1
|
Elgedawy GA, Samir M, Elabd NS, Elsaid HH, Enar M, Salem RH, Montaser BA, AboShabaan HS, Seddik RM, El-Askaeri SM, Omar MM, Helal ML. Metabolic profiling during COVID-19 infection in humans: Identification of potential biomarkers for occurrence, severity and outcomes using machine learning. PLoS One 2024; 19:e0302977. [PMID: 38814977 PMCID: PMC11139268 DOI: 10.1371/journal.pone.0302977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND After its emergence in China, the coronavirus SARS-CoV-2 has swept the world, leading to global health crises with millions of deaths. COVID-19 clinical manifestations differ in severity, ranging from mild symptoms to severe disease. Although perturbation of metabolism has been reported as a part of the host response to COVID-19 infection, scarce data exist that describe stage-specific changes in host metabolites during the infection and how this could stratify patients based on severity. METHODS Given this knowledge gap, we performed targeted metabolomics profiling and then used machine learning models and biostatistics to characterize the alteration patterns of 50 metabolites and 17 blood parameters measured in a cohort of 295 human subjects. They were categorized into healthy controls, non-severe, severe and critical groups with their outcomes. Subject's demographic and clinical data were also used in the analyses to provide more robust predictive models. RESULTS The non-severe and severe COVID-19 patients experienced the strongest changes in metabolite repertoire, whereas less intense changes occur during the critical phase. Panels of 15, 14, 2 and 2 key metabolites were identified as predictors for non-severe, severe, critical and dead patients, respectively. Specifically, arginine and malonyl methylmalonyl succinylcarnitine were significant biomarkers for the onset of COVID-19 infection and tauroursodeoxycholic acid were potential biomarkers for disease progression. Measuring blood parameters enhanced the predictive power of metabolic signatures during critical illness. CONCLUSIONS Metabolomic signatures are distinctive for each stage of COVID-19 infection. This has great translation potential as it opens new therapeutic and diagnostic prospective based on key metabolites.
Collapse
Affiliation(s)
- Gamalat A. Elgedawy
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Mohamed Samir
- Faculty of Veterinary Medicine, Department of Zoonoses, Zagazig University, Zagazig, Egypt
| | - Naglaa S. Elabd
- Faculty of Medicine, Department of Tropical Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Hala H. Elsaid
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Mohamed Enar
- Al Mahala Elkobra Fever Hospital, Al Mahala Elkobra, Egypt
| | - Radwa H. Salem
- Department of Clinical Microbiology and Immunology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Belal A. Montaser
- Faculty of Medicine, Department of Clinical Pathology, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Hind S. AboShabaan
- Ph.D. of Biochemistry, National Liver Institute Hospital, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Randa M. Seddik
- Faculty of Medicine, Department of Tropical Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Shimaa M. El-Askaeri
- Department of Clinical Microbiology and Immunology, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Marwa M. Omar
- Faculty of Medicine, Department of Clinical Pathology, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Marwa L. Helal
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| |
Collapse
|
2
|
Fernandez CJ, Alkhalifah M, Afsar H, Pappachan JM. Metabolic Dysfunction-Associated Fatty Liver Disease and Chronic Viral Hepatitis: The Interlink. Pathogens 2024; 13:68. [PMID: 38251375 PMCID: PMC10821334 DOI: 10.3390/pathogens13010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has now affected nearly one-third of the global population and has become the number one cause of chronic liver disease in the world because of the obesity pandemic. Chronic hepatitis resulting from hepatitis B virus (HBV) and hepatitis C virus (HCV) remain significant challenges to liver health even in the 21st century. The co-existence of MAFLD and chronic viral hepatitis can markedly alter the disease course of individual diseases and can complicate the management of each of these disorders. A thorough understanding of the pathobiological interactions between MAFLD and these two chronic viral infections is crucial for appropriately managing these patients. In this comprehensive clinical review, we discuss the various mechanisms of chronic viral hepatitis-mediated metabolic dysfunction and the impact of MAFLD on the progression of liver disease.
Collapse
Affiliation(s)
- Cornelius J. Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, UK;
| | - Mohammed Alkhalifah
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK; (M.A.); (H.A.)
- Department of Family Medicine and Polyclinics, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11411, Saudi Arabia
| | - Hafsa Afsar
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK; (M.A.); (H.A.)
| | - Joseph M. Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Sharoe Green Lane, Preston PR2 9HT, UK; (M.A.); (H.A.)
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
3
|
Khan S, Kumar Y, Sharma C, Gupta SK, Goel A, Aggarwal R, Veerapu NS. Dysregulated metabolites and lipids in serum of patients with acute hepatitis E: A longitudinal study. J Viral Hepat 2023; 30:959-969. [PMID: 37697495 DOI: 10.1111/jvh.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
Hepatitis E is a disease associated with acute inflammation of the liver. It is related to several dysregulated metabolic pathways and alterations in the concentration of several metabolites. However, longitudinal analysis of the alterations in metabolites and lipids is generally lacking. This study investigated the changes in levels of metabolites and lipids over time in sera from men with acute hepatitis E compared to healthy controls similar in age and gender. Untargeted measurement of levels of various metabolites and lipids was done using mass spectrometry on 65 sera sequentially sampled from 14 patients with acute hepatitis E and 25 serum samples from five controls. Temporal changes in intensities of metabolites and lipids were determined over different times at 3-day periods for the hepatitis E virus (HEV) group. In carbohydrate metabolism, glucose levels, fructose 1-6-bisphosphate and ribulose-5-phosphate were increased in the HEV-infected persons compared to the healthy controls. HEV infection is significantly associated with decreased levels of inosine, guanosine, adenosine and urate in purine metabolism and thymine, uracil and β-aminoisobutyrate in pyrimidine metabolism. Glutamate, alanine and valine levels were significantly lower in the HEV group than in healthy individuals. Homogentisate of tyrosine metabolism and cystathionine of serine metabolism were increased, whereas kynurenate of tryptophan metabolism decreased in the HEV group. Metabolites of the bile acid biosynthesis, urea cycle (arginine and citrulline) and ammonia recycling (urocanate) were significantly altered. Co-enzymes, pantothenate and pyridoxal, and co-factors, lipoamide and FAD, were elevated in the HEV group. The acylcarnitines, sphingomyelins, phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysoPC and lysoPE tended to be lower in the HEV group. In conclusion, acute hepatitis E is associated with altered metabolite and lipid profiles, significantly increased catabolism of carbohydrates, purines/pyrimidines and amino acids, and decreased levels of several glycerophospholipids.
