1
|
Tanwattana N, Wanasen N, Jantraphakorn Y, Srisutthisamphan K, Chailungkarn T, Boonrungsiman S, Lumlertdacha B, Lekchareonsuk P, Kaewborisuth C. Human BST2 inhibits rabies virus release independently of cysteine-linked dimerization and asparagine-linked glycosylation. PLoS One 2023; 18:e0292833. [PMID: 37922253 PMCID: PMC10624315 DOI: 10.1371/journal.pone.0292833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/29/2023] [Indexed: 11/05/2023] Open
Abstract
The innate immune response is a first-line defense mechanism triggered by rabies virus (RABV). Interferon (IFN) signaling and ISG products have been shown to confer resistance to RABV at various stages of the virus's life cycle. Human tetherin, also known as bone marrow stromal cell antigen 2 (hBST2), is a multifunctional transmembrane glycoprotein induced by IFN that has been shown to effectively counteract many viruses through diverse mechanisms. Here, we demonstrate that hBST2 inhibits RABV budding by tethering new virions to the cell surface. It was observed that release of virus-like particles (VLPs) formed by RABV G (RABV-G VLPs), but not RABV M (RABV-G VLPs), were suppressed by hBST2, indicating that RABV-G has a specific effect on the hBST2-mediated restriction of RABV. The ability of hBST2 to prevent the release of RABV-G VLPs and impede RABV growth kinetics is retained even when hBST2 has mutations at dimerization and/or glycosylation sites, making hBST2 an antagonist to RABV, with multiple mechanisms possibly contributing to the hBST2-mediated suppression of RABV. Our findings expand the knowledge of host antiviral mechanisms that control RABV infection.
Collapse
Affiliation(s)
- Nathiphat Tanwattana
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Yuparat Jantraphakorn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Thanathom Chailungkarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), KlongLuang, Pathum Thani, Thailand
| | - Boonlert Lumlertdacha
- Queen Saovabha Memorial Institute, Thai Red Cross Society, WHO Collaborating Center for Research and Training Prophylaxis on Rabies, Pathumwan, Bangkok, Thailand
| | - Porntippa Lekchareonsuk
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok, Thailand
| | - Challika Kaewborisuth
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| |
Collapse
|
2
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
3
|
Cheng J, Zhang G, Deng T, Liu Z, Zhang M, Zhang P, Adeshakin FO, Niu X, Yan D, Wan X, Yu G. CD317 maintains proteostasis and cell survival in response to proteasome inhibitors by targeting calnexin for RACK1-mediated autophagic degradation. Cell Death Dis 2023; 14:333. [PMID: 37210387 DOI: 10.1038/s41419-023-05858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Unbalanced protein homeostasis (proteostasis) networks are frequently linked to tumorigenesis, making cancer cells more susceptible to treatments that target proteostasis regulators. Proteasome inhibition is the first licensed proteostasis-targeting therapeutic strategy, and has been proven effective in hematological malignancy patients. However, drug resistance almost inevitably develops, pressing for a better understanding of the mechanisms that preserve proteostasis in tumor cells. Here we report that CD317, a tumor-targeting antigen with a unique topology, was upregulated in hematological malignancies and preserved proteostasis and cell viability in response to proteasome inhibitors (PIs). Knocking down CD317 lowered Ca2+ levels in the endoplasmic reticulum (ER), promoting PIs-induced proteostasis failure and cell death. Mechanistically, CD317 interacted with calnexin (CNX), an ER chaperone protein that limits calcium refilling via the Ca2+ pump SERCA, thereby subjecting CNX to RACK1-mediated autophagic degradation. As a result, CD317 decreased the level of CNX protein, coordinating Ca2+ uptake and thus favoring protein folding and quality control in the ER lumen. Our findings reveal a previously unrecognized role of CD317 in proteostasis control and imply that CD317 could be a promising target for resolving PIs resistance in the clinic.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Immunology, Jinzhou Medical University, Jinzhou, Liaoning, China
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China.
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China.
| | - Tian Deng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Zhao Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Mengqi Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
| | - Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Funmilayo O Adeshakin
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Xiangyun Niu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Dehong Yan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, People's Republic of China.
- Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), Shenzhen, China.
| | - Guang Yu
- Department of Immunology, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
4
|
Judith D, Versapuech M, Bejjani F, Palaric M, Verlhac P, Kuster A, Lepont L, Gallois-Montbrun S, Janvier K, Berlioz-Torrent C. ATG5 selectively engages virus-tethered BST2/tetherin in an LC3C-associated pathway. Proc Natl Acad Sci U S A 2023; 120:e2217451120. [PMID: 37155854 PMCID: PMC10193943 DOI: 10.1073/pnas.2217451120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism. Here, we describe the first step of this viral-induced LC3C-associated process. This process is initiated at the plasma membrane through the recognition and internalization of virus-tethered BST2 by ATG5, an autophagy protein. ATG5 and BST2 assemble as a complex, independently of the viral protein Vpu and ahead of the recruitment of the ATG protein LC3C. The conjugation of ATG5 with ATG12 is dispensable for this interaction. ATG5 recognizes cysteine-linked homodimerized BST2 and specifically engages phosphorylated BST2 tethering viruses at the plasma membrane, in an LC3C-associated pathway. We also found that this LC3C-associated pathway is used by Vpu to attenuate the inflammatory responses mediated by virion retention. Overall, we highlight that by targeting BST2 tethering viruses, ATG5 acts as a signaling scaffold to trigger an LC3C-associated pathway induced by HIV-1 infection.
Collapse
Affiliation(s)
- Delphine Judith
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Margaux Versapuech
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Fabienne Bejjani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Marjory Palaric
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Pauline Verlhac
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Aurelia Kuster
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Leslie Lepont
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | | | - Katy Janvier
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | | |
Collapse
|
5
|
Unconventional p97/VCP-Mediated Endoplasmic Reticulum-to-Endosome Trafficking of a Retroviral Protein. J Virol 2021; 95:e0053121. [PMID: 33952644 DOI: 10.1128/jvi.00531-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) encodes a Rem precursor protein that specifies both regulatory and accessory functions. Rem is cleaved at the endoplasmic reticulum (ER) membrane into a functional N-terminal signal peptide (SP) and the C terminus (Rem-CT). Rem-CT lacks a membrane-spanning domain and a known ER retention signal, and yet it was not detectably secreted into cell supernatants. Inhibition of intracellular trafficking by the drug brefeldin A (BFA), which interferes with the ER-to-Golgi secretory pathway, resulted in dramatically reduced intracellular Rem-CT levels that were not rescued by proteasomal or lysosomal inhibitors. A Rem mutant lacking glycosylation was cleaved into SP and Rem-CT but was insensitive to BFA, suggesting that unglycosylated Rem-CT does not reach this BFA-dependent compartment. Treatment with endoglycosidase H indicated that Rem-CT does not traffic through the Golgi apparatus. Analysis of wild-type Rem-CT and its glycosylation mutant by confocal microscopy revealed that both were primarily localized to the ER lumen. A small fraction of wild-type Rem-CT, but not the unglycosylated mutant, was colocalized with Rab5-positive (Rab5+) early endosomes. The expression of a dominant-negative (DN) form of ADP ribosylation factor 1 (Arf1) (containing a mutation of threonine to asparagine at position 31 [T31N]) mimicked the effects of BFA by reducing Rem-CT levels and increased Rem-CT association with early and late endosomes. Inhibition of the AAA ATPase p97/VCP rescued Rem-CT in the presence of BFA or DN Arf1 and prevented localization to Rab5+ endosomes. Thus, Rem-CT uses an unconventional p97-mediated scheme for trafficking to early endosomes. IMPORTANCE Mouse mammary tumor virus is a complex retrovirus that encodes a regulatory/accessory protein, Rem. Rem is a precursor protein that is processed at the endoplasmic reticulum (ER) membrane by signal peptidase. The N-terminal SP uses the p97/VCP ATPase to elude ER-associated degradation to traffic to the nucleus and serve a human immunodeficiency virus Rev-like function. In contrast, the function of the C-terminal glycosylated cleavage product (Rem-CT) is unknown. Since localization is critical for protein function, we used mutants, inhibitors, and confocal microscopy to localize Rem-CT. Surprisingly, Rem-CT, which lacks a transmembrane domain or an ER retention signal, was detected primarily within the ER and required glycosylation and the p97 ATPase for early endosome trafficking without passage through the Golgi apparatus. Thus, Rem-CT uses a novel intracellular trafficking pathway, potentially impacting host antiviral immunity.
Collapse
|
6
|
Cheng J, Liu Z, Deng T, Lu Z, Liu M, Lu X, Adeshakin FO, Yan D, Zhang G, Wan X. CD317 mediates immunocytolysis resistance by RICH2/cytoskeleton-dependent membrane protection. Mol Immunol 2020; 129:94-102. [PMID: 33223223 DOI: 10.1016/j.molimm.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022]
Abstract
Immune evasion is a common hallmark of cancers. Immunotherapies that aim at restoring or increasing the immune response against cancers have revolutionized outcomes for patients, but the mechanisms of resistance remain poorly defined. Here, we report that CD317, a surface molecule with a unique topology that is double anchored into the membrane, protects tumor cells from immunocytolysis. CD317 knockdown in tumor cells renders more severe death in response to NK or chimeric antigen receptor-modified NK cells challenge. Such effects of CD317 silencing might be the results of increasing sensitivity of tumor cells to immune killing rather than strengthening immune response, since neither effector-target cell contact nor the activation of effector cells was affected, and the enhanced cytolysis was also not counteracted by the addition of recombinant CD317 proteins. Mechanistically, CD317 might endow tumor cells with more flexibility to modulate cytoskeleton through its association with RICH2, thereby protects membrane integrity against perforin and consequently promotes survival in response to immunocytolysis. These results reveal a new mechanism of immunocytolysis resistance and suggest CD317 as an attractive target which can be exploited for improving the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Jian Cheng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhao Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Tian Deng
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Zhen Lu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Maoxuan Liu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Xiaoxu Lu
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Funmilayo Oladunni Adeshakin
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dehong Yan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong immune cell therapy engineering and technology research center (No. 2580 [2018]), PR China; Shenzhen BinDeBioTech Co., Ltd., Floor 5, Building 6, Tongfuyu Industrial City, Xili, Nanshan, Shenzhen, 518055, PR China.
| |
Collapse
|
7
|
Virion-incorporated PSGL-1 and CD43 inhibit both cell-free infection and transinfection of HIV-1 by preventing virus-cell binding. Proc Natl Acad Sci U S A 2020; 117:8055-8063. [PMID: 32193343 DOI: 10.1073/pnas.1916055117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
HIV-1 particles incorporate various host transmembrane proteins in addition to viral Env glycoprotein during assembly at the plasma membrane. In polarized T cells, HIV-1 structural protein Gag localizes to the plasma membrane of uropod, a rear-end protrusion. Notably, uropod transmembrane proteins PSGL-1 and CD43 cocluster specifically with Gag assembling at the plasma membrane even in cells that do not form uropods. Recent reports have shown that expression of either PSGL-1 or CD43 in virus-producing cells reduces the infectivity of progeny virions and that HIV-1 infection reduces the cell surface expression of these proteins. However, the mechanisms for both processes remain to be determined. In this study, we found that virion incorporation of PSGL-1 and CD43 closely correlates with diminished virion infectivity. PSGL-1 and CD43 inhibited virus attachment to CD4+ cells irrespective of the presence of Env. These proteins also inhibited virion attachment to CD4- lymphoid organ fibroblastic reticular cells that mediate transinfection of CD4+ T cells. Consistent with the possibility that highly extended extracellular domains of these proteins physically block virus-cell attachment, the inhibitory effect of PSGL-1 required its full-length ectodomain. HIV-1 encoding Gag mutants that are defective in either coclustering with these host proteins or ESCRT-dependent particle release failed to reduce PSGL-1 on surface of infected cells. This study reveals an anti-HIV-1 mechanism that suppresses virus-cell attachment and a previously unappreciated process of HIV-1-mediated down-regulation of host antiviral proteins, both of which likely require virion incorporation of these proteins.
