1
|
Hickson SE, Hyde JL. RNA structures within Venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. PLoS Pathog 2024; 20:e1012179. [PMID: 39331659 PMCID: PMC11463830 DOI: 10.1371/journal.ppat.1012179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/09/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne +ssRNA virus belonging to the Togaviridae. VEEV is found throughout Central and South America and is responsible for periodic epidemic/epizootic outbreaks of febrile and encephalitic disease in equines and humans. Endemic/enzootic VEEV is transmitted between Culex mosquitoes and sylvatic rodents, whereas epidemic/epizootic VEEV is transmitted between mosquitoes and equids, which serve as amplification hosts during outbreaks. Epizootic VEEV emergence has been shown to arise from mutation of enzootic VEEV strains. Specifically, epizootic VEEV has been shown to acquire amino acid mutations in the E2 viral glycoprotein that facilitate viral entry and equine amplification. However, the abundance of synonymous mutations which accumulate across the epizootic VEEV genome suggests that other viral determinants such as RNA secondary structure may also play a role in VEEV emergence. In this study we identify novel RNA structures in the E1 gene which specifically alter replication fitness of epizootic VEEV in macrophages but not other cell types. We show that SNPs are conserved within epizootic lineages and that RNA structures are conserved across different lineages. We also identified several novel RNA-binding proteins that are necessary for altered macrophage replication. These results suggest that emergence of VEEV in nature requires multiple mutations across the viral genome, some of which alter cell-type specific replication fitness in an RNA structure-dependent manner.
Collapse
Affiliation(s)
- Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
2
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
3
|
Hameed M, Solomon NA, Weger-Lucarelli J. Lack of pathogenic involvement of CCL4 and its receptor CCR5 in arthritogenic alphavirus disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606106. [PMID: 39131287 PMCID: PMC11312581 DOI: 10.1101/2024.07.31.606106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Arthritogenic alphaviruses, including chikungunya virus (CHIKV), Mayaro virus (MAYV), Ross River virus (RRV), and O'nyong nyong virus (ONNV) are emerging and reemerging viruses that cause disease characterized by fever, rash, and incapacitating joint swelling. Alphavirus infection induces robust immune responses in infected hosts, leading to the upregulation of several cytokines and chemokines, including chemokine C ligand 4 (CCL4). CCL4 is a chemoattractant for immune cells such as T cells, natural killer cells, monocytes/macrophages, and dendritic cells, recruiting these cells to the site of infection, stimulating the release of proinflammatory mediators, and inducing T cell differentiation. CCL4 has been found at high levels in both the acute and chronic phases of chikungunya disease; however, the role of CCL4 in arthritogenic alphavirus disease development remains unexplored. Here, we tested the effect of CCL4 on MAYV infection in mice through antibody depletion and treatment with recombinant mouse CCL4. We observed no differences in mice depleted of CCL4 or treated with recombinant CCL4 in terms of disease progression such as weight loss and footpad swelling or the development of viremia. CCL4 uses the G protein-coupled receptor C-C chemokine receptor type 5 (CCR5). To determine whether CCR5 deficiency would alter disease outcomes or virus replication in mice, we inoculated CCR5 knockout (CCR5-/-) mice with MAYV and observed no effect on disease development and immune cell profile of blood and footpads between CCR5-/- and wild type mice. These studies failed to identify a clear role for CCL4 or its receptor CCR5 in MAYV infection.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Norman A. Solomon
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Lead contact
| |
Collapse
|
4
|
Fongsaran C, Jirakanwisal K, Peng BH, Fracassi A, Taglialatela G, Dineley KT, Paessler S, Cisneros IE. Arbovirus infection increases the risk for the development of neurodegenerative disease pathology in the murine model. Brain Behav Immun Health 2024; 38:100780. [PMID: 38706571 PMCID: PMC11067009 DOI: 10.1016/j.bbih.2024.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Alzheimer's disease is classified as a progressive disorder resulting from protein misfolding, also known as proteinopathies. Proteinopathies include synucleinopathies triggered by misfolded amyloid α-synuclein, tauopathies triggered by misfolded tau, and amyloidopathies triggered by misfolded amyloid of which Alzheimer's disease (β-amyloid) is most prevalent. Most neurodegenerative diseases (>90%) are not due to dominantly inherited genetic causes. Instead, it is thought that the risk for disease is a complicated interaction between inherited and environmental risk factors that, with age, drive pathology that ultimately results in neurodegeneration and disease onset. Since it is increasingly appreciated that encephalitic viral infections can have profoundly detrimental neurological consequences long after the acute infection has resolved, we tested the hypothesis that viral encephalitis exacerbates the pathological profile of protein-misfolding diseases. Using a robust, reproducible, and well-characterized mouse model for β-amyloidosis, Tg2576, we studied the contribution of alphavirus-induced encephalitis (TC-83 strain of VEEV to model alphavirus encephalitis viruses) on the progression of neurodegenerative pathology. We longitudinally evaluated neurological, neurobehavioral, and cognitive levels, followed by a post-mortem analysis of brain pathology focusing on neuroinflammation. We found more severe cognitive deficits and brain pathology in Tg2576 mice inoculated with TC-83 than in their mock controls. These data set the groundwork to investigate sporadic Alzheimer's disease and treatment interventions for this infectious disease risk factor.
Collapse
Affiliation(s)
- Chanida Fongsaran
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Krit Jirakanwisal
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Bi-Hung Peng
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Giulio Taglialatela
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly T. Dineley
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Irma E. Cisneros
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
5
|
Gardner CL, Erwin-Cohen RA, Lewis BS, Bakken RR, Honnold SP, Glass PJ, Burke CW. Syrian Hamsters Model Does Not Reflect Human-like Disease after Aerosol Exposure to Encephalitic Alphaviruses. Methods Protoc 2024; 7:42. [PMID: 38804336 PMCID: PMC11130913 DOI: 10.3390/mps7030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Venezuelan (VEE), eastern (EEE), and western (WEE) equine encephalitis viruses are encephalitic New World alphaviruses that cause periodic epizootic and epidemic outbreaks in horses and humans that may cause severe morbidity and mortality. Currently there are no FDA-licensed vaccines or effective antiviral therapies. Each year, there are a limited number of human cases of encephalitic alphaviruses; thus, licensure of a vaccine or therapeutic would require approval under the FDA animal rule. Approval under the FDA animal rule requires the disease observed in the animal model to recapitulate what is observed in humans. Currently, initial testing of vaccines and therapeutics is performed in the mouse model. Unfortunately, alphavirus disease manifestations in a mouse do not faithfully recapitulate human disease; the VEEV mouse model is lethal whereas in humans VEEV is rarely lethal. In an effort to identify a more appropriate small animal model, we evaluated hamsters in an aerosol exposure model of encephalitic alphavirus infection. The pathology, lethality, and viremia observed in the infected hamsters was inconsistent with what is observed in NHP models and humans. These data suggest that hamsters are not an appropriate model for encephalitic alphaviruses to test vaccines or potential antiviral therapies.
Collapse
Affiliation(s)
- Christina L. Gardner
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.L.G.); (R.A.E.-C.); (R.R.B.); (P.J.G.)
| | - Rebecca A. Erwin-Cohen
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.L.G.); (R.A.E.-C.); (R.R.B.); (P.J.G.)
| | - Bridget S. Lewis
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (B.S.L.); (S.P.H.)
| | - Russell R. Bakken
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.L.G.); (R.A.E.-C.); (R.R.B.); (P.J.G.)
| | - Shelley P. Honnold
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (B.S.L.); (S.P.H.)
| | - Pamela J. Glass
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.L.G.); (R.A.E.-C.); (R.R.B.); (P.J.G.)
- Risk Management Office, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Crystal W. Burke
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (C.L.G.); (R.A.E.-C.); (R.R.B.); (P.J.G.)
| |
Collapse
|
6
|
Hickson SE, Hyde JL. RNA structures within Venezuelan equine encephalitis virus E1 alter macrophage replication fitness and contribute to viral emergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588743. [PMID: 38645187 PMCID: PMC11030350 DOI: 10.1101/2024.04.09.588743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne +ssRNA virus belonging to the Togaviridae. VEEV is found throughout Central and South America and is responsible for periodic epidemic/epizootic outbreaks of febrile and encephalitic disease in equines and humans. Endemic/enzootic VEEV is transmitted between Culex mosquitoes and sylvatic rodents, whereas epidemic/epizootic VEEV is transmitted between mosquitoes and equids, which serve as amplification hosts during outbreaks. Epizootic VEEV emergence has been shown to arise from mutation of enzootic VEEV strains. Specifically, epizootic VEEV has been shown to acquire amino acid mutations in the E2 viral glycoprotein that facilitate viral entry and equine amplification. However, the abundance of synonymous mutations which accumulate across the epizootic VEEV genome suggests that other viral determinants such as RNA secondary structure may also play a role in VEEV emergence. In this study we identify novel RNA structures in the E1 gene which specifically alter replication fitness of epizootic VEEV in macrophages but not other cell types. We show that SNPs are conserved within epizootic lineages and that RNA structures are conserved across different lineages. We also identified several novel RNA-binding proteins that are necessary for altered macrophage replication. These results suggest that emergence of VEEV in nature requires multiple mutations across the viral genome, some of which alter cell-type specific replication fitness in an RNA structure-dependent manner.
Collapse
Affiliation(s)
- Sarah E. Hickson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
7
|
Schneider CA, Leung JM, Valenzuela-Leon PC, Golviznina NA, Toso EA, Bosnakovski D, Kyba M, Calvo E, Peterson KE. Skin muscle is the initial site of viral replication for arboviral bunyavirus infection. Nat Commun 2024; 15:1121. [PMID: 38321047 PMCID: PMC10847502 DOI: 10.1038/s41467-024-45304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
The first step in disease pathogenesis for arboviruses is the establishment of infection following vector transmission. For La Crosse virus (LACV), the leading cause of pediatric arboviral encephalitis in North America, and other orthobunyaviruses, the initial course of infection in the skin is not well understood. Using an intradermal (ID) model of LACV infection in mice, we find that the virus infects and replicates nearly exclusively within skin-associated muscle cells of the panniculus carnosus (PC) and not in epidermal or dermal cells like most other arbovirus families. LACV is widely myotropic, infecting distal muscle cells of the peritoneum and heart, with limited infection of draining lymph nodes. Surprisingly, muscle cells are resistant to virus-induced cell death, with long term low levels of virus release progressing through the Golgi apparatus. Thus, skin muscle may be a key cell type for the initial infection and spread of arboviral orthobunyaviruses.
