1
|
Conley HE, He MM, Easterhoff D, Kirshner HF, Cocklin SL, Meyer J, Hoxie T, Berry M, Bradley T, Tolbert WD, Pazgier M, Tomaras GD, Schmitz JE, Moody MA, Wiehe K, Pollara J. Defining genetic diversity of rhesus macaque Fcγ receptors with long-read RNA sequencing. Front Immunol 2024; 14:1306292. [PMID: 38264644 PMCID: PMC10803544 DOI: 10.3389/fimmu.2023.1306292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Fcγ receptors (FcγRs) are membrane-bound glycoproteins that bind to the fragment crystallizable (Fc) constant regions of IgG antibodies. Interactions between IgG immune complexes and FcγRs can initiate signal transduction that mediates important components of the immune response including activation of immune cells for clearance of opsonized pathogens or infected host cells. In humans, many studies have identified associations between FcγR gene polymorphisms and risk of infection, or progression of disease, suggesting a gene-level impact on FcγR-dependent immune responses. Rhesus macaques are an important translational model for most human health interventions, yet little is known about the breadth of rhesus macaque FcγR genetic diversity. This lack of knowledge prevents evaluation of the impact of FcγR polymorphisms on outcomes of preclinical studies performed in rhesus macaques. In this study we used long-read RNA sequencing to define the genetic diversity of FcγRs in 206 Indian-origin Rhesus macaques, Macaca mulatta. We describe the frequency of single nucleotide polymorphisms, insertions, deletions, frame-shift mutations, and isoforms. We also index the identified diversity using predicted and known rhesus macaque FcγR and Fc-FcγR structures. Future studies that define the functional significance of this genetic diversity will facilitate a better understanding of the correlation between human and macaque FcγR biology that is needed for effective translation of studies with antibody-mediated outcomes performed in rhesus macaques.
Collapse
Affiliation(s)
- Haleigh E. Conley
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Max M. He
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - David Easterhoff
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Hélène Fradin Kirshner
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Sarah L. Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jacob Meyer
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Taylor Hoxie
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Madison Berry
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, MO, United States
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Joern E. Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Michael Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
2
|
Pampusch MS, Sevcik EN, Quinn ZE, Davey BC, Berg JM, Gorrell-Brown I, Abdelaal HM, Rakasz EG, Rendahl A, Skinner PJ. Assessment of anti-CD20 antibody pre-treatment for augmentation of CAR-T cell therapy in SIV-infected rhesus macaques. Front Immunol 2023; 14:1101446. [PMID: 36825014 PMCID: PMC9941136 DOI: 10.3389/fimmu.2023.1101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
During chronic HIV and SIV infections, the majority of viral replication occurs within lymphoid follicles. In a pilot study, infusion of SIV-specific CD4-MBL-CAR-T cells expressing the follicular homing receptor, CXCR5, led to follicular localization of the cells and a reduction in SIV viral loads in rhesus macaques. However, the CAR-T cells failed to persist. We hypothesized that temporary disruption of follicles would create space for CAR-T cell engraftment and lead to increased abundance and persistence of CAR-T cells. In this study we treated SIV-infected rhesus macaques with CAR-T cells and preconditioned one set with anti-CD20 antibody to disrupt the follicles. We evaluated CAR-T cell abundance and persistence in four groups of SIVmac239-infected and ART-suppressed animals: untreated, CAR-T cell treated, CD20 depleted, and CD20 depleted/CAR-T cell treated. In the depletion study, anti-CD20 was infused one week prior to CAR-T infusion and cessation of ART. Anti-CD20 antibody treatment led to temporary depletion of CD20+ cells in blood and partial depletion in lymph nodes. In this dose escalation study, there was no impact of CAR-T cell infusion on SIV viral load. However, in both the depleted and non-depleted animals, CAR-T cells accumulated in and around lymphoid follicles and were Ki67+. CAR-T cells increased in number in follicles from 2 to 6 days post-treatment, with a median 15.2-fold increase in follicular CAR-T cell numbers in depleted/CAR-T treated animals compared to an 8.1-fold increase in non-depleted CAR-T treated animals. The increase in CAR T cells in depleted animals was associated with a prolonged elevation of serum IL-6 levels and a rapid loss of detectable CAR-T cells. Taken together, these data suggest that CAR-T cells likely expanded to a greater extent in depleted/CAR-T cell treated animals. Further studies are needed to elucidate mechanisms mediating the rapid loss of CAR-T cells and to evaluate strategies to improve engraftment and persistence of HIV-specific CAR-T cells. The potential for an inflammatory cytokine response appears to be enhanced with anti-CD20 antibody treatment and future studies may require CRS control strategies. These studies provide important insights into cellular immunotherapy and suggest future studies for improved outcomes.
Collapse
Affiliation(s)
- Mary S. Pampusch
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Emily N. Sevcik
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Zoe E. Quinn
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Brianna C. Davey
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - James M. Berg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Ian Gorrell-Brown
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hadia M. Abdelaal
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison WI, United States
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
3
|
Lovelace SE, Helmold Hait S, Yang ES, Fox ML, Liu C, Choe M, Chen X, McCarthy E, Todd JP, Woodward RA, Koup RA, Mascola JR, Pegu A. Anti-viral efficacy of a next-generation CD4-binding site bNAb in SHIV-infected animals in the absence of anti-drug antibody responses. iScience 2022; 25:105067. [PMID: 36157588 PMCID: PMC9490026 DOI: 10.1016/j.isci.2022.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 are promising immunotherapeutic agents for treatment of HIV-1 infection. bNAbs can be administered to SHIV-infected rhesus macaques to assess their anti-viral efficacy; however, their delivery into macaques often leads to rapid formation of anti-drug antibody (ADA) responses limiting such assessment. Here, we depleted B cells in five SHIV-infected rhesus macaques by pretreatment with a depleting anti-CD20 antibody prior to bNAb infusions to reduce ADA. Peripheral B cells were depleted following anti-CD20 infusions and remained depleted for at least 9 weeks after the 1st anti-CD20 infusion. Plasma viremia dropped by more than 100-fold in viremic animals after the initial bNAb treatment. No significant humoral ADA responses were detected for as long as B cells remained depleted. Our results indicate that transient B cell depletion successfully inhibited emergence of ADA and improved the assessment of anti-viral efficacy of a bNAb in a SHIV-infected rhesus macaque model. Highly potent CD4bs bNAb reduces viremia up to 4 log10 in SHIV-infected animals Sustained B cell depletion prevents development of ADA responses Lack of ADA enables multiple bNAb infusions over 12 weeks
Collapse
Affiliation(s)
- Sarah E Lovelace
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sabrina Helmold Hait
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Madison L Fox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ruth A Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Grunst MW, Grandea AG, Janaka SK, Hammad I, Grimes P, Karl JA, Wiseman R, O'Connor DH, Evans DT. Functional Interactions of Common Allotypes of Rhesus Macaque FcγR2A and FcγR3A with Human and Macaque IgG Subclasses. THE JOURNAL OF IMMUNOLOGY 2020; 205:3319-3332. [PMID: 33208458 DOI: 10.4049/jimmunol.2000501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/17/2020] [Indexed: 12/18/2022]
Abstract
The rhesus macaque is an important animal model for AIDS and other infectious diseases. However, the investigation of Fc-mediated Ab responses in macaques is complicated by species-specific differences in FcγRs and IgG subclasses relative to humans. To assess the effects of these differences on FcγR-IgG interactions, reporter cell lines expressing common allotypes of human and rhesus macaque FcγR2A and FcγR3A were established. FcγR-mediated responses to B cells were measured in the presence of serial dilutions of anti-CD20 Abs with Fc domains corresponding to each of the four subclasses of human and rhesus IgG and with Fc variants of IgG1 that enhance binding to FcγR2A or FcγR3A. All of the FcγRs were functional and preferentially recognized either IgG1 or IgG2. Whereas allotypes of rhesus FcγR2A were identified with responses similar to variants of human FcγR2A with higher (H131) and lower (R131) affinity for IgG, all of the rhesus FcγR3A allotypes exhibited responses most similar to the higher affinity V158 variant of human FcγR3A. Unlike responses to human IgGs, there was little variation in FcγR-mediated responses to different subclasses of rhesus IgG. Phylogenetic comparisons suggest that this reflects limited sequence variation of macaque IgGs as a result of their relatively recent diversification from a common IGHG gene since humans and macaques last shared a common ancestor. These findings reveal species-specific differences in FcγR-IgG interactions with important implications for investigating Ab effector functions in macaques.