Collapse
Affiliation(s)
- Shaheen Khan
- Virology Section, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Charu Sharma
- Department of Mathematics, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| | - Sonu Kumar Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Naga Suresh Veerapu
- Virology Section, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| |
Collapse
|
4
|
El-Derany MO, Hanna DMF, Youshia J, Elmowafy E, Farag MA, Azab SS. Metabolomics-directed nanotechnology in viral diseases management: COVID-19 a case study. Pharmacol Rep 2023; 75:1045-1065. [PMID: 37587394 PMCID: PMC10539420 DOI: 10.1007/s43440-023-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., P.B. 11562, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
5
|
Abounouh K, Tanouti IA, Ouladlahsen A, Tahiri M, Badre W, Dehbi H, Sarih M, Benjelloun S, Pineau P, Ezzikouri S. The peroxisome proliferator-activated receptor γ coactivator-1 alpha rs8192678 (Gly482Ser) variant and hepatitis B virus clearance. Infect Dis (Lond) 2023; 55:614-624. [PMID: 37376899 DOI: 10.1080/23744235.2023.2228403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (CHB) infection is still incurable a major public health problem. It is yet unclear how host genetic factors influence the development of HBV infection. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) has been shown to regulate hepatitis B virus (HBV). Several reports found that PPARGC1A variants are involved in a number of distinct liver diseases. Here we investigate whether the PPARGC1A rs8192678 (Gly482Ser) variant is involved in the spontaneous clearance of acute HBV infection and if it participates in chronic disease progression in Moroccan patients. METHODS Our study included 292 chronic hepatitis B (CHB) patients and 181 individuals who spontaneously cleared-HBV infection. We genotyped the rs8192678 SNP using a TaqMan allelic discrimination assay and then explored its association with spontaneous HBV clearance and CHB progression. RESULTS Our data showed that individuals carrying CT and TT genotypes were more likely to achieve spontaneous clearance (OR = 0.48, 95% CI (0.32-0.73), p = 0.00047; OR = 0.28, 95% CI (0.15-0.53), p = 0.00005, respectively). Subjects carrying the mutant allele T were more likely to achieve spontaneous clearance (OR = 0.51, 95% CI (0.38-0.67), P = 2.68E-06). However, when we investigated the impact of rs8192678 on the progression of liver diseases, we neither observe any influence (p > 0.05) nor found any significant association between ALT, AST, HBV viral loads, and the PPARGC1A rs8192678 genotypes in patients with CHB (p > 0.05). CONCLUSION Our result suggests that PPARGC1A rs8192678 may modulate acute HBV infection, and could therefore represent a potential predictive marker in the Moroccan population.
Collapse
Affiliation(s)
- Karima Abounouh
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Cellular and Molecular Pathology, Medical School, University Hassan II
| | - Ikram-Allah Tanouti
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Mohamed Tahiri
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Wafaa Badre
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Hind Dehbi
- Laboratory of Cellular and Molecular Pathology, Medical School, University Hassan II
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
6
|
Farnesoid X Receptor Activation Decreases Toll-like Receptor 2 Expression by Upregulating HBeAg Production. HEPATITIS MONTHLY 2023. [DOI: 10.5812/hepatmon-129128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Background: Previous investigations have demonstrated that hepatitis B virus (HBV) infection leads to elevated serum bile acid levels, which is considered to cause liver damage. Thus, we suppose that bile acids may be of considerable significance in inducing immune tolerance. Methods: In this investigation, we explored the functions of the farnesoid X receptor (FXR), a nuclear receptor activated by bile acids, in modulating hepatitis B e antigen (HBeAg) production and toll-like receptor (TLR) expression in vitro and in vivo. Results: The results showed that FXR activation promoted secreted and intracellular HBeAg expression in HepG2 and HEK293T cells. However, FXR antagonist Z-guggulsterone (Z-g) decreased the bile acid-mediated HBeAg production. Meanwhile, TLR2 expression significantly reduced in HepG2 cells transfected with pAAV/HBV1.2 plasmid comprising whole HBV genome and treated with bile acids, but not with mutant pAAV/HBV1.2 plasmid with defected HBeAg product. In the hydrodynamic injection HBV mouse model, the level of serum HBeAg was decreased, but intrahepatic TLR2 expression was elevated in FXR-/- mice. Conclusions: In conclusion, FXR activation inhibits TLR2-mediated innate immunity by upregulating HBeAg production. Our data indicate that a mild elevation of serum bile acids may cause immune tolerance and lead to virus persistence in HBV-infected patients.
Collapse
|
7
|
Tourkochristou E, Assimakopoulos SF, Thomopoulos K, Marangos M, Triantos C. NAFLD and HBV interplay - related mechanisms underlying liver disease progression. Front Immunol 2022; 13:965548. [PMID: 36544761 PMCID: PMC9760931 DOI: 10.3389/fimmu.2022.965548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and Hepatitis B virus infection (HBV) constitute common chronic liver diseases with worldwide distribution. NAFLD burden is expected to grow in the coming decade, especially in western countries, considering the increased incidence of diabetes and obesity. Despite the organized HBV vaccinations and use of anti-viral therapies globally, HBV infection remains endemic and challenging public health issue. As both NAFLD and HBV have been associated with the development of progressive fibrosis, cirrhosis and hepatocellular carcinoma (HCC), the co-occurrence of both diseases has gained great research and clinical interest. The causative relationship between NAFLD and HBV infection has not been elucidated so far. Dysregulated fatty acid metabolism and lipotoxicity in NAFLD disease seems to initiate activation of signaling pathways that enhance pro-inflammatory responses and disrupt hepatocyte cell homeostasis, promoting progression of NAFLD disease to NASH, fibrosis and HCC and can affect HBV replication and immune encountering of HBV virus, which may further have impact on liver disease progression. Chronic HBV infection is suggested to have an influence on metabolic changes, which could lead to NAFLD development and the HBV-induced inflammatory responses and molecular pathways may constitute an aggravating factor in hepatic steatosis development. The observed altered immune homeostasis in both HBV infection and NAFLD could be associated with progression to HCC development. Elucidation of the possible mechanisms beyond HBV chronic infection and NAFLD diseases, which could lead to advanced liver disease or increase the risk for severe complications, in the case of HBV-NAFLD co-existence is of high clinical significance in the context of designing effective therapeutic targets.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece,*Correspondence: Stelios F. Assimakopoulos,
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
8
|
Lei B, Song H, Xu F, Wei Q, Wang F, Tan G, Ma H. When does hepatitis B virus meet long-stranded noncoding RNAs? Front Microbiol 2022; 13:962186. [PMID: 36118202 PMCID: PMC9479684 DOI: 10.3389/fmicb.2022.962186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/22/2022] [Indexed: 01/16/2023] Open
Abstract
Hepatitis B virus (HBV) infection in humans and its associated diseases are long-standing problems. HBV can produce a large number of non-self-molecules during its life cycle, which acts as targets for innate immune recognition and initiation. Among these, interferon and its large number of downstream interferon-stimulated gene molecules are important early antiviral factors. However, the development of an effective antiviral immune response is not simple and depends not only on the delicate regulation of the immune response but also on the various mechanisms of virus-related immune escape and immune tolerance. Therefore, despite there being a relatively well-established consensus on the major pathways of the antiviral response and their component molecules, the complete clearance of HBV remains a challenge in both basic and clinical research. Long-noncoding RNAs (lncRNAs) are generally >200 bp in length and perform different functions in the RNA strand encoding the protein. As an important part of the IFN-inducible genes, interferon-stimulated lncRNAs are involved in the regulation of several HBV infection-related pathways. This review traces the basic elements of such pathways and characterizes the various recent targets of lncRNAs, which not only complement the regulatory mechanisms of pathways related to chronic HBV infection, fibrosis, and cancer promotion but also present with new potential therapeutic targets for controlling HBV infection and the malignant transformation of hepatocytes.