Collapse
|
8
|
Bai B, Wang XF, Zhang M, Na L, Zhang X, Zhang H, Yang Z, Wang X. The N-glycosylation of Equine Tetherin Affects Antiviral Activity by Regulating Its Subcellular Localization. Viruses 2020; 12:v12020220. [PMID: 32079099 PMCID: PMC7077275 DOI: 10.3390/v12020220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 01/08/2023] Open
Abstract
Tetherin is an interferon-inducible type II transmembrane glycoprotein which inhibits the release of viruses, including retroviruses, through a “physical tethering” model. However, the role that the glycosylation of tetherin plays in its antiviral activity remains controversial. In this study, we found that mutation of N-glycosylation sites resulted in an attenuation of the antiviral activity of equine tetherin (eqTHN), as well as a reduction in the expression of eqTHN at the plasma membrane (PM). In addition, eqTHN N-glycosylation mutants colocalize obviously with ER, CD63, LAMP1 and endosomes, while WT eqTHN do not. Furthermore, we also found that N-glycosylation impacts the transport of eqTHN in the cell not by affecting the endocytosis, but rather by influencing the anterograde trafficking of the protein. These results suggest that the N-glycosylation of eqTHN is important for the antiviral activity of the protein through regulating its normal subcellular localization. This finding will enhance our understanding of the function of this important restriction factor.
Collapse
Affiliation(s)
- Bowen Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Mengmeng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Xiangmin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Haili Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
- Correspondence: ; Tel.: +86-451-5105-1749
| |
Collapse
|
9
|
Risk association of BST2 gene variants with disease progression in HIV-1 infected Indian cohort. INFECTION GENETICS AND EVOLUTION 2019; 80:104139. [PMID: 31841700 DOI: 10.1016/j.meegid.2019.104139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/25/2019] [Accepted: 12/08/2019] [Indexed: 11/21/2022]
Abstract
Bone marrow stromal cell antigen 2 (BST2) is an interferon induced host restriction factor for HIV-1 that blocks the release of nascent virions from infected T cells. We aimed to characterize BST2 gene variants in HIV-1 positive individuals in Indian cohort and study the association of these variants with disease progression in long term non progressors (LTNPs) and progressors. Archived samples of 32 LTNPs, 17 progressors, and 78 controls were screened for BST2 gene polymorphisms using Sanger's sequencing method. Frequency distribution, survival analysis and bioinformatics tools were used to study the association of BST2 variants with disease progression. Eighteen variants of BST2 gene were observed in Indian cohort. Intronic SNP rs919267T/C (OR = 4.489 [0.8494-27.03], p = .04157) and exonic SNP rs13485C/G (OR = 3.887 [0.8262-25.56], p = .0488) were found to be significantly associated with disease progression. Also, rs13485C/C genotype in combination with rs919267C/T (OR = 9.406 [1.384-111], p = .0085) and rs145303329 Δ19bp (OR = 3.887 [0.826-25.5], p = .048) were found to be significantly associated with disease progression. 19 bp indel rs145303329 and its allele c.1-443_1-442insCGCCCCCAGAC[C/T]CAGGCCC from BST2 promoter also showed association with disease progression (OR = 12.97 [0.9731-850.5], p = .026). Docking of AP2 repressor with above allele showed the total binding energy of LTNPs and progressors to be -2581.42 kcal/mol and -3563.27/-3562.84 kcal/mol respectively. We have identified the novel association of three BST2 gene SNPs; rs919267, rs13485 and indel rs145303329 from Indian cohort to be associated with the risk of HIV-1 disease progression for the first time.
Collapse
|
10
|
Abstract
The accessory protein Nef of human immunodeficiency virus (HIV) is a primary determinant of viral pathogenesis. Nef is abundantly expressed during infection and reroutes a variety of cell surface proteins to disrupt host immunity and promote the viral replication cycle. Nef counteracts host defenses by sequestering and/or degrading its targets via the endocytic and secretory pathways. Nef does this by physically engaging a number of host trafficking proteins. Substantial progress has been achieved in identifying the targets of Nef, and a structural and mechanistic understanding of Nef's ability to command the protein trafficking machinery has recently started to coalesce. Comparative analysis of HIV and simian immunodeficiency virus (SIV) Nef proteins in the context of recent structural advances sheds further light on both viral evolution and the mechanisms whereby trafficking is hijacked. This review describes how advances in cell and structural biology are uncovering in growing detail how Nef subverts the host immune system, facilitates virus release, and enhances viral infectivity.
Collapse
|
11
|
Bego MG, Miguet N, Laliberté A, Aschman N, Gerard F, Merakos AA, Weissenhorn W, Cohen ÉA. Activation of the ILT7 receptor and plasmacytoid dendritic cell responses are governed by structurally-distinct BST2 determinants. J Biol Chem 2019; 294:10503-10518. [PMID: 31118237 DOI: 10.1074/jbc.ra119.008481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Type I interferons (IFN-I) are key innate immune effectors predominantly produced by activated plasmacytoid dendritic cells (pDCs). By modulating immune responses at their foundation, IFNs can widely reshape immunity to control infectious diseases and malignancies. Nevertheless, their biological activities can also be detrimental to surrounding healthy cells, as prolonged IFN-I signaling is associated with excessive inflammation and immune dysfunction. The interaction of the human pDC receptor immunoglobulin-like transcript 7 (ILT7) with its IFN-I-regulated ligand, bone marrow stromal cell antigen 2 (BST2) plays a key role in controlling the IFN-I amounts produced by pDCs in response to Toll-like receptor (TLR) activation. However, the structural determinants and molecular features of BST2 that govern ILT7 engagement and activation are largely undefined. Using two functional assays to measure BST2-stimulated ILT7 activation as well as biophysical studies, here we identified two structurally-distinct regions of the BST2 ectodomain that play divergent roles during ILT7 activation. We found that although the coiled-coil region contains a newly defined ILT7-binding surface, the N-terminal region appears to suppress ILT7 activation. We further show that a stable BST2 homodimer binds to ILT7, but post-binding events associated with the unique BST2 coiled-coil plasticity are required to trigger receptor signaling. Hence, BST2 with an unstable or a rigid coiled-coil fails to activate ILT7, whereas substitutions in its N-terminal region enhance activation. Importantly, the biological relevance of these newly defined domains of BST2 is underscored by the identification of substitutions having opposing potentials to activate ILT7 in pathological malignant conditions.
Collapse
Affiliation(s)
- Mariana G Bego
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nolwenn Miguet
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Alexandre Laliberté
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Nicolas Aschman
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Francine Gerard
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Angelique A Merakos
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Winfried Weissenhorn
- the University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, CNRS, 38044 Grenoble, France, and
| | - Éric A Cohen
- From the Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada, .,the Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
12
|
Berry KN, Kober DL, Su A, Brett TJ. Limiting Respiratory Viral Infection by Targeting Antiviral and Immunological Functions of BST-2/Tetherin: Knowledge and Gaps. Bioessays 2018; 40:e1800086. [PMID: 30113067 PMCID: PMC6371793 DOI: 10.1002/bies.201800086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Recent findings regarding the cellular biology and immunology of BST-2 (also known as tetherin) indicate that its function could be exploited as a universal replication inhibitor of enveloped respiratory viruses (e.g., influenza, respiratory syncytial virus, etc.). BST-2 inhibits viral replication by preventing virus budding from the plasma membrane and by inducing an antiviral state in cells adjacent to infection via unique inflammatory signaling mechanisms. This review presents the first comprehensive summary of what is currently known about BST-2 anti-viral function against respiratory viruses, how these viruses construct countermeasures to antagonize BST-2, and how BST-2 function might be targeted to develop therapies to treat respiratory virus infections. The authors address the current gaps in knowledge, including the need for mechanistic understanding of BST-2 antagonism by respiratory viruses, that should be bridged to achieve that goal.