Collapse
Affiliation(s)
- Michael W Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Andres G Grandea
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Iman Hammad
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Parker Grimes
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Julie A Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Roger Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; and .,Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| |
Collapse
|
5
|
Crowley AR, Ackerman ME. Mind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector Function. Front Immunol 2019; 10:697. [PMID: 31024542 PMCID: PMC6463756 DOI: 10.3389/fimmu.2019.00697] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
The field of HIV research relies heavily on non-human primates, particularly the members of the macaque genus, as models for the evaluation of candidate vaccines and monoclonal antibodies. A growing body of research suggests that successful protection of humans will not solely rely on the neutralization activity of an antibody's antigen binding fragment. Rather, immunological effector functions prompted by the interaction of the immunoglobulin G constant region and its cognate Fc receptors help contribute to favorable outcomes. Inherent differences in the sequences, expression, and activities of human and non-human primate antibody receptors and immunoglobulins have the potential to produce disparate results in the observations made in studies conducted in differing species. Having a more complete understanding of these differences, however, should permit the more fluent translation of observations between model organisms and the clinic. Here we present a guide to such translations that encompasses not only what is presently known regarding the affinity of the receptor-ligand interactions but also the influence of expression patterns and allelic variation, with a focus on insights gained from use of this model in HIV vaccines and passive antibody therapy and treatment.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
| | - Margaret E. Ackerman
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
6
|
Acute Infection and Subsequent Subclinical Reactivation of Herpes Simplex Virus 2 after Vaginal Inoculation of Rhesus Macaques. J Virol 2019; 93:JVI.01574-18. [PMID: 30333177 PMCID: PMC6321901 DOI: 10.1128/jvi.01574-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 01/25/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a common sexually transmitted infection with a highly variable clinical course. Many infections quickly become subclinical, with episodes of spontaneous virus reactivation. To study host-HSV-2 interactions, an animal model of subclinical HSV-2 infection is needed. In an effort to develop a relevant model, rhesus macaques (RM) were inoculated intravaginally with two or three HSV-2 strains (186, 333, and/or G) at a total dose of 1 × 107 PFU of HSV-2 per animal. Infectious HSV-2 and HSV-2 DNA were consistently shed in vaginal swabs for the first 7 to 14 days after each inoculation. Proteins associated with wound healing, innate immunity, and inflammation were significantly increased in cervical secretions immediately after HSV-2 inoculation. There was histologic evidence of acute herpesvirus pathology, including acantholysis in the squamous epithelium and ballooning degeneration of and intranuclear inclusion bodies in epithelial cells, with HSV antigen in mucosal epithelial cells and keratinocytes. Further, an intense inflammatory infiltrate was found in the cervix and vulva. Evidence of latent infection and reactivation was demonstrated by the detection of spontaneous HSV-2 shedding post-acute inoculation (102 to 103 DNA copies/swab) in 80% of RM. Further, HSV-2 DNA was detected in ganglia in most necropsied animals. HSV-2-specifc T-cell responses were detected in all animals, although antibodies to HSV-2 were detected in only 30% of the animals. Thus, HSV-2 infection of RM recapitulates many of the key features of subclinical HSV-2 infection in women but seems to be more limited, as virus shedding was undetectable more than 40 days after the last virus inoculation.IMPORTANCE Herpes simplex virus 2 (HSV-2) infects nearly 500 million persons globally, with an estimated 21 million incident cases each year, making it one of the most common sexually transmitted infections (STIs). HSV-2 is associated with increased human immunodeficiency virus type 1 (HIV-1) acquisition, and this risk does not decline with the use of antiherpes drugs. As initial acquisition of both HIV and HSV-2 infections is subclinical, study of the initial molecular interactions of the two agents requires an animal model. We found that HSV-2 can infect RM after vaginal inoculation, establish latency in the nervous system, and spontaneously reactivate; these features mimic some of the key features of HSV-2 infection in women. RM may provide an animal model to develop strategies to prevent HSV-2 acquisition and reactivation.
Collapse
|
7
|
Analysis of HIV-1 envelope evolution suggests antibody-mediated selection of common epitopes among Chinese former plasma donors from a narrow-source outbreak. Sci Rep 2018; 8:5743. [PMID: 29636501 PMCID: PMC5893620 DOI: 10.1038/s41598-018-23913-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
The HIV-1 envelope mutates rapidly to evade recognition and killing, and is a major target of humoral immune responses and vaccine development. Identification of common epitopes for vaccine development have been complicated by genetic variation on both virus and host levels. We studied HIV-1 envelope gp120 evolution in 12 Chinese former plasma donors infected with a purportedly single founder virus, with the aim of identifying common antibody epitopes under immune selection. We found five amino acid sites under significant positive selection in ≥50% of the study participants, and 22 sites consistent with antibody-mediated selection. Despite strong selection pressure, some sites housed a limited repertoire of amino acids. Structural modelling revealed that most of the variable amino acid sites were located on the exposed distal edge of the Gp120 trimer, whilst invariant sites clustered within the centre of the protein complex. Two sites, flanking the V3 hypervariable loop, represent novel antibody sites. Analysis of HIV-1 evolution in hosts infected with a narrow-source virus may provide insight and novel understanding of common epitopes under antibody-mediated selection. If verified in functional studies, such epitopes could be suitable as targets in vaccine development.
Collapse
|
8
|
T-bet-expressing B cells during HIV and HCV infections. Cell Immunol 2017; 321:26-34. [PMID: 28739077 DOI: 10.1016/j.cellimm.2017.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
T-bet-expressing B cells, first identified as perpetuators of autoimmunity, were recently shown to be critical for murine antiviral responses. While their role in human viral infections remains unclear, B cells expressing T-bet or demonstrating a related phenotype have been described in individuals chronically infected with HIV or HCV, suggesting these cells represent a component of human antiviral responses. In this review, we discuss the induction of T-bet in B cells following both HIV and HCV infections, the factors driving T-bet+ B cell expansions, T-bet's relationship to atypical memory B cells, and the consequences of T-bet induction. We propose potential antiviral roles for T-bet+ B cells and discuss whether this population poses any utility to the HIV and HCV immune responses.
Collapse
|
9
|
Knox JJ, Buggert M, Kardava L, Seaton KE, Eller MA, Canaday DH, Robb ML, Ostrowski MA, Deeks SG, Slifka MK, Tomaras GD, Moir S, Moody MA, Betts MR. T-bet+ B cells are induced by human viral infections and dominate the HIV gp140 response. JCI Insight 2017; 2:92943. [PMID: 28422752 DOI: 10.1172/jci.insight.92943] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
Humoral immunity is critical for viral control, but the identity and mechanisms regulating human antiviral B cells are unclear. Here, we characterized human B cells expressing T-bet and analyzed their dynamics during viral infections. T-bet+ B cells demonstrated an activated phenotype, a distinct transcriptional profile, and were enriched for expression of the antiviral immunoglobulin isotypes IgG1 and IgG3. T-bet+ B cells expanded following yellow fever virus and vaccinia virus vaccinations and also during early acute HIV infection. Viremic HIV-infected individuals maintained a large T-bet+ B cell population during chronic infection that was associated with increased serum and cell-associated IgG1 and IgG3 expression. The HIV gp140-specific B cell response was dominated by T-bet-expressing memory B cells, and we observed a concomitant biasing of gp140-specific serum immunoglobulin to the IgG1 isotype. These findings suggest that T-bet induction promotes antiviral immunoglobulin isotype switching and development of a distinct T-bet+ B cell subset that is maintained by viremia and coordinates the HIV Env-specific humoral response.
Collapse
Affiliation(s)
- James J Knox
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kelly E Seaton
- Duke Human Vaccine Institute; and Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University School of Medicine, and Cleveland VA, Cleveland, Ohio, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Mario A Ostrowski
- Departments of Immunology and Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute; and Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute; Department of Pediatrics; and Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Kariuki SM, Selhorst P, Ariën KK, Dorfman JR. The HIV-1 transmission bottleneck. Retrovirology 2017; 14:22. [PMID: 28335782 PMCID: PMC5364581 DOI: 10.1186/s12977-017-0343-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
It is well established that most new systemic infections of HIV-1 can be traced back to one or a limited number of founder viruses. Usually, these founders are more closely related to minor HIV-1 populations in the blood of the presumed donor than to more abundant lineages. This has led to the widely accepted idea that transmission selects for viral characteristics that facilitate crossing the mucosal barrier of the recipient’s genital tract, although the specific selective forces or advantages are not completely defined. However, there are other steps along the way to becoming a founder virus at which selection may occur. These steps include the transition from the donor’s general circulation to the genital tract compartment, survival within the transmission fluid, and establishment of a nascent stable local infection in the recipient’s genital tract. Finally, there is the possibility that important narrowing events may also occur during establishment of systemic infection. This is suggested by the surprising observation that the number of founder viruses detected after transmission in intravenous drug users is also limited. Although some of these steps may be heavily selective, others may result mostly in a stochastic narrowing of the available founder pool. Collectively, they shape the initial infection in each recipient.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, Falmouth 3.25, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Falmouth 3.25, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
11
|
Boesch AW, Miles AR, Chan YN, Osei-Owusu NY, Ackerman ME. IgG Fc variant cross-reactivity between human and rhesus macaque FcγRs. MAbs 2017; 9:455-465. [PMID: 28055295 DOI: 10.1080/19420862.2016.1274845] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Non-human primate (NHP) studies are often an essential component of antibody development efforts before human trials. Because the efficacy or toxicity of candidate antibodies may depend on their interactions with Fcγ receptors (FcγR) and their resulting ability to induce FcγR-mediated effector functions such as antibody-dependent cell-meditated cytotoxicity and phagocytosis (ADCP), the evaluation of human IgG variants with modulated affinity toward human FcγR is becoming more prevalent in both infectious disease and oncology studies in NHP. Reliable translation of these results necessitates analysis of the cross-reactivity of these human Fc variants with NHP FcγR. We report evaluation of the binding affinities of a panel of human IgG subclasses, Fc amino acid point mutants and Fc glycosylation variants against the common allotypes of human and rhesus macaque FcγR by applying a high-throughput array-based surface plasmon resonance platform. The resulting data indicate that amino acid variation present in rhesus FcγRs can result in disrupted, matched, or even increased affinity of IgG Fc variants compared with human FcγR orthologs. These observations emphasize the importance of evaluating species cross-reactivity and developing an understanding of the potential limitations or suitability of representative in vitro and in vivo models before human clinical studies when either efficacy or toxicity may be associated with FcγR engagement.