Collapse
Affiliation(s)
- Christine A Schneider
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jacqueline M Leung
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | - Erik A Toso
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Karin E Peterson
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
8
|
Powers AM, Williamson LE, Carnahan RH, Crowe JE, Hyde JL, Jonsson CB, Nasar F, Weaver SC. Developing a Prototype Pathogen Plan and Research Priorities for the Alphaviruses. J Infect Dis 2023; 228:S414-S426. [PMID: 37849399 PMCID: PMC11007399 DOI: 10.1093/infdis/jiac326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
The Togaviridae family, genus, Alphavirus, includes several mosquito-borne human pathogens with the potential to spread to near pandemic proportions. Most of these are zoonotic, with spillover infections of humans and domestic animals, but a few such as chikungunya virus (CHIKV) have the ability to use humans as amplification hosts for transmission in urban settings and explosive outbreaks. Most alphaviruses cause nonspecific acute febrile illness, with pathogenesis sometimes leading to either encephalitis or arthralgic manifestations with severe and chronic morbidity and occasional mortality. The development of countermeasures, especially against CHIKV and Venezuelan equine encephalitis virus that are major threats, has included vaccines and antibody-based therapeutics that are likely to also be successful for rapid responses with other members of the family. However, further work with these prototypes and other alphavirus pathogens should target better understanding of human tropism and pathogenesis, more comprehensive identification of cellular receptors and entry, and better understanding of structural mechanisms of neutralization.
Collapse
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Lauren E Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer L Hyde
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Farooq Nasar
- Emerging Infectious Diseases Branch and Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
9
|
Williams EP, Xue Y, Lee J, Fitzpatrick EA, Kong Y, Reichard W, Writt H, Jonsson CB. Deep spatial profiling of Venezuelan equine encephalitis virus reveals increased genetic diversity amidst neuroinflammation and cell death during brain infection. J Virol 2023; 97:e0082723. [PMID: 37560924 PMCID: PMC10506382 DOI: 10.1128/jvi.00827-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 08/11/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) causes a febrile illness that can progress to neurological disease with the possibility of death in human cases. The evaluation and optimization of therapeutics that target brain infections demands knowledge of the host's response to VEEV, the dynamics of infection, and the potential for within-host evolution of the virus. We hypothesized that selective pressures during infection of the brain may differ temporally and spatially and so we investigated the dynamics of the host response, viral transcript levels, and genetic variation of VEEV TC-83 in eight areas of the brain in mice over 7 days post-infection (dpi). Viral replication increased throughout the brain until 5-6 dpi and decreased thereafter with neurons as the main site of viral replication. Low levels of genetic diversity were noted on 1 dpi and were followed by an expansion in the genetic diversity of VEEV and nonsynonymous (Ns) mutations that peaked by 5 dpi. The pro-inflammatory response and the influx of immune cells mirrored the levels of virus and correlated with substantial damage to neurons by 5 dpi and increased activation of microglial cells and astrocytes. The prevalence and dynamics of Ns mutations suggest that the VEEV is under selection within the brain and that progressive neuroinflammation may play a role in acting as a selective pressure. IMPORTANCE Treatment of encephalitis in humans caused by Venezuelan equine encephalitis virus (VEEV) from natural or aerosol exposure is not available, and hence, there is a great interest to address this gap. In contrast to natural infections, therapeutic treatment of infections from aerosol exposure will require fast-acting drugs that rapidly penetrate the blood-brain barrier, engage sites of infection in the brain and mitigate the emergence of drug resistance. Therefore, it is important to understand not only VEEV pathogenesis, but the trafficking of the viral population within the brain, the potential for within-host evolution of the virus, and how VEEV might evolve resistance.
Collapse
Affiliation(s)
- Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jasper Lee
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Elizabeth A. Fitzpatrick
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Kong
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Walter Reichard
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Haley Writt
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Kafai NM, Janova H, Cain MD, Alippe Y, Muraro S, Sariol A, Elam-Noll M, Klein RS, Diamond MS. Entry receptor LDLRAD3 is required for Venezuelan equine encephalitis virus peripheral infection and neurotropism leading to pathogenesis in mice. Cell Rep 2023; 42:112946. [PMID: 37556325 PMCID: PMC10529316 DOI: 10.1016/j.celrep.2023.112946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus responsible for epidemics of neurological disease across the Americas. Low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3) is a recently reported entry receptor for VEEV. Here, using wild-type and Ldlrad3-deficient mice, we define a critical role for LDLRAD3 in controlling steps in VEEV infection, pathogenesis, and neurotropism. Our analysis shows that LDLRAD3 is required for efficient VEEV infection and pathogenesis prior to and after central nervous system invasion. Ldlrad3-deficient mice survive intranasal and intracranial VEEV inoculation and show reduced infection of neurons in different brain regions. As LDLRAD3 is a determinant of pathogenesis and an entry receptor required for VEEV infection of neurons of the brain, receptor-targeted therapies may hold promise as countermeasures.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hana Janova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yael Alippe
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stefanie Muraro
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alan Sariol
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle Elam-Noll
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Hu X, Morazzani E, Compton JR, Harmon M, Soloveva V, Glass PJ, Garcia AD, Marugan JJ, Legler PM. In Silico Screening of Inhibitors of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease. Viruses 2023; 15:1503. [PMID: 37515189 PMCID: PMC10385868 DOI: 10.3390/v15071503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.B79) is essential for viral replication. High throughput in silico/in vitro screening using a focused set of known cysteine protease inhibitors identified two epoxysuccinyl prodrugs, E64d and CA074 methyl ester (CA074me) and a reversible oxindole inhibitor. Here, we determined the X-ray crystal structure of the CA074-inhibited nsP2 protease and compared it with our E64d-inhibited structure. We found that the two inhibitors occupy different locations in the protease. We designed hybrid inhibitors with improved potency. Virus yield reduction assays confirmed that the viral titer was reduced by >5 logs with CA074me. Cell-based assays showed reductions in viral replication for CHIKV, VEEV, and WEEV, and weaker inhibition of EEEV by the hybrid inhibitors. The most potent was NCGC00488909-01 which had an EC50 of 1.76 µM in VEEV-Trd-infected cells; the second most potent was NCGC00484087 with an EC50 = 7.90 µM. Other compounds from the NCATS libraries such as the H1 antihistamine oxatomide (>5-log reduction), emetine, amsacrine an intercalator (NCGC0015113), MLS003116111-01, NCGC00247785-13, and MLS00699295-01 were found to effectively reduce VEEV viral replication in plaque assays. Kinetic methods demonstrated time-dependent inhibition by the hybrid inhibitors of the protease with NCGC00488909-01 (Ki = 3 µM) and NCGC00484087 (Ki = 5 µM). Rates of inactivation by CA074 in the presence of 6 mM CaCl2, MnCl2, or MgCl2 were measured with varying concentrations of inhibitor, Mg2+ and Mn2+ slightly enhanced inhibitor binding (3 to 6-fold). CA074 inhibited not only the VEEV nsP2 protease but also that of CHIKV and WEEV.
Collapse
Affiliation(s)
- Xin Hu
- National Center for Advancing Translational Sciences (NCATS), Rockville, MD 20850, USA
| | - Elaine Morazzani
- General Dynamics Information Technology, Falls Church, VA 22042, USA
| | - Jaimee R Compton
- Center for Bio/Molecular Science and Engineering (CBMSE), Naval Research Laboratory, Washington, DC 20375, USA
| | - Moeshia Harmon
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| | - Veronica Soloveva
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Pamela J Glass
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Andres Dulcey Garcia
- National Center for Advancing Translational Sciences (NCATS), Rockville, MD 20850, USA
| | - Juan J Marugan
- National Center for Advancing Translational Sciences (NCATS), Rockville, MD 20850, USA
| | - Patricia M Legler
- Center for Bio/Molecular Science and Engineering (CBMSE), Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
12
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
13
|
Activity, Template Preference, and Compatibility of Components of RNA Replicase of Eastern Equine Encephalitis Virus. J Virol 2023; 97:e0136822. [PMID: 36533950 PMCID: PMC9888243 DOI: 10.1128/jvi.01368-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) usually cycles between Culiseta melanura mosquitoes and birds; however, it can also infect humans. EEEV has a positive-sense RNA genome that, in infected cells, serves as an mRNA for the P1234 polyprotein. P1234 undergoes a series of precise cleavage events producing four nonstructural proteins (nsP1-4) representing subunits of the RNA replicase. Here, we report the construction and properties of a trans-replicase for EEEV. The template RNA of EEEV was shown to be replicated by replicases of diverse alphaviruses. The EEEV replicase, on the other hand, demonstrated limited ability in replicating template RNAs originating from alphaviruses of the Semliki Forest virus complex. The replicase of EEEV was also successfully reconstructed from P123 and nsP4 components. The ability of EEEV P123 to form functional RNA replicases with heterologous nsP4s was more efficient using EEEV template RNA than heterologous alphavirus template RNA. This finding indicates that unlike with previously studied Semliki Forest complex alphaviruses, P123 and/or its processing products have a leading role in EEEV template RNA recognition. Infection of HEK293T cells harboring the EEEV template RNA with EEEV or Western equine encephalitis virus prominently activated expression of a reporter encoded in the template RNA; the effect was much smaller for infection with other alphaviruses and not detectable upon flavivirus infection. At the same time, EEEV infection resulted only in a limited activation of the template RNA of chikungunya virus. Thus, cells harboring reporter-carrying template RNAs can be used as sensitive and selective biosensors for different alphaviruses. IMPORTANCE Infection of EEEV in humans can cause serious neurologic disease with an approximately 30% fatality rate. Although human infections are rare, a record-breaking number was documented in 2019. The replication of EEEV has a unique requirement for host factors but is poorly studied, partly because the virus requires biosafety level 3 facilities which can limit the scope of experiments; at the same time, these studies are crucial for developing antiviral approaches. The EEEV trans-replicase developed here contributes significantly to research on EEEV, providing a safe and versatile tool for studying the virus RNA replication. Using this system, the compatibility of EEEV replicase components with counterparts from other alphaviruses was analyzed. The obtained data can be used to develop unique biosensors that provide alternative methods for detection, identification, quantitation, and neutralization of viable alphaviruses that are compatible with high throughput, semiautomated approaches.