Collapse
Affiliation(s)
- Kayla N. Berry
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
- Immunology ProgramWashington University School of MedicineSt. Louis 63110Missouri
- Medical Scientist Training ProgramWashington University School of MedicineSt. Louis 63110Missouri
| | - Daniel L. Kober
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
- Microbiology ProgramWashington University School of MedicineSt. Louis 63110Missouri
| | - Alvin Su
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
| | - Tom J. Brett
- Division of Pulmonary and Critical CareDepartment of Internal MedicineWashington University School of MedicineSt. Louis 63110Missouri
- Department of Medicine, and Department of Cell Biology and PhysiologyWashington University School of MedicineSt. Louis 63110Missouri
| |
Collapse
|
13
|
The Antiviral Activity of the Cellular Glycoprotein LGALS3BP/90K Is Species Specific. J Virol 2018; 92:JVI.00226-18. [PMID: 29743357 PMCID: PMC6026745 DOI: 10.1128/jvi.00226-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 11/25/2022] Open
Abstract
Cellular antiviral proteins interfere with distinct steps of replication cycles of viruses. The galectin 3 binding protein (LGALS3BP, also known as 90K) was previously shown to lower the infectivity of nascent human immunodeficiency virus type 1 (HIV-1) virions when expressed in virus-producing cells. This antiviral effect was accompanied by impaired gp160Env processing and reduced viral incorporation of mature Env glycoproteins. Here, we examined the ability of 90K orthologs from primate species to reduce the particle infectivity of distinct lentiviruses. We show that 90K's ability to diminish the infectivity of lentiviral particles is conserved within primate species, with the notable exception of 90K from rhesus macaque. Comparison of active and inactive 90K orthologs and variants uncovered the fact that inhibition of processing of the HIV-1 Env precursor and reduction of cell surface expression of HIV-1 Env gp120 are required, but not sufficient, for 90K-mediated antiviral activity. Rather, 90K-mediated reduction of virion-associated gp120 coincided with antiviral activity, suggesting that 90K impairs the incorporation of HIV-1 Env into budding virions. We show that a single “humanizing” amino acid exchange in the BTB (broad-complex, tramtrack, and bric-à-brac)/POZ (poxvirus and zinc finger) domain is sufficient to fully rescue the antiviral activity of a shortened version of rhesus macaque 90K, but not that of the full-length protein. Comparison of the X-ray structures of the BTB/POZ domains of 90K from rhesus macaques and humans point toward a slightly larger hydrophobic patch at the surface of the rhesus macaque BTB domain that may modulate a direct interaction with either a second 90K domain or a different protein. IMPORTANCE The cellular 90K protein has been shown to diminish the infectivity of nascent HIV-1 particles. When produced in 90K-expressing cells, particles bear smaller amounts of the HIV-1 Env glycoprotein, which is essential for attaching to and entering new target cells in the subsequent infection round. However, whether the antiviral function of 90K is conserved across primates is unknown. Here, we found that 90K orthologs from most primate species, but, surprisingly, not from rhesus macaques, inhibit HIV-1. The introduction of a single amino acid exchange into a short version of the rhesus macaque 90K protein, consisting of the two intermediate domains of 90K, resulted in full restoration of antiviral activity. Structural elucidation of the respective domain suggests that the absence of antiviral activity in the rhesus macaque factor may be linked to a subtle change in protein-protein interaction.
Collapse
|
14
|
Döhner K, Ramos-Nascimento A, Bialy D, Anderson F, Hickford-Martinez A, Rother F, Koithan T, Rudolph K, Buch A, Prank U, Binz A, Hügel S, Lebbink RJ, Hoeben RC, Hartmann E, Bader M, Bauerfeind R, Sodeik B. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. PLoS Pathog 2018; 14:e1006823. [PMID: 29304174 PMCID: PMC5773220 DOI: 10.1371/journal.ppat.1006823] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/18/2018] [Accepted: 12/16/2017] [Indexed: 01/28/2023] Open
Abstract
Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. Nuclear pore complexes are highly selective gateways that penetrate the nuclear envelope for bidirectional trafficking between the cytoplasm and the nucleoplasm. Viral and host cargoes have to engage specific transport factors to achieve active nuclear import and export. Like many human and animal DNA viruses, herpesviruses are critically dependent on many functions of the host cell nucleus. Alphaherpesviruses such as herpes simplex virus (HSV) cause many diseases upon productive infection in epithelial cells, fibroblasts and neurons. Here, we asked which nuclear transport factors of the host cells help HSV-1 to translocate viral components into the nucleus for viral gene expression, nuclear capsid assembly, capsid egress into the cytoplasm, and production of infectious virions. Our data show that HSV-1 requires the nuclear import factor importin α1 for efficient replication and virus assembly in fibroblasts and in mature neurons. To our knowledge this is the first time that a specific importin α isoform is shown to be required for herpesvirus infection. Our study fosters our understanding on how the different but highly homologous importin α isoforms could fulfill specific functions in vivo which are only understood for a very limited number of host and viral cargos.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Dagmara Bialy
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Fenja Anderson
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Franziska Rother
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Thalea Koithan
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Kathrin Rudolph
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ute Prank
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Stefanie Hügel
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob C. Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Enno Hartmann
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
15
|
Roy N, Pacini G, Berlioz-Torrent C, Janvier K. Characterization of E3 ligases involved in lysosomal sorting of the HIV-1 restriction factor BST2. J Cell Sci 2017; 130:1596-1611. [PMID: 28320822 PMCID: PMC5450231 DOI: 10.1242/jcs.195412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
The cellular protein BST2 (also known as tetherin) acts as a major intrinsic antiviral protein that prevents the release of enveloped viruses by trapping nascent viral particles at the surface of infected cells. Viruses have evolved specific strategies to displace BST2 from viral budding sites in order to promote virus egress. In HIV-1, the accessory protein Vpu counters BST2 antiviral activity and promotes sorting of BST2 for lysosomal degradation. Vpu increases polyubiquitylation of BST2, a post-translation modification required for Vpu-induced BST2 downregulation, through recruitment of the E3 ligase complex SCF adaptors β-TrCP1 and β-TrCP2 (two isoforms encoded by BTRC and FBXW11, respectively). Herein, we further investigate the role of the ubiquitylation machinery in the lysosomal sorting of BST2. Using a small siRNA screen, we highlighted two additional regulators of BST2 constitutive ubiquitylation and sorting to the lysosomes: the E3 ubiquitin ligases NEDD4 and MARCH8. Interestingly, Vpu does not hijack the cellular machinery that is constitutively involved in BST2 ubiquitylation to sort BST2 for degradation in the lysosomes but instead promotes the recognition of BST2 by β-TrCP proteins. Altogether, our results provide further understanding of the mechanisms underlying BST2 turnover in cells. Highlighted Article: We identify two E3 ubiquitin ligases, NEDD4 and MARCH8, as regulators of BST2 (tetherin) – a protein that restricts viral release; we thus provide further understanding of the mechanisms underlying BST2 turnover in cells.
Collapse
Affiliation(s)
- Nicolas Roy
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Grégory Pacini
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Clarisse Berlioz-Torrent
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Katy Janvier
- Inserm, U1016, Institut Cochin, Paris, France .,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
16
|
Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS. Tetherin is an exosomal tether. eLife 2016; 5. [PMID: 27657169 PMCID: PMC5033606 DOI: 10.7554/elife.17180] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022] Open
Abstract
Exosomes are extracellular vesicles that are released when endosomes fuse with the plasma membrane. They have been implicated in various functions in both health and disease, including intercellular communication, antigen presentation, prion transmission, and tumour cell metastasis. Here we show that inactivating the vacuolar ATPase in HeLa cells causes a dramatic increase in the production of exosomes, which display endocytosed tracers, cholesterol, and CD63. The exosomes remain clustered on the cell surface, similar to retroviruses, which are attached to the plasma membrane by tetherin. To determine whether tetherin also attaches exosomes, we knocked it out and found a 4-fold reduction in plasma membrane-associated exosomes, with a concomitant increase in exosomes discharged into the medium. This phenotype could be rescued by wild-type tetherin but not tetherin lacking its GPI anchor. We propose that tetherin may play a key role in exosome fate, determining whether they participate in long-range or short-range interactions.
Collapse
Affiliation(s)
- James R Edgar
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Paul T Manna
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Shinichi Nishimura
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - George Banting
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Margaret S Robinson
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| |
Collapse
|
17
|
Dotson D, Woodruff EA, Villalta F, Dong X. Filamin A Is Involved in HIV-1 Vpu-mediated Evasion of Host Restriction by Modulating Tetherin Expression. J Biol Chem 2016; 291:4236-46. [PMID: 26742839 DOI: 10.1074/jbc.m115.708123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 11/06/2022] Open
Abstract
Tetherin, also known as bone marrow stromal antigen 2 (BST-2), inhibits the release of a wide range of enveloped viruses, including human immunodeficiency virus, type 1 (HIV-1) by directly tethering nascent virions to the surface of infected cells. The HIV-1 accessary protein Vpu counteracts tetherin restriction via sequestration, down-regulation, and/or displacement mechanisms to remove tetherin from sites of virus budding. However, the exact mechanism of Vpu-mediated antagonism of tetherin restriction remains to be fully understood. Here we report a novel role for the actin cross-linking regulator filamin A (FLNa) in Vpu anti-tetherin activities. We demonstrate that FLNa associates with tetherin and that FLNa modulates tetherin turnover. FLNa deficiency was found to enhance cell surface and steady-state levels of tetherin expression. In contrast, we observed that overexpression of FLNa reduced tetherin expression levels both on the plasma membrane and in intracellular compartments. Although FLNb shows high amino acid sequence similarity with FLNa, we reveal that only FLNa, but not FLNb, plays an essential role in tetherin turnover. We further showed that FLNa deficiency inhibited Vpu-mediated enhancement of virus release through interfering with the activity of Vpu to down-regulate cellular tetherin. Taken together, our studies suggest that Vpu hijacks the FLNa function in the modulation of tetherin to neutralize the antiviral factor tetherin. These findings may provide novel strategies for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Dominique Dotson
- From the Department of Microbiology and Immunology and Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Elvin A Woodruff
- From the Department of Microbiology and Immunology and Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Fernando Villalta
- From the Department of Microbiology and Immunology and Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Xinhong Dong
- From the Department of Microbiology and Immunology and Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
18
|
Nishitsuji H, Sugiyama R, Abe M, Takaku H. ATP1B3 Protein Modulates the Restriction of HIV-1 Production and Nuclear Factor κ Light Chain Enhancer of Activated B Cells (NF-κB) Activation by BST-2. J Biol Chem 2015; 291:4754-62. [PMID: 26694617 DOI: 10.1074/jbc.m115.679357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 11/06/2022] Open
Abstract
Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation.
Collapse
Affiliation(s)
- Hironori Nishitsuji
- From the Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516
| | - Ryuichi Sugiyama
- the Department of Life and Environmental Sciences and the Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Makoto Abe
- the Department of Life and Environmental Sciences and
| | - Hiroshi Takaku
- the Department of Life and Environmental Sciences and Research Institute, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan, and
| |
Collapse
|
19
|
Mahauad-Fernandez WD, Okeoma CM. The role of BST-2/Tetherin in host protection and disease manifestation. IMMUNITY INFLAMMATION AND DISEASE 2015; 4:4-23. [PMID: 27042298 PMCID: PMC4768070 DOI: 10.1002/iid3.92] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Host cells respond to viral infections by activating immune response genes that are not only involved in inflammation, but may also predispose cells to cancerous transformation. One such gene is BST‐2, a type II transmembrane protein with a unique topology that endows it tethering and signaling potential. Through this ability to tether and signal, BST‐2 regulates host response to viral infection either by inhibiting release of nascent viral particles or in some models inhibiting viral dissemination. However, despite its antiviral functions, BST‐2 is involved in disease manifestation, a function linked to the ability of BST‐2 to promote cell‐to‐cell interaction. Therefore, modulating BST‐2 expression and/or activity has the potential to influence course of disease.