Collapse
Affiliation(s)
- Bingxin Lei
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxiao Song
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengchao Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Wei
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fei Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyun Tan
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Guangyun Tan,
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
- Haichun Ma,
| |
Collapse
|
9
|
Bautista-Olivier CD, Elizondo G. PXR as the tipping point between innate immune response, microbial infections, and drug metabolism. Biochem Pharmacol 2022; 202:115147. [PMID: 35714683 DOI: 10.1016/j.bcp.2022.115147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Pregnane X receptor (PXR) is a xenosensor that acts as a transcription factor in the cell nucleus to protect cells from toxic insults. In response to exposure to several chemical agents, PXR induces the expression of enzymes and drug transporters that biotransform xenobiotic and endobiotic and eliminate metabolites. Recently, PXR has been shown to have immunomodulatory effects that involve cross-communication with molecular pathways in innate immunity cells. Conversely, several inflammatory factors regulate PXR signaling. This review examines the crosstalk between PXR and nuclear factor kappa B (NFkB), Toll-like receptors (TLRs), and inflammasome components. Discussions of the consequences of these interactions on immune responses to infections caused by viruses, bacteria, fungi, and parasites are included together with a review of the effects of microorganisms on PXR-associated drug metabolism. This paper aims to encourage researchers to pursue studies that will better elucidate the relationship between PXR and the immune system and thus inform treatment development.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Tarnow G, McLachlan A. Selective effect of β-catenin on nuclear receptor-dependent hepatitis B virus transcription and replication. Virology 2022; 571:52-58. [DOI: 10.1016/j.virol.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
11
|
Valdés A, Moreno LO, Rello SR, Orduña A, Bernardo D, Cifuentes A. Metabolomics study of COVID-19 patients in four different clinical stages. Sci Rep 2022; 12:1650. [PMID: 35102215 PMCID: PMC8803913 DOI: 10.1038/s41598-022-05667-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the coronavirus strain causing the respiratory pandemic COVID-19 (coronavirus disease 2019). To understand the pathobiology of SARS-CoV-2 in humans it is necessary to unravel the metabolic changes that are produced in the individuals once the infection has taken place. The goal of this work is to provide new information about the altered biomolecule profile and with that the altered biological pathways of patients in different clinical situations due to SARS-CoV-2 infection. This is done via metabolomics using HPLC-QTOF-MS analysis of plasma samples at COVID-diagnose from a total of 145 adult patients, divided into different clinical stages based on their subsequent clinical outcome (25 negative controls (non-COVID); 28 positive patients with asymptomatic disease not requiring hospitalization; 27 positive patients with mild disease defined by a total time in hospital lower than 10 days; 36 positive patients with severe disease defined by a total time in hospital over 20 days and/or admission at the ICU; and 29 positive patients with fatal outcome or deceased). Moreover, follow up samples between 2 and 3 months after hospital discharge were also obtained from the hospitalized patients with mild prognosis. The final goal of this work is to provide biomarkers that can help to better understand how the COVID-19 illness evolves and to predict how a patient could progress based on the metabolites profile of plasma obtained at an early stage of the infection. In the present work, several metabolites were found as potential biomarkers to distinguish between the end-stage and the early-stage (or non-COVID) disease groups. These metabolites are mainly involved in the metabolism of carnitines, ketone bodies, fatty acids, lysophosphatidylcholines/phosphatidylcholines, tryptophan, bile acids and purines, but also omeprazole. In addition, the levels of several of these metabolites decreased to "normal" values at hospital discharge, suggesting some of them as early prognosis biomarkers in COVID-19 at diagnose.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Lorena Ortega Moreno
- Dpt. Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
| | - Silvia Rojo Rello
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, 47004, Valladolid, Spain
| | - Antonio Orduña
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, 47004, Valladolid, Spain
- Departamento de Microbiología, Universidad de Valladolid, Valladolid, Spain
| | - David Bernardo
- Centro de Investigación Biomédica en Red (CIBERehd), Barcelona, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
12
|
Erken R, Andre P, Roy E, Kootstra N, Barzic N, Girma H, Laveille C, Radreau‐Pierini P, Darteil R, Vonderscher J, Scalfaro P, Tangkijvanich P, Flisiak R, Reesink H. Farnesoid X receptor agonist for the treatment of chronic hepatitis B: A safety study. J Viral Hepat 2021; 28:1690-1698. [PMID: 34467593 PMCID: PMC9293351 DOI: 10.1111/jvh.13608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 12/09/2022]
Abstract
The nuclear farnesoid X receptor (FXR) regulates bile acid homeostasis and is a drug target for metabolic liver diseases. FXR also plays an important role in hepatitis B virus (HBV) DNA transcription. In vitro and in mice, FXR agonist treatment leads to inhibition of viral replication and a decline in viral proteins, pregenomic RNA (pgRNA) and HBV DNA levels. We aimed to translate this to a clinical use by primarily evaluating the safety and secondary the anti-viral effect of Vonafexor, a FXR agonist, in chronic hepatitis B (CHB) patients. In total, 73 CHB patients were enrolled in a two-part Phase Ib double-blind, placebo-controlled trial. Patients were randomized to receive oral Vonafexor (100, 200 and 400 mg once daily, or 200 mg twice daily), placebo, or entecavir (Part A, n = 48) or to receive Vonafexor (300 mg once daily or 150 mg twice daily), or placebo, combined with pegylated-interferon-α2a (Part B, n = 25) for 29 days. Patients were followed up for 35 days. Enrolled CHB patients were mostly HBeAg-negative. Vonafexor was overall well tolerated and safe. The most frequent adverse events were moderate gastrointestinal events. Pruritus was more frequent with twice-daily compared with once-daily regimens (56%-67% vs. 16%, respectively, p < 0.05). Vonafexor monotherapy of 400 mg once daily decreased HBsAg concentrations (-0.1 log10 IU/mL, p < 0.05), and Vonafexor/pegylated-IFN-α2a combination therapy decreased HBcrAg and pgRNA. In conclusion, Vonafexor was safe with a decline in HBV markers observed in CHB patients suggesting a potential anti-viral effect the therapeutic potential of which has to be evaluated in larger trials.