Collapse
Affiliation(s)
- Austin W Boesch
- a Thayer School of Engineering, Dartmouth College , Hanover , NH , USA
| | - Adam R Miles
- b Wasatch Microfluidics , Salt Lake City , UT , USA
| | - Ying N Chan
- a Thayer School of Engineering, Dartmouth College , Hanover , NH , USA
| | - Nana Y Osei-Owusu
- c Department of Microbiology and Immunology , Geisel School of Medicine , Lebanon , NH , USA
| | - Margaret E Ackerman
- a Thayer School of Engineering, Dartmouth College , Hanover , NH , USA.,c Department of Microbiology and Immunology , Geisel School of Medicine , Lebanon , NH , USA
| |
Collapse
|
12
|
Boesch AW, Osei-Owusu NY, Crowley AR, Chu TH, Chan YN, Weiner JA, Bharadwaj P, Hards R, Adamo ME, Gerber SA, Cocklin SL, Schmitz JE, Miles AR, Eckman JW, Belli AJ, Reimann KA, Ackerman ME. Biophysical and Functional Characterization of Rhesus Macaque IgG Subclasses. Front Immunol 2016; 7:589. [PMID: 28018355 PMCID: PMC5153528 DOI: 10.3389/fimmu.2016.00589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Antibodies raised in Indian rhesus macaques [Macaca mulatta (MM)] in many preclinical vaccine studies are often evaluated in vitro for titer, antigen-recognition breadth, neutralization potency, and/or effector function, and in vivo for potential associations with protection. However, despite reliance on this key animal model in translation of promising candidate vaccines for evaluation in first in man studies, little is known about the properties of MM immunoglobulin G (IgG) subclasses and how they may compare to human IgG subclasses. Here, we evaluate the binding of MM IgG1, IgG2, IgG3, and IgG4 to human Fc gamma receptors (FcγR) and their ability to elicit the effector functions of human FcγR-bearing cells, and unlike in humans, find a notable absence of subclasses with dramatically silent Fc regions. Biophysical, in vitro, and in vivo characterization revealed MM IgG1 exhibited the greatest effector function activity followed by IgG2 and then IgG3/4. These findings in rhesus are in contrast with the canonical understanding that IgG1 and IgG3 dominate effector function in humans, indicating that subclass-switching profiles observed in rhesus studies may not strictly recapitulate those observed in human vaccine studies.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Nana Yaw Osei-Owusu
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Andrew R Crowley
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Thach H Chu
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Ying N Chan
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Pranay Bharadwaj
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Rufus Hards
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA; Department of Genetics and Biochemistry, Geisel School of Medicine, Hanover, NH, USA
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine , Lebanon, NH , USA
| | - Scott A Gerber
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA; Department of Genetics and Biochemistry, Geisel School of Medicine, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH, USA
| | - Sarah L Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Adam R Miles
- Wasatch Microfluidics , Salt Lake City, UT , USA
| | | | - Aaron J Belli
- Non-Human Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School , Boston, MA , USA
| | - Keith A Reimann
- Non-Human Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School , Boston, MA , USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
13
|
Chan YN, Boesch AW, Osei-Owusu NY, Emileh A, Crowley AR, Cocklin SL, Finstad SL, Linde CH, Howell RA, Zentner I, Cocklin S, Miles AR, Eckman JW, Alter G, Schmitz JE, Ackerman ME. IgG Binding Characteristics of Rhesus Macaque FcγR. THE JOURNAL OF IMMUNOLOGY 2016; 197:2936-47. [PMID: 27559046 DOI: 10.4049/jimmunol.1502252] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/26/2016] [Indexed: 11/19/2022]
Abstract
Indian rhesus macaques (Macaca mulatta) are routinely used in preclinical studies to evaluate therapeutic Abs and candidate vaccines. The efficacy of these interventions in many cases is known to rely heavily on the ability of Abs to interact with a set of Ab FcγR expressed on innate immune cells. Yet, despite their presumed functional importance, M. mulatta Ab receptors are largely uncharacterized, posing a fundamental limit to ensuring accurate interpretation and translation of results from studies in this model. In this article, we describe the binding characteristics of the most prevalent allotypic variants of M. mulatta FcγR for binding to both human and M. mulatta IgG of varying subclasses. The resulting determination of the affinity, specificity, and glycan sensitivity of these receptors promises to be useful in designing and evaluating studies of candidate vaccines and therapeutic Abs in this key animal model and exposes significant evolutionary divergence between humans and macaques.
Collapse
Affiliation(s)
- Ying N Chan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Nana Y Osei-Owusu
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH 03755
| | - Ali Emileh
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Andrew R Crowley
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH 03755
| | - Sarah L Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Samantha L Finstad
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Caitlyn H Linde
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Rebecca A Howell
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Isaac Zentner
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Adam R Miles
- Wasatch Microfluidics, Salt Lake City, UT 84103; and
| | | | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755; Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH 03755;
| |
Collapse
|
14
|
Wikramaratna PS, Lourenço J, Klenerman P, Pybus OG, Gupta S. Effects of neutralizing antibodies on escape from CD8+ T-cell responses in HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0290. [PMID: 26150656 PMCID: PMC4528488 DOI: 10.1098/rstb.2014.0290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite substantial advances in our knowledge of immune responses against HIV-1 and of its evolution within the host, it remains unclear why control of the virus eventually breaks down. Here, we present a new theoretical framework for the infection dynamics of HIV-1 that combines antibody and CD8+ T-cell responses, notably taking into account their different lifespans. Several apparent paradoxes in HIV pathogenesis and genetics of host susceptibility can be reconciled within this framework by assigning a crucial role to antibody responses in the control of viraemia. We argue that, although escape from or progressive loss of quality of CD8+ T-cell responses can accelerate disease progression, the underlying cause of the breakdown of virus control is the loss of antibody induction due to depletion of CD4+ T cells. Furthermore, strong antibody responses can prevent CD8+ T-cell escape from occurring for an extended period, even in the presence of highly efficacious CD8+ T-cell responses.
Collapse
Affiliation(s)
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
15
|
Raghwani J, Bhatt S, Pybus OG. Faster Adaptation in Smaller Populations: Counterintuitive Evolution of HIV during Childhood Infection. PLoS Comput Biol 2016; 12:e1004694. [PMID: 26741359 PMCID: PMC4704780 DOI: 10.1371/journal.pcbi.1004694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
Analysis of HIV-1 gene sequences sampled longitudinally from infected individuals can reveal the evolutionary dynamics that underlie associations between disease outcome and viral genetic diversity and divergence. Here we extend a statistical framework to estimate rates of viral molecular adaptation by considering sampling error when computing nucleotide site-frequencies. This is particularly beneficial when analyzing viral sequences from within-host viral infections if the number of sequences per time point is limited. To demonstrate the utility of this approach, we apply our method to a cohort of 24 patients infected with HIV-1 at birth. Our approach finds that viral adaptation arising from recurrent positive natural selection is associated with the rate of HIV-1 disease progression, in contrast to previous analyses of these data that found no significant association. Most surprisingly, we discover a strong negative correlation between viral population size and the rate of viral adaptation, the opposite of that predicted by standard molecular evolutionary theory. We argue that this observation is most likely due to the existence of a confounding third variable, namely variation in selective pressure among hosts. A conceptual non-linear model of virus adaptation that incorporates the two opposing effects of host immunity on the virus population can explain this counterintuitive result. Since some common approaches to the study of molecular adaptation may not be optimal for answering questions regarding within-host virus evolution, we have developed an alternative approach that estimates an absolute rate of molecular adaptation from serially-sampled viral populations. Here, we extend this framework to include sampling error when estimating the rate of adaptation, which is an important addition when analyzing historical data sets obtained in the pre-HAART era, for which the number of sequences per time point is often limited. We applied this extended method to a cohort of 24 pediatric HIV-1 patients and discovered that viral adaptation is strongly associated with the rate of disease progression, which is in contrast to previous analyses of these data that did not find a significant association. Strikingly, this results in a negative relationship between the rate of viral adaptation and viral population size, which is unexpected under standard micro-evolutionary models since larger populations are predicted to fix more mutations per unit time than smaller populations. Our findings indicate that the negative correlation is unlikely to be driven by relaxation of selective constraint, but instead by significant variation in host immune responses. Consequently, this supports a previously proposed non-linear model of viral adaptation in which host immunity imposes counteracting effects on population size and selection.
Collapse
Affiliation(s)
- Jayna Raghwani
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (JR); (OGP)
| | - Samir Bhatt
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail: (JR); (OGP)
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW In this review, the roles of Fc-gamma receptor polymorphisms are discussed in regards to HIV-1 vaccine efficacy, HIV acquisition, and disease progression. In addition, the significance of the neonatal immunoglobulin G (IgG) Fc receptor and potential effects of the aggregated immunoglobulin A Fc receptor (FcalphaR) are addressed. RECENT FINDINGS Fc receptors undoubtedly play an important role in antibody-mediated action in HIV infection and vaccines. Several studies have determined an association between polymorphic variants of Fc-gamma-RIIA and Fc-gamma-RIIIA in the acquisition and progression of HIV-1 infection, and in responses to vaccination regimens. A rather complex relationship exists between the relative affinity of these molecules and their impact on HIV disease acquisition and progression and HIV vaccine efficacy. SUMMARY The discrepancies between different investigations of the role of Fc receptor polymorphisms appear to derive from the complex nature of the Fc receptor functions, including factors such as epistatic interactions and the race, sex, age, and relative risk behavior of the investigated individuals. Furthermore, Fc receptors in nonhuman primates (NHPs), the key model to study an AIDS-like disease in an animal model, appear to be even more diverse than in humans, and the function of these proteins has not been extensively explored. Given the critical role of Fc receptors in antibody-mediated function in humans and NHP, more investigations are needed to fully understand and exploit these functions for vaccine design.
Collapse
|
17
|
Klein F, Nogueira L, Nishimura Y, Phad G, West AP, Halper-Stromberg A, Horwitz JA, Gazumyan A, Liu C, Eisenreich TR, Lehmann C, Fätkenheuer G, Williams C, Shingai M, Martin MA, Bjorkman PJ, Seaman MS, Zolla-Pazner S, Karlsson Hedestam GB, Nussenzweig MC. Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants. ACTA ACUST UNITED AC 2014; 211:2361-72. [PMID: 25385756 PMCID: PMC4235636 DOI: 10.1084/jem.20141050] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibody-mediated immunotherapy is effective in humanized mice when combinations of broadly neutralizing antibodies (bNAbs) are used that target nonoverlapping sites on the human immunodeficiency virus type 1 (HIV-1) envelope. In contrast, single bNAbs can control simian-human immunodeficiency virus (SHIV) infection in immune-competent macaques, suggesting that the host immune response might also contribute to the control of viremia. Here, we investigate how the autologous antibody response in intact hosts can contribute to the success of immunotherapy. We find that frequently arising antibodies that normally fail to control HIV-1 infection can synergize with passively administered bNAbs by preventing the emergence of bNAb viral escape variants.