Collapse
Affiliation(s)
- Wadie D Mahauad-Fernandez
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| | - Chioma M Okeoma
- Department of MicrobiologyCarver College of MedicineUniversity of IowaIowa CityIA52242USA; Interdisciplinary Program in Molecular and Cellular BiologyUniversity of IowaIowa CityIA52242USA
| |
Collapse
|
20
|
Three-Dimensional Structural Characterization of HIV-1 Tethered to Human Cells. J Virol 2015; 90:1507-21. [PMID: 26582000 DOI: 10.1128/jvi.01880-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tetherin (BST2, CD317, or HM1.24) is a host cellular restriction factor that prevents the release of enveloped viruses by mechanically linking virions to the plasma membrane. The precise arrangement of tetherin molecules at the plasma membrane site of HIV-1 assembly, budding, and restriction is not well understood. To gain insight into the biophysical mechanism underlying tetherin-mediated restriction of HIV-1, we utilized cryo-electron tomography (cryo-ET) to directly visualize HIV-1 virus-like particles (VLPs) and virions tethered to human cells in three dimensions (3D). Rod-like densities that we refer to as tethers were seen connecting HIV-1 virions to each other and to the plasma membrane. Native immunogold labeling showed tetherin molecules located on HIV-1 VLPs and virions in positions similar to those of the densities observed by cryo-ET. The location of the tethers with respect to the ordered immature Gag lattice or mature conical core was random. However, tethers were not uniformly distributed on the viral membrane but rather formed clusters at sites of contact with the cell or other virions. Chains of tethered HIV-1 virions often were arranged in a linear fashion, primarily as single chains and, to a lesser degree, as branched chains. Distance measurements support the extended tetherin model, in which the coiled-coil ectodomains are oriented perpendicular with respect to the viral and plasma membranes. IMPORTANCE Tetherin is a cellular factor that restricts HIV-1 release by directly cross-linking the virus to the host cell plasma membrane. We used cryo-electron tomography to visualize HIV-1 tethered to human cells in 3D. We determined that tetherin-restricted HIV-1 virions were physically connected to each other or to the plasma membrane by filamentous tethers that resembled rods ∼15 nm in length, which is consistent with the extended tetherin model. In addition, we found the position of the tethers to be arbitrary relative to the ordered immature Gag lattice or the mature conical cores. However, when present as multiple copies, the tethers clustered at the interface between virions. Tethered HIV-1 virions were arranged in a linear fashion, with the majority as single chains. This study advances our understanding of tetherin-mediated HIV-1 restriction by defining the spatial arrangement and orientation of tetherin molecules at sites of HIV-1 restriction.
Collapse
|
21
|
Waheed AA, Kuruppu ND, Felton KL, D’Souza D, Freed EO. In COS cells Vpu can both stabilize tetherin expression and counteract its antiviral activity. PLoS One 2014; 9:e111628. [PMID: 25360760 PMCID: PMC4216104 DOI: 10.1371/journal.pone.0111628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/03/2014] [Indexed: 01/12/2023] Open
Abstract
The interferon-inducible cellular protein tetherin (CD317/BST-2) inhibits the release of a broad range of enveloped viruses. The HIV-1 accessory protein Vpu enhances virus particle release by counteracting this host restriction factor. While the antagonism of human tetherin by Vpu has been associated with both proteasomal and lysosomal degradation, the link between Vpu-mediated tetherin degradation and the ability of Vpu to counteract the antiviral activity of tetherin remains poorly understood. Here, we show that human tetherin is expressed at low levels in African green monkey kidney (COS) cells. However, Vpu markedly increases tetherin expression in this cell line, apparently by sequestering it in an internal compartment that bears lysosomal markers. This stabilization of tetherin by Vpu requires the transmembrane sequence of human tetherin. Although Vpu stabilizes human tetherin in COS cells, it still counteracts the ability of tetherin to suppress virus release. The enhancement of virus release by Vpu in COS cells is associated with a modest reduction in cell-surface tetherin expression, even though the overall expression of tetherin is higher in the presence of Vpu. This study demonstrates that COS cells provide a model system in which Vpu-mediated enhancement of HIV-1 release is uncoupled from Vpu-mediated tetherin degradation.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland, United States of America
- * E-mail:
| | - Nishani D. Kuruppu
- Virus-Cell Interaction Section, HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland, United States of America
| | - Kathryn L. Felton
- Virus-Cell Interaction Section, HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland, United States of America
| | - Darren D’Souza
- Virus-Cell Interaction Section, HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland, United States of America
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
22
|
Roy N, Pacini G, Berlioz-Torrent C, Janvier K. Mechanisms underlying HIV-1 Vpu-mediated viral egress. Front Microbiol 2014; 5:177. [PMID: 24822052 PMCID: PMC4013480 DOI: 10.3389/fmicb.2014.00177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Abstract
Viruses such as lentiviruses that are responsible for long lasting infections have to evade several levels of cellular immune mechanisms to persist and efficiently disseminate in the host. Over the past decades, much evidence has emerged regarding the major role of accessory proteins of primate lentiviruses, human immunodeficiency virus and simian immunodeficiency virus, in viral evasion from the host immune defense. This short review will provide an overview of the mechanism whereby the accessory protein Vpu contributes to this escape. Vpu is a multifunctional protein that was shown to contribute to viral egress by down-regulating several mediators of the immune system such as CD4, CD1d, NTB-A and the restriction factor BST2. The mechanisms underlying its activity are not fully characterized but rely on its ability to interfere with the host machinery regulating protein turnover and vesicular trafficking. This review will focus on our current understanding of the mechanisms whereby Vpu down-regulates CD4 and BST2 expression levels to favor viral egress.
Collapse
Affiliation(s)
- Nicolas Roy
- INSERM U1016, Institut Cochin Paris, France ; CNRS UMR8104 Paris, France ; Université Paris Descartes Paris, France
| | - Grégory Pacini
- INSERM U1016, Institut Cochin Paris, France ; CNRS UMR8104 Paris, France ; Université Paris Descartes Paris, France
| | - Clarisse Berlioz-Torrent
- INSERM U1016, Institut Cochin Paris, France ; CNRS UMR8104 Paris, France ; Université Paris Descartes Paris, France
| | - Katy Janvier
- INSERM U1016, Institut Cochin Paris, France ; CNRS UMR8104 Paris, France ; Université Paris Descartes Paris, France
| |
Collapse
|
23
|
Abstract
Many viruses encode short transmembrane proteins that play vital roles in virus replication or virulence. Because many of these proteins are less than 50 amino acids long and not homologous to cellular proteins, their open reading frames were often overlooked during the initial annotation of viral genomes. Some of these proteins oligomerize in membranes and form ion channels. Other miniproteins bind to cellular transmembrane proteins and modulate their activity, whereas still others have an unknown mechanism of action. Based on the underlying principles of transmembrane miniprotein structure, it is possible to build artificial small transmembrane proteins that modulate a variety of biological processes. These findings suggest that short transmembrane proteins provide a versatile mechanism to regulate a wide range of cellular activities, and we speculate that cells also express many similar proteins that have not yet been discovered.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520;
| |
Collapse
|
24
|
Sauter D. Counteraction of the multifunctional restriction factor tetherin. Front Microbiol 2014; 5:163. [PMID: 24782851 PMCID: PMC3989765 DOI: 10.3389/fmicb.2014.00163] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/26/2014] [Indexed: 01/28/2023] Open
Abstract
The interferon-inducible restriction factor tetherin (also known as CD317, BST-2 or HM1.24) has emerged as a key component of the antiviral immune response. Initially, tetherin was shown to restrict replication of various enveloped viruses by inhibiting the release of budding virions from infected cells. More recently, it has become clear that tetherin also acts as a pattern recognition receptor inducing NF-κB-dependent proinflammatory gene expression in virus infected cells. Whereas the ability to restrict virion release is highly conserved among mammalian tetherin orthologs and thus probably an ancient function of this protein, innate sensing seems to be an evolutionarily recent activity. The potent and broad antiviral activity of tetherin is reflected by the fact that many viruses evolved means to counteract this restriction factor. A continuous arms race with viruses has apparently driven the evolution of different isoforms of tetherin with different functional properties. Interestingly, tetherin has also been implicated in cellular processes that are unrelated to immunity, such as the organization of the apical actin network and membrane microdomains or stabilization of the Golgi apparatus. In this review, I summarize our current knowledge of the different functions of tetherin and describe the molecular strategies that viruses have evolved to antagonize or evade this multifunctional host restriction factor.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
25
|
HIV-1 Vpu antagonism of tetherin inhibits antibody-dependent cellular cytotoxic responses by natural killer cells. J Virol 2014; 88:6031-46. [PMID: 24623433 DOI: 10.1128/jvi.00449-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The type I interferon-inducible factor tetherin retains virus particles on the surfaces of cells infected with vpu-deficient human immunodeficiency virus type 1 (HIV-1). While this mechanism inhibits cell-free viral spread, the immunological implications of tethered virus have not been investigated. We found that surface tetherin expression increased the antibody opsonization of vpu-deficient HIV-infected cells. The absence of Vpu also stimulated NK cell-activating FcγRIIIa signaling and enhanced NK cell degranulation and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). The deletion of vpu in HIV-1-infected primary CD4(+) T cells enhanced the levels of antibody binding and Fc receptor signaling mediated by HIV-positive-patient-derived antibodies. The magnitudes of antibody binding and Fc signaling were both highly correlated to the levels of tetherin on the surfaces of infected primary CD4 T cells. The affinity of antibody binding to FcγRIIIa was also found to be critical in mediating efficient Fc activation. These studies implicate Vpu antagonism of tetherin as an ADCC evasion mechanism that prevents antibody-mediated clearance of virally infected cells. IMPORTANCE The ability of the HIV-1 accessory factor to antagonize tetherin has been considered to primarily function by limiting the spread of virus by preventing the release of cell-free virus. This study supports the hypothesis that a major function of Vpu is to decrease the recognition of infected cells by anti-HIV antibodies at the cell surface, thereby reducing recognition by antibody-dependent clearance by natural killer cells.
Collapse
|
26
|
Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation. J Virol 2014; 88:3255-72. [PMID: 24390322 DOI: 10.1128/jvi.03814-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. IMPORTANCE HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is also its Env protein, but the mechanism is distinctive. Unlike other tetherin antagonists, FIV Env cannot act in trans to rescue vpu-deficient HIV-1. It must be incorporated specifically into FIV virions to be active. Also unlike other retroviral antagonists, but similar to Ebola virus Env, it does not act by downregulating or degrading tetherin. FIV Env might exclude tetherin locally or direct assembly to tetherin-negative membrane domains. Other distinctive features are apparent, including evidence that this virus evolved an equilibrium in which tetherin is both restriction factor and cofactor, as FIV requires tetherin for optimal particle release.