Collapse
|
14
|
Zimmerman O, Holmes AC, Kafai NM, Adams LJ, Diamond MS. Entry receptors - the gateway to alphavirus infection. J Clin Invest 2023; 133:e165307. [PMID: 36647825 PMCID: PMC9843064 DOI: 10.1172/jci165307] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphaviruses are enveloped, insect-transmitted, positive-sense RNA viruses that infect humans and other animals and cause a range of clinical manifestations, including arthritis, musculoskeletal disease, meningitis, encephalitis, and death. Over the past four years, aided by CRISPR/Cas9-based genetic screening approaches, intensive research efforts have focused on identifying entry receptors for alphaviruses to better understand the basis for cellular and species tropism. Herein, we review approaches to alphavirus receptor identification and how these were used for discovery. The identification of new receptors advances our understanding of viral pathogenesis, tropism, and evolution and is expected to contribute to the development of novel strategies for prevention and treatment of alphavirus infection.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Diamond
- Department of Medicine
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
16
|
Kehn-Hall K, Bradfute SB. Understanding host responses to equine encephalitis virus infection: implications for therapeutic development. Expert Rev Anti Infect Ther 2022; 20:1551-1566. [PMID: 36305549 DOI: 10.1080/14787210.2022.2141224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne New World alphaviruses that cause encephalitis in equids and humans. These viruses can cause severe disease and death, as well as long-term severe neurological symptoms in survivors. Despite the pathogenesis and weaponization of these viruses, there are no approved therapeutics for treating infection. AREAS COVERED In this review, we describe the molecular pathogenesis of these viruses, discuss host-pathogen interactions needed for viral replication, and highlight new avenues for drug development with a focus on host-targeted approaches. EXPERT OPINION Current approaches have yielded some promising therapeutics, but additional emphasis should be placed on advanced development of existing small molecules and pursuit of pan-encephalitic alphavirus drugs. More research should be conducted on EEEV and WEEV, given their high lethality rates.
Collapse
Affiliation(s)
- Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Steven B Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
17
|
Toribio RE. Arboviral Equine Encephalitides. Vet Clin North Am Equine Pract 2022; 38:299-321. [PMID: 35953146 DOI: 10.1016/j.cveq.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A number of viruses transmitted by biological vectors or through direct contact, air, or ingestion cause neurologic disease in equids. Of interest are viruses of the Togaviridae, Flaviviridae, Rhabdoviridae, Herpesviridae, Bornaviridae, and Bunyaviridae families. Many are classified as arboviruses because they use arthropod vectors, whereas others are transmitted directly via ingestion, inhalation, or integument damage. The goal of this article is to provide an overview on pathophysiologic and clinical aspects of arboviruses of equine importance, including alphaviruses (Togaviridae) and flaviviruses (Flaviviridae).
Collapse
Affiliation(s)
- Ramiro E Toribio
- College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp Street, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Ma H, Albe JR, Gilliland T, McMillen CM, Gardner CL, Boyles DA, Cottle EL, Dunn MD, Lundy JD, Salama N, O’Malley KJ, Pandrea I, Teichert T, Barrick S, Klimstra WB, Hartman AL, Reed DS. Long-term persistence of viral RNA and inflammation in the CNS of macaques exposed to aerosolized Venezuelan equine encephalitis virus. PLoS Pathog 2022; 18:e1009946. [PMID: 35696423 PMCID: PMC9232170 DOI: 10.1371/journal.ppat.1009946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/24/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a positively-stranded RNA arbovirus of the genus Alphavirus that causes encephalitis in humans. Cynomolgus macaques are a relevant model of the human disease caused by VEEV and are useful in exploring pathogenic mechanisms and the host response to VEEV infection. Macaques were exposed to small-particle aerosols containing virus derived from an infectious clone of VEEV strain INH-9813, a subtype IC strain isolated from a human infection. VEEV-exposed macaques developed a biphasic fever after infection similar to that seen in humans. Maximum temperature deviation correlated with the inhaled dose, but fever duration did not. Neurological signs, suggestive of virus penetration into the central nervous system (CNS), were predominantly seen in the second febrile period. Electroencephalography data indicated a statistically significant decrease in all power bands and circadian index during the second febrile period that returned to normal after fever resolved. Intracranial pressure increased late in the second febrile period. On day 6 post-infection macaques had high levels of MCP-1 and IP-10 chemokines in the CNS, as well as a marked increase of T lymphocytes and activated microglia. More than four weeks after infection, VEEV genomic RNA was found in the brain, cerebrospinal fluid and cervical lymph nodes. Pro-inflammatory cytokines & chemokines, infiltrating leukocytes and pathological changes were seen in the CNS tissues of macaques euthanized at these times. These data are consistent with persistence of virus replication and/or genomic RNA and potentially, inflammatory sequelae in the central nervous system after resolution of acute VEEV disease. Although naturally transmitted by mosquito, Venezuelan equine encephalitis viruses (VEEV) can be highly infectious when aerosolized. In humans, VEEV are only rarely fatal but cause a severe, biphasic fever with neurological symptoms including severe headache, a stiff neck, and photophobia. We report here our efforts to further characterize the disease caused by VEEV in the cynomolgus macaque, using an infectious clone of a human VEEV isolate, to explore the long-term effects of VEEV infection, and the utility of radiotelemetry in continuous monitoring of electroencephalography and intracranial pressure to explore the relationship between fever, virus penetration of the brain, and neurological disease.
Collapse
Affiliation(s)
- Henry Ma
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph R. Albe
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Theron Gilliland
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christina L. Gardner
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Devin A. Boyles
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily L. Cottle
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeneveve D. Lundy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Noah Salama
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine J. O’Malley
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivona Pandrea
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tobias Teichert
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stacey Barrick
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amy L. Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
20
|
Guerrero-Arguero I, Tellez-Freitas CM, Weber KS, Berges BK, Robison RA, Pickett BE. Alphaviruses: Host pathogenesis, immune response, and vaccine & treatment updates. J Gen Virol 2021; 102. [PMID: 34435944 DOI: 10.1099/jgv.0.001644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
21
|
Kim AS, Kafai NM, Winkler ES, Gilliland TC, Cottle EL, Earnest JT, Jethva PN, Kaplonek P, Shah AP, Fong RH, Davidson E, Malonis RJ, Quiroz JA, Williamson LE, Vang L, Mack M, Crowe JE, Doranz BJ, Lai JR, Alter G, Gross ML, Klimstra WB, Fremont DH, Diamond MS. Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell 2021; 184:4414-4429.e19. [PMID: 34416146 PMCID: PMC8382027 DOI: 10.1016/j.cell.2021.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Alphaviruses are emerging, mosquito-transmitted pathogens that cause musculoskeletal and neurological disease in humans. Although neutralizing antibodies that inhibit individual alphaviruses have been described, broadly reactive antibodies that protect against both arthritogenic and encephalitic alphaviruses have not been reported. Here, we identify DC2.112 and DC2.315, two pan-protective yet poorly neutralizing human monoclonal antibodies (mAbs) that avidly bind to viral antigen on the surface of cells infected with arthritogenic and encephalitic alphaviruses. These mAbs engage a conserved epitope in domain II of the E1 protein proximal to and within the fusion peptide. Treatment with DC2.112 or DC2.315 protects mice against infection by both arthritogenic (chikungunya and Mayaro) and encephalitic (Venezuelan, Eastern, and Western equine encephalitis) alphaviruses through multiple mechanisms, including inhibition of viral egress and monocyte-dependent Fc effector functions. These findings define a conserved epitope recognized by weakly neutralizing yet protective antibodies that could be targeted for pan-alphavirus immunotherapy and vaccine design.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Theron C Gilliland
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Emily L Cottle
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James T Earnest
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Prashant N Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aadit P Shah
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel H Fong
- Integral Molecular, Inc., Philadelphia, PA 19104, USA
| | | | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jose A Quiroz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lauren E Williamson
- Vanderbilt Vaccine Center and Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lo Vang
- Emergent BioSolutions, Gaithersburg, MD 20879, USA
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - James E Crowe
- Vanderbilt Vaccine Center and Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - William B Klimstra
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
22
|
Hasan SS, Dey D, Singh S, Martin M. The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat. Pathogens 2021; 10:pathogens10080973. [PMID: 34451437 PMCID: PMC8400090 DOI: 10.3390/pathogens10080973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.
Collapse
Affiliation(s)
- S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201, USA
- Correspondence:
| | - Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| |
Collapse
|
23
|
LaPointe AT, Sokoloski KJ. De-Coding the Contributions of the Viral RNAs to Alphaviral Pathogenesis. Pathogens 2021; 10:pathogens10060771. [PMID: 34205345 PMCID: PMC8233893 DOI: 10.3390/pathogens10060771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are positive-sense RNA arboviruses that are capable of causing severe disease in otherwise healthy individuals. There are many aspects of viral infection that determine pathogenesis and major efforts regarding the identification and characterization of virulence determinants have largely focused on the roles of the nonstructural and structural proteins. Nonetheless, the viral RNAs of the alphaviruses themselves play important roles in regard to virulence and pathogenesis. In particular, many sequences and secondary structures within the viral RNAs play an important part in the development of disease and may be considered important determinants of virulence. In this review article, we summarize the known RNA-based virulence traits and host:RNA interactions that influence alphaviral pathogenesis for each of the viral RNA species produced during infection. Overall, the viral RNAs produced during infection are important contributors to alphaviral pathogenesis and more research is needed to fully understand how each RNA species impacts the host response to infection as well as the development of disease.