Collapse
Affiliation(s)
- Florian Klein
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Lilian Nogueira
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ganesh Phad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anthony P West
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Ariel Halper-Stromberg
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Anna Gazumyan
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Cassie Liu
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Thomas R Eisenreich
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Clara Lehmann
- First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany
| | - Gerd Fätkenheuer
- First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany
| | | | - Masashi Shingai
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pamela J Bjorkman
- Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125 Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Susan Zolla-Pazner
- Department of Pathology, NYU School of Medicine, New York, NY 10016 Research Service, Veterans Affairs Medical Center, New York, NY 10010
| | | | - Michel C Nussenzweig
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065 Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
18
|
Antibody B cell responses in HIV-1 infection. Trends Immunol 2014; 35:549-61. [DOI: 10.1016/j.it.2014.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
|
19
|
Zhang L, Luo Z, Sieg SF, Funderburg NT, Yu X, Fu P, Wu H, Jiao Y, Gao Y, Greenspan NS, Harding CV, Kilby JM, Li Z, Lederman MM, Jiang W. Plasmacytoid dendritic cells mediate synergistic effects of HIV and lipopolysaccharide on CD27+ IgD- memory B cell apoptosis. J Virol 2014; 88:11430-41. [PMID: 25056888 PMCID: PMC4178795 DOI: 10.1128/jvi.00682-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/14/2014] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The effects of heightened microbial translocation on B cells during HIV infection are unknown. We examined the in vitro effects of HIV and lipopolysaccharide (LPS) on apoptosis of CD27+ IgD- memory B (mB) cells from healthy controls. In vivo analysis was conducted on a cohort of 82 HIV+ donors and 60 healthy controls. In vitro exposure of peripheral blood mononuclear cells (PBMCs) to LPS and HIV led to mB cell death via the Fas/Fas ligand (FasL) pathway. Plasmacytoid dendritic cells (pDCs) produced FasL in response to HIV via binding to CD4 and chemokine coreceptors. HIV and LPS increased Fas expression on mB cells in PBMCs, which was dependent on the presence of pDCs and monocytes. Furthermore, mB cells purified from PBMCs and pretreated with both HIV and LPS were more sensitive to apoptosis when cocultured with HIV-treated pDCs. Blocking the interferon receptor (IFNR) prevented HIV-stimulated FasL production in pDCs, HIV-plus-LPS-induced Fas expression, and apoptosis of mB cells. In vivo or ex vivo, HIV+ donors have higher levels of plasma LPS, Fas expression on mB cells, and mB cell apoptosis than controls. Correspondingly, in HIV+ donors, but not in controls, a positive correlation was found between plasma FasL and HIV RNA levels and between Fas expression on mB cells and plasma LPS levels. This work reveals a novel mechanism of mB cell apoptosis mediated by LPS and HIV through the Fas/FasL pathway, with key involvement of pDCs and type I IFN, suggesting a role for microbial translocation in HIV pathogenesis. IMPORTANCE This study demonstrates that lipopolysaccharide (LPS) and type I interferon (IFN) play an important role in memory B cell apoptosis in HIV infection. It reveals a previously unrecognized role of microbial translocation in HIV pathogenesis.
Collapse
Affiliation(s)
- Lumin Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Scott F Sieg
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, University Hospitals/Case Medical Center, Cleveland, Ohio, USA
| | - Nicholas T Funderburg
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, The Ohio State University, Columbus, Ohio, USA
| | - Xiaocong Yu
- Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA
| | - Pingfu Fu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hao Wu
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Yanmei Jiao
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Yong Gao
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, University Hospitals/Case Medical Center, Cleveland, Ohio, USA
| | - Neil S Greenspan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Clifford V Harding
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - J Michael Kilby
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael M Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, University Hospitals/Case Medical Center, Cleveland, Ohio, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
20
|
Pahar B, Amedee AM, Thomas J, Dufour JP, Zhang P, Nelson S, Veazey RS, Bagby GJ. Effects of alcohol consumption on antigen-specific cellular and humoral immune responses to SIV in rhesus macaques. J Acquir Immune Defic Syndr 2013; 64:332-41. [PMID: 23799411 PMCID: PMC3812314 DOI: 10.1097/qai.0b013e31829f6dca] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Simian immunodeficiency virus (SIV) infection in macaques chronically receiving ethanol results in significantly higher plasma viral loads and more rapid progression to end-stage disease. We thus hypothesized that the increased plasma viral load in ethanol-treated, SIV-infected macaques would negatively correlate with antigen-specific immune responses. METHODS Rhesus macaques were administered ethanol or sucrose (n = 12 per group) by indwelling gastric catheters for 3 months and then intravenously infected with SIVMAC251. Peripheral blood T- and B-cell immunophenotyping and quantification were performed. Plasma was examined for viremia, levels of SIVEnv-specific binding, and neutralizing antibodies. Virus-specific interferon γ and tumor necrosis factor α cytokine responses to SIV-Nef, Gag, or Env peptide pools were measured in peripheral blood CD8 T cells. RESULTS Macaques receiving ethanol had both higher plasma viremia and virus-specific cellular immune responses compared with the sucrose-treated group. The emergence of virus-specific cytokine responses temporally correlated with the decline in mean plasma viral load after 14 days postinfection in all SIV-infected animals. However, neither the breadth and specificity nor the magnitude of virus-specific CD8 T-cell responses correlated with early postpeak reductions in plasma viral loads. In fact, increased cytokine responses against Gag, gp120, and gp41 positively correlated with plasma viremia. Levels of SIV envelope-specific immunoglobulin G and neutralizing antibodies were similar over the disease course in both groups of macaques. CONCLUSIONS Persistently higher antigen-specific cytokine responses in animals receiving ethanol are likely an effect of the higher viral loads and antigen persistence, rather than a cause of the increased viremia.
Collapse
Affiliation(s)
- Bapi Pahar
- Tulane National Primate Research Center, Covington, LA 70433
| | - Angela M. Amedee
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Jessica Thomas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Jason P. Dufour
- Tulane National Primate Research Center, Covington, LA 70433
| | - Ping Zhang
- Department of Surgery, Michigan State University College of Human Medicine, East Lansing, MI 48824
| | - Steve Nelson
- Department of Surgery, Michigan State University College of Human Medicine, East Lansing, MI 48824
| | | | - Gregory J. Bagby
- Department of Surgery, Michigan State University College of Human Medicine, East Lansing, MI 48824
| |
Collapse
|
21
|
Nakane T, Nomura T, Shi S, Nakamura M, Naruse TK, Kimura A, Matano T, Yamamoto H. Limited impact of passive non-neutralizing antibody immunization in acute SIV infection on viremia control in rhesus macaques. PLoS One 2013; 8:e73453. [PMID: 24039947 PMCID: PMC3767751 DOI: 10.1371/journal.pone.0073453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022] Open
Abstract
Background Antiviral antibodies, especially those with neutralizing activity against the incoming strain, are potentially important immunological effectors to control human immunodeficiency virus (HIV) infection. While neutralizing activity appears to be central in sterile protection against HIV infection, the entity of inhibitory mechanisms via HIV and simian immunodeficiency virus (SIV)-specific antibodies remains elusive. The recent HIV vaccine trial RV144 and studies in nonhuman primate models have indicated controversial protective efficacy of HIV/SIV-specific non-neutralizing binding antibodies (non-NAbs). While reports on HIV-specific non-NAbs have demonstrated virus inhibitory activity in vitro, whether non-NAbs could also alter the pathogenic course of established SIV replication in vivo, likewise via neutralizing antibody (NAb) administration, has been unclear. Here, we performed post-infection passive immunization of SIV-infected rhesus macaques with polyclonal SIV-specific, antibody-dependent cell-mediated viral inhibition (ADCVI)-competent non-NAbs. Methods and Findings Ten lots of polyclonal immunoglobulin G (IgG) were prepared from plasma of ten chronically SIVmac239-infected, NAb-negative rhesus macaques, respectively. Their binding capacity to whole SIVmac239 virions showed a propensity similar to ADCVI activity. A cocktail of three non-NAb lots showing high virion-binding capacity and ADCVI activity was administered to rhesus macaques at day 7 post-SIVmac239 challenge. This resulted in an infection course comparable with control animals, with no significant difference in set point plasma viral loads or immune parameters. Conclusions Despite virus-specific suppressive activity of the non-NAbs having been observed in vitro, their passive immunization post-infection did not result in SIV control in vivo. Virion binding and ADCVI activity with lack of virus neutralizing activity were indicated to be insufficient for antibody-triggered non-sterile SIV control. More diverse effector functions or sophisticated localization may be required for non-NAbs to impact HIV/SIV replication in vivo.
Collapse
Affiliation(s)
- Taku Nakane
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shoi Shi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Midori Nakamura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taeko K. Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail: ; (HY)
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: ; (HY)
| |
Collapse
|
22
|
CD4+ T cells support production of simian immunodeficiency virus Env antibodies that enforce CD4-dependent entry and shape tropism in vivo. J Virol 2013; 87:9719-32. [PMID: 23824793 DOI: 10.1128/jvi.01254-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CD4(+) T cells rather than macrophages are the principal cells infected by human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) in vivo. Macrophage tropism has been linked to the ability to enter cells through CCR5 in conjunction with limiting CD4 levels, which are much lower on macrophages than on T cells. We recently reported that rhesus macaques (RM) experimentally depleted of CD4(+) T cells before SIV infection exhibit extensive macrophage infection as well as high chronic viral loads and rapid progression to AIDS. Here we show that early-time-point and control Envs were strictly CD4 dependent but that, by day 42 postinfection, plasma virus of CD4(+) T cell-depleted RM was dominated by Envs that mediate efficient infection using RM CCR5 independently of CD4. Early-time-point and control RM Envs were resistant to neutralization by SIV-positive (SIV(+)) plasma but became sensitive if preincubated with sCD4. In contrast, CD4-independent Envs were highly sensitive to SIV(+) plasma neutralization. However, plasma from SIV-infected CD4(+) T cell-depleted animals lacked this CD4-inducible neutralizing activity and failed to neutralize any Envs regardless of sCD4 pre-exposure status. Enhanced sensitivity of CD4-independent Envs from day 42 CD4(+) T cell-depleted RM was also seen with monoclonal antibodies that target both known CD4-inducible and other Env epitopes. CD4 independence and neutralization sensitivity were both conferred by Env amino acid changes E84K and D470N that arose independently in multiple animals, with the latter introducing a potential N-linked glycosylation site within a predicted CD4-binding pocket of gp120. Thus, the absence of CD4 T cells results in failure to produce antibodies that neutralize CD4-independent Envs and CD4-pretriggered control Envs. In the absence of this constraint and with a relative paucity of CD4(+) target cells, widespread macrophage infection occurs in vivo accompanied by emergence of variants carrying structural changes that enable entry independently of CD4.