Collapse
|
27
|
Abstract
Assembly, release and maturation of HIV-1 particles comprise a highly dynamic sequence of events, characterized by a series of dramatic rearrangements of the viral structural proteins and overall virion architecture. HIV-1 morphogenesis is a relatively rapid and asynchronous process, showing high variability between cells and individual virions. Therefore, bulk biochemical methods are not ideally suited to study specific aspects of this process in detail. In contrast, imaging represents a direct approach to analyze individual particles and events. While live-cell imaging can reveal the dynamics of intracellular events with high temporal resolution, it falls short in revealing ultra-structural details. Thus, live-cell fluorescence microscopy and electron microscopy (EM) can complement each other to gain insight into both the dynamics of assembly and the structures detected at HIV-1 assembly sites. In this chapter we describe microscopic setups, tools, and methods for live-cell fluorescence microscopy as well as for different EM techniques, which have been successfully used by us and others to study HIV-1 assembly at the host cell plasma membrane. These methods can be used in a complementary manner to investigate the effects of cellular factors, mutations in the viral genome or antiviral drugs on dynamic and structural aspects of HIV-1 morphogenesis.
Collapse
Affiliation(s)
- Barbara Müller
- Department of Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
28
|
Wang SM, Huang KJ, Wang CT. BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface. Virology 2013; 449:287-96. [PMID: 24418563 PMCID: PMC7111910 DOI: 10.1016/j.virol.2013.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/09/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
Abstract
Bone marrow stromal antigen 2 (BST2), an interferon-inducible antiviral factor, has been shown to block the release of various enveloped viruses from cells. It has also been identified as an innate immune system component. Most enveloped viruses subject to BST2 restriction bud at the plasma membrane. Here we report our findings that (a) the production of human coronavirus 229E (HCoV-229E) progeny viruses, whose budding occurs at the ER-Golgi intermediate compartment (ERGIC), markedly decreases in the presence of BST2; and (b) BST2 knockdown expression results in enhanced HCoV-229E virion production. Electron microscopy analyses indicate that HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. Our results suggest that BST2 exerts a broad blocking effect against enveloped virus release, regardless of whether budding occurs at the plasma membrane or intracellular compartments.
Collapse
Affiliation(s)
- Shiu-Mei Wang
- Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Kuo-Jung Huang
- Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan
| | - Chin-Tien Wang
- Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
29
|
Equine tetherin blocks retrovirus release and its activity is antagonized by equine infectious anemia virus envelope protein. J Virol 2013; 88:1259-70. [PMID: 24227834 DOI: 10.1128/jvi.03148-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human tetherin is a host restriction factor that inhibits replication of enveloped viruses by blocking viral release. Tetherin has an unusual topology that includes an N-terminal cytoplasmic tail, a single transmembrane domain, an extracellular domain, and a C-terminal glycosylphosphatidylinositol anchor. Tetherin is not well conserved across species, so it inhibits viral replication in a species-specific manner. Thus, studies of tetherin activities from different species provide an important tool for understanding its antiviral mechanism. Here, we report cloning of equine tetherin and characterization of its antiviral activity. Equine tetherin shares 53%, 40%, 36%, and 34% amino acid sequence identity with feline, human, simian, and murine tetherins, respectively. Like the feline tetherin, equine tetherin has a shorter N-terminal domain than human tetherin. Equine tetherin is localized on the cell surface and strongly blocks human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and equine infectious anemia virus (EIAV) release from virus-producing cells. The antiviral activity of equine tetherin is neutralized by EIAV envelope protein, but not by the HIV-1 accessory protein Vpu, which is a human tetherin antagonist, and EIAV envelope protein does not counteract human tetherin. These results shed new light on our understanding of the species-specific tetherin antiviral mechanism.
Collapse
|
30
|
Lodermeyer V, Suhr K, Schrott N, Kolbe C, Stürzel CM, Krnavek D, Münch J, Dietz C, Waldmann T, Kirchhoff F, Goffinet C. 90K, an interferon-stimulated gene product, reduces the infectivity of HIV-1. Retrovirology 2013; 10:111. [PMID: 24156545 PMCID: PMC3827937 DOI: 10.1186/1742-4690-10-111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In response to viral infections, interferons induce the transcription of several hundred genes in mammalian cells. Specific antiviral functions, however, have only been attributed to a few of them. 90K/LGALS3BP has been reported to be an interferon-stimulated gene that is upregulated in individuals with cancer or HIV-1 infection. RESULTS Here, we show that 90K expression dose-dependently decreased the particle infectivity of HIV-1 progeny. The lower infectivity of released particles correlated with reduced virion incorporation of mature envelope glycoproteins gp120 and gp41. Further, proteolytic processing of the gp160 precursor and surface expression of gp120 in the producer cell were impaired in the presence of 90K expression. In contrast, expression of Gag, Nef and Vpu, and virus release were not grossly affected by 90K expression. 90K-imposed restriction occurred in the absence of direct interaction of 90K with HIV-1 Env or entrapment of Env in the ER. The cell-associated, but not the secreted species of 90K, mediated the antiviral effect. A truncated version of human 90K, solely consisting of the two intermediate domains, displayed a similar antiviral activity as the full-length wildtype 90K, indicating that the N-terminal SRCR-like domain and the C-terminal domain are dispensable for 90K's antiviral activity. The murine homolog of 90K, CypCAP (Cyclophilin C-associated protein), neither modulated particle infectivity of HIV-1 nor lowered the virion incorporation of mature gp120, suggesting a species-specific mode of action. 90K was expressed at basal levels in TZM-bl cells and in primary macrophages, and at low levels in CD4⁺ T-cells and PBMCs. 90K's susceptibility to IFN-mediated stimulation of expression was cell type-specific. siRNA-mediated knockdown of 90K in TZM-bl cells and primary macrophages enhanced the incorporation of Env glycoproteins into progeny virions, boosted the particle infectivity of released HIV-1, and accelerated HIV-1 spread. Conversely, treatment of HIV-1 infected macrophages with IFN-α induced 90K expression and lowered the particle infectivity of HIV-1. CONCLUSIONS Thus, 90K constitutes a novel antiviral factor that reduces the particle infectivity of HIV-1, involving interference with the maturation and incorporation of HIV-1 Env molecules into virions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Christine Goffinet
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
31
|
Santa-Marta M, de Brito PM, Godinho-Santos A, Goncalves J. Host Factors and HIV-1 Replication: Clinical Evidence and Potential Therapeutic Approaches. Front Immunol 2013; 4:343. [PMID: 24167505 PMCID: PMC3807056 DOI: 10.3389/fimmu.2013.00343] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/06/2013] [Indexed: 12/17/2022] Open
Abstract
HIV and human defense mechanisms have co-evolved to counteract each other. In the process of infection, HIV takes advantage of cellular machinery and blocks the action of the host restriction factors (RF). A small subset of HIV+ individuals control HIV infection and progression to AIDS in the absence of treatment. These individuals known as long-term non-progressors (LNTPs) exhibit genetic and immunological characteristics that confer upon them an efficient resistance to infection and/or disease progression. The identification of some of these host factors led to the development of therapeutic approaches that attempted to mimic the natural control of HIV infection. Some of these approaches are currently being tested in clinical trials. While there are many genes which carry mutations and polymorphisms associated with non-progression, this review will be specifically focused on HIV host RF including both the main chemokine receptors and chemokines as well as intracellular RF including, APOBEC, TRIM, tetherin, and SAMHD1. The understanding of molecular profiles and mechanisms present in LTNPs should provide new insights to control HIV infection and contribute to the development of novel therapies against AIDS.
Collapse
Affiliation(s)
- Mariana Santa-Marta
- URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa , Lisboa , Portugal ; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| | | | | | | |
Collapse
|
32
|
Functional antagonism of rhesus macaque and chimpanzee BST-2 by HIV-1 Vpu is mediated by cytoplasmic domain interactions. J Virol 2013; 87:13825-36. [PMID: 24109238 DOI: 10.1128/jvi.02567-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by interfering with the function of BST-2/tetherin, a cellular protein inhibiting virus release. The Vpu protein encoded by NL4-3, a widely used HIV-1 laboratory strain, antagonizes human BST-2 but not monkey or murine BST-2, leading to the conclusion that BST-2 antagonism by Vpu is species specific. In contrast, we recently identified several primary Vpu isolates, such as Vpu of HIV-1DH12, capable of antagonizing both human and rhesus BST-2. Here we report that while Vpu interacts with human BST-2 primarily through their respective transmembrane domains, antagonism of rhesus BST-2 by Vpu involved an interaction of their cytoplasmic domains. Importantly, a Vpu mutant carrying two mutations in its transmembrane domain (A14L and W22A), rendering it incompetent for interaction with human BST-2, was able to interact with human BST-2 carrying the rhesus BST-2 cytoplasmic domain and partially neutralized the ability of this BST-2 variant to inhibit viral release. Bimolecular fluorescence complementation analysis to detect Vpu-BST-2 interactions suggested that the physical interaction of Vpu with rhesus or chimpanzee BST-2 involves a 5-residue motif in the cytoplasmic domain of BST-2 previously identified as important for the antagonism of monkey and great ape BST-2 by simian immunodeficiency virus (SIV) Nef. Thus, our study identifies a novel mechanism of antagonism of monkey and great ape BST-2 by Vpu that targets the same motif in BST-2 used by SIV Nef and might explain the expanded host range observed for Vpu isolates in our previous study.
Collapse
|
33
|
Jones PH, Okeoma CM. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated BST-2/tetherin regulation. Cell Signal 2013; 25:2752-61. [PMID: 24036213 DOI: 10.1016/j.cellsig.2013.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
BST-2 is a virus restriction factor whose expression is principally induced by IFNα through the type I IFN receptor. However, expression of BST-2 is modulated by mitogens, notably the TLR4 agonist - LPS, via mechanisms that are poorly understood. In this study, the role of TLR4 pathway on BST-2 expression was examined. We demonstrate that the TLR4/PI3K signaling pathway regulates both constitutive and LPS-induced BST-2 expression. LPS stimulation induces BST-2 expression in a manner dependent on TLR4/TRIF/IRF3 pathway. Genetic deletion or pharmacological inhibition of signaling through TLR4, as well as, the deletion of the TRIF and IRF3 genes blunts BST-2 induction by LPS. However, MYD88-/- cells have enhanced BST-2 levels and respond to LPS-mediated induction of BST-2. High level of BST-2 in MYD88 null cells is dependent on IFNβ since antibody-mediated neutralization of IFNβ synthesis results in reduced BST-2 levels in these cells. Similar to the effect of MYD88, inhibition of PI3K activity elevates basal BST-2 level and augments LPS-induced BST-2 expression. Importantly, BST-2 regulation via TLR4 and PI3K is transcriptionally controlled. We discovered that actinomycin D-mediated blocking of gene transcription and inhibition of protein synthesis with cycloheximide result in impairment of BST-2 mRNA expression. Taken together, our results demonstrate that activation of TLR4 results in TRIF/IRF3-mediated positive regulation of BST-2 or MYD88/PI3K-directed negative regulation of BST-2. Thus, our findings enlist BST-2 as one of the genes regulated by PI3K downstream of TLR4 and identify the TLR4/PI3K signaling as a novel pathway that controls BST-2 expression.