Collapse
Affiliation(s)
- Autumn T. LaPointe
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KT 40202, USA;
| | - Kevin J. Sokoloski
- Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KT 40202, USA
- Correspondence:
| |
Collapse
|
24
|
PERK Is Critical for Alphavirus Nonstructural Protein Translation. Viruses 2021; 13:v13050892. [PMID: 34065980 PMCID: PMC8151226 DOI: 10.3390/v13050892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus that causes encephalitis. Previous work indicated that VEEV infection induced early growth response 1 (EGR1) expression, leading to cell death via the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) arm of the unfolded protein response (UPR) pathway. Loss of PERK prevented EGR1 induction and decreased VEEV-induced death. The results presented within show that loss of PERK in human primary astrocytes dramatically reduced VEEV and eastern equine encephalitis virus (EEEV) infectious titers by 4–5 log10. Loss of PERK also suppressed VEEV replication in primary human pericytes and human umbilical vein endothelial cells, but it had no impact on VEEV replication in transformed U87MG and 293T cells. A significant reduction in VEEV RNA levels was observed as early as 3 h post-infection, but viral entry assays indicated that the loss of PERK minimally impacted VEEV entry. In contrast, the loss of PERK resulted in a dramatic reduction in viral nonstructural protein translation and negative-strand viral RNA production. The loss of PERK also reduced the production of Rift Valley fever virus and Zika virus infectious titers. These data indicate that PERK is an essential factor for the translation of alphavirus nonstructural proteins and impacts multiple RNA viruses, making it an exciting target for antiviral development.
Collapse
|
25
|
Albe JR, Ma H, Gilliland TH, McMillen CM, Gardner CL, Boyles DA, Cottle EL, Dunn MD, Lundy JD, O’Malley KJ, Salama N, Walters AW, Pandrea I, Teichert T, Klimstra WB, Reed DS, Hartman AL. Physiological and immunological changes in the brain associated with lethal eastern equine encephalitis virus in macaques. PLoS Pathog 2021; 17:e1009308. [PMID: 33534855 PMCID: PMC7886169 DOI: 10.1371/journal.ppat.1009308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/16/2021] [Accepted: 01/12/2021] [Indexed: 11/18/2022] Open
Abstract
Aerosol exposure to eastern equine encephalitis virus (EEEV) can trigger a lethal viral encephalitis in cynomolgus macaques which resembles severe human disease. Biomarkers indicative of central nervous system (CNS) infection by the virus and lethal outcome of disease would be useful in evaluating potential medical countermeasures, especially for therapeutic compounds. To meet requirements of the Animal Rule, a better understanding of the pathophysiology of EEEV-mediated disease in cynomolgus macaques is needed. In this study, macaques given a lethal dose of clone-derived EEEV strain V105 developed a fever between 2-3 days post infection (dpi) and succumbed to the disease by 6 dpi. At the peak of the febrile phase, there was a significant increase in the delta electroencephalography (EEG) power band associated with deep sleep as well as a sharp rise in intracranial pressure (ICP). Viremia peaked early after infection and was largely absent by the onset of fever. Granulocytosis and elevated plasma levels of IP-10 were found early after infection. At necropsy, there was a one hundred- to one thousand-fold increase in expression of traumatic brain injury genes (LIF, MMP-9) as well as inflammatory cytokines and chemokines (IFN-γ, IP-10, MCP-1, IL-8, IL-6) in the brain tissues. Phenotypic analysis of leukocytes entering the brain identified cells as primarily lymphoid (T, B, NK cells) with lower levels of infiltrating macrophages and activated microglia. Massive amounts of infectious virus were found in the brains of lethally-infected macaques. While no infectious virus was found in surviving macaques, quantitative PCR did find evidence of viral genomes in the brains of several survivors. These data are consistent with an overwhelming viral infection in the CNS coupled with a tremendous inflammatory response to the infection that may contribute to the disease outcome. Physiological monitoring of EEG and ICP represent novel methods for assessing efficacy of vaccines or therapeutics in the cynomolgus macaque model of EEEV encephalitis.
Collapse
Affiliation(s)
- Joseph R. Albe
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Henry Ma
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Theron H. Gilliland
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Cynthia M. McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christina L. Gardner
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Devin A. Boyles
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emily L. Cottle
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeneveve D. Lundy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Katherine J. O’Malley
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Noah Salama
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron W. Walters
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tobias Teichert
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (WBK); (DSR); (ALH)
| | - Douglas S. Reed
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (WBK); (DSR); (ALH)
| | - Amy L. Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (WBK); (DSR); (ALH)
| |
Collapse
|
26
|
Elkhalifa D, Al-Hashimi I, Al Moustafa AE, Khalil A. A comprehensive review on the antiviral activities of chalcones. J Drug Target 2020; 29:403-419. [PMID: 33232192 DOI: 10.1080/1061186x.2020.1853759] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Some viral outbreaks have plagued the world since antiquity, including the most recent COVID-19 pandemic. The continuous spread and emergence of new viral diseases have urged the discovery of novel treatment options that can overcome the limitations of currently marketed antiviral drugs. Chalcones are natural open chain flavonoids that are found in various plants and can be synthesised in labs. Several studies have shown that these small organic molecules exert a number of pharmacological activities, including antiviral, anti-inflammatory, antimicrobial and anticancer. The purpose of this review is to provide a summary of the antiviral activities of chalcones and their derivatives on a set of human viral infections and their potential for targeting the most recent COVID-19 disease. Accordingly, we herein review chalcones activities on the following human viruses: Middle East respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus, human immunodeficiency, influenza, human rhinovirus, herpes simplex, dengue, human cytomegalovirus, hepatitis B and C, Rift Valley fever and Venezuelan equine encephalitis. We hope that this review will pave the way for the design and development of potentially potent and broad-spectrum chalcone based antiviral drugs.
Collapse
Affiliation(s)
- Dana Elkhalifa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Department of Pharmacy, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, Quebec, Canada.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
27
|
Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response. Sci Rep 2020; 10:21491. [PMID: 33293592 PMCID: PMC7722873 DOI: 10.1038/s41598-020-77990-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV), a New World alphavirus of the Togaviridae family of viruses causes periodic outbreaks of disease in humans and equines. Disease following VEEV infection manifests as a febrile illness with flu-like symptoms, which can progress to encephalitis and cause permanent neurological sequelae in a small number of cases. VEEV is classified as a category B select agent due to ease of aerosolization and high retention of infectivity in the aerosol form. Currently, there are no FDA-approved vaccines or therapeutics available to combat VEEV infection. VEEV infection in vivo is characterized by extensive systemic inflammation that can exacerbate infection by potentially increasing the susceptibility of off-site cells to infection and dissemination of the virus. Hence, a therapeutic targeting both the infection and associated inflammation represents an unmet need. We have previously demonstrated that host defense peptides (HDPs), short peptides that are key components of the innate immune response, exhibit antiviral activity against a multitude of viruses including VEEV. In this study, we designed synthetic peptides derived from indolicidin, a naturally occurring HDP, and tested their efficacy against VEEV. Two candidate synthetic peptides inhibited VEEV replication by approximately 1000-fold and decreased the expression of inflammatory mediators such as IL1α, IL1β, IFNγ, and TNFα at both the gene and protein expression levels. Furthermore, an increase in expression levels of genes involved in chemotaxis of leukocytes and anti-inflammatory genes such as IL1RN was also observed. Overall, we conclude that our synthetic peptides inhibit VEEV replication and the inflammatory burden associated with VEEV infection.
Collapse
|
28
|
Abstract
Alphaviruses cause severe human illnesses including persistent arthritis and fatal encephalitis. As alphavirus entry into target cells is the first step in infection, intensive research efforts have focused on elucidating aspects of this pathway, including attachment, internalization, and fusion. Herein, we review recent developments in the molecular understanding of alphavirus entry both in vitro and in vivo and how these advances might enable the design of therapeutics targeting this critical step in the alphavirus life cycle.
Collapse
|
29
|
Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Res 2020; 287:198108. [PMID: 32768490 PMCID: PMC7405774 DOI: 10.1016/j.virusres.2020.198108] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Viral infections are dangerous diseases for human health worldwide, which lead to significant morbidity and mortality each year. Because of their importance and the lack of effective therapeutic approaches, further attempts should be made to discover appropriate alternative or complementary treatments. Melatonin, a multifunctional neurohormone mainly synthesized and secreted by the pineal gland, plays some roles in the treatment of viral infections. Regarding a deadly outbreak of COVID-19 across the world, we decided to discuss melatonin functions against various viral infections including COVID-19. Therefore, in this review, we summarize current evidence on melatonin therapy for viral infections with focus on possible underlying mechanisms of melatonin actions.
Collapse
|
30
|
Pouch SM, Katugaha SB, Shieh WJ, Annambhotla P, Walker WL, Basavaraju SV, Jones J, Huynh T, Reagan-Steiner S, Bhatnagar J, Grimm K, Stramer SL, Gabel J, Lyon GM, Mehta AK, Kandiah P, Neujahr DC, Javidfar J, Subramanian RM, Parekh SM, Shah P, Cooper L, Psotka MA, Radcliffe R, Williams C, Zaki SR, Staples JE, Fischer M, Panella AJ, Lanciotti RS, Laven JJ, Kosoy O, Rabe IB, Gould CV. Transmission of Eastern Equine Encephalitis Virus From an Organ Donor to 3 Transplant Recipients. Clin Infect Dis 2020; 69:450-458. [PMID: 30371754 DOI: 10.1093/cid/ciy923] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In fall 2017, 3 solid organ transplant (SOT) recipients from a common donor developed encephalitis within 1 week of transplantation, prompting suspicion of transplant-transmitted infection. Eastern equine encephalitis virus (EEEV) infection was identified during testing of endomyocardial tissue from the heart recipient. METHODS We reviewed medical records of the organ donor and transplant recipients and tested serum, whole blood, cerebrospinal fluid, and tissue from the donor and recipients for evidence of EEEV infection by multiple assays. We investigated blood transfusion as a possible source of organ donor infection by testing remaining components and serum specimens from blood donors. We reviewed data from the pretransplant organ donor evaluation and local EEEV surveillance. RESULTS We found laboratory evidence of recent EEEV infection in all organ recipients and the common donor. Serum collected from the organ donor upon hospital admission tested negative, but subsequent samples obtained prior to organ recovery were positive for EEEV RNA. There was no evidence of EEEV infection among donors of the 8 blood products transfused into the organ donor or in products derived from these donations. Veterinary and mosquito surveillance showed recent EEEV activity in counties nearby the organ donor's county of residence. Neuroinvasive EEEV infection directly contributed to the death of 1 organ recipient and likely contributed to death in another. CONCLUSIONS Our investigation demonstrated EEEV transmission through SOT. Mosquito-borne transmission of EEEV to the organ donor was the likely source of infection. Clinicians should be aware of EEEV as a cause of transplant-associated encephalitis.