Collapse
|
23
|
Vargas-Inchaustegui DA, Robert-Guroff M. Fc receptor-mediated immune responses: new tools but increased complexity in HIV prevention. Curr HIV Res 2013; 11:407-20. [PMID: 24191937 PMCID: PMC6288814 DOI: 10.2174/1570162x113116660063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
Abstract
The modest success of the RV144 HIV vaccine trial in Thailand and the ensuing suggestion that a Fc-receptormediated antibody activity might have played a role in the protection observed have intensified investigations on Fcrelated immune responses. HIV neutralizing antibodies have been and continue to be the focal point of research into humoral immune protection. However, recent knowledge that their protective efficacy can be augmented by Fc-FcR interactions has increased the complexity of identifying immune correlates of protection. If anything, continued studies of both humoral and cellular immune mechanisms point to the lack of a single protective anti-HIV immune response. Here we focus on humoral immunity, analyzing the role played by Fc receptor-related responses and discussing how new knowledge of their interactions requires further investigation, but may also spur novel vaccination approaches. We initially address classical Fc-receptor mediated anti-viral mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell mediated viral inhibition (ADCVI), and antibody-dependent cellular phagocytosis (ADCP), as well as the effector cells that mediate these functions. Next, we summarize key aspects of FcR-Fc interactions that are important for potential control of HIV/SIV such as FcR polymorphisms and post-transcriptional modifications. Finally we discuss less commonly studied non-mechanistic anti-HIV immune functions: antibody avidity and envelopespecific B cell memory. Overall, a spectrum of immune responses, reflecting the immune system's redundancy, will likely be needed to prevent HIV infection and/or disease progression. Aside from elicitation of critical immune mechanisms, a successful vaccine will need to induce mature B cell responses and long-lasting immune memory.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Building 41, Room D804, Bethesda, MD 20192-5065, USA.
| | | |
Collapse
|
24
|
Abstract
Neutralizing antibodies (NAbs) typically play a key role in controlling viral infections and contribute to the protective effect of many successful vaccines. In the case of HIV-1 infection, there is compelling data in experimental animal models that NAbs can prevent HIV-1 acquisition, although there is no similar data in humans and their role in controlling established infection in humans is also limited. It is clear HIV-specific NAbs drive the evolution of the HIV-1 envelope glycoprotein within an infected individual. The virus's ability to evade immune selection may be the main reason HIV-1 NAbs exert limited control during infection. The extraordinary antigenic diversity of HIV-1 also presents formidable challenges to defining NAbs that could provide broad protection against diverse circulating HIV-1 strains. Several new potent monoclonal antibodies (MAbs) have been identified, and are beginning to yield important clues into the epitopes common to diverse HIV-1 strains. In addition, antibodies can also act in concert with effector cells to kill HIV-infected cells; this could provide another mechanism for antibody-mediated control of HIV-1 replication. Understanding the impact of antibodies on HIV-1 transmission and pathogenesis is critical to helping move forward with rational HIV-1 vaccine design.
Collapse
Affiliation(s)
- Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | |
Collapse
|
25
|
Generation of lineage-related, mucosally transmissible subtype C R5 simian-human immunodeficiency viruses capable of AIDS development, induction of neurological disease, and coreceptor switching in rhesus macaques. J Virol 2013; 87:6137-49. [PMID: 23514895 DOI: 10.1128/jvi.00178-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most human immunodeficiency virus (HIV) transmissions are initiated with CCR5 (R5)-using viruses across mucosal surfaces, with the majority in regions where HIV type 1 (HIV-1) clade C predominates. Mucosally transmissible, highly replication competent, pathogenic R5 simian-human immunodeficiency viruses (SHIVs) encoding biologically relevant clade C envelopes are therefore needed as challenge viruses in vaccine efficacy studies with nonhuman primates. Here we describe the generation of three lineage-related subtype C SHIVs through four successive rapid transfers in rhesus macaques of SHIVC109F.PB4, a molecular clone expressing the soluble-CD4 (sCD4)-sensitive CCR5-tropic clade C envelope of a recently infected subject in Zambia. The viruses differed in their monkey passage histories and neutralization sensitivities but remained R5 tropic. SHIVC109P3 and SHIVC109P3N were recovered from a passage-3 rapid-progressor animal during chronic infection (24 weeks postinfection [wpi]) and at end-stage disease (34 wpi), respectively, and are classified as tier 1B strains, whereas SHIVC109P4 was recovered from a passage-4 normal-progressor macaque at 22 wpi and is a tier 2 virus, more difficult to neutralize. All three viruses were transmitted efficiently via intrarectal inoculation, reaching peak viral loads of 10(7) to 10(9) RNA copies/ml plasma and establishing viremia at various set points. Notably, one of seven (GC98) and two of six (CL31, FI08) SHIVC109P3- and SHIVC109P3N-infected macaques, respectively, progressed to AIDS, with neuropathologies observed in GC98 and FI08, as well as coreceptor switching in the latter. These findings support the use of these new SHIVC109F.PB4-derived viruses to study the immunopathology of HIV-1 clade C infection and to evaluate envelope-based AIDS vaccines in nonhuman primates.
Collapse
|
26
|
Yu X, Li Z, Zhou Z, Kilby JM, Jiang W. Microbial TLR Agonists and Humoral Immunopathogenesis in HIV Disease. EPIDEMIOLOGY (SUNNYVALE, CALIF.) 2013; 3:120. [PMID: 24795844 PMCID: PMC4005894 DOI: 10.4172/2161-1165.1000120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Although T cells are the primary and most-studied targets of the Human Immunodeficiency Virus (HIV), B cells, especially memory B lymphocytes, are also chronically depleted in the course of HIV disease. Although the lack of CD4+ T cell help may explain these deficiencies, intrinsic defects in B lymphocytes appear to contribute to B cell depletion and reduced antibody (Ab) production in the setting of HIV, especially of some antigens eliciting T cell-independent responses. The gut mucosal barrier is disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Toll-Like Receptor (TLR) agonists. The association of enhanced systemic levels of TLR agonists and B cell dysfunction in HIV disease is not understood. This review discusses the potential role of microbial TLR agonists in the B cell depletion, enhanced autoantibody production and impaired responses to vaccination observed in HIV-infected hosts. Increased microbial translocation in HIV infection may drive B cells to produce autoantibodies and increase susceptibilities of B cells to apoptosis through activation-induced cell death. Determining the mechanisms of B cell perturbations in HIV disease will inform the design of novel strategies of improve immune responses to vaccines, reduce opportunistic infections and slow disease progression.
Collapse
Affiliation(s)
- Xiaocong Yu
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| | - Zhenxian Zhou
- NanJing Second Hospital, Infectious Diseases, NanJing, China
| | - J Michael Kilby
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| |
Collapse
|
27
|
A novel assay for antibody-dependent cell-mediated cytotoxicity against HIV-1- or SIV-infected cells reveals incomplete overlap with antibodies measured by neutralization and binding assays. J Virol 2012; 86:12039-52. [PMID: 22933282 DOI: 10.1128/jvi.01650-12] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The resistance of human immunodeficiency virus type 1 (HIV-1) to antibody-mediated immunity often prevents the detection of antibodies that neutralize primary isolates of HIV-1. However, conventional assays for antibody functions other than neutralization are suboptimal. Current methods for measuring the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC) are limited by the number of natural killer (NK) cells obtainable from individual donors, donor-to-donor variation, and the use of nonphysiological targets. We therefore developed an ADCC assay based on NK cell lines that express human or macaque CD16 and a CD4(+) T-cell line that expresses luciferase from a Tat-inducible promoter upon HIV-1 or simian immunodeficiency virus (SIV) infection. NK cells and virus-infected targets are mixed in the presence of serial plasma dilutions, and ADCC is measured as the dose-dependent loss of luciferase activity. Using this approach, ADCC titers were measured in plasma samples from HIV-infected human donors and SIV-infected macaques. For the same plasma samples paired with the same test viruses, this assay was approximately 2 orders of magnitude more sensitive than optimized assays for neutralizing antibodies-frequently allowing the measurement of ADCC in the absence of detectable neutralization. Although ADCC correlated with other measures of Env-specific antibodies, neutralizing and gp120 binding titers did not consistently predict ADCC activity. Hence, this assay affords a sensitive method for measuring antibodies capable of directing ADCC against HIV- or SIV-infected cells expressing native conformations of the viral envelope glycoprotein and reveals incomplete overlap of the antibodies that direct ADCC and those measured in neutralization and binding assays.
Collapse
|
28
|
Alpert MD, Harvey JD, Lauer WA, Reeves RK, Piatak M, Carville A, Mansfield KG, Lifson JD, Li W, Desrosiers RC, Johnson RP, Evans DT. ADCC develops over time during persistent infection with live-attenuated SIV and is associated with complete protection against SIV(mac)251 challenge. PLoS Pathog 2012; 8:e1002890. [PMID: 22927823 PMCID: PMC3426556 DOI: 10.1371/journal.ppat.1002890] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/17/2012] [Indexed: 11/18/2022] Open
Abstract
Live-attenuated strains of simian immunodeficiency virus (SIV) routinely confer apparent sterilizing immunity against pathogenic SIV challenge in rhesus macaques. Understanding the mechanisms of protection by live-attenuated SIV may provide important insights into the immune responses needed for protection against HIV-1. Here we investigated the development of antibodies that are functional against neutralization-resistant SIV challenge strains, and tested the hypothesis that these antibodies are associated with protection. In the absence of detectable neutralizing antibodies, Env-specific antibody-dependent cell-mediated cytotoxicity (ADCC) emerged by three weeks after inoculation with SIVΔnef, increased progressively over time, and was proportional to SIVΔnef replication. Persistent infection with SIVΔnef elicited significantly higher ADCC titers than immunization with a non-persistent SIV strain that is limited to a single cycle of infection. ADCC titers were higher against viruses matched to the vaccine strain in Env, but were measurable against viruses expressing heterologous Env proteins. In two separate experiments, which took advantage of either the strain-specificity or the time-dependent maturation of immunity to overcome complete protection against SIV(mac)251 challenge, measures of ADCC activity were higher among the SIVΔnef-inoculated macaques that remained uninfected than among those that became infected. These observations show that features of the antibody response elicited by SIVΔnef are consistent with hallmarks of protection by live-attenuated SIV, and reveal an association between Env-specific antibodies that direct ADCC and apparent sterilizing protection by SIVΔnef.