Collapse
Affiliation(s)
- Philip H Jones
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
| | | |
Collapse
|
34
|
Serra-Moreno R, Zimmermann K, Stern LJ, Evans DT. Tetherin/BST-2 antagonism by Nef depends on a direct physical interaction between Nef and tetherin, and on clathrin-mediated endocytosis. PLoS Pathog 2013; 9:e1003487. [PMID: 23853598 PMCID: PMC3708871 DOI: 10.1371/journal.ppat.1003487] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 05/28/2013] [Indexed: 11/30/2022] Open
Abstract
Nef is the viral gene product employed by the majority of primate lentiviruses to overcome restriction by tetherin (BST-2 or CD317), an interferon-inducible transmembrane protein that inhibits the detachment of enveloped viruses from infected cells. Although the mechanisms of tetherin antagonism by HIV-1 Vpu and HIV-2 Env have been investigated in detail, comparatively little is known about tetherin antagonism by SIV Nef. Here we demonstrate a direct physical interaction between SIV Nef and rhesus macaque tetherin, define the residues in Nef required for tetherin antagonism, and show that the anti-tetherin activity of Nef is dependent on clathrin-mediated endocytosis. SIV Nef co-immunoprecipitated with rhesus macaque tetherin and the Nef core domain bound directly to a peptide corresponding to the cytoplasmic domain of rhesus tetherin by surface plasmon resonance. An analysis of alanine-scanning substitutions identified residues throughout the N-terminal, globular core and flexible loop regions of Nef that were required for tetherin antagonism. Although there was significant overlap with sequences required for CD4 downregulation, tetherin antagonism was genetically separable from this activity, as well as from other Nef functions, including MHC class I-downregulation and infectivity enhancement. Consistent with a role for clathrin and dynamin 2 in the endocytosis of tetherin, dominant-negative mutants of AP180 and dynamin 2 impaired the ability of Nef to downmodulate tetherin and to counteract restriction. Taken together, these results reveal that the mechanism of tetherin antagonism by Nef depends on a physical interaction between Nef and tetherin, requires sequences throughout Nef, but is genetically separable from other Nef functions, and leads to the removal of tetherin from sites of virus release at the plasma membrane by clathrin-mediated endocytosis. Tetherin (BST-2, CD317 or HM1.24) is an interferon-inducible cellular restriction factor that prevents the release of enveloped viruses from infected cells. Human and simian immunodeficiency viruses have evolved to use different viral proteins to overcome the anti-viral effects of tetherin. Whereas HIV-1 Vpu and HIV-2 Env counteract human tetherin, most SIVs use the accessory protein Nef to counteract tetherin in their non-human primate hosts. Here we show that the mechanism of tetherin antagonism by SIV Nef involves a direct physical interaction between the core domain of Nef and the cytoplasmic domain of tetherin, which results in the removal of tetherin from sites of virus assembly and release on the cell surface by a mechanism that depends on clathrin and dynamin 2. The Nef-mediated internalization of tetherin leads to the accumulation of tetherin within lysosomal compartments, suggesting that, similar to CD4− and MHC I-downregulation, Nef promotes the lysosomal degradation of tetherin.
Collapse
Affiliation(s)
- Ruth Serra-Moreno
- Division of Microbiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- * E-mail: (RSM); (DTE)
| | - Kerstin Zimmermann
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - David T. Evans
- Division of Microbiology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- * E-mail: (RSM); (DTE)
| |
Collapse
|
35
|
Strebel K. HIV-1 Vpu - an ion channel in search of a job. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1074-81. [PMID: 23831603 DOI: 10.1016/j.bbamem.2013.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 12/22/2022]
Abstract
Vpu is a small membrane protein encoded by HIV-1 and some SIV isolates. The protein is best known for its ability to degrade CD4 and to enhance the release of progeny virions from infected cells. However, Vpu also promotes host-cell apoptosis by deregulating the NFκB signaling pathway and it assembles into cation-conducting membrane pores. This review summarizes our current understanding of these various functions of Vpu with particular emphasis on recent progress in the Vpu field. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Klaus Strebel
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH Bldg. 4, Room 310, 4 Center Drive MSC 0460, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
36
|
BST-2/tetherin: Structural biology, viral antagonism, and immunobiology of a potent host antiviral factor. Mol Immunol 2013; 54:132-9. [DOI: 10.1016/j.molimm.2012.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
|
37
|
Grover JR, Llewellyn GN, Soheilian F, Nagashima K, Veatch SL, Ono A. Roles played by capsid-dependent induction of membrane curvature and Gag-ESCRT interactions in tetherin recruitment to HIV-1 assembly sites. J Virol 2013; 87:4650-64. [PMID: 23408603 PMCID: PMC3624355 DOI: 10.1128/jvi.03526-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/04/2013] [Indexed: 12/17/2022] Open
Abstract
Tetherin/BST-2 (here called tetherin) is an antiviral protein that restricts release of diverse enveloped viruses from infected cells through physically tethering virus envelope and host plasma membrane. For HIV-1, specific recruitment of tetherin to assembly sites has been observed as its colocalization with the viral structural protein Gag or its accumulation in virus particles. Because of its broad range of targets, we hypothesized that tetherin is recruited through conserved features shared among various enveloped viruses, such as lipid raft association, membrane curvature, or ESCRT dependence. We observed that reduction of cellular cholesterol does not block tetherin anti-HIV-1 function, excluding an essential role for lipid rafts. In contrast, mutations in the capsid domain of Gag, which inhibit induction of membrane curvature, prevented tetherin-Gag colocalization detectable by confocal microscopy. Disruption of Gag-ESCRT interactions also inhibited tetherin-Gag colocalization when disruption was accomplished via amino acid substitutions in late domain motifs, expression of a dominant-negative Tsg101 derivative, or small interfering RNA (siRNA)-mediated depletion of Tsg101 or Alix. However, further analyses of these conditions by quantitative superresolution localization microscopy revealed that Gag-tetherin coclustering is significantly reduced but persists at intermediate levels. Notably, this residual tetherin recruitment was still sufficient for the full restriction of HIV-1 release. Unlike the late domain mutants, the capsid mutants defective in inducing membrane curvature showed little or no coclustering with tetherin in superresolution analyses. These results support a model in which both Gag-induced membrane curvature and Gag-ESCRT interactions promote tetherin recruitment, but the recruitment level achieved by the former is sufficient for full restriction.
Collapse
Affiliation(s)
| | - G. Nicholas Llewellyn
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ferri Soheilian
- Electron Microscopy Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Kunio Nagashima
- Electron Microscopy Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Akira Ono
- Department of Microbiology and Immunology
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Tokarev A, Suarez M, Kwan W, Fitzpatrick K, Singh R, Guatelli J. Stimulation of NF-κB activity by the HIV restriction factor BST2. J Virol 2013; 87:2046-57. [PMID: 23221546 PMCID: PMC3571454 DOI: 10.1128/jvi.02272-12] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/21/2011] [Indexed: 11/20/2022] Open
Abstract
BST2 (HM1.24; CD317; tetherin) is an interferon-inducible transmembrane protein that restricts the release of several enveloped viruses, including HIV, from infected cells. Before its activity as an antiviral factor was described, BST2 was identified as an inducer of NF-κB activity. Here we show that human BST2 induces NF-κB in a dose-dependent manner. This activity is separable from the restriction of virus release: a YxY sequence in the cytoplasmic domain of BST2 is required for the induction of NF-κB but is dispensable for restriction, whereas the glycosylphosphatidylinositol (GPI) addition site in the protein's ectodomain is required for restriction but is largely dispensable for the induction of NF-κB. Mutations predicted to disrupt the coiled-coil structure of the BST2 ectodomain impaired both signaling and restriction, but disruption of the tetramerization interface differentially affected signaling. The induction of NF-κB by BST2 was impaired by inhibition of transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) or by calcium chelation, suggesting potential linkage to the mitogen-activated protein kinase and endoplasmic reticulum (ER) stress response pathways. Consistent with a role for TAK1, BST2 coimmunoprecipitated with TAK1 and the TAK1-associated pseudophosphatase TAB1; these interactions required the YxY sequence in BST2. Moreover, signaling by BST2 was blocked by expression of an IκB-mutant that inhibits the canonical pathway of NF-κB activation. The expression of HIV-1 Vpu inhibited the induction of NF-κB by BST2; this inhibition required Vpu's ability to bind the cellular β-TrCP-E3-ubiquitin ligase complex. The expression of HIV-1 lacking vpu augmented the induction of NF-κB activity by BST2, suggesting that BST2 can act as a virus sensor. This augmentation was also inhibited by Vpu in a β-TrCP-dependent manner. The role of BST2 in the host-pathogen relationship is apparently multifaceted: signaling during the innate immune response, sensing of viral gene expression, and direct restriction of virus release. HIV-1 Vpu counteracts each of these functions.
Collapse
Affiliation(s)
- Andrey Tokarev
- The University of California—San Diego, La Jolla California, USA
| | - Marissa Suarez
- The Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Wilson Kwan
- The University of California—San Diego, La Jolla California, USA
| | | | - Rajendra Singh
- The University of California—San Diego, La Jolla California, USA
| | - John Guatelli
- The University of California—San Diego, La Jolla California, USA
- The Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
39
|
Andrew AJ, Berndsen CE, Kao S, Strebel K. The size and conservation of a coiled-coil structure in the ectodomain of human BST-2/tetherin is dispensable for inhibition of HIV-1 virion release. J Biol Chem 2012; 287:44278-88. [PMID: 23152502 DOI: 10.1074/jbc.m112.418822] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BST-2/CD317/tetherin is a host factor that inhibits HIV-1 release and is counteracted by HIV-1 Vpu. Structural studies indicate that the BST-2 ectodomain assumes a coiled-coil conformation. Here we studied the role of the BST-2 ectodomain for tethering function. First, we addressed the importance of the length and structure of the ectodomain by adding or substituting heterologous coiled-coil or non-coiled-coil sequences. We found that extending or replacing the BST-2 ectodomain using non-coiled-coil sequences resulted in loss of BST-2 function. Doubling the size of the BST-2 ectodomain by insertion of a heterologous coiled-coil motif or substituting the BST-2 coiled-coil domain with a heterologous coiled-coil motif maintained tethering function. Reductions in the size of the BST-2 coiled-coil domain were tolerated as well. In fact, deletion of the C-terminal half of the BST-2 ectodomain, including a series of seven consecutive heptad motifs did not abolish tethering function. However, slight changes in the positioning of deletions affecting the relative placing of charged or hydrophobic residues on the helix severely impacted the functional properties of BST-2. Overall, we conclude that the size of the BST-2 ectodomain is highly flexible and can be reduced or extended as long as the positioning of residues important for the stability of the dimer interface is maintained.