Collapse
Affiliation(s)
- Robin Erken
- Department of Gastroenterology and HepatologyAmsterdam UMCUniversity of AmsterdamDuivendrechtThe Netherlands
| | - Patrice Andre
- Inserm U1111CNRS UMR5308Université Lyon 1, and Ecole Normale Supérieure de LyonLyonFrance
| | | | - Neeltje Kootstra
- Amsterdam UMCUniversity of AmsterdamDepartment of Experimental ImmunologyAmsterdam Infection & Immunity InstituteUniversity of AmsterdamAmsterdamNetherlands
| | | | | | | | | | | | | | | | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver CancerFaculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Robert Flisiak
- Klinika Chorób Zakaźnych I Hepatologii UMBUniwersytecki Szpital Kliniczny w BiałymstokuBiałystokPoland
| | - Henk Reesink
- Department of Gastroenterology and HepatologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
13
|
Kong F, Saif LJ, Wang Q. Roles of bile acids in enteric virus replication. ANIMAL DISEASES 2021; 1:2. [PMID: 34778876 PMCID: PMC8062211 DOI: 10.1186/s44149-021-00003-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol to facilitating the absorption of fat-soluble nutrients. In the intestines, where enteric viruses replicate, BAs also act as signaling molecules that modulate various biological functions via activation of specific receptors and cell signaling pathways. To date, BAs present either pro-viral or anti-viral effects for the replication of enteric viruses in vivo and in vitro. In this review, we summarized current information on biosynthesis, transportation and metabolism of BAs and the role of BAs in replication of enteric caliciviruses, rotaviruses, and coronaviruses. We also discussed the application of BAs for cell culture adaptation of fastidious enteric caliciviruses and control of virus infection, which may provide novel insights into the development of antivirals and/or disinfectants for enteric viruses.
Collapse
Affiliation(s)
- Fanzhi Kong
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, China
| | - Linda J Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA
| |
Collapse
|
14
|
B-Catenin Signaling Regulates the In Vivo Distribution of Hepatitis B Virus Biosynthesis across the Liver Lobule. J Virol 2021; 95:e0078021. [PMID: 34319157 DOI: 10.1128/jvi.00780-21] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-catenin (Ctnnb1) supports high levels of liver gene expression in hepatocytes in proximity to the central vein functionally defining zone 3 of the liver lobule. This region of the liver lobule supports the highest levels of viral biosynthesis in wildtype HBV transgenic mice. Liver-specific β-catenin-null HBV transgenic mice exhibit a stark loss of high levels of pericentral viral biosynthesis. Additionally, viral replication that does not depend directly on β-catenin activity appears to expand to include hepatocytes of zone 1 of the liver lobule in proximity to the portal vein, a region of the liver that typically lacks significant HBV biosynthesis in wildtype HBV transgenic mice. While the average amount of viral RNA transcripts does not change, viral DNA replication is reduced approximately three-fold. Together, these observations demonstrate that β-catenin signaling represents a major determinant of HBV biosynthesis governing the magnitude and distribution of viral replication across the liver lobule in vivo. Additionally, these findings reveal a novel mechanism for the regulation of HBV biosynthesis that is potentially relevant to the expression of additional liver-specific genes. IMPORTANCE Viral biosynthesis is highest around the central vein in the HBV transgenic mouse model of chronic infection. The associated HBV biosynthetic gradient across the liver lobule is primarily dependent upon β-catenin. In the absence of β-catenin, the gradient of viral gene expression spanning the liver lobule is absent and HBV replication is reduced. Therefore, therapeutically manipulating β-catenin activity in the liver of chronic HBV carriers may reduce circulating infectious virions without greatly modulating viral protein production. Together, these change in viral biosynthesis might limit infection of additional hepatocytes while permitting immunological clearance of previously infected cells, potentially limiting disease persistence.
Collapse
|
15
|
Xun Z, Lin J, Yu Q, Liu C, Huang J, Shang H, Guo J, Ye Y, Wu W, Zeng Y, Wu S, Xu S, Chen T, Chen J, Ou Q. Taurocholic acid inhibits the response to interferon-α therapy in patients with HBeAg-positive chronic hepatitis B by impairing CD8 + T and NK cell function. Cell Mol Immunol 2021; 18:461-471. [PMID: 33432062 PMCID: PMC8027018 DOI: 10.1038/s41423-020-00601-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Pegylated interferon-alpha (PegIFNα) therapy has limited effectiveness in hepatitis B e-antigen (HBeAg)-positive chronic hepatitis B (CHB) patients. However, the mechanism underlying this failure is poorly understood. We aimed to investigate the influence of bile acids (BAs), especially taurocholic acid (TCA), on the response to PegIFNα therapy in CHB patients. Here, we used mass spectrometry to determine serum BA profiles in 110 patients with chronic HBV infection and 20 healthy controls (HCs). We found that serum BAs, especially TCA, were significantly elevated in HBeAg-positive CHB patients compared with those in HCs and patients in other phases of chronic HBV infection. Moreover, serum BAs, particularly TCA, inhibited the response to PegIFNα therapy in HBeAg-positive CHB patients. Mechanistically, the expression levels of IFN-γ, TNF-α, granzyme B, and perforin were measured using flow cytometry to assess the effector functions of immune cells in patients with low or high BA levels. We found that BAs reduced the number and proportion and impaired the effector functions of CD3+CD8+ T cells and natural killer (NK) cells in HBeAg-positive CHB patients. TCA in particular reduced the frequency and impaired the effector functions of CD3+CD8+ T and NK cells in vitro and in vivo and inhibited the immunoregulatory activity of IFN-α in vitro. Thus, our results show that BAs, especially TCA, inhibit the response to PegIFNα therapy by impairing the effector functions of CD3+CD8+ T and NK cells in HBeAg-positive CHB patients. Our findings suggest that targeting TCA could be a promising approach for restoring IFN-α responsiveness during CHB treatment.
Collapse
Affiliation(s)
- Zhen Xun
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Clinical College, Fujian Medical University, Fuzhou, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qingqing Yu
- First Clinical College, Fujian Medical University, Fuzhou, China
| | - Can Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Clinical College, Fujian Medical University, Fuzhou, China
| | - Jinlan Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Clinical College, Fujian Medical University, Fuzhou, China
| | - Hongyan Shang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianhui Guo
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuchen Ye
- First Clinical College, Fujian Medical University, Fuzhou, China
| | - Wennan Wu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Songhang Wu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Siyi Xu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- First Clinical College, Fujian Medical University, Fuzhou, China
| | - Jing Chen
- Center of Liver Diseases, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- First Clinical College, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
16
|
Ahmed N, Ahmed N, Filip R, Pezacki JP. Nuclear Hormone Receptors and Host-Virus Interactions. NUCLEAR RECEPTORS 2021:315-348. [DOI: 10.1007/978-3-030-78315-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Tsukuda S, Watashi K. Hepatitis B virus biology and life cycle. Antiviral Res 2020; 182:104925. [PMID: 32866519 DOI: 10.1016/j.antiviral.2020.104925] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) specifically infects hepatocytes and causes severe liver diseases. The HBV life cycle is unique in that the genomic DNA (relaxed-circular partially double-stranded DNA: rcDNA) is converted to a molecular template DNA (covalently closed circular DNA: cccDNA) to amplify a viral RNA intermediate, which is then reverse-transcribed back to viral DNA. The highly stable characteristics of cccDNA result in chronic infection and a poor rate of cure. This complex life cycle of HBV offers a variety of targets to develop antiviral agents. We provide here an update on the current knowledge of HBV biology and its life cycle, which may help to identify new antiviral targets.