Collapse
Affiliation(s)
- Stephanie M Pouch
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Shalika B Katugaha
- Infectious Diseases Physicians, Inc, Inova Fairfax Hospital Heart and Vascular Institute, Falls Church, Virginia
| | - Wun-Ju Shieh
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Pallavi Annambhotla
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - William L Walker
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado.,Epidemic Intelligence Service, Center for Surveillance, Epidemiology and Laboratory Services, CDC, Atlanta, Georgia
| | - Sridhar V Basavaraju
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Jefferson Jones
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Thanhthao Huynh
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Sarah Reagan-Steiner
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Julu Bhatnagar
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Kacie Grimm
- American Red Cross, Gaithersburg, Maryland, Emory University School of Medicine, Atlanta, Georgia
| | - Susan L Stramer
- American Red Cross, Gaithersburg, Maryland, Emory University School of Medicine, Atlanta, Georgia
| | - Julie Gabel
- Georgia Department of Public Health, Emory University School of Medicine, Atlanta, Georgia
| | - G Marshall Lyon
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Aneesh K Mehta
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Prem Kandiah
- Department of Neurology and Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - David C Neujahr
- Division of Pulmonary Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffrey Javidfar
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Ram M Subramanian
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Samir M Parekh
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Palak Shah
- Department of Heart Failure and Transplantation, Inova Fairfax Hospital Heart and Vascular Institute, Falls Church, Virginia
| | - Lauren Cooper
- Department of Heart Failure and Transplantation, Inova Fairfax Hospital Heart and Vascular Institute, Falls Church, Virginia
| | - Mitchell A Psotka
- Department of Heart Failure and Transplantation, Inova Fairfax Hospital Heart and Vascular Institute, Falls Church, Virginia
| | - Rachel Radcliffe
- Division of Acute Disease Epidemiology, South Carolina Department of Health and Environmental Control, Columbia
| | | | - Sherif R Zaki
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - J Erin Staples
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | - Marc Fischer
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | - Amanda J Panella
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | | | - Janeen J Laven
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | - Olga Kosoy
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | - Ingrid B Rabe
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | - Carolyn V Gould
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | | |
Collapse
|
31
|
Abstract
Alphaviruses, members of the enveloped, positive-sense, single-stranded RNA Togaviridae family, represent a reemerging public health threat as mosquito vectors expand into new geographic territories. The Old World alphaviruses, which include chikungunya virus, Ross River virus, and Sindbis virus, tend to cause a clinical syndrome characterized by fever, rash, and arthritis, whereas the New World alphaviruses, which consist of Venezuelan equine encephalitis virus, eastern equine encephalitis virus, and western equine encephalitis virus, induce encephalomyelitis. Following recovery from the acute phase of infection, many patients are left with debilitating persistent joint and neurological complications that can last for years. Clues from human cases and studies using animal models strongly suggest that much of the disease and pathology induced by alphavirus infection, particularly atypical and chronic manifestations, is mediated by the immune system rather than directly by the virus. This review discusses the current understanding of the immunopathogenesis of the arthritogenic and neurotropic alphaviruses accumulated through both natural infection of humans and experimental infection of animals, particularly mice. As treatment following alphavirus infection is currently limited to supportive care, understanding the contribution of the immune system to the disease process is critical to developing safe and effective therapies.
Collapse
Affiliation(s)
- Victoria K Baxter
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
32
|
Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Front Immunol 2020; 11:1100. [PMID: 32582186 PMCID: PMC7297083 DOI: 10.3389/fimmu.2020.01100] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) have been shown to be strong activators of dendritic cells (DCs). DCs are the most potent antigen presenting cells (APCs) and their activation prompts the priming of immunity mediators based on B and T cells. The first step for the activation of DCs is the binding of VLPs to pattern recognition receptors (PRRs) on the surface of DCs, followed by VLP internalization. Like wild-type viruses, VLPs use specific PRRs from the DC; however, these recognition interactions between VLPs and PRRs from DCs have not been thoroughly reviewed. In this review, we focused on the interaction between proteins that form VLPs and PRRs from DCs. Several proteins that form VLP contain glycosylations that allow the direct interaction with PRRs sensing carbohydrates, prompting DC maturation and leading to the development of strong adaptive immune responses. We also discussed how the knowledge of the molecular interaction between VLPs and PRRs from DCs can lead to the smart design of VLPs, whether based on the fusion of foreign epitopes or their chemical conjugation, as well as other modifications that have been shown to induce a stronger adaptive immune response and protection against infectious pathogens of importance in human and veterinary medicine. Finally, we address the use of VLPs as tools against cancer and allergic diseases.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
33
|
Protein Kinase C subtype δ interacts with Venezuelan equine encephalitis virus capsid protein and regulates viral RNA binding through modulation of capsid phosphorylation. PLoS Pathog 2020; 16:e1008282. [PMID: 32150585 PMCID: PMC7082041 DOI: 10.1371/journal.ppat.1008282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/19/2020] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation plays an important role during the life cycle of many viruses. Venezuelan equine encephalitis virus (VEEV) capsid protein has recently been shown to be phosphorylated at four residues. Here those studies are extended to determine the kinase responsible for phosphorylation and the importance of capsid phosphorylation during the viral life cycle. Phosphorylation site prediction software suggests that Protein Kinase C (PKC) is responsible for phosphorylation of VEEV capsid. VEEV capsid co-immunoprecipitated with PKCδ, but not other PKC isoforms and siRNA knockdown of PKCδ caused a decrease in viral replication. Furthermore, knockdown of PKCδ by siRNA decreased capsid phosphorylation. A virus with capsid phosphorylation sites mutated to alanine (VEEV CPD) displayed a lower genomic copy to pfu ratio than the parental virus; suggesting more efficient viral assembly and more infectious particles being released. RNA:capsid binding was significantly increased in the mutant virus, confirming these results. Finally, VEEV CPD is attenuated in a mouse model of infection, with mice showing increased survival and decreased clinical signs as compared to mice infected with the parental virus. Collectively our data support a model in which PKCδ mediated capsid phosphorylation regulates viral RNA binding and assembly, significantly impacting viral pathogenesis.
Collapse
|
34
|
Salimi H, Cain MD, Jiang X, Roth RA, Beatty WL, Sun C, Klimstra WB, Hou J, Klein RS. Encephalitic Alphaviruses Exploit Caveola-Mediated Transcytosis at the Blood-Brain Barrier for Central Nervous System Entry. mBio 2020; 11:e02731-19. [PMID: 32047126 PMCID: PMC7018649 DOI: 10.1128/mbio.02731-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Venezuelan and western equine encephalitis viruses (VEEV and WEEV, respectively) invade the central nervous system (CNS) early during infection, via neuronal and hematogenous routes. While viral replication mediates host shutoff, including expression of type I interferons (IFN), few studies have addressed how alphaviruses gain access to the CNS during established infection or the mechanisms of viral crossing at the blood-brain barrier (BBB). Here, we show that hematogenous dissemination of VEEV and WEEV into the CNS occurs via caveolin-1 (Cav-1)-mediated transcytosis (Cav-MT) across an intact BBB, which is impeded by IFN and inhibitors of RhoA GTPase. Use of reporter and nonreplicative strains also demonstrates that IFN signaling mediates viral restriction within cells comprising the neurovascular unit (NVU), differentially rendering brain endothelial cells, pericytes, and astrocytes permissive to viral replication. Transmission and immunoelectron microscopy revealed early events in virus internalization and Cav-1 association within brain endothelial cells. Cav-1-deficient mice exhibit diminished CNS VEEV and WEEV titers during early infection, whereas viral burdens in peripheral tissues remained unchanged. Our findings show that alphaviruses exploit Cav-MT to enter the CNS and that IFN differentially restricts this process at the BBB.IMPORTANCE VEEV, WEEV, and eastern equine encephalitis virus (EEEV) are emerging infectious diseases in the Americas, and they have caused several major outbreaks in the human and horse population during the past few decades. Shortly after infection, these viruses can infect the CNS, resulting in severe long-term neurological deficits or death. Neuroinvasion has been associated with virus entry into the CNS directly from the bloodstream; however, the underlying molecular mechanisms have remained largely unknown. Here, we demonstrate that following peripheral infection alphavirus augments vesicular formation/trafficking at the BBB and utilizes Cav-MT to cross an intact BBB, a process regulated by activators of Rho GTPases within brain endothelium. In vivo examination of early viral entry in Cav-1-deficient mice revealed significantly lower viral burdens in the brain than in similarly infected wild-type animals. These studies identify a potentially targetable pathway to limit neuroinvasion by alphaviruses.