Collapse
Affiliation(s)
- Amy J Andrew
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | |
Collapse
|
40
|
Chu H, Wang JJ, Qi M, Yoon JJ, Chen X, Wen X, Hammonds J, Ding L, Spearman P. Tetherin/BST-2 is essential for the formation of the intracellular virus-containing compartment in HIV-infected macrophages. Cell Host Microbe 2012; 12:360-72. [PMID: 22980332 PMCID: PMC3444820 DOI: 10.1016/j.chom.2012.07.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 05/06/2012] [Accepted: 07/19/2012] [Indexed: 11/16/2022]
Abstract
HIV-1 assembly and release occur at the plasma membrane in T lymphocytes, while intracellular sites of virus assembly or accumulation are apparent in macrophages. The host protein tetherin (BST-2) inhibits HIV release from the plasma membrane by retaining viral particles at the cell surface, but the role of tetherin at intracellular HIV assembly sites is unclear. We determined that tetherin is significantly upregulated upon macrophage infection and localizes to an intracellular virus-containing compartment (VCC). Tetherin localized at the virus-VCC membrane interface, suggesting that tetherin physically tethers virions in VCCs. Tetherin knockdown diminished and redistributed VCCs within macrophages and promoted HIV release and cell-cell transmission. The HIV Vpu protein, which downregulates tetherin from the plasma membrane, did not fully overcome tetherin-mediated restriction of particle release in macrophages. Thus, tetherin is essential for VCC formation and may account for morphologic differences in the apparent HIV assembly sites in macrophages versus T cells.
Collapse
Affiliation(s)
- Hin Chu
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA 30322; USA
| | - Jaang-Jiun Wang
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA 30322; USA
| | - Mingli Qi
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA 30322; USA
| | - Jeong-Joong Yoon
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA 30322; USA
| | - Xuemin Chen
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA 30322; USA
| | - Xiaoyun Wen
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA 30322; USA
| | - Jason Hammonds
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA 30322; USA
| | - Lingmei Ding
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA 30322; USA
| | - Paul Spearman
- Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA 30322; USA
| |
Collapse
|
41
|
Restriction of Retroviral Replication by Tetherin/BST-2. Mol Biol Int 2012; 2012:424768. [PMID: 22811908 PMCID: PMC3395152 DOI: 10.1155/2012/424768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/26/2012] [Indexed: 12/23/2022] Open
Abstract
Tetherin/BST-2 is an important host restriction factor that limits the replication of HIV and other enveloped viruses. Tetherin is a type II membrane glycoprotein with a very unusual domain structure that allows it to engage budding virions and retain them on the plasma membrane of infected cells. Following the initial report identifying tetherin as the host cell factor targeted by the HIV-1 Vpu gene, knowledge of the molecular, structural, and cellular biology of tetherin has rapidly advanced. This paper summarizes the discovery and impact of tetherin biology on the HIV field, with a focus on recent advances in understanding its structure and function. The relevance of tetherin to replication and spread of other retroviruses is also reviewed. Tetherin is a unique host restriction factor that is likely to continue to provide new insights into host-virus interactions and illustrates well the varied ways by which host organisms defend against viral pathogens.
Collapse
|
42
|
Mangeat B, Cavagliotti L, Lehmann M, Gers-Huber G, Kaur I, Thomas Y, Kaiser L, Piguet V. Influenza virus partially counteracts restriction imposed by tetherin/BST-2. J Biol Chem 2012; 287:22015-29. [PMID: 22493439 DOI: 10.1074/jbc.m111.319996] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Influenza virus infections lead to a burst of type I interferon (IFN) in the human respiratory tract, which most probably accounts for a rapid control of the virus. Although in mice, IFN-induced Mx1 factor mediates a major part of this response, the situation is less clear in humans. Interestingly, a recently identified IFN-induced cellular protein, tetherin (also known as CD317, BST-2, or HM1.24), exerts potent antiviral activity against a broad range of retroviruses, as well as several other enveloped viruses, by impeding the release of newly generated viral particles from the cell surface. Here we show that influenza virus belongs to the targets of this potent antiviral factor. Ectopic expression of tetherin strongly inhibited fully replicative influenza virus. In addition, depleting endogenous tetherin increased viral production of influenza virions, both in cells constitutively expressing tetherin and upon its induction by IFN. We further demonstrate, by biochemical and morphological means, that tetherin exerts its antiviral action by tethering newly budded viral particles, a mechanism similar to the one that operates against HIV-1. In addition, we determined that the magnitude of tetherin antiviral activity is comparable with or higher than the one of several previously identified anti-influenza cellular factors, such as MxA, ADAR1, ISG15, and viperin. Finally, we demonstrate that influenza virus reduces the impact of tetherin-mediated restriction on its replication by several mechanisms. First, the influenza virus NS1 protein impedes IFN-mediated tetherin induction. Second, influenza infection leads to a decrease of tetherin steady state levels, and the neuraminidase surface protein partly counteracts its activity. Overall, our study helps to delineate the intricate molecular battle taking place between influenza virus and its host cells.
Collapse
Affiliation(s)
- Bastien Mangeat
- Department of Dermatology and Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kueck T, Neil SJD. A cytoplasmic tail determinant in HIV-1 Vpu mediates targeting of tetherin for endosomal degradation and counteracts interferon-induced restriction. PLoS Pathog 2012; 8:e1002609. [PMID: 22479182 PMCID: PMC3315493 DOI: 10.1371/journal.ppat.1002609] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 02/11/2012] [Indexed: 01/12/2023] Open
Abstract
The HIV-1 accessory protein Vpu counteracts tetherin (BST-2/CD317) by preventing its incorporation into virions, reducing its surface expression, and ultimately promoting its degradation. Here we characterize a putative trafficking motif, EXXXLV, in the second alpha helix of the subtype-B Vpu cytoplasmic tail as being required for efficient tetherin antagonism. Mutation of this motif prevents ESCRT-dependent degradation of tetherin/Vpu complexes, tetherin cell surface downregulation, but not its physical interaction with Vpu. Importantly, this motif is required for efficient cell-free virion release from CD4+ T cells, particularly after their exposure to type-1 interferon, indicating that the ability to reduce surface tetherin levels and promote its degradation is important to counteract restriction under conditions that the virus likely encounters in vivo. Vpu EXXXLV mutants accumulate with tetherin at the cell surface and in endosomal compartments, but retain the ability to bind both β-TrCP2 and HRS, indicating that this motif is required for a post-binding trafficking event that commits tetherin for ESCRT-dependent degradation and prevents its transit to the plasma membrane and viral budding zones. We further found that while Vpu function is dependent on clathrin, and the entire second alpha helix of the Vpu tail can be functionally complemented by a clathrin adaptor binding peptide derived from HIV-1 Nef, none of the canonical clathrin adaptors nor retromer are required for this process. Finally we show that residual activity of Vpu EXXXLV mutants requires an intact endocytic motif in tetherin, suggesting that physical association of Vpu with tetherin during its recycling may be sufficient to compromise tetherin activity to some degree. Tetherin inhibits the release of several diverse enveloped viruses from infected cells and is counteracted by the HIV-1 accessory gene Vpu. Vpu prevents tetherin's incorporation into nascent viral particles, promotes its downregulation from the cell surface and targets tetherin for degradation. Here we identify a determinant that resembles an acidic-dileucine-based sorting sequence in the Vpu cytoplasmic tail that is required for efficient counteraction of tetherin activity, particularly in CD4+ T cells treated with type-1 interferon. Mutation of this motif prevents cell-surface downregulation and degradation of Vpu/tetherin complexes but does not affect their interaction. Rather, in its absence, Vpu accumulates in early endosomes and at the cell surface where it becomes incorporated into assembling virions with tetherin, indicating that this motif modulates sub-cellular trafficking of tetherin. Furthermore Vpu activity is clathrin-dependent and can be reconstituted by replacing a portion of the cytoplasmic tail encompassing this motif with one derived from HIV-1 Nef that is known to bind several clathrin adaptors. Finally, we demonstrate that residual function of the mutant Vpu requires a trafficking motif in tetherin, suggesting that physical interaction of tetherin with Vpu during its recycling to the cell-surface can interfere with its function to a variable extent.
Collapse
Affiliation(s)
| | - Stuart J. D. Neil
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Anti-tetherin activities of HIV-1 Vpu and Ebola virus glycoprotein do not involve removal of tetherin from lipid rafts. J Virol 2012; 86:5467-80. [PMID: 22398279 DOI: 10.1128/jvi.06280-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BST-2/tetherin is an interferon-inducible host restriction factor that blocks the release of newly formed enveloped viruses. It is enriched in lipid raft membrane microdomains, which are also the sites of assembly of several enveloped viruses. Viral anti-tetherin factors, such as the HIV-1 Vpu protein, typically act by removing tetherin from the cell surface. In contrast, the Ebola virus glycoprotein (GP) is unusual in that it blocks tetherin restriction without apparently altering its cell surface localization. We explored the possibility that GP acts to exclude tetherin from the specific sites of virus assembly without overtly removing it from the cell surface and that lipid raft exclusion is the mechanism involved. However, we found that neither GP nor Vpu had any effect on tetherin's distribution within lipid raft domains. Furthermore, GP did not prevent the colocalization of tetherin and budding viral particles. Contrary to previous reports, we also found no evidence that GP is itself a raft protein. Together, our data indicate that the exclusion of tetherin from lipid rafts is not the mechanism used by either HIV-1 Vpu or Ebola virus GP to counteract tetherin restriction.
Collapse
|
45
|
Jones PH, Mehta HV, Maric M, Roller RJ, Okeoma CM. Bone marrow stromal cell antigen 2 (BST-2) restricts mouse mammary tumor virus (MMTV) replication in vivo. Retrovirology 2012; 9:10. [PMID: 22284121 PMCID: PMC3283513 DOI: 10.1186/1742-4690-9-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/27/2012] [Indexed: 11/10/2022] Open
Abstract
Background Bone marrow stromal cell antigen 2 (BST-2) is a cellular factor that restricts the egress of viruses such as human immunodeficiency virus (HIV-1) from the surface of infected cells, preventing infection of new cells. BST-2 is variably expressed in most cell types, and its expression is enhanced by cytokines such as type I interferon alpha (IFN-α). In this present study, we used the beta-retrovirus, mouse mammary tumor virus (MMTV) as a model to examine the role of mouse BST-2 in host infection in vivo. Results By using RNA interference, we show that loss of BST-2 enhances MMTV replication in cultured mammary tumor cells and in vivo. In cultured cells, BST-2 inhibits virus accumulation in the culture medium, and co-localizes at the cell surface with virus structural proteins. Furthermore, both scanning electron micrograph (SEM) and transmission electron micrograph (TEM) show that MMTV accumulates on the surface of IFNα-stimulated cells. Conclusions Our data provide evidence that BST-2 restricts MMTV release from naturally infected cells and that BST-2 is an antiviral factor in vivo.