Collapse
Affiliation(s)
- Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Science, Tokyo University of Science, Noda, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; MIRAI, JST, Saitama, Japan.
| |
Collapse
|
18
|
Yang X, Cai W, Sun X, Bi Y, Zeng C, Zhao X, Zhou Q, Xu T, Xie Q, Sun P, Zhou X. Defined host factors support HBV infection in non-hepatic 293T cells. J Cell Mol Med 2020; 24:2507-2518. [PMID: 31930674 PMCID: PMC7028854 DOI: 10.1111/jcmm.14944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) is a human hepatotropic virus. However, HBV infection also occurs at extrahepatic sites, but the relevant host factors required for HBV infection in non-hepatic cells are only partially understood. In this article, a non-hepatic cell culture model is constructed by exogenous expression of four host genes (NTCP, HNF4α, RXRα and PPARα) in human non-hepatic 293T cells. This cell culture model supports HBV entry, transcription and replication, as evidenced by the detection of HBV pgRNA, HBV cccDNA, HBsAg, HBeAg, HBcAg and HBVDNA. Our results suggest that the above cellular factors may play a key role in HBV infection of non-hepatic cells. This model will facilitate the identification of host genes that support extrahepatic HBV infection.
Collapse
Affiliation(s)
- Xiaoqiang Yang
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
- Medical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Weiwen Cai
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Xiaoyue Sun
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Yanwei Bi
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Chui Zeng
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - XiaoYu Zhao
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Qi Zhou
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Tian Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Qingdong Xie
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Pingnan Sun
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Xiaoling Zhou
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| |
Collapse
|
19
|
Oropeza CE, Tarnow G, Sridhar A, Taha TY, Shalaby RE, McLachlan A. The Regulation of HBV Transcription and Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:39-69. [PMID: 31741333 DOI: 10.1007/978-981-13-9151-4_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatitis B virus (HBV) is a major human pathogen lacking a reliable curative therapy. Current therapeutics target the viral reverse transcriptase/DNA polymerase to inhibit viral replication but generally fail to resolve chronic HBV infections. Due to the limited coding potential of the HBV genome, alternative approaches for the treatment of chronic infections are desperately needed. An alternative approach to the development of antiviral therapeutics is to target cellular gene products that are critical to the viral life cycle. As transcription of the viral genome is an essential step in the viral life cycle, the selective inhibition of viral RNA synthesis is a possible approach for the development of additional therapeutic modalities that might be used in combination with currently available therapies. To address this possibility, a molecular understanding of the relationship between viral transcription and replication is required. The first step is to identify the transcription factors that are the most critical in controlling the levels of HBV RNA synthesis and to determine their in vivo role in viral biosynthesis. Mapping studies in cell culture utilizing reporter gene constructs permitted the identification of both ubiquitous and liver-enriched transcription factors capable of modulating transcription from the four HBV promoters. However, it was challenging to determine their relative importance for viral biosynthesis in the available human hepatoma replication systems. This technical limitation was addressed, in part, by the development of non-hepatoma HBV replication systems where viral biosynthesis was dependent on complementation with exogenously expressed transcription factors. These systems revealed the importance of specific nuclear receptors and hepatocyte nuclear factor 3 (HNF3)/forkhead box A (FoxA) transcription factors for HBV biosynthesis. Furthermore, using the HBV transgenic mouse model of chronic viral infection, the importance of various nuclear receptors and FoxA isoforms could be established in vivo. The availability of this combination of systems now permits a rational approach toward the development of selective host transcription factor inhibitors. This might permit the development of a new class of therapeutics to aid in the treatment and resolution of chronic HBV infections, which currently affects approximately 1 in 30 individuals worldwide and kills up to a million people annually.
Collapse
Affiliation(s)
- Claudia E Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abhayavarshini Sridhar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taha Y Taha
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rasha E Shalaby
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Faculty of Medicine, Tanta University, Egypt, Egypt
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Rybicka M, Woziwodzka A, Romanowski T, Sznarkowska A, Stalke P, Dręczewski M, Bielawski KP. Host genetic background affects the course of infection and treatment response in patients with chronic hepatitis B. J Clin Virol 2019; 120:1-5. [PMID: 31505315 DOI: 10.1016/j.jcv.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) utilizes proteins encoded by the host to infect hepatocytes and replicate. Recently, several novel host factors have been identified and described as important to the HBV lifecycle. The influence of host genetic background on chronic hepatitis B (CHB) pathogenesis is still poorly understood. OBJECTIVES Here, we aimed to investigate the association of NTCP, FXRα, HNF1α, HNF4α, and TDP2 genetic polymorphisms with the natural course of CHB and antiviral treatment response. STUDY DESIGN We genotyped 18 single-nucleotide polymorphisms using MALDI-TOF mass spectrometry in 136 patients with CHB and 100 healthy individuals. We investigated associations of the selected polymorphisms with biochemical, serological and hepatic markers of disease progression and treatment response. RESULTS No significant differences in genotypic or allelic distribution between CHB and control groups were observed. Within TDP2, rs3087943 variations were associated with treatment response, and rs1047782 modified the risk of advanced liver inflammation. Rs7154439 within NTCP was associated with HBeAg seroconversion after 48 weeks of nucleos(t)ide analogue treatment. HNF1α genotypes were associated with treatment response, liver damage and baseline HBeAg presence. HNF4α rs1800961 predicted PEG-IFNα treatment-induced HBsAg clearance in long-term follow up. CONCLUSIONS This study indicates host genetic background relevance in the course of CHB and confirms the role of recently described genes for HBV infection. The obtained results might serve as a starting point for validation studies on the clinical application of selected genetic variants to predict individual risks of CHB-induced liver failure and treatment response.
Collapse
Affiliation(s)
- Magda Rybicka
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Anna Woziwodzka
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Tomasz Romanowski
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Alicja Sznarkowska
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; International Centre for Cancer Vaccine Science, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Piotr Stalke
- Department of Infectious Diseases, Medical University of Gdansk, ul. Powstania Styczniowego 9b, 81-519 Gdynia, Poland.
| | - Marcin Dręczewski
- Department of Infectious Diseases, Medical University of Gdansk, ul. Powstania Styczniowego 9b, 81-519 Gdynia, Poland.
| | - Krzysztof Piotr Bielawski
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
21
|
Nkongolo S, Nußbaum L, Lempp FA, Wodrich H, Urban S, Ni Y. The retinoic acid receptor (RAR) α-specific agonist Am80 (tamibarotene) and other RAR agonists potently inhibit hepatitis B virus transcription from cccDNA. Antiviral Res 2019; 168:146-155. [PMID: 31018112 DOI: 10.1016/j.antiviral.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Chronic infection with the human Hepatitis B virus (HBV) is a major global health problem. Hepatitis D virus (HDV) is a satellite of HBV that uses HBV envelope proteins for cell egress and entry. Using infection systems encoding the HBV/HDV receptor human sodium taurocholate co-transporting polypeptide (NTCP), we screened 1181 FDA-approved drugs applying markers for interference for HBV and HDV infection. As one primary hit we identified Acitretin, a retinoid, as an inhibitor of HBV replication and HDV release. Based on this, other retinoic acid receptor (RAR) agonists with different specificities were found to interfere with HBV replication, verifying that the retinoic acid receptor pathway regulates replication. Of the eight agonists investigated, RARα-specific agonist Am80 (tamibarotene) was most active. Am80 reduced secretion of HBeAg and HBsAg with IC50s < 10 nM in differentiated HepaRG-NTCP cells. Similar effects were observed in primary human hepatocytes. In HepG2-NTCP cells, profound Am80-mediated inhibition required prolonged treatment of up to 35 days. Am80 treatment of cells with an established HBV cccDNA pool resulted in a reduction of secreted HBsAg and HBeAg, which correlated with reduced intracellular viral RNA levels, but not cccDNA copy numbers. The effect lasted for >12 days after removal of the drug. HBV genotypes B, D, and E were equally inhibited. By contrast, Am80 did not affect HBV replication in transfected cells or HepG2.2.15 cells, which carry an integrated HBV genome. In conclusion, our results indicate a persistent inhibition of HBV transcription by Am80, which might be used for drug repositioning.