Collapse
Affiliation(s)
- Hamid Salimi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiaoping Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robyn A Roth
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wandy L Beatty
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chengqun Sun
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William B Klimstra
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jianghui Hou
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
35
|
Macromolecular Synthesis Shutoff Resistance by Myeloid Cells Is Critical to IRF7-Dependent Systemic Interferon Alpha/Beta Induction after Alphavirus Infection. J Virol 2019; 93:JVI.00872-19. [PMID: 31578290 DOI: 10.1128/jvi.00872-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Alphavirus infection of fibroblastic cell types in vitro inhibits host cell translation and transcription, leading to suppression of interferon alpha/beta (IFN-α/β) production. However, the effect of infection upon myeloid cells, which are often the first cells encountered by alphaviruses in vivo, is unclear. Previous studies demonstrated an association of systemic IFN-α/β production with myeloid cell infection efficiency. Murine infection with wild-type Venezuelan equine encephalitis virus (VEEV), a highly myeloid-cell-tropic alphavirus, results in secretion of very high systemic levels of IFN-α/β, suggesting that stress responses in responding cells are active. Here, we infected myeloid cell cultures with VEEV to identify the cellular source of IFN-α/β, the timing and extent of translation and/or transcription inhibition in infected cells, and the transcription factors responsible for IFN-α/β induction. In contrast to fibroblast infection, myeloid cell cultures infected with VEEV secreted IFN-α/β that increased until cell death was observed. VEEV inhibited translation in most cells early after infection (<6 h postinfection [p.i.]), while transcription inhibition occurred later (>6 h p.i.). Furthermore, the interferon regulatory factor 7 (IRF7), but not IRF3, transcription factor was critical for IFN-α/β induction in vitro and in sera of mice. We identified a subset of infected Raw 264.7 myeloid cells that resisted VEEV-induced translation inhibition and secreted IFN-α/β despite virus infection. However, in the absence of IFN receptor signaling, the size of this cell population was diminished. These results indicate that IFN-α/β induction in vivo is IRF7 dependent and arises in part from a subset of myeloid cells that are resistant, in an IFN-α/β-dependent manner, to VEEV-induced macromolecular synthesis inhibition.IMPORTANCE Most previous research exploring the interaction of alphaviruses with host cell antiviral responses has been conducted using fibroblast lineage cell lines. Previous studies have led to the discovery of virus-mediated activities that antagonize host cell antiviral defense pathways, such as host cell translation and transcription inhibition and suppression of STAT1 signaling. However, their relevance and impact upon myeloid lineage cell types, which are key responders during the initial stages of alphavirus infection in vivo, have not been well studied. Here, we demonstrate the different abilities of myeloid cells to resist VEEV infection compared to nonmyeloid cell types and begin to elucidate the mechanisms by which host antiviral responses are upregulated in myeloid cells despite the actions of virus-encoded antagonists.
Collapse
|
36
|
Trobaugh DW, Sun C, Bhalla N, Gardner CL, Dunn MD, Klimstra WB. Cooperativity between the 3' untranslated region microRNA binding sites is critical for the virulence of eastern equine encephalitis virus. PLoS Pathog 2019; 15:e1007867. [PMID: 31658290 PMCID: PMC6936876 DOI: 10.1371/journal.ppat.1007867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/30/2019] [Accepted: 09/20/2019] [Indexed: 11/18/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV), a mosquito-borne RNA virus, is one of the most acutely virulent viruses endemic to the Americas, causing between 30% and 70% mortality in symptomatic human cases. A major factor in the virulence of EEEV is the presence of four binding sites for the hematopoietic cell-specific microRNA, miR-142-3p, in the 3’ untranslated region (3’ UTR) of the virus. Three of the sites are “canonical” with all 7 seed sequence residues complimentary to miR-142-3p while one is “non-canonical” and has a seed sequence mismatch. Interaction of the EEEV genome with miR-142-3p limits virus replication in myeloid cells and suppresses the systemic innate immune response, greatly exacerbating EEEV neurovirulence. The presence of the miRNA binding sequences is also required for efficient EEEV replication in mosquitoes and, therefore, essential for transmission of the virus. In the current studies, we have examined the role of each binding site by point mutagenesis of the seed sequences in all combinations of sites followed by infection of mammalian myeloid cells, mosquito cells and mice. The resulting data indicate that both canonical and non-canonical sites contribute to cell infection and animal virulence, however, surprisingly, all sites are rapidly deleted from EEEV genomes shortly after infection of myeloid cells or mice. Finally, we show that the virulence of a related encephalitis virus, western equine encephalitis virus, is also dependent upon miR-142-3p binding sites. Eastern equine encephalitis virus (EEEV) is one of the most acutely virulent mosquito-borne viruses in the Americas. A major determinant of EEEV virulence is a mammalian microRNA (miRNA) that is primarily expressed in hematopoietic cells, miR-142-3p. Like miRNA suppression of host mRNA, miR-142-3p binds to the 3’ untranslated region (UTR) of the EEEV genome only in myeloid cells suppressing virus replication and the induction of the innate immune response. In this study, we used point mutations in all four miR-142-3p binding sites in the EEEV 3’ UTR to understand the mechanism behind this miRNA suppression. We observed that decreasing the number of miR-142-3p binding sites leads to virus escape and ultimately attenuation in vivo. Furthermore, another virus, western equine encephalitis virus, also encodes miR-142-3p binding sites that contribute to virulence in vivo. These results provide insight into the mechanism of how cell-specific miRNAs can mediate suppression of virus replication.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Aedes
- Animals
- Binding Sites/genetics
- Cell Line
- Cricetinae
- Encephalitis Virus, Eastern Equine/genetics
- Encephalitis Virus, Eastern Equine/immunology
- Encephalitis Virus, Eastern Equine/pathogenicity
- Encephalitis Virus, Western Equine/genetics
- Encephalitis Virus, Western Equine/immunology
- Encephalitis Virus, Western Equine/pathogenicity
- Encephalomyelitis, Equine/immunology
- Encephalomyelitis, Equine/virology
- Female
- Immunity, Innate/immunology
- L Cells
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- MicroRNAs/genetics
- RAW 264.7 Cells
- Virulence/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Derek W. Trobaugh
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Chengqun Sun
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Nishank Bhalla
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Christina L. Gardner
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
| | - William B. Klimstra
- Center for Vaccine Research, Department of Immunology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA United States of America
- * E-mail:
| |
Collapse
|
37
|
Yu X, Zhu Y, Xiao X, Wang P, Cheng G. Progress towards Understanding the Mosquito-Borne Virus Life Cycle. Trends Parasitol 2019; 35:1009-1017. [PMID: 31669148 DOI: 10.1016/j.pt.2019.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Mosquito-borne arboviruses are a group of heterogeneous viruses that are mainly transmitted to vertebrate hosts and are the aetiological agents of many human diseases. These viruses naturally maintain a life cycle between distinct hosts by transmission from an infected mosquito to a naive host, and acquisition from a viraemic host back to a fed mosquito. To survive in and maintain a cycle between different host environments, mosquito-borne arboviruses exploit sophisticated approaches, including subverting the immune system, hijacking host factors, and taking advantage of gut microbes. We summarize the recent progress towards understanding the mechanisms of arboviral transmission and acquisition by mosquitoes. This knowledge offers an insight into the emergence and re-emergence of arboviruses in nature and an avenue for disease prevention in the future.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Xiaoping Xiao
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
38
|
Trobaugh DW, Sun C, Dunn MD, Reed DS, Klimstra WB. Rational design of a live-attenuated eastern equine encephalitis virus vaccine through informed mutation of virulence determinants. PLoS Pathog 2019; 15:e1007584. [PMID: 30742691 PMCID: PMC6386422 DOI: 10.1371/journal.ppat.1007584] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/22/2019] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
Live attenuated vaccines (LAVs), if sufficiently safe, provide the most potent and durable anti-pathogen responses in vaccinees with single immunizations commonly yielding lifelong immunity. Historically, viral LAVs were derived by blind passage of virulent strains in cultured cells resulting in adaptation to culture and a loss of fitness and disease-causing potential in vivo. Mutations associated with these phenomena have been identified but rarely have specific attenuation mechanisms been ascribed, thereby limiting understanding of the attenuating characteristics of the LAV strain and applicability of the attenuation mechanism to other vaccines. Furthermore, the attenuated phenotype is often associated with single nucleotide changes in the viral genome, which can easily revert to the virulent sequence during replication in animals. Here, we have used a rational approach to attenuation of eastern equine encephalitis virus (EEEV), a mosquito-transmitted alphavirus that is among the most acutely human-virulent viruses endemic to North America and has potential for use as an aerosolized bioweapon. Currently, there is no licensed antiviral therapy or vaccine for this virus. Four virulence loci in the EEEV genome were identified and were mutated individually and in combination to abrogate virulence and to resist reversion. The resultant viruses were tested for virulence in mice to examine the degree of attenuation and efficacy was tested by subcutaneous or aerosol challenge with wild type EEEV. Importantly, all viruses containing three or more mutations were avirulent after intracerebral infection of mice, indicating a very high degree of attenuation. All vaccines protected from subcutaneous EEEV challenge while a single vaccine with three mutations provided reproducible, near-complete protection against aerosol challenge. These results suggest that informed mutation of virulence determinants is a productive strategy for production of LAVs even with highly virulent viruses such as EEEV. Furthermore, these results can be directly applied to mutation of analogous virulence loci to create LAVs from other viruses. Live-attenuated vaccines (LAVs) mimic a natural virus infection and elicit high levels of neutralizing antibodies that can persist for long times. Historically, LAVs have been created by blind passaging of the virus leading to attenuating mutations in the viral genome with no known mechanism of action. We have used an informed approach to create a LAV for eastern equine encephalitis virus (EEEV). EEEV is one of the most highly virulent mosquito-borne viruses in the United States, and there is currently no approved vaccine or antiviral therapeutic. Here, we created a series of LAVs by combining mutations of four alphavirus virulence loci that have known functions. We demonstrate that viruses containing at last three mutations are highly attenuated after both a subcutaneous and intracerebral infection of mice and provide protective immunity against both a subcutaneous and aerosol challenge. We have also identified a key mutation, elimination of the miR-142-3p microRNA biding sites in the EEEV 3’ untranslated region, as critical for myeloid cell replication and essential for eliciting optimal cytokine responses, T cell responses, and protection from challenge. In summary, our results provide a rationale for an informed approach to the generation of LAVs against arboviruses.
Collapse
Affiliation(s)
- Derek W. Trobaugh
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Chengqun Sun
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - William B. Klimstra
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
- * E-mail:
| |
Collapse
|
39
|
Damas ND, Fossat N, Scheel TKH. Functional Interplay between RNA Viruses and Non-Coding RNA in Mammals. Noncoding RNA 2019; 5:ncrna5010007. [PMID: 30646609 PMCID: PMC6468702 DOI: 10.3390/ncrna5010007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Exploring virus–host interactions is key to understand mechanisms regulating the viral replicative cycle and any pathological outcomes associated with infection. Whereas interactions at the protein level are well explored, RNA interactions are less so. Novel sequencing methodologies have helped uncover the importance of RNA–protein and RNA–RNA interactions during infection. In addition to messenger RNAs (mRNAs), mammalian cells express a great number of regulatory non-coding RNAs, some of which are crucial for regulation of the immune system whereas others are utilized by viruses. It is thus becoming increasingly clear that RNA interactions play important roles for both sides in the arms race between virus and host. With the emerging field of RNA therapeutics, such interactions are promising antiviral targets. In this review, we discuss direct and indirect RNA interactions occurring between RNA viruses or retroviruses and host non-coding transcripts upon infection. In addition, we review RNA virus derived non-coding RNAs affecting immunological and metabolic pathways of the host cell typically to provide an advantage to the virus. The relatively few known examples of virus–host RNA interactions suggest that many more await discovery.