Collapse
Affiliation(s)
- Philip H Jones
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
46
|
Biard-Piechaczyk M, Borel S, Espert L, de Bettignies G, Coux O. HIV-1, ubiquitin and ubiquitin-like proteins: the dialectic interactions of a virus with a sophisticated network of post-translational modifications. Biol Cell 2012; 104:165-87. [PMID: 22188301 DOI: 10.1111/boc.201100112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
Abstract
The modification of intracellular proteins by ubiquitin (Ub) and ubiquitin-like (UbL) proteins is a central mechanism for regulating and fine-tuning all cellular processes. Indeed, these modifications are widely used to control the stability, activity and localisation of many key proteins and, therefore, they are instrumental in regulating cellular functions as diverse as protein degradation, cell signalling, vesicle trafficking and immune response. It is thus no surprise that pathogens in general, and viruses in particular, have developed multiple strategies to either counteract or exploit the complex mechanisms mediated by the Ub and UbL protein conjugation pathways. The aim of this review is to provide an overview on the intricate and conflicting relationships that intimately link HIV-1 and these sophisticated systems of post-translational modifications.
Collapse
Affiliation(s)
- Martine Biard-Piechaczyk
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS-CNRS), Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
47
|
Lehmann M, Rocha S, Mangeat B, Blanchet F, Uji-i H, Hofkens J, Piguet V. Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction. PLoS Pathog 2011; 7:e1002456. [PMID: 22194693 PMCID: PMC3240612 DOI: 10.1371/journal.ppat.1002456] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 11/09/2011] [Indexed: 01/05/2023] Open
Abstract
Virus assembly and interaction with host-cell proteins occur at length scales below the diffraction limit of visible light. Novel super-resolution microscopy techniques achieve nanometer resolution of fluorescently labeled molecules. The cellular restriction factor tetherin (also known as CD317, BST-2 or HM1.24) inhibits the release of human immunodeficiency virus 1 (HIV-1) through direct incorporation into viral membranes and is counteracted by the HIV-1 protein Vpu. For super-resolution analysis of HIV-1 and tetherin interactions, we established fluorescence labeling of HIV-1 proteins and tetherin that preserved HIV-1 particle formation and Vpu-dependent restriction, respectively. Multicolor super-resolution microscopy revealed important structural features of individual HIV-1 virions, virus assembly sites and their interaction with tetherin at the plasma membrane. Tetherin localization to micro-domains was dependent on both tetherin membrane anchors. Tetherin clusters containing on average 4 to 7 tetherin dimers were visualized at HIV-1 assembly sites. Combined biochemical and super-resolution analysis revealed that extended tetherin dimers incorporate both N-termini into assembling virus particles and restrict HIV-1 release. Neither tetherin domains nor HIV-1 assembly sites showed enrichment of the raft marker GM1. Together, our super-resolution microscopy analysis of HIV-1 interactions with tetherin provides new insights into the mechanism of tetherin-mediated HIV-1 restriction and paves the way for future studies of virus-host interactions. Human immunodeficiency virus 1 (HIV-1) assembles and interacts with cellular proteins at the plasma membrane of infected cells. Here, we analyzed individual HIV-1 virions, viral assembly sites and the mechanism of tetherin restriction by multicolor super-resolution microscopy using fully functional fluorescently labeled tetherin and viral proteins. Viral proteins within virions were visualized with nanometer resolution yielding new insight into the structure of the HIV-1. Our super-resolution analysis was extended to tetherin, a cellular restriction factor that inhibits the release of several enveloped viruses. Tetherin was localized in clusters of 70–90 nm at the plasma membrane that contain 5–11 dimers. In contrast tetherin clusters found at HIV-1 assembly sites contained on average 4–7 tetherin dimers. Clustering of tetherin was dependent on both tetherin membrane anchors. The transmembrane domain of tetherin associated with budding virions independently of GM1 lipid raft domains. Our data indicated that extended dimers tether HIV-1 virions directly to the cell. Overall, we provide for the first time super-resolution analysis of authentic virions, virus budding sites and HIV-1 interactions with the anti-viral factor tetherin. Our data offer novel insights into the mechanisms of tetherin restriction.
Collapse
Affiliation(s)
- Martin Lehmann
- Departments of Microbiology and Molecular Medicine, Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva, Switzerland
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium
| | - Bastien Mangeat
- Departments of Microbiology and Molecular Medicine, Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva, Switzerland
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine and University Hospital of Wales, Cardiff, Wales, United Kingdom
| | - Fabien Blanchet
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine and University Hospital of Wales, Cardiff, Wales, United Kingdom
| | - Hiroshi Uji-i
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium
| | - Vincent Piguet
- Departments of Microbiology and Molecular Medicine, Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva, Switzerland
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine and University Hospital of Wales, Cardiff, Wales, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Arias JF, Iwabu Y, Tokunaga K. Structural Basis for the Antiviral Activity of BST-2/Tetherin and Its Viral Antagonism. Front Microbiol 2011; 2:250. [PMID: 22180752 PMCID: PMC3235769 DOI: 10.3389/fmicb.2011.00250] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/25/2011] [Indexed: 12/13/2022] Open
Abstract
The interferon-inducible host restriction factor bone marrow stromal antigen 2 (BST-2/tetherin) blocks the release of HIV-1 and other enveloped viruses. In turn, these viruses have evolved specific antagonists to counteract this host antiviral molecule, such as the HIV-1 protein Vpu. BST-2 is a type II transmembrane protein with an unusual topology consisting of an N-terminal cytoplasmic tail (CT) followed by a single transmembrane (TM) domain, a coiled-coil extracellular (EC) domain, and a glycosylphosphatidylinositol (GPI) anchor at the C terminus. We and others showed that BST-2 restricts enveloped virus release by bridging the host and virion membranes with its two opposing membrane anchors and that deletion of either one completely abrogates antiviral activity. The EC domain also shows conserved structural properties that are required for antiviral function. It contains several destabilizing amino acids that confer the molecule with conformational flexibility to sustain the protein’s function as a virion tether, and three conserved cysteine residues that mediate homodimerization of BST-2, as well as acting as a molecular ruler that separates the membrane anchors. Conversely, the efficient release of virions is promoted by the HIV-1 Vpu protein and other viral antagonists. Our group and others provided evidence from mutational analyses indicating that Vpu antagonism of BST-2-mediated viral restriction requires a highly specific interaction of their mutual TM domains. This interpretation is further supported and expanded by the findings of the latest structural modeling studies showing that critical amino acids in a conserved helical face of these TM domains are required for Vpu–BST-2 interaction and antagonism. In this review, we summarize the current advances in our understanding of the structural basis for BST-2 antiviral function as well as BST-2-specific viral antagonism.
Collapse
Affiliation(s)
- Juan F Arias
- Department of Pathology, National Institute of Infectious Diseases Tokyo, Japan
| | | | | |
Collapse
|
49
|
The HIV-1 Vpu viroporin inhibitor BIT225 does not affect Vpu-mediated tetherin antagonism. PLoS One 2011; 6:e27660. [PMID: 22110710 PMCID: PMC3215742 DOI: 10.1371/journal.pone.0027660] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 10/21/2011] [Indexed: 12/14/2022] Open
Abstract
Among its many roles, the HIV-1 accessory protein Vpu performs a viroporin function and also antagonizes the host cell restriction factor tetherin through its transmembrane domain. BIT225 is a small molecule inhibitor that specifically targets the Vpu viroporin function, which, in macrophages, resulted in late stage inhibition of virus release and decreased infectivity of released virus, a phenotype similar to tetherin-mediated restriction. Here, we investigated whether BIT225 might mediate its antiviral function, at least in part, via inhibition of Vpu-mediated tetherin antagonism. Using T-cell lines inducible for tetherin expression, we found that BIT225 does not exert its antiviral function by inhibiting Vpu-mediated tetherin downmodulation from the cell surface, the main site of action of tetherin activity. In addition, results from a bioluminescence resonance energy transfer (BRET) assay showed that the Vpu-tetherin interaction was not affected by BIT225. Our data provide support for the concept that tetherin antagonism and viroporin function are separable on the Vpu transmembrane and that viroporin function might be cell-type dependent. Further, this work contributes to the characterization of BIT225 as an inhibitor that specifically targets the viroporin function of Vpu.
Collapse
|
50
|
Mayhew TM. Mapping the distributions and quantifying the labelling intensities of cell compartments by immunoelectron microscopy: progress towards a coherent set of methods. J Anat 2011; 219:647-60. [PMID: 21999926 DOI: 10.1111/j.1469-7580.2011.01438.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An important tool in cell biology is the combination of immunogold labelling and transmission electron microscopy (TEM) by which target molecules (e.g. antigens) are bound specifically to affinity markers (primary antibodies) and then detected and localised with visualisation probes (e.g. colloidal gold particles bound to protein A). Gold particles are electron-dense, punctate and available in different sizes whilst TEM provides high-resolution images of particles and cell compartments. By virtue of these properties, the combination can be used also to quantify one or more defined targets in cell compartments. During the past decade, new ways of quantifying gold labelling within cells have been devised. Their efficiency and validity rely on sound principles of specimen sampling, event counting and inferential statistics. These include random selection of items at each sampling stage (e.g. specimen blocks, thin sections, microscopical fields), stereological analysis of cell ultrastructure, unbiased particle counting and statistical evaluation of a suitable null hypothesis (no difference in the intensity or pattern of labelling between compartments or groups of cells). The following approaches are possible: (i) A target molecule can be tested for preferential labelling by mapping the localisation of gold particles across a set of compartments. (ii) Data from wild-type and knockdown/knockout control cells can be used to correct raw gold particle counts, estimate specific labelling densities and then test for preferential labeling. (iii) The same antigen can be mapped in two or more groups of cells to test whether there are experimental shifts in compartment labelling patterns. (iv) A variant of this approach uses more than one size of gold particle to test whether or not different antigens colocalise in one or more compartments. (v) In studies involving antigen translocation, absolute numbers of gold particles can be mapped over compartments at specific positions within polarised, oriented or dividing cells. Here, the current state of the art is reviewed and approaches are illustrated with virtual datasets.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|