Collapse
Affiliation(s)
- Shirin Nkongolo
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| | - Lea Nußbaum
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany.
| | - Florian A Lempp
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| | - Harald Wodrich
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, University of Bordeaux, France.
| | - Stephan Urban
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| | - Yi Ni
- University Hospital Heidelberg (Germany), Center for Infectious Diseases, Molecular Virology, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany.
| |
Collapse
|
22
|
Peroxisome proliferator-activated receptor γ coactivator family members competitively regulate hepatitis b virus biosynthesis. Virology 2018; 526:214-221. [PMID: 30419515 DOI: 10.1016/j.virol.2018.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
Transcriptional coactivators represent critical components of the transcriptional pre-initiation complex and are required for efficient gene activation. Members of the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family differentially regulate hepatitis b virus (HBV) biosynthesis. Whereas PGC1α has been shown to be a potent activator of HBV biosynthesis, PGC1β only very poorly activates HBV RNA and DNA synthesis in human hepatoma (HepG2) and embryonic kidney (HEK293T) cells. Furthermore, PGC1β inhibits PGC1α-mediated HBV biosynthesis. These observations suggest that a potential competition between human hepatoma (HepG2) and embryonic kidney (HEK293T) cells PGC1α and PGC1β for common transcription factor target(s) may regulate HBV transcription and replication in a context and signal transduction pathway dependent manner.
Collapse
|
23
|
Song M, Sun Y, Tian J, He W, Xu G, Jing Z, Li W. Silencing Retinoid X Receptor Alpha Expression Enhances Early-Stage Hepatitis B Virus Infection In Cell Cultures. J Virol 2018; 92:e01771-17. [PMID: 29437960 PMCID: PMC5874418 DOI: 10.1128/jvi.01771-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
Multiple steps of the life cycle of hepatitis B virus (HBV) are known to be coupled to hepatic metabolism. However, the details of involvement of the hepatic metabolic milieu in HBV infection remain incompletely understood. Hepatic lipid metabolism is controlled by a complicated transcription factor network centered on retinoid X receptor alpha (RXRα). Here, we report that RXRα negatively regulates HBV infection at an early stage in cell cultures. The RXR-specific agonist bexarotene inhibits HBV in HepG2 cells expressing the sodium taurocholate cotransporting polypeptide (NTCP) (HepG2-NTCP), HepaRG cells, and primary Tupaia hepatocytes (PTHs); reducing RXRα expression significantly enhanced HBV infection in the cells. Transcriptome sequencing (RNA-seq) analysis of HepG2-NTCP cells with a disrupted RXRα gene revealed that reduced gene expression in arachidonic acid (AA)/eicosanoid biosynthesis pathways, including the AA synthases phospholipase A2 group IIA (PLA2G2A), is associated with increased HBV infection. Moreover, exogenous treatment of AA inhibits HBV infection in HepG2-NTCP cells. These data demonstrate that RXRα is an important cellular factor in modulating HBV infection and implicate the participation of AA/eicosanoid biosynthesis pathways in the regulation of HBV infection.IMPORTANCE Understanding how HBV infection is connected with hepatic lipid metabolism may provide new insights into virus infection and its pathogenesis. By a series of genetic studies in combination with transcriptome analysis and pharmacological assays, we here investigated the role of cellular retinoid X receptor alpha (RXRα), a crucial transcription factor for controlling hepatic lipid metabolism, in de novo HBV infection in cell cultures. We found that silencing of RXRα resulted in elevated HBV covalently closed circular DNA (cccDNA) formation and viral antigen production, while activation of RXRα reduced HBV infection efficiency. Our results also showed that silencing phospholipase A2 group IIA (PLA2G2A), a key enzyme of arachidonic acid (AA) synthases, enhanced HBV infection efficiency in HepG2-NTCP cells and that exogenous AA treatment reduced de novo HBV infection in the cells. These findings unveil RXRα as an important cellular factor in modulating HBV infection and may point to a new strategy for host-targeted therapies against HBV.
Collapse
Affiliation(s)
- Mei Song
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Ji Tian
- National Institute of Biological Sciences, Beijing, China
- Graduate Program, School of Life Science, Tsinghua University, Beijing, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing, China
| | - Guangwei Xu
- National Institute of Biological Sciences, Beijing, China
| | - Zhiyi Jing
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Li
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
24
|
Pan J, Tong S, Tang J. LncRNA expression profiles in HBV-transformed human hepatocellular carcinoma cells treated with a novel inhibitor of human La protein. J Viral Hepat 2018; 25:391-400. [PMID: 29091324 DOI: 10.1111/jvh.12821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022]
Abstract
We previously identified a novel inhibitor of La protein, H11, which inhibited hepatitis B virus (HBV) replication by inhibiting the interaction between La protein and HBV RNA. However, the other cellular factors involved in this process remain unclear. To investigate the mechanism of H11-mediated inhibition of HBV infection, a lncRNA microarray analysis was performed using H11-treated and untreated stable HBV-expressing human hepatoblastoma HepG2.2.15 cells. The profiles of differentially expressed lncRNAs and mRNAs were generated and analysed using Gene Ontology (GO) and pathway analyses. The microarray data showed that 61 lncRNAs were upregulated, 74 lncRNAs were downregulated, 43 mRNAs were upregulated, and 44 mRNAs were downregulated in H11 treatment group when compared with the control group, and these results were consistent with qRT-PCR expression data. Bioinformatic analysis indicated that the differentially expressed lncRNAs were involved in RNA-mediated post-transcriptional gene silencing, regulation of viral genome replication and Jak-STAT signalling and apoptosis pathways. GO analysis showed that differentially expressed mRNAs were enriched in negative regulation of the Wnt signalling pathway and negative regulation of growth. Pathways analysis indicated that the differentially expressed mRNAs were involved in regulation of nuclear β-catenin signalling and target gene transcription, as direct p53 effectors, and in the peroxisome proliferator-activated receptors signalling and peroxisome pathways. Microarray data and qRT-PCR results indicated that H11 mediates inhibition of HBV replication by regulating the Wnt, β-catenin and PPAR signalling pathways.
