1
|
Berger A, Pedersen J, Kowatsch MM, Scholte F, Lafrance MA, Azizi H, Li Y, Gomez A, Wade M, Fausther-Bovendo H, de La Vega MA, Jelinski J, Babuadze G, Nepveu-Traversy ME, Lamarre C, Racine T, Kang CY, Gaillet B, Garnier A, Gilbert R, Kamen A, Yao XJ, Fowke KR, Arts E, Kobinger G. Impact of Recombinant VSV-HIV Prime, DNA-Boost Vaccine Candidates on Immunogenicity and Viremia on SHIV-Infected Rhesus Macaques. Vaccines (Basel) 2024; 12:369. [PMID: 38675751 PMCID: PMC11053682 DOI: 10.3390/vaccines12040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges.
Collapse
Affiliation(s)
- Alice Berger
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Jannie Pedersen
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Monika M. Kowatsch
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.M.K.); (K.R.F.)
| | - Florine Scholte
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Marc-Alexandre Lafrance
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Hiva Azizi
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Yue Li
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada; (Y.L.); (C.-Y.K.); (E.A.)
| | - Alejandro Gomez
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Matthew Wade
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Hugues Fausther-Bovendo
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Marc-Antoine de La Vega
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Joseph Jelinski
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - George Babuadze
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | | | - Claude Lamarre
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Trina Racine
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec, QC G1E 6W2, Canada; (T.R.); (X.-J.Y.)
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada; (Y.L.); (C.-Y.K.); (E.A.)
| | - Bruno Gaillet
- Department of Chemical Engineering, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada; (B.G.); (A.G.)
| | - Alain Garnier
- Department of Chemical Engineering, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada; (B.G.); (A.G.)
| | - Rénald Gilbert
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council, Montreal, QC H4P 2R2, Canada;
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Xiao-Jian Yao
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec, QC G1E 6W2, Canada; (T.R.); (X.-J.Y.)
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.M.K.); (K.R.F.)
| | - Eric Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada; (Y.L.); (C.-Y.K.); (E.A.)
| | - Gary Kobinger
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| |
Collapse
|
2
|
HIV-1 Envelope Glycosylation and the Signal Peptide. Vaccines (Basel) 2021; 9:vaccines9020176. [PMID: 33669676 PMCID: PMC7922494 DOI: 10.3390/vaccines9020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
The RV144 trial represents the only vaccine trial to demonstrate any protective effect against HIV-1 infection. While the reason(s) for this protection are still being evaluated, it serves as justification for widespread efforts aimed at developing new, more effective HIV-1 vaccines. Advances in our knowledge of HIV-1 immunogens and host antibody responses to these immunogens are crucial to informing vaccine design. While the envelope (Env) protein is the only viral protein present on the surface of virions, it exists in a complex trimeric conformation and is decorated with an array of variable N-linked glycans, making it an important but difficult target for vaccine design. Thus far, efforts to elicit a protective humoral immune response using structural mimics of native Env trimers have been unsuccessful. Notably, the aforementioned N-linked glycans serve as a component of many of the epitopes crucial for the induction of potentially protective broadly neutralizing antibodies (bnAbs). Thus, a greater understanding of Env structural determinants, most critically Env glycosylation, will no doubt be of importance in generating effective immunogens. Recent studies have identified the HIV-1 Env signal peptide (SP) as an important contributor to Env glycosylation. Further investigation into the mechanisms by which the SP directs glycosylation will be important, both in the context of understanding HIV-1 biology and in order to inform HIV-1 vaccine design.
Collapse
|
3
|
Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity 2018; 50:241-252.e6. [PMID: 30552025 PMCID: PMC6335502 DOI: 10.1016/j.immuni.2018.11.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/21/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023]
Abstract
Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers. Repeat intrarectal challenge with homologous tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. High-titer animals, however, demonstrated protection that was gradually lost as nAb titers waned over time. An autologous serum ID50 nAb titer of ∼1:500 afforded more than 90% protection from medium-dose SHIV infection. In contrast, antibody-dependent cellular cytotoxicity and T cell activity did not correlate with protection. Therefore, Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained.
Collapse
|
4
|
Akapirat S, Karnasuta C, Vasan S, Rerks-Ngarm S, Pitisuttithum P, Madnote S, Savadsuk H, Rittiroongrad S, Puangkaew J, Phogat S, Tartaglia J, Sinangil F, de Souza MS, Excler JL, Kim JH, Robb ML, Michael NL, Ngauy V, O'Connell RJ, Karasavvas N. Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations. PLoS One 2018; 13:e0196397. [PMID: 29702672 PMCID: PMC5922559 DOI: 10.1371/journal.pone.0196397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022] Open
Abstract
Sexual transmission is the principal driver of the human immunodeficiency virus (HIV) pandemic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can generate hypotheses regarding mechanisms of protection, and may influence vaccine development. The RV144 (ClinicalTrials.gov NCT00223080) efficacy trial showed protection against HIV infections but mucosal samples were not collected, therefore, the contribution of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the generation, magnitude and persistence of antibody responses to recombinant gp120 envelope and antigens including variable one and two loop scaffold antigens (gp70V1V2) previously shown to correlate with risk in RV144. We evaluated antibody responses to gp120 A244gD and gp70V1V2 92TH023 (both CRF01_AE) and Case A2 (subtype B) in cervico-vaginal mucus (CVM), seminal plasma (SP) and rectal secretions (RS) from HIV-uninfected RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine boosting increased IgG geometric mean titers (GMT) to gp120 A244gD in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively), followed by SP and RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (11–17 fold) and SP (2 fold) two weeks post first boost. IgG to Case A2 was only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to gp120 A244gD (CVM, SP, RS), gp70V1V2 92TH023 (CVM, SP), and Case A2 (CVM) correlated with plasma IgG levels (p<0.001). Although the magnitude of IgG responses declined after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final vaccination. Further studies in localization, persistence and magnitude of envelope specific antibodies (IgG and dimeric IgA) in anogenital secretions will help determine their role in preventing mucosal HIV acquisition.