Collapse
Affiliation(s)
- Michael D. Alpert
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Jackson D. Harvey
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - W. Anderson Lauer
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Immunology Division, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Michael Piatak
- SAIC Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Angela Carville
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Keith G. Mansfield
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Jeffrey D. Lifson
- SAIC Frederick, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Wenjun Li
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronald C. Desrosiers
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - R. Paul Johnson
- Immunology Division, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, and Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - David T. Evans
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| |
Collapse
|
29
|
Sequential evolution and escape from neutralization of simian immunodeficiency virus SIVsmE660 clones in rhesus macaques. J Virol 2012; 86:8835-47. [PMID: 22696650 DOI: 10.1128/jvi.00923-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of rhesus macaques has become an important surrogate model for evaluating HIV vaccine strategies. The extreme resistance to neutralizing antibody (NAb) of many commonly used strains, such as SIVmac251/239 and SIVsmE543-3, limits their potential relevance for evaluating the role of NAb in vaccine protection. In contrast, SIVsmE660 is an uncloned virus that appears to be more sensitive to neutralizing antibody. To evaluate the role of NAb in this model, we generated full-length neutralization-sensitive molecular clones of SIVsmE660 and evaluated two of these by intravenous inoculation of rhesus macaques. All animals became infected and maintained persistent viremia that was accompanied by a decline in memory CD4(+) T cells in blood and bronchoalveolar lavage fluid. High titers of autologous NAb developed by 4 weeks postinoculation but were not associated with control of viremia, and neutralization escape variants were detected concurrently with the generation of NAb. Neutralization escape was associated with substitutions and insertion/deletion polymorphisms in the V1 and V4 domains of envelope. Analysis of representative variants revealed that escape variants also induced NAbs within a few weeks of their appearance in plasma, in a pattern that is reminiscent of the escape of human immunodeficiency virus type 1 (HIV-1) isolates in humans. Although early variants maintained a neutralization-sensitive phenotype, viruses obtained later in infection were significantly less sensitive to neutralization than the parental viruses. These results indicate that NAbs exert selective pressure that drives the evolution of the SIV envelope and that this model will be useful for evaluating the role of NAb in vaccine-mediated protection.
Collapse
|
30
|
Bugelski PJ, Martin PL. Concordance of preclinical and clinical pharmacology and toxicology of therapeutic monoclonal antibodies and fusion proteins: cell surface targets. Br J Pharmacol 2012; 166:823-46. [PMID: 22168282 PMCID: PMC3417412 DOI: 10.1111/j.1476-5381.2011.01811.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/14/2011] [Accepted: 11/28/2011] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibodies (mAbs) and fusion proteins directed towards cell surface targets make an important contribution to the treatment of disease. The purpose of this review was to correlate the clinical and preclinical data on the 15 currently approved mAbs and fusion proteins targeted to the cell surface. The principal sources used to gather data were: the peer reviewed Literature; European Medicines Agency 'Scientific Discussions'; and the US Food and Drug Administration 'Pharmacology/Toxicology Reviews' and package inserts (United States Prescribing Information). Data on the 15 approved biopharmaceuticals were included: abatacept; abciximab; alefacept; alemtuzumab; basiliximab; cetuximab; daclizumab; efalizumab; ipilimumab; muromonab; natalizumab; panitumumab; rituximab; tocilizumab; and trastuzumab. For statistical analysis of concordance, data from these 15 were combined with data on the approved mAbs and fusion proteins directed towards soluble targets. Good concordance with human pharmacodynamics was found for mice receiving surrogates or non-human primates (NHPs) receiving the human pharmaceutical. In contrast, there was poor concordance for human pharmacodynamics in genetically deficient mice and for human adverse effects in all three test systems. No evidence that NHPs have superior predictive value was found.
Collapse
Affiliation(s)
- Peter J Bugelski
- Biologics Toxicology, Janssen Research & Development, division of Johnson & Johnson Pharmaceutical Research & Development, LLC, Radnor, PA 19087, USA
| | | |
Collapse
|
31
|
Van Rompay KK. The use of nonhuman primate models of HIV infection for the evaluation of antiviral strategies. AIDS Res Hum Retroviruses 2012; 28:16-35. [PMID: 21902451 DOI: 10.1089/aid.2011.0234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several nonhuman primate models are used in HIV/AIDS research. In contrast to natural host models, infection of macaques with virulent simian immunodeficiency virus (SIV) isolates results in a disease (simian AIDS) that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its limitations, a carefully designed study allows experimental approaches that are not feasible in humans, but that can provide better insights in disease pathogenesis and proof-of-concept of novel intervention strategies. In the early years of the HIV pandemic, nonhuman primate models played a minor role in the development of antiviral strategies. Since then, a better understanding of the disease and the development of better compounds and assays to monitor antiviral effects have increased the usefulness and relevance of these animal models in the preclinical development of HIV vaccines, microbicides, and antiretroviral drugs. Several strategies that were first discovered to have efficacy in nonhuman primate models are now increasingly used in humans. Recent trends include the use of nonhuman primate models to explore strategies that could reduce viral reservoirs and, ultimately, attempt to cure infection. Ongoing comparison of results obtained in nonhuman primate models with those observed in human studies will lead to further validation and improvement of these animal models so they can continue to advance our scientific knowledge and guide clinical trials.
Collapse
Affiliation(s)
- Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
32
|
Jiang W. Microbial Translocation and B Cell Dysfunction in Human Immunodeficiency Virus Disease. AMERICAN JOURNAL OF IMMUNOLOGY 2012; 8:44-51. [PMID: 23869197 PMCID: PMC3712352 DOI: 10.3844/ajisp.2012.44.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gut mucosal barrier disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Lipo Polys Accharide (LPS). The association of enhanced microbial translocation and B cell dysfunction in HIV disease is not fully understood. High dose and short term exposure of microbial Toll-Like Receptor (TLR) agonists were used as vaccine adjuvants, however, low dose and long term exposure of TLR agonists could be harmful. The characteristics of B cell dysfunction in HIV disease included B cell, especially memory B cell depletion, enhanced levels of autoimmune antibodies and impaired vaccine or antigen responsiveness. This review discusses and explores the possibility of the effect of microbial translocation on memory B cell depletion and impaired vaccine responses in HIV infection. By determining the mechanisms of B cell depletion and perturbations in HIV disease, it may be possible to design interventions that can improve immune responses to vaccines, reduce selected opportunistic infections and perhaps slow disease progression.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Microbiology and Immunolog, Deaprtment of Medicine, Division of Infectious Diseases Medical University of South Carolina, 173 Ashly Avenue, Charleston, SC 29425, USA
| |
Collapse
|
33
|
Das A, Veazey RS, Wang X, Lackner AA, Xu H, Pahar B. Simian immunodeficiency virus infection in rhesus macaques induces selective tissue specific B cell defects in double positive CD21+CD27+ memory B cells. Clin Immunol 2011; 140:223-8. [PMID: 21622026 PMCID: PMC3159701 DOI: 10.1016/j.clim.2011.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/06/2011] [Accepted: 04/29/2011] [Indexed: 01/22/2023]
Abstract
B cell dysfunction represents a central feature in HIV infection and pathogenesis. Our recent studies have shown that peripheral and lymphoid double positive CD21+CD27+ B cells were able to become activated and proliferate at higher rates than other B cell subpopulations. Increased proliferation of tonsillar memory B cells was identified compared to other tissues examined. Here, we demonstrate the decreased proliferation of tonsillar memory (CD21+CD27+) B cells during acute SIV infection also suggests that these cells may play an important role in SIV pathogenesis. Our findings demonstrate that SIV infection may induce selective defective responses in specific tissues, by suppressing memory B cell proliferation in tissues.
Collapse
Affiliation(s)
- Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Xiaolei Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Andrew A. Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Huanbin Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| |
Collapse
|
34
|
Carroll TD, Matzinger SR, Fritts L, McChesney MB, Miller CJ. Memory B cells and CD8⁺ lymphocytes do not control seasonal influenza A virus replication after homologous re-challenge of rhesus macaques. PLoS One 2011; 6:e21756. [PMID: 21747924 PMCID: PMC3126839 DOI: 10.1371/journal.pone.0021756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/06/2011] [Indexed: 11/29/2022] Open
Abstract
This study sought to define the role of memory lymphocytes in the protection from homologous influenza A virus re-challenge in rhesus macaques. Depleting monoclonal antibodies (mAb) were administered to the animals prior to their second experimental inoculation with a human seasonal influenza A virus strain. Treatment with either anti-CD8α or anti-CD20 mAbs prior to re-challenge had minimal effect on influenza A virus replication. Thus, in non-human primates with pre-existing anti-influenza A antibodies, memory B cells and CD8α+ T cells do not contribute to the control of virus replication after re-challenge with a homologous strain of influenza A virus.
Collapse
Affiliation(s)
- Timothy D. Carroll
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Shannon R. Matzinger
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Linda Fritts
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Michael B. McChesney
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Hartigan-O'Connor DJ, Hirao LA, McCune JM, Dandekar S. Th17 cells and regulatory T cells in elite control over HIV and SIV. Curr Opin HIV AIDS 2011; 6:221-7. [PMID: 21399494 PMCID: PMC4079838 DOI: 10.1097/coh.0b013e32834577b3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW We present current findings about two subsets of CD4+ T cells that play an important part in the initial host response to infection with the HIV type 1: those producing IL-17 (Th17 cells) and those with immunosuppressive function (CD25+FoxP3+ regulatory T cells or T-reg). The role of these cells in the control of viral infection and immune activation as well as in the prevention of immune deficiency in HIV-infected elite controllers will be examined. We will also discuss the use of the simian immunodeficiency virus (SIV)-infected macaque model of AIDS to study the interplay between these cells and lentiviral infection in vivo. RECENT FINDINGS Study of Th17 cells in humans and nonhuman primates (NHPs) has shown that depletion of these cells is associated with the dissemination of microbial products from the infected gut, increased systemic immune activation, and disease progression. Most impressively, having a smaller Th17-cell compartment has been found to predict these outcomes. T-reg have been associated with the reduced antiviral T-cell responses but not with the suppression of generalized T cell activation. Both cell subsets influence innate immune responses and, in doing so, may shape the inflammatory milieu of the host at infection. SUMMARY Interactions between Th17 cells, T-reg, and cells of the innate immune system influence the course of HIV and SIV infection from its earliest stages, even before the appearance of adaptive immunity. Such interactions may be pivotal for elite control over disease progression.