Collapse
Affiliation(s)
- Nkerorema Djodji Damas
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Infectious Diseases, Hvidovre Hospital, DK-2650 Hvidovre, Denmark.
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
40
|
Perdiguero B, Gómez CE, Esteban M. Bioluminescence Imaging as a Tool for Poxvirus Biology. Methods Mol Biol 2019; 2023:269-285. [PMID: 31240684 DOI: 10.1007/978-1-4939-9593-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioluminescence imaging, with luciferase as a reporter-encoding gene, has been successfully and widely used for studies to follow viral infection in an organism and to measure therapeutic efficacy of antiviral agents in small animal models. Bioluminescence is produced by the reaction of a luciferase enzyme stably inserted into the viral genome with a defined substrate systemically delivered into the animal. The light emitted is captured allowing the detection of viral infection sites and the quantification of viral replication in the context of tissues of a living animal. The goal of this chapter is to provide a technical background for the evaluation of poxvirus infection in cells and animals through bioluminescence imaging technology using luciferase-expressing recombinant poxviruses.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|
41
|
The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins. mSphere 2018; 3:3/5/e00209-18. [PMID: 30232164 PMCID: PMC6147134 DOI: 10.1128/msphere.00209-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs. Type I interferon (IFN)-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20-kDa ISG ISG20 is a nuclear 3′–5′ exonuclease with preference for single-stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20−/− mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20−/− mice compared to that of wild-type viruses but not in cells ectopically expressing ISG20. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expression of other ISGs that inhibit translation and possibly other activities in the replication cycle. IMPORTANCE The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs.
Collapse
|
42
|
Zhang X, Huang Y, Wang M, Yang F, Wu C, Huang D, Xiong L, Wan C, Cheng J, Zhang R. Differences in genome characters and cell tropisms between two chikungunya isolates of Asian lineage and Indian Ocean lineage. Virol J 2018; 15:130. [PMID: 30126424 PMCID: PMC6102929 DOI: 10.1186/s12985-018-1024-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus within the family Togaviridae, which has attracted global attention due to its recent re-emergence. In one of our previous studies, we successfully isolated two CHIKV virus strains, SZ1050 and SZ1239, from the serum samples of two imported patients in 2010 and 2012, respectively. However, the differences in their genome characters and cell tropisms remain undefined. Methods We extracted the RNA of two CHIKV isolates and performed PCR to determine the sequence of the whole viral genomes. The genotypes were classified by phylogenetic analysis using the Mega 6.0 software. Furthermore, the cell tropisms of the two CHIKV isolates were evaluated in 13 cell lines. Results The lengths of the whole genomes for SZ1050 and SZ1239 were 11,844 nt and 12,000 nt, respectively. Phylogenetic analysis indicated that SZ1050 belonged to the Indian Ocean lineage (IOL), while SZ1239 was of the Asian lineage. Comparing to the prototype strain S27, a gap of 7 aa in the nsP3 gene and missing of one repeated sequence element (RSE) in the 3’ UTR were observed in SZ1239. The E1-A226V mutation was not detected in both strains. SZ1050 and SZ1239 could infect most of the evaluated mammalian epithelial cells. The K562 cells were permissive for both SZ1050 and SZ1239 while the U937 cells were refractory to both viruses. For Aedes cell lines C6/36 and Aag-2, both SZ1050 and SZ1239 were able to infect and replicate efficiently. Conclusions Compared to the prototype S27 virus, some deletions and mutations were found in the genomes of SZ1050 and SZ1239. Both viruses were susceptible to most evaluated epithelia or fibroblast cells and Aedes cell lines including C6/36 and Aag-2 in spite of marginal difference. Electronic supplementary material The online version of this article (10.1186/s12985-018-1024-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yalan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Miao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Chunli Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Dana Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Linghong Xiong
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Chengsong Wan
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
43
|
Protein Phosphatase 1α Interacts with Venezuelan Equine Encephalitis Virus Capsid Protein and Regulates Viral Replication through Modulation of Capsid Phosphorylation. J Virol 2018; 92:JVI.02068-17. [PMID: 29769351 DOI: 10.1128/jvi.02068-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase 1 (PP1) is a serine/threonine phosphatase which has been implicated in the regulation of a number of viruses, including HIV-1, Ebolavirus, and Rift Valley fever virus. Catalytic subunits of PP1 (PP1α, PP1β, and PP1γ) interact with a host of regulatory subunits and target a wide variety of cellular substrates through a combination of short binding motifs, including an RVxF motif present in the majority of PP1 regulatory subunits. Targeting the RVxF-interacting site on PP1 with the small molecule 1E7-03 inhibits HIV-1, Ebolavirus, and Rift Valley fever virus replication. In this study, we determined the effect of PP1 on Venezuelan equine encephalitis virus (VEEV) replication. Treatment of VEEV-infected cells with 1E7-03 decreased viral replication by more than 2 logs (50% effective concentration [EC50] = 0.6 μM). 1E7-03 treatment reduced viral titers starting at 8 h postinfection. Viral replication was also decreased after treatment with PP1α-targeting small interfering RNA (siRNA). Confocal microscopy demonstrated that PP1α shuttles toward the cytosol during infection with VEEV and that PP1α colocalizes with VEEV capsid. Coimmunoprecipitation experiments confirmed VEEV capsid interaction with PP1α. Furthermore, immunoprecipitation and mass spectrometry data showed that VEEV capsid is phosphorylated and that phosphorylation is moderated by PP1α. Finally, less viral RNA is associated with capsid after treatment with 1E7-03. Coupled with data showing that 1E7-03 inhibits several alphaviruses, this study indicates that inhibition of the PP1α RVxF binding pocket is a promising therapeutic target and provides novel evidence that PP1α modulation of VEEV capsid phosphorylation influences viral replication.IMPORTANCE Venezuelan equine encephalitis virus (VEEV) causes moderate flu-like symptoms and can lead to severe encephalitic disease and potentially death. There are currently no FDA-approved therapeutics or vaccines for human use, and understanding the molecular underpinning of host-virus interactions can aid in the rational design of intervention strategies. The significance of our research is in identifying the interaction between protein phosphatase 1 (PP1) and the viral capsid protein. This interaction is important for viral replication, as inhibition of PP1 results in decrease viral replication. Inhibition of PP1 also inhibited multiple biomedically important alphaviruses, indicating that PP1 may be a potential therapeutic target for alphavirus-induced disease.
Collapse
|
44
|
Abstract
Interferon alpha/beta (IFN-α/β) is a critical mediator of protection against most viruses, with host survival frequently impossible in its absence. Many studies have investigated the pathways involved in the induction of IFN-α/β after virus infection and the resultant upregulation of antiviral IFN-stimulated genes (ISGs) through IFN-α/β receptor complex signaling. However, other than examining the effects of genetic deletion of induction or effector pathway components, little is known regarding the functionality of these responses in intact hosts and whether host genetic or environmental factors might influence their potency. Here, we demonstrate that the IFN-α/β response against multiple arthropod-vectored viruses, which replicate over a wide temperature range, is extremely sensitive to fluctuations in temperature, exhibiting reduced antiviral efficacy at subnormal cellular temperatures and increased efficacy at supranormal temperatures. The effect involves both IFN-α/β and ISG upregulation pathways with a major aspect of altered potency reflecting highly temperature-dependent transcription of IFN response genes that leads to altered IFN-α/β and ISG protein levels. Discordantly, signaling steps prior to transcription that were examined showed the opposite effect from gene transcription, with potentiation at low temperature and inhibition at high temperature. Finally, we demonstrate that by lowering the temperature of mice, chikungunya arbovirus replication and disease are exacerbated in an IFN-α/β-dependent manner. This finding raises the potential for use of hyperthermia as a therapeutic modality for viral infections and in other contexts such as antitumor therapy. The increased IFN-α/β efficacy at high temperatures may also reflect an innate immune-relevant aspect of the febrile response. The interferon alpha/beta (IFN-α/β) response is a first-line innate defense against arthropod-borne viruses (arboviruses). Arboviruses, such as chikungunya virus (CHIKV), can infect cells and replicate across a wide temperature range due to their replication in both mammalian/avian and arthropod hosts. Accordingly, these viruses can cause human disease in tissues regularly exposed to temperatures below the normal mammalian core temperature, 37°C. We questioned whether temperature variation could affect the efficacy of IFN-α/β responses against these viruses and help to explain some aspects of human disease manifestations. We observed that IFN-α/β efficacy was dramatically lower at subnormal temperatures and modestly enhanced at febrile temperatures, with the effects involving altered IFN-α/β response gene transcription but not IFN-α/β pathway signaling. These results provide insight into the functioning of the IFN-α/β response in vivo and suggest that temperature elevation may represent an immune-enhancing therapeutic modality for a wide variety of IFN-α/β-sensitive infections and pathologies.
Collapse
|
45
|
Lundberg L, Carey B, Kehn-Hall K. Venezuelan Equine Encephalitis Virus Capsid-The Clever Caper. Viruses 2017; 9:E279. [PMID: 28961161 PMCID: PMC5691631 DOI: 10.3390/v9100279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 01/13/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a New World alphavirus that is vectored by mosquitos and cycled in rodents. It can cause disease in equines and humans characterized by a febrile illness that may progress into encephalitis. Like the capsid protein of other viruses, VEEV capsid is an abundant structural protein that binds to the viral RNA and interacts with the membrane-bound glycoproteins. It also has protease activity, allowing cleavage of itself from the growing structural polypeptide during translation. However, VEEV capsid protein has additional nonstructural roles within the host cell functioning as the primary virulence factor for VEEV. VEEV capsid inhibits host transcription and blocks nuclear import in mammalian cells, at least partially due to its complexing with the host CRM1 and importin α/β1 nuclear transport proteins. VEEV capsid also shuttles between the nucleus and cytoplasm and is susceptible to inhibitors of nuclear trafficking, making it a promising antiviral target. Herein, the role of VEEV capsid in viral replication and pathogenesis will be discussed including a comparison to proteins of other alphaviruses.