Collapse
Affiliation(s)
- J Pan
- Department of Pharmacy, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China.,Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Tong
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Tang
- Department of Pharmacy, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China.,Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Peretinoin, an Acyclic Retinoid, Inhibits Hepatitis B Virus Replication by Suppressing Sphingosine Metabolic Pathway In Vitro. Int J Mol Sci 2018; 19:ijms19020108. [PMID: 29360739 PMCID: PMC5855541 DOI: 10.3390/ijms19020108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) frequently develops from hepatitis C virus (HCV) and hepatitis B virus (HBV) infection. We previously reported that peretinoin, an acyclic retinoid, inhibits HCV replication. This study aimed to examine the influence of peretinoin on the HBV lifecycle. HBV-DNA and covalently closed circular DNA (cccDNA) were evaluated by a qPCR method in HepG2.2.15 cells. Peretinoin significantly reduced the levels of intracellular HBV-DNA, nuclear cccDNA, and HBV transcript at a concentration that did not induce cytotoxicity. Conversely, other retinoids, such as 9-cis, 13-cis retinoic acid (RA), and all-trans-retinoic acid (ATRA), had no effect or rather increased HBV replication. Mechanistically, although peretinoin increased the expression of HBV-related transcription factors, as observed for other retinoids, peretinoin enhanced the binding of histone deacetylase 1 (HDAC1) to cccDNA in the nucleus and negatively regulated HBV transcription. Moreover, peretinoin significantly inhibited the expression of SPHK1, a potential inhibitor of HDAC activity, and might be involved in hepatic inflammation, fibrosis, and HCC. SPHK1 overexpression in cells cancelled the inhibition of HBV replication induced by peretinoin. This indicates that peretinoin activates HDAC1 and thereby suppresses HBV replication by inhibiting the sphingosine metabolic pathway. Therefore, peretinoin may be a novel therapeutic agent for HBV replication and chemoprevention against HCC.
Collapse
|
26
|
PGC1α Transcriptional Adaptor Function Governs Hepatitis B Virus Replication by Controlling HBcAg/p21 Protein-Mediated Capsid Formation. J Virol 2017; 91:JVI.00790-17. [PMID: 28768874 DOI: 10.1128/jvi.00790-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
In the human hepatoma cell line Huh7, the coexpression of the coactivators peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), cyclic AMP-responsive element binding protein binding protein (CBP), steroid receptor coactivator 1 (SRC1), and protein arginine methyltransferase 1 (PRMT1) only modestly increase hepatitis B virus (HBV) biosynthesis. However, by utilizing the human embryonic kidney cell line HEK293T, it was possible to demonstrate that PGC1α alone can support viral biosynthesis independently of the expression of additional coactivators or transcription factors. In contrast, additional coactivators failed to support robust HBV replication in the absence of PGC1α. These observations indicate that PGC1α represents a novel adaptor molecule capable of recruiting the necessary transcriptional machinery to the HBV nucleocapsid promoter to modestly enhance viral pregenomic 3.5-kb RNA synthesis. Although this change in transcription is associated with a similar modest change in hepatitis B virus core antigen polypeptide (HBcAg/p21) synthesis, it mediates a dramatic increase in viral capsid production and robust viral replication. Therefore, it is apparent that the synthesis of cytoplasmic HBcAg/p21 above a critical threshold level is required for the efficient assembly of HBV replication-competent viral capsids.IMPORTANCE Hepatitis B virus (HBV) is a major human pathogen, and novel targets for the development of additional therapeutic agents are urgently needed. Here we demonstrate that the coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) serves as a unique adaptor molecule for the recruitment of additional coactivator proteins, which can finely regulate HBV transcription. The consequence of this precise regulation of viral RNA levels by PGC1α is a subtle increase in cytoplasmic HBcAg/p21 polypeptide translation, which shifts the equilibrium from dimer formation dramatically in favor of viral capsid assembly. These findings suggest that both PGC1α and capsid assembly may represent attractive targets for the development of antiviral agents against chronic HBV infection.
Collapse
|
27
|
Du L, Ma Y, Liu M, Yan L, Tang H. Peroxisome Proliferators Activated Receptor (PPAR) agonists activate hepatitis B virus replication in vivo. Virol J 2017; 14:96. [PMID: 28545573 PMCID: PMC5445479 DOI: 10.1186/s12985-017-0765-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background PPAR agonists are often used in HBV infected patients with metabolic disorders. However, as liver-enriched transcriptional factors, PPARs would activate HBV replication. Risks exsit in such patients. This study aimed to assess the influence of commonly used synthetic PPAR agonists on hepatitis B virus (HBV) transcription, replication and expression through HBV replicative mouse models, providing information for physicians to make necessary monitoring and therapeutic adjustment when HBV infected patients receive PPAR agonists treatment. Methods The HBV replicative mouse model was established by hydrodynamic injection of HBV replicative plasmid and the mice were divided into four groups and treated daily for 3 days with saline, PPAR pan-agonist (bezafibrate), PPARα agonist (fenofibrate) and PPARγ agonist (rosiglitazone) respectively. Their serum samples were collected for ECLIA analysis of HBsAg and HBeAg and real-time PCR analysis of Serum HBV DNA. The liver samples were collected for DNA (Southern) filter hybridization of HBV replication intermediates, real-time PCR analysis of HBV mRNA and immunohistochemistry (IHC) analysis of hepatic HBcAg. The alternation of viral transcription, replication and expression were compared in these groups. Result Serum HBsAg, HBeAg and HBV DNA were significantly elevated after PPAR agonist treatment. So did the viral replication intermediates in mouse livers. HBV mRNA was also significantly increased by these PPAR agonists, implying that PPAR agonists activate HBV replication at transcription level. Moreover, hepatic HBcAg expression in mouse livers with PPAR agonist treatment was elevated as well. Conclusion Our in vivo study proved that synthetic PPAR agonists bezafibrate, fenofibrate and rosiglitazone would increase HBV replication. It suggested that when HBV infected patients were treated with PPARs agonists because of metabolic diseases, HBV viral load should be monitored and regimens may need to be adjusted, an antiviral therapy may be added. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0765-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yuanji Ma
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Lamontagne RJ, Bagga S, Bouchard MJ. Hepatitis B virus molecular biology and pathogenesis. HEPATOMA RESEARCH 2016; 2:163-186. [PMID: 28042609 PMCID: PMC5198785 DOI: 10.20517/2394-5079.2016.05] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- R. Jason Lamontagne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sumedha Bagga
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
29
|
Interactions of Hepatitis B Virus Infection with Nonalcoholic Fatty Liver Disease: Possible Mechanisms and Clinical Impact. Dig Dis Sci 2015; 60:3513-24. [PMID: 26112990 DOI: 10.1007/s10620-015-3772-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) infection is a major etiology of chronic liver disease worldwide. In the past decade, nonalcoholic fatty liver disease (NAFLD) has emerged as a common liver disorder in general population. Accordingly, the patient number of chronic hepatitis B (CHB) concomitant with NAFLD grows rapidly. The present article reviewed the recent studies aiming to explore the relationship between CHB and NAFLD from different aspects, including the relevant pathogenesis of CHB and NAFLD, the intracellular molecular mechanisms overlaying HBV infection and hepatic steatosis, and the observational studies with animal models and clinical cohorts for analyzing the coincidence of the two diseases. It is concluded that although numerous cross-links have been suggested between the molecular pathways in HBV infection and NAFLD pathogenesis, regarding whether HBV infection can substantially interfere with the occurrence of NAFLD or vice versa in the patients, there is still far from a conclusive agreement.