Collapse
Affiliation(s)
- Dennis J Hartigan-O'Connor
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
The host immune system is profoundly affected during the acute phase of progressive immunodeficiency lentiviral infections. Studies of these alterations have been quite restricted in humans because of the limited availability of samples from acutely HIV-infected persons. Therefore, numerous studies have turned attention to nonhuman primate models. Specifically, SIV-infected rhesus macaques (RMs) have been informative for understanding the pathogenesis of HIV infection in humans. Indeed, advantages of the nonhuman primate model include the ability to study the very early events after infection and the ability to retrieve copious amounts of tissues. In addition, nonhuman primates allow for comparative studies between non-natural and natural hosts for SIV, in which SIV infection results in progression, or not, to AIDS, respectively. Although SIV infection of RM is the best model for HIV infection, the immunologic and/or virologic phenomena in SIV-infected RM do not always reflect those seen in HIV-infected humans. Here virologic and immunologic aspects of acute HIV infection of humans and SIV infection of Asian and African nonhuman primates are discussed and compared in relation to how these aspects relate to disease progression.
Collapse
|
37
|
Antibody-dependent cell-mediated viral inhibition emerges after simian immunodeficiency virus SIVmac251 infection of rhesus monkeys coincident with gp140-binding antibodies and is effective against neutralization-resistant viruses. J Virol 2011; 85:5465-75. [PMID: 21450829 DOI: 10.1128/jvi.00313-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibody-dependent cell-mediated viral inhibition (ADCVI) is an attractive target for vaccination because it takes advantage of both the anamnestic properties of an adaptive immune response and the rapid early response characteristics of an innate immune response. Effective utilization of ADCVI in vaccine strategies will depend on an understanding of the natural history of ADCVI during acute and chronic human immunodeficiency virus type 1 (HIV-1) infection. We used the simian immunodeficiency virus (SIV)-infected rhesus monkey as a model to study the kinetics of ADCVI in early infection, the durability of ADCVI through the course of infection, and the effectiveness of ADCVI against viruses with envelope mutations that are known to confer escape from antibody neutralization. We demonstrate the development of ADCVI, capable of inhibiting viral replication 100-fold, within 3 weeks of infection, preceding the development of a comparable-titer neutralizing antibody response by weeks to months. The emergence of ADCVI was temporally associated with the emergence of gp140-binding antibodies, and in most animals, ADCVI persisted through the course of infection. Highly evolved viral envelopes from viruses isolated at late time points following infection that were resistant to plasma neutralization remained susceptible to ADCVI, suggesting that the epitope determinants of neutralization escape are not shared by antibodies that mediate ADCVI. These findings suggest that despite the ability of SIV to mutate and adapt to multiple immunologic pressures during the course of infection, SIV envelope may not escape the binding of autologous antibodies that mediate ADCVI.
Collapse
|
38
|
Quantification of the relative importance of CTL, B cell, NK cell, and target cell limitation in the control of primary SIV-infection. PLoS Comput Biol 2011; 7:e1001103. [PMID: 21408213 PMCID: PMC3048377 DOI: 10.1371/journal.pcbi.1001103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 01/28/2011] [Indexed: 01/22/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, B cells and target cell limitation have all been suggested to play a role in the control of SIV and HIV-1 infection. However, previous research typically studied each population in isolation leaving the magnitude, relative importance and in vivo relevance of each effect unclear. Here we quantify the relative importance of CTLs, NK cells, B cells and target cell limitation in controlling acute SIV infection in rhesus macaques. Using three different methods, we find that the availability of target cells and CD8+ T cells are important predictors of viral load dynamics. If CTL are assumed to mediate this anti-viral effect via a lytic mechanism then we estimate that CTL killing is responsible for approximately 40% of productively infected cell death, the remaining cell death being attributable to intrinsic, immune (CD8+ T cell, NK cell, B cell) -independent mechanisms. Furthermore, we find that NK cells have little impact on the death rate of infected CD4+ cells and that their net impact is to increase viral load. We hypothesize that NK cells play a detrimental role in SIV infection, possibly by increasing T cell activation.
Collapse
|
39
|
Nguyen DC, Scinicariello F, Attanasio R. Characterization and allelic polymorphisms of rhesus macaque (Macaca mulatta) IgG Fc receptor genes. Immunogenetics 2011; 63:351-62. [PMID: 21327607 DOI: 10.1007/s00251-011-0514-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/11/2011] [Indexed: 01/26/2023]
Abstract
Macaque models are invaluable for AIDS research. Indeed, initial development of HIV-1 vaccines relies heavily on simian immunodeficiency virus-infected rhesus macaques. Neutralizing antibodies, a major component of anti-HIV protective responses, ultimately interact with Fc receptors on phagocytic and natural killer cells to eliminate the pathogen. Despite the major role that Fc receptors play in protective responses, there is very limited information available on these molecules in rhesus macaques. Therefore, in this study, rhesus macaque CD32 (FcγRII) and CD64 (FcγRI) homologues were genetically characterized. In addition, presence of CD16 (FcγRIII), CD32, and CD64 allelic polymorphisms were determined in a group of nine animals. Results from this study show that the predicted structures of macaque CD32 and CD64 are highly similar to their human counterparts. Macaque and human CD32 and CD64 extracellular domains are 88-90% and 94-95% homologous, respectively. Although all cysteines are conserved between the two species, macaque CD32 exhibits two additional N-linked glycosylation sites, whereas CD64 lacks three of them when compared to humans. Five CD32, three CD64, and three CD16 distinct allelic sequences were indentified in the nine animals examined, indicating a relatively high level of polymorphism in macaque Fcγ receptors. Together, these results validate rhesus macaques as models for vaccine development and antibody responses, while at the same time, underscoring the need to take into account the high degree of genetic heterogeneity present in this species when designing experimental protocols.
Collapse
Affiliation(s)
- Doan C Nguyen
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
40
|
Effect of B-cell depletion on coreceptor switching in R5 simian-human immunodeficiency virus infection of rhesus macaques. J Virol 2011; 85:3086-94. [PMID: 21248033 DOI: 10.1128/jvi.02150-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently described a coreceptor switch in rapid progressor (RP) R5 simian-human immunodeficiency virus SF162P3N (SHIV(SF162P3N))-infected rhesus macaques that had high virus replication and undetectable or weak and transient antiviral antibody response (S. H. Ho et al., J. Virol. 81:8621-8633, 2007; S. H. Ho, N. Trunova, A. Gettie, J. Blanchard, and C. Cheng-Mayer, J. Virol. 82:5653-5656, 2008; and W. Ren et al., J. Virol. 84:340-351, 2010). The lack of antibody selective pressure, together with the observation that the emerging X4 variants were neutralization sensitive, suggested that the absence or weakening of the virus-specific humoral immune response could be an environmental factor fostering coreceptor switching in vivo. To test this possibility, we treated four macaques with 50 mg/kg of body weight of the anti-CD20 antibody rituximab every 2 to 3 weeks starting from the week prior to intravenous infection with SHIV(SF162P3N) for a total of six infusions. Rituximab treatment successfully depleted peripheral and lymphoid CD20(+) cells for up to 25 weeks according to flow cytometry and immunohistochemical staining, with partial to full recovery in two of the four treated monkeys thereafter. Three of the four treated macaques failed to mount a detectable anti-SHIV antibody response, while the response was delayed in the remaining animal. The three seronegative macaques progressed to disease, but in none of them could the presence of X4 variants be demonstrated by V3 sequence and tropism analyses. Furthermore, viruses did not evolve early in these diseased macaques to be more soluble CD4 sensitive. These results demonstrate that the absence or diminution of humoral immune responses by itself is insufficient to drive the R5-to-X4 switch and the neutralization susceptibility of the evolving viruses.
Collapse
|
41
|
Huang KHG, Bonsall D, Katzourakis A, Thomson EC, Fidler SJ, Main J, Muir D, Weber JN, Frater AJ, Phillips RE, Pybus OG, Goulder PJ, McClure MO, Cooke GS, Klenerman P. B-cell depletion reveals a role for antibodies in the control of chronic HIV-1 infection. Nat Commun 2010; 1:102. [PMID: 20981030 PMCID: PMC2963804 DOI: 10.1038/ncomms1100] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/23/2010] [Indexed: 01/11/2023] Open
Abstract
HIV can be partially contained by host immunity and understanding the basis of this may inform vaccine design. The importance of B-cell function in long-term control is poorly understood. One method of investigating this is in vivo cellular depletion. In this study, we take advantage of a unique opportunity to investigate the role of B cells in an HIV-infected patient. The HIV-1(+) patient studied here was not taking antiretroviral drugs and was treated for pre-existing low-grade lymphoplasmacytoid lymphoma by depletion of CD20+ B cells using rituximab. We demonstrate that B-cell depletion results in a decline in autologous neutralizing antibody (NAb) responses and a 1.7 log(10) rise in HIV-1 plasma viral load (pVL). The recovery of NAbs results in a decline in pVL. The HIV-1 sequences diversify and NAb-resistant mutants are subsequently selected. These data suggest that B-cell function can contribute to the long-term control of pVL, and that NAbs may be more important in controlling chronic HIV-1 infection than previously suspected.
