natural primate hosts. In addition, it can immortalize human T-cells in vitro. HVS tyrosine kinase-interacting protein (Tip) is an essential viral gene required for T-cell transformation both in vitro and in vivo. In this study, we found that Tip interacts with the STAT6 transcription factor and induces phosphorylation of STAT6 in T-cells. The interaction with STAT6 requires the Tyr(127) residue and Lck-binding domain of Tip, which are indispensable for interleukin (IL)-2-independent T-cell transformation by HVS. It was also demonstrated that Tip induces nuclear translocation of STAT6, as well as activation of STAT6-dependent transcription in Jurkat T-cells. Interestingly, the phosphorylated STAT6 mainly colocalized with vesicles containing Tip within T-cells, but was barely detectable in the nucleus. However, nuclear translocation of phospho-STAT6 and transcriptional activation of STAT6 by IL-4 stimulation were not affected significantly in T-cells expressing Tip. Collectively, these findings suggest that the constitutive activation of STAT6 by Tip in T-cells may contribute to IL-2-independent T-cell transformation by HVS.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun-Kyung Kwon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myung-Sik Choi
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Jongno-Gu, Seoul 110-799, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ik-Sang Kim
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Jongno-Gu, Seoul 110-799, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Jae Ung Jung
- Molecular Microbiology and Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, CA 90033, USA
| | - Nam-Hyuk Cho
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Jongno-Gu, Seoul 110-799, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Lu J, Verma SC, Cai Q, Robertson ES. The single RBP-Jkappa site within the LANA promoter is crucial for establishing Kaposi's sarcoma-associated herpesvirus latency during primary infection. J Virol 2011; 85:6148-61. [PMID: 21507979 PMCID: PMC3126528 DOI: 10.1128/jvi.02608-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/08/2011] [Indexed: 01/05/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; or human herpesvirus 8 [HHV8]) is implicated in the pathogenesis of many human malignancies including Kaposi's sarcoma (KS), multicentric Castleman's disease (MCD), and primary effusion lymphoma (PEL). KSHV infection displays two alternative life cycles, referred to as the latent and lytic or productive cycle. Previously, we have reported that the replication and transcription activator (RTA), a major lytic cycle transactivator, contributes to the development of KSHV latency by inducing latency-associated nuclear antigen (LANA) expression during early stages of infection by targeting RBP-Jκ, the master regulator of the Notch signaling pathway. Here, we generated a bacterial artificial chromosome (BAC) KSHV recombinant virus with a deletion of the RBP-Jκ site within the LANA promoter to evaluate the function of the RBP-Jκ cognate site in establishing primary latent infection. The results showed that genetic disruption of the RBP-Jκ binding site within the KSHV LANA promoter led to enhanced expression of the KSHV-encoded immediate early RTA, resulting in an increase in lytic replication during primary infection of human peripheral blood mononuclear cells (PBMCs). This system provides a powerful tool for use in indentifying additional cellular and viral molecules involved in LANA-mediated latency maintenance during the early stages of KSHV infection.
Collapse
MESH Headings
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Binding Sites
- Cell Line
- Chromosomes, Artificial, Bacterial
- Gene Expression Regulation, Viral
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Herpesvirus 8, Human/physiology
- Humans
- Immediate-Early Proteins
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/chemistry
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Leukocytes, Mononuclear/virology
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/genetics
- Recombination, Genetic
- Trans-Activators
- Virus Activation
- Virus Latency/genetics
Collapse
Affiliation(s)
- Jie Lu
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania, School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104
| | - Subhash C. Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Nevada 89557
| | - Qiliang Cai
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania, School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104
| | - Erle S. Robertson
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania, School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104
| |
Collapse
|
34
|
Saha A, Kaul R, Murakami M, Robertson ES. Tumor viruses and cancer biology: Modulating signaling pathways for therapeutic intervention. Cancer Biol Ther 2010; 10:961-78. [PMID: 21084867 DOI: 10.4161/cbt.10.10.13923] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tumor viruses have provided relatively simple genetic systems, which can be manipulated for understanding the molecular mechanisms of the cellular transformation process. A growing body of information in the tumor virology field provides several prospects for rationally targeted therapies. However, further research is needed to better understand the multiple mechanisms utilized by these viruses in cancer progression in order to develop therapeutic strategies. Initially viruses were believed to be associated with cancers as causative agents only in animals. It was almost half a century before the first human tumor virus, Epstein-Barr virus (EBV), was identified in 1964. Subsequently, several human tumor viruses have been identified including Kaposi sarcoma associated herpesvirus (KSHV), human Papillomaviruses (HPV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human T lymphotropic virus (HTLV-1) and recently identified Merkel cell Polyomavirus (MCPyV). Tumor viruses are sub-categorized as either DNA viruses, which include EBV, KSHV, HPV, HBV, and MCPyV, or RNA viruses such as HCV and HTLV-1. Tumor-viruses induce oncogenesis through manipulating an array of different cellular pathways. These viruses initiate a series of cellular events, which lead to immortalization and proliferation of the infected cells by disrupting the mitotic checkpoint upon infection of the host cell. This is often accomplished by functional inhibition or proteasomal degradation of many tumor suppressor proteins by virally encoded gene products. The virally infected cells can either be eliminated via cell-mediated apoptosis or persist in a state of chronic infection. Importantly, the chronic persistence of infection by tumor viruses can lead to oncogenesis. This review discusses the major human tumor associated viruses and their ability to modulate numerous cell signaling pathways, which can be targeted for potential therapeutic approaches.
Collapse
Affiliation(s)
- Abhik Saha
- Department of Microbiology and Tumor Virology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
35
|
Cai Q, Verma SC, Lu J, Robertson ES. Molecular biology of Kaposi's sarcoma-associated herpesvirus and related oncogenesis. Adv Virus Res 2010; 78:87-142. [PMID: 21040832 PMCID: PMC3142360 DOI: 10.1016/b978-0-12-385032-4.00003-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kaposi's Sarcoma-associated Herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is the most recently identified human tumor virus,and is associated with the pathogenesis of Kaposi's sarcoma and two lymphoproliferative disorders known to occur frequently in AIDS patients-primary effusion lymphoma and multicentric Castleman disease. In the 15 years since its discovery, intense studies have demonstrated an etiologic role for KSHV in the development of these malignancies. Here, we review the recent advances linked to understanding KSHV latent and lytic life cycle and the molecular mechanisms of KSHV-mediated oncogenesis in terms of transformation, cell signaling, cell growth and survival, angiogenesis, immune invasion and response to microenvironmental stress, and highlight the potential therapeutic targets for blocking KSHV tumorigenesis.
Collapse
Affiliation(s)
- Qiliang Cai
- Department of Microbiology, Abramson, Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|