Collapse
Affiliation(s)
- Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Brian Carey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
46
|
Antibody Preparations from Human Transchromosomic Cows Exhibit Prophylactic and Therapeutic Efficacy against Venezuelan Equine Encephalitis Virus. J Virol 2017; 91:JVI.00226-17. [PMID: 28468884 DOI: 10.1128/jvi.00226-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus that causes low mortality but high morbidity rates in humans. In addition to natural outbreaks, there is the potential for exposure to VEEV via aerosolized virus particles. There are currently no FDA-licensed vaccines or antiviral therapies for VEEV. Passive immunotherapy is an approved method used to protect individuals against several pathogens and toxins. Human polyclonal antibodies (PAbs) are ideal, but this is dependent upon serum from convalescent human donors, which is in limited supply. Non-human-derived PAbs can have serious immunoreactivity complications, and when "humanized," these antibodies may exhibit reduced neutralization efficiency. To address these issues, transchromosomic (Tc) bovines have been created, which can produce potent neutralizing human antibodies in response to hyperimmunization. In these studies, we have immunized these bovines with different VEEV immunogens and evaluated the protective efficacy of purified preparations of the resultant human polyclonal antisera against low- and high-dose VEEV challenges. These studies demonstrate that prophylactic or therapeutic administration of the polyclonal antibody preparations (TcPAbs) can protect mice against lethal subcutaneous or aerosol challenge with VEEV. Furthermore, significant protection against unrelated coinfecting viral pathogens can be conferred by combining individual virus-specific TcPAb preparations.IMPORTANCE With the globalization and spread or potential aerosol release of emerging infectious diseases, it will be critical to develop platforms that are able to produce therapeutics in a short time frame. By using a transchromosomic (Tc) bovine platform, it is theoretically possible to produce antigen-specific highly neutralizing therapeutic polyclonal human antibody (TcPAb) preparations in 6 months or less. In this study, we demonstrate that Tc bovine-derived Venezuelan equine encephalitis virus (VEEV)-specific TcPAbs are highly effective against VEEV infection that mimics not only the natural route of infection but also infection via aerosol exposure. Additionally, we show that combinatorial TcPAb preparations can be used to treat coinfections with divergent pathogens, demonstrating that the Tc bovine platform could be beneficial in areas where multiple infectious diseases occur contemporaneously or in the case of multipathogen release.
Collapse
|
47
|
Pingen M, Schmid MA, Harris E, McKimmie CS. Mosquito Biting Modulates Skin Response to Virus Infection. Trends Parasitol 2017; 33:645-657. [PMID: 28495485 DOI: 10.1016/j.pt.2017.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
Abstract
Mosquito-borne infections are increasing in number and are spreading to new regions at an unprecedented rate. In particular, mosquito-transmitted viruses, such as those that cause Zika, dengue, West Nile encephalitis, and chikungunya, have become endemic or have caused dramatic epidemics in many parts of the world. Aedes and Culex mosquitoes are the main culprits, spreading infection when they bite. Importantly, mosquitoes do not act as simple conduits that passively transfer virus from one individual to another. Instead, host responses to mosquito-derived factors have an important influence on infection and disease, aiding replication and dissemination within the host. Here, we discuss the latest research developments regarding this fascinating interplay between mosquito, virus, and the mammalian host.
Collapse
Affiliation(s)
- Marieke Pingen
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Michael A Schmid
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Immunology and Microbiology, University of Leuven, Leuven, Belgium
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Clive S McKimmie
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
48
|
Porter AI, Erwin-Cohen RA, Twenhafel N, Chance T, Yee SB, Kern SJ, Norwood D, Hartman LJ, Parker MD, Glass PJ, DaSilva L. Characterization and pathogenesis of aerosolized eastern equine encephalitis in the common marmoset (Callithrix jacchus). Virol J 2017; 14:25. [PMID: 28173871 PMCID: PMC5297202 DOI: 10.1186/s12985-017-0687-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/18/2017] [Indexed: 02/02/2023] Open
Abstract
Background Licensed antiviral therapeutics and vaccines to protect against eastern equine encephalitis virus (EEEV) in humans currently do not exist. Animal models that faithfully recapitulate the clinical characteristics of human EEEV encephalitic disease, including fever, drowsiness, anorexia, and neurological signs such as seizures, are needed to satisfy requirements of the Food and Drug Administration (FDA) for clinical product licensing under the Animal Rule. Methods In an effort to meet this requirement, we estimated the median lethal dose and described the pathogenesis of aerosolized EEEV in the common marmoset (Callithrix jacchus). Five marmosets were exposed to aerosolized EEEV FL93-939 in doses ranging from 2.4 × 101 PFU to 7.95 × 105 PFU. Results The median lethal dose was estimated to be 2.05 × 102 PFU. Lethality was observed as early as day 4 post-exposure in the highest-dosed marmoset but animals at lower inhaled doses had a protracted disease course where humane study endpoint was not met until as late as day 19 post-exposure. Clinical signs were observed as early as 3 to 4 days post-exposure, including fever, ruffled fur, decreased grooming, and leukocytosis. Clinical signs increased in severity as disease progressed to include decreased body weight, subdued behavior, tremors, and lack of balance. Fever was observed as early as day 2–3 post-exposure in the highest dose groups and hypothermia was observed in several cases as animals became moribund. Infectious virus was found in several key tissues, including brain, liver, kidney, and several lymph nodes. Clinical hematology results included early neutrophilia, lymphopenia, and thrombocytopenia. Key pathological changes included meningoencephalitis and retinitis. Immunohistochemical staining for viral antigen was positive in the brain, retina, and lymph nodes. More intense and widespread IHC labeling occurred with increased aerosol dose. Conclusion We have estimated the medial lethal dose of aerosolized EEEV and described the pathology of clinical disease in the marmoset model. The results demonstrate that the marmoset is an animal model suitable for emulation of human EEEV disease in the development of medical countermeasures. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0687-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aimee I Porter
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Frederick, MD, 21702, USA
| | - Rebecca A Erwin-Cohen
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Frederick, MD, 21702, USA.
| | | | | | - Steven B Yee
- Center for Aerobiological Sciences, Frederick, MD, 21702, USA
| | - Steven J Kern
- Research Support Division, Frederick, MD, 21702, USA
| | - David Norwood
- Diagnostic Systems Division, Frederick, MD, 21702, USA
| | | | - Michael D Parker
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Frederick, MD, 21702, USA
| | - Pamela J Glass
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Virology Division, Frederick, MD, 21702, USA
| | - Luis DaSilva
- Center for Aerobiological Sciences, Frederick, MD, 21702, USA
| |
Collapse
|
49
|
Trobaugh DW, Klimstra WB. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol Med 2016; 23:80-93. [PMID: 27989642 PMCID: PMC5836316 DOI: 10.1016/j.molmed.2016.11.003] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/30/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) are non-coding RNAs that regulate many processes within a cell by manipulating protein levels through direct binding to mRNA and influencing translation efficiency, or mRNA abundance. Recent evidence demonstrates that miRNAs can also affect RNA virus replication and pathogenesis through direct binding to the RNA virus genome or through virus-mediated changes in the host transcriptome. Here, we review the current knowledge on the interaction between RNA viruses and cellular miRNAs. We also discuss how cell and tissue-specific expression of miRNAs can directly affect viral pathogenesis. Understanding the role of cellular miRNAs during viral infection may lead to the identification of novel mechanisms to block RNA virus replication or cell-specific regulation of viral vector targeting. Some RNA viruses possess miRNA-binding sites in a range of locations within the viral genome, including the 5′ and 3′ non-translated regions. Host cell miRNAs can bind to RNA virus genomes, enhancing genome stability, repressing translation of the viral genome, or altering free miRNA levels within the cell. miRNAs contribute to viral pathogenesis by promoting evasion of the host antiviral immune response, enhancing viral replication, or, potentially, altering miRNA-mediated host gene regulation. RNA virus infection can lead to widespread changes in the host transcriptome by modulating cell-specific miRNA levels.
Collapse
Affiliation(s)
- Derek W Trobaugh
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
50
|
Li MMH, Bozzacco L, Hoffmann HH, Breton G, Loschko J, Xiao JW, Monette S, Rice CM, MacDonald MR. Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion. J Exp Med 2016; 213:2931-2947. [PMID: 27899441 PMCID: PMC5154937 DOI: 10.1084/jem.20160303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/09/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
Li et al. describe a novel role for IRF2, previously known as a negative regulator of type I IFN signaling, in protection of mice from lethal viral neuroinvasion by facilitating the proper localization of B cells and antibodies to the central nervous system. The host responds to virus infection by activating type I interferon (IFN) signaling leading to expression of IFN-stimulated genes (ISGs). Dysregulation of the IFN response results in inflammatory diseases and chronic infections. In this study, we demonstrate that IFN regulatory factor 2 (IRF2), an ISG and a negative regulator of IFN signaling, influences alphavirus neuroinvasion and pathogenesis. A Sindbis virus strain that in wild-type (WT) mice only causes disease when injected into the brain leads to lethal encephalitis in Irf2−/− mice after peripheral inoculation. Irf2−/− mice fail to control virus replication and recruit immune infiltrates into the brain. Reduced B cells and virus-specific IgG are observed in the Irf2−/− mouse brains despite the presence of peripheral neutralizing antibodies, suggesting a defect in B cell trafficking to the central nervous system (CNS). B cell–deficient μMT mice are significantly more susceptible to viral infection, yet WT B cells and serum are unable to rescue the Irf2−/− mice. Collectively, our data demonstrate that proper localization of B cells and local production of antibodies in the CNS are required for protection. The work advances our understanding of host mechanisms that affect viral neuroinvasion and their contribution to immunity against CNS infections.
Collapse
Affiliation(s)
- Melody M H Li
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Jakob Loschko
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Jing W Xiao
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, The Rockefeller University, Weill Cornell Medical College, New York, NY 10065
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| |
Collapse
|