Collapse
Affiliation(s)
- Kuan-Hsiang G. Huang
- Nuffield Department of Medicine and NIHR Biomedical Research Centre, Oxford Martin School, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- These authors contributed equally to this work
| | - David Bonsall
- Jefferiss Research laboratories, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
- These authors contributed equally to this work
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Emma C. Thomson
- Jefferiss Research laboratories, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Sarah J. Fidler
- Jefferiss Research laboratories, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Janice Main
- Jefferiss Research laboratories, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - David Muir
- Jefferiss Research laboratories, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Jonathan N. Weber
- Jefferiss Research laboratories, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Alexander J. Frater
- Nuffield Department of Medicine and NIHR Biomedical Research Centre, Oxford Martin School, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Rodney E. Phillips
- Nuffield Department of Medicine and NIHR Biomedical Research Centre, Oxford Martin School, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Philip J.R. Goulder
- Nuffield Department of Medicine and NIHR Biomedical Research Centre, Oxford Martin School, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Myra O. McClure
- Jefferiss Research laboratories, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Graham S. Cooke
- Jefferiss Research laboratories, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
- These authors contributed equally to this work
| | - Paul Klenerman
- Nuffield Department of Medicine and NIHR Biomedical Research Centre, Oxford Martin School, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- These authors contributed equally to this work
| |
Collapse
|
42
|
Cafaro A, Macchia I, Maggiorella MT, Titti F, Ensoli B. Innovative approaches to develop prophylactic and therapeutic vaccines against HIV/AIDS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:189-242. [PMID: 20047043 DOI: 10.1007/978-1-4419-1132-2_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acquired immunodeficiency syndrome (AIDS) emerged in the human population in the summer of 1981. According to the latest United Nations estimates, worldwide over 33 million people are infected with human immunodeficiency virus (HIV) and the prevalence rates continue to rise globally. To control the alarming spread of HIV, an urgent need exists for developing a safe and effective vaccine that prevents individuals from becoming infected or progressing to disease. To be effective, an HIV/AIDS vaccine should induce broad and long-lasting humoral and cellular immune responses, at both mucosal and systemic level. However, the nature of protective immune responses remains largely elusive and this represents one of the major roadblocks preventing the development of an effective vaccine. Here we summarize our present understanding of the factors responsible for resistance to infection or control of progression to disease in human and monkey that may be relevant to vaccine development and briefly review recent approaches which are currently being tested in clinical trials. Finally, the rationale and the current status of novel strategies based on nonstructural HIV-1 proteins, such as Tat, Nef and Rev, used alone or in combination with modified structural HIV-1 Env proteins are discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
43
|
Yamamoto H, Matano T. Neutralizing antibodies in SIV control: co-impact with T cells. Vaccine 2010; 28 Suppl 2:B13-7. [PMID: 20510737 DOI: 10.1016/j.vaccine.2009.09.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/19/2009] [Accepted: 09/18/2009] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) and pathogenic simian immunodeficiency virus (SIV)-infected naïve hosts experience a characteristic absence of early and potent virus-specific neutralizing antibody (NAb) responses preceding establishment of persistent infection. Yet conversely, we have recently shown that NAbs passively immunized in rhesus macaques at early post-SIV challenge are capable of playing a critical role in non-sterile viremia control with implications of antibody-enhanced antigen presentation. In a current follow-up study we have further reported that NAbs mediate rapid elicitation of polyfunctional virus-specific CD4+ T-cells in vivo. The NAb-immunized macaques mounting these responses exhibited sustained viremia control for over 1 year, accompanied with robust anti-SIV cellular immunity. Perspectives obtained from the results are discussed.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
44
|
Abstract
Licensed vaccines against viral diseases generate antibodies that neutralize the infecting virus and protect against infection or disease. Similarly, an effective vaccine against HIV-1 will likely need to induce antibodies that prevent initial infection of host cells or that limit early events of viral dissemination. Such antibodies must target the surface envelope glycoproteins of HIV-1, which are highly variable in sequence and structure. The first subunit vaccines to enter clinical trails were safe and immunogenic but unable to elicit antibodies that neutralized most circulating strains of HIV-1. However, potent virus neutralizing antibodies (NAbs) can develop during the course of HIV-1 infection, and this is the type of antibody response that researchers seek to generate with a vaccine. Thus, current vaccine design efforts have focused on a more detailed understanding of these broadly neutralizing antibodies and their epitopes to inform the design of improved vaccines.
Collapse
Affiliation(s)
- John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
45
|
Hidajat R, Kuate S, Venzon D, Kalyanaraman V, Kalisz I, Treece J, Lian Y, Barnett SW, Robert-Guroff M. Construction and immunogenicity of replication-competent adenovirus 5 host range mutant recombinants expressing HIV-1 gp160 of SF162 and TV1 strains. Vaccine 2010; 28:3963-71. [PMID: 20382241 DOI: 10.1016/j.vaccine.2010.03.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 03/19/2010] [Accepted: 03/25/2010] [Indexed: 01/17/2023]
Abstract
An HIV Env immunogen capable of eliciting broad immunity is critical for a successful vaccine. We constructed and characterized adenovirus 5 host range mutant (Ad5hr) recombinants encoding HIV(SF162) gp160 (subtype B) and HIV(TV1) gp160 (subtype C). Immunization of mice with one or both induced cellular immunity to subtype B and C peptides by ELISpot, and antibody responses with high binding titers to HIV Env of subtypes A, B, C, and E. Notably, Ad5hr-HIV(TV1) gp160 induced better cellular immunity than Ad5hr-HIV(SF162) gp160, either alone or following co-administration. Thus, the TV1 Env recombinant alone may be sufficient for eliciting immune responses against both subtype B and C envelopes. Further studies of Ad5hr-HIV(TV1) gp160 in rhesus macaques will evaluate the suitability of this insert for a future phase I clinical trial using a replication-competent Ad4 vector.
Collapse
Affiliation(s)
- Rachmat Hidajat
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nonpathogenic simian immunodeficiency virus infection of sooty mangabeys is not associated with high levels of autologous neutralizing antibodies. J Virol 2010; 84:6248-53. [PMID: 20375163 DOI: 10.1128/jvi.00295-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of natural-host species, such as sooty mangabeys (SMs), is characterized by a high level of viral replication and a low level of generalized immune activation, despite evidence of an adaptive immune response. Here the ability of SIV-infected SMs to mount neutralizing antibodies (Nab) against autologous virus was compared to that of human immunodeficiency virus type 1 (HIV-1) subtype C-infected subjects. While high levels of Nab were observed in HIV-1 infection, samples obtained at comparable time points from SM exhibited relatively low titers of autologous Nab. Nevertheless, SM plasma with higher Nab titers also contained elevated peripheral CD4(+) T-cell levels, suggesting a potential immunologic benefit for SMs. These data indicate that AIDS resistance in these primates is not due to high Nab titers and raise the possibility that low levels of Nab might be an inherent feature of natural-host SIV infections.
Collapse
|
47
|
Mechanism of protection of live attenuated simian immunodeficiency virus: coevolution of viral and immune responses. AIDS 2010; 24:637-48. [PMID: 20186034 DOI: 10.1097/qad.0b013e328337795a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Suppression of adaptive immune responses during primary SIV infection of sabaeus African green monkeys delays partial containment of viremia but does not induce disease. Blood 2010; 115:3070-8. [PMID: 20147699 DOI: 10.1182/blood-2009-10-245225] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the most puzzling observations in HIV research is the lack of pathogenicity in most nonhuman primate species that are natural hosts of simian immunodeficiency virus (SIV) infection. Despite this, natural hosts experience a level of viremia similar to humans infected with HIV or macaques infected with SIV. To determine the role of adaptive immune responses in viral containment and lack of disease, we delayed the generation of cellular and humoral immune responses by administering anti-CD8- and anti-CD20 lymphocyte-depleting antibodies to sabaeus African green monkeys (Chlorocebus sabaeus) before challenge with SIV(sab9315BR). In vivo lymphocyte depletion during primary infection resulted in a brief elevation of viremia but not in disease. Based on the magnitude and timing of SIV-specific CD8(+) T-cell responses in the lymphocyte-depleted animals, CD8(+) T-cell responses appear to contribute to viral containment in natural hosts. We found no evidence for a contribution of humoral immune responses in viral containment. These studies indicate that natural hosts have developed mechanisms in addition to classic adaptive immune responses to cope with this lentiviral infection. Thus, adaptive immune responses in natural hosts appear to be less critical for viral containment than in HIV infection.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The only unequivocal correlate of protection against primate immunodeficiency virus infection is the presence of neutralizing antibody at sufficient titre. This correlate has been determined experimentally using animal models, and the data are reproducible and robust. Recent advances have added further depth to this knowledge by moving us closer to understanding how antibodies neutralize HIV-1, and what effects they may have in vivo with regard to protection from infection and disease. RECENT FINDINGS This review will cover recent advances in our understanding of the structural basis of HIV-1 neutralization by antibody and how this understanding may relate to vaccine design, and incorporate this into the broader context of how antibodies may influence viral transmission, replication and disease. SUMMARY The sum of these findings provides a strong rationale for designing an HIV-1 vaccine on the principle of induction of neutralizing antibodies, although other effector functions of antibodies such as complement and antibody-mediated cellular immunity should also be borne in mind, as should CD4 and CD8 T cell responses.
Collapse
|
50
|
Wanted: correlates of vaccine-induced protection against simian immunodeficiency virus. Curr Opin HIV AIDS 2009; 3:393-8. [PMID: 19372996 DOI: 10.1097/coh.0b013e3282faa461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW We will highlight recent advances in defining the attributes of immune responses that control AIDS virus replication using animal models, and also point out key gaps in our understanding that should be addressed in future research. RECENT FINDINGS Many different vaccine approaches are currently being evaluated in animal models. Almost all of them elicit strong cellular or humoral immune responses in macaques. Commonly used prime-and-boost strategies have had varying degrees of success in diminishing chronic phase virus loads in vaccinated animals, but few have shown durable reduction in replication of the CCR5-tropic simian immunodeficiency viruses (SIVs) that most closely resemble field isolates of HIV. Investigators are therefore turning to other systems, including live attenuated vaccines and cohorts of spontaneous SIV controllers, to help identify the properties of successful host responses to pathogenic SIV. These responses likely incorporate multiple coordinated effector mechanisms. SUMMARY There is no effective AIDS vaccine on the horizon. CD4+ and CD8+ T cell responses and antibodies have all been implicated in control of SIV replication seen in various experimental systems, but the correlates of protection against AIDS virus replication have not yet been definitively identified. Animal models will remain a necessary component of this research.
Collapse
|