Collapse
|
30
|
Meredith LW, Hu K, Cheng X, Howard CR, Baumert TF, Balfe P, van de Graaf KF, Protzer U, McKeating JA. Lentiviral hepatitis B pseudotype entry requires sodium taurocholate co-transporting polypeptide and additional hepatocyte-specific factors. J Gen Virol 2015; 97:121-127. [PMID: 26474824 DOI: 10.1099/jgv.0.000317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) is one of the world's major unconquered infections, resulting in progressive liver disease, and current treatments rarely cure infection. A limitation to discovering new therapies is our limited knowledge of HBV entry and dissemination pathways that hinders the development of in vitro culture systems. To address this gap in our understanding we optimized the genesis of infectious lentiviral pseudoparticles (HBVpps). The recent discovery that the bile salt transporter sodium taurocholate co-transporting polypeptide (NTCP) acts as a receptor for HBV enabled us to assess the receptor dependency of HBVpp infection. HBVpps preferentially infect hepatoma cells expressing NTCP, whereas other non-liver cells engineered to express NTCP do not support infection, suggesting that additional hepatocyte-specific factors are required for HBVpp internalization. These results highlight the value of the HBVpp system to dissect the pathways of HBV entry and dissemination.
Collapse
Affiliation(s)
- L W Meredith
- Centre for Human Virology, Viral Hepatitis Laboratory, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - K Hu
- Centre for Human Virology, Viral Hepatitis Laboratory, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - X Cheng
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - C R Howard
- Centre for Human Virology, Viral Hepatitis Laboratory, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - T F Baumert
- INSERM U1110, Institut de Recherche sur les Maladies Virales et Hépatiques and Université de Strasbourg, Strasbourg, France
| | - P Balfe
- Centre for Human Virology, Viral Hepatitis Laboratory, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - K F van de Graaf
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AMC, Amsterdam, The Netherlands
| | - U Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - J A McKeating
- Institute for Advanced Study, Technische Universität München, Garching, Germany.,Centre for Human Virology, Viral Hepatitis Laboratory, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
31
|
Abstract
Hepatitis B virus (HBV) infection affects 240 million people worldwide. A liver-specific bile acid transporter named the sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV and its satellite, the hepatitis D virus (HDV). NTCP likely acts as a major determinant for the liver tropism and species specificity of HBV and HDV at the entry level. NTCP-mediated HBV entry interferes with bile acid transport in cell cultures and has been linked with alterations in bile acid and cholesterol metabolism in vivo. The human liver carcinoma cell line HepG2, complemented with NTCP, now provides a valuable platform for studying the basic biology of the viruses and developing treatments for HBV infection. This review summarizes critical findings regarding NTCP's role as a viral receptor for HBV and HDV and discusses important questions that remain unanswered.
Collapse
Affiliation(s)
- Wenhui Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China;
| |
Collapse
|
32
|
Hu Y, Chau T, Liu HX, Liao D, Keane R, Nie Y, Yang H, Wan YJY. Bile acids regulate nuclear receptor (Nur77) expression and intracellular location to control proliferation and apoptosis. Mol Cancer Res 2014; 13:281-92. [PMID: 25232032 DOI: 10.1158/1541-7786.mcr-14-0230] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Bile acids (BA) are endogenous agents capable of causing cancer throughout the gastrointestinal (GI) tract. To uncover the mechanism by which BAs exert carcinogenic effects, both human liver and colon cancer cells as well as mouse primary hepatocytes were treated with BAs and assayed for viability, genotoxic stress, and transcriptional response. BAs induced both Nur77 (NR4A1) and proinflammatory gene expression. The intracellular location of BA-induced Nur77 was time dependent; short-term (1-3 hours) exposure induced nuclear Nur77, whereas longer (1-2 days) exposure also increased cytosolic Nur77 expression and apoptosis. Inhibiting Nur77 nuclear export with leptomycin B decreased lithocholic acid (LCA)-induced apoptosis. Extended (7 days) treatment with BA generated resistance to BA with increased nuclear Nur77, viability, and mobility. While, knockdown of Nur77 in BA-resistant cells increased cellular susceptibility to LCA-induced apoptosis. Moreover, in vivo mouse xenograft experiments demonstrated that BA-resistant cells form larger tumors with elevated Nur77 expression compared with parental controls. DNA-binding and gene expression assays identified multiple survival genes (CDK4, CCND2, MAP4K5, STAT5A, and RBBP8) and a proapoptosis gene (BID) as Nur77 targets. Consistently, BA-induced upregulation of the aforementioned genes was abrogated by a lack of Nur77. Importantly, Nur77 was overexpressed in high percentage of human colon and liver cancer specimens, and the intracellular location of Nur77 correlated with elevated serum total BA levels in patients with colon cancer. These data show for the first time that BAs via Nur77 have a dual role in modulating cell survival and death. IMPLICATIONS These findings establish a direct link between Nur77 and the carcinogenic effect of BAs.
Collapse
Affiliation(s)
- Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health Systems, Sacramento, California
| | - Thinh Chau
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health Systems, Sacramento, California
| | - Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health Systems, Sacramento, California
| | - Degui Liao
- Department of Pathology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ryan Keane
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health Systems, Sacramento, California
| | - Yuqiang Nie
- Department of Gastroenterology, First Municipal's People Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, China
| | - Hui Yang
- Department of Gastroenterology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health Systems, Sacramento, California. Department of Gastroenterology, First Municipal's People Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
33
|
|
34
|
Tian X, Zhao F, Cheng Z, Zhou M, Zhi X, Li J, Hu K. GCN5 acetyltransferase inhibits PGC1α-induced hepatitis B virus biosynthesis. Virol Sin 2013; 28:216-22. [PMID: 23913178 DOI: 10.1007/s12250-013-3344-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) biosynthesis is primarily restricted to hepatocytes due to the governing of liver-enriched nuclear receptors (NRs) on viral RNA synthesis. The liver-enriched NR hepatocyte nuclear factor 4α (HNF4α), the key regulator of genes implicated in hepatic glucose metabolism, is also a primary determinant of HBV pregenomic RNA synthesis and HBV replication. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) coactivates and further enhances the effect of HNF4α on HBV biosynthesis. Here, we showed that the acetyltransferase General Control Non-repressed Protein 5 (GCN5) acetylated PGC1α, leading to alteration of PGC1α from a transcriptionally active state into an inactive state. As a result, the coactivation activity of PGC1α on HBV transcription and replication was suppressed. Apparently, an acetylation site mutant of PGC1α (PGC1αR13) still had coactivation activity as GCN5 could not suppress the coactivation activity of the mutant. Moreover, a catalytically inactive acetyltransferase mutant GCN5m, due to the loss of acetylation activity, failed to inhibit the coactivation function of PGC1α in HBV biosynthesis. Our results demonstrate that GCN5, through its acetyltransferase activity, inhibits PGC1α-induced enhancement of HBV transcription and replication both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaohui Tian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | |
Collapse
|