Collapse
Affiliation(s)
- Siriwat Akapirat
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chitraporn Karnasuta
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sandhya Vasan
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | | | | | - Sirinan Madnote
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Hathairat Savadsuk
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Surawach Rittiroongrad
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jiraporn Puangkaew
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sanjay Phogat
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - James Tartaglia
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases (GSID), South San Francisco, California, United States of America
| | - Mark S. de Souza
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Jean-Louis Excler
- The Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Viseth Ngauy
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Robert J. O'Connell
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nicos Karasavvas
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- * E-mail:
| | | |
Collapse
|
5
|
Membrane-anchored stalk domain of influenza HA enhanced immune responses in mice. Microb Pathog 2017; 113:421-426. [PMID: 29174687 DOI: 10.1016/j.micpath.2017.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/17/2022]
Abstract
Current strategies for influenza virus vaccines primarily aim to elicit immune responses towards the globular head domain of the hemagglutinin (HA) protein so that binding of the virus to membrane receptors on the host cells is inhibited. In the present study, we show a novel strategy to generate immunity against the highly conserved region of the influenza virus. The globular head domain was replaced by different linkers to generate a headless HA (stalk domain) and then coexpressed with influenza M1 proteinin Tni insect cells. The expression was validated by western blot analysis, and stalk domain with peptides (GGGGS)4 linkers was identified to anchor in a stable way to the cell membrane. An immunoelectron microscope showed that stalk domain with (GGGGS)4 linkers were steadily incorporated to the surface of influenza virus-like particles (VLPs). Mice immunized with these VLPs exhibited enhanced systemic antibody responses with increased binding avidity and study found high titers of ADCC antibodies to the influenza virus, these VLPs also induced mucosal immune responses and produced antigen-specific IgG and IgA in nasal and lung washes. In addition, antigen-specific IgG antibody-secreting cells (ASCs) increased significantly in the spleen and lymph node. The results of this study suggest that the headless HA is a useful target in developing a universal vaccine against influenza virus.
Collapse
|
6
|
Brown EP, Dowell KG, Boesch AW, Normandin E, Mahan AE, Chu T, Barouch DH, Bailey-Kellogg C, Alter G, Ackerman ME. Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles. J Immunol Methods 2017; 443:33-44. [PMID: 28163018 PMCID: PMC5333794 DOI: 10.1016/j.jim.2017.01.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 01/09/2023]
Abstract
Antibodies are widely considered to be a frequent primary and often mechanistic correlate of protection of approved vaccines; thus evaluating the antibody response is of critical importance in attempting to understand and predict the efficacy of novel vaccine candidates. Historically, antibody responses have been analyzed by determining the titer of the humoral response using measurements such as an ELISA, neutralization, or agglutination assays. In the simplest case, sufficiently high titers of antibody against vaccine antigen(s) are sufficient to predict protection. However, antibody titer provides only a partial measure of antibody function, which is dependent on both the variable region (Fv) to bind the antigen target, and the constant region (Fc) to elicit an effector response from the innate arm of the immune system. In the case of some diseases, such as HIV, for which an effective vaccine has proven elusive, antibody effector function has been shown to be an important driver of monoclonal antibody therapy outcomes, of viral control in infected patients, and of vaccine-mediated protection in preclinical and clinical studies. We sought to establish a platform for the evaluation of the Fc domain characteristics of antigen-specific antibodies present in polyclonal samples in order to better develop insights into Fc receptor-mediated antibody effector activity, more fully understand how antibody responses may differ in association with disease progression and between subject groups, and differentiate protective from non-protective responses. To this end we have developed a high throughput biophysical platform capable of simultaneously evaluating many dimensions of the antibody effector response. High-throughput array-based characterization platform for polyclonal antibodies. Development of a biophysical proxy for antibody effector function. Antigen and Fc receptor recognition characteristics are captured. Enables systematic serologic studies of NHP and human antibody samples.
Collapse
Affiliation(s)
- Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Karen G Dowell
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Erica Normandin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Alison E Mahan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Thach Chu
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Dan H Barouch
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
7
|
Abstract
Nucleic acid vaccines are a next-generation branch of vaccines which offer major benefits over their conventional protein, bacteria, or viral-based counterparts. However, to be effective in large mammals and humans, an enhancing delivery technology is required. Electroporation is a physical technique which results in improved delivery of large molecules through the cell membrane. In the case of plasmid DNA and mRNA, electroporation enhances both the uptake and expression of the delivered nucleic acids. The muscle is an attractive tissue for nucleic acid vaccination in a clinical setting due to the accessibility and abundance of the target tissue. Historical clinical studies of electroporation in the muscle have demonstrated the procedure to be generally well tolerated in patients. Previous studies have determined that optimized electroporation parameters (such as electrical field intensity, pulse length, pulse width and drug product formulation) majorly impact the efficiency of nucleic acid delivery. We provide an overview of DNA/RNA vaccination in the muscle of mice. Our results suggest that the technique is safe and effective and is highly applicable to a research setting as well as scalable to larger animals and humans.
Collapse
Affiliation(s)
- Kate E Broderick
- Inovio Pharmaceuticals, 660 West Germantown Pike, Suite 110, Plymouth Meeting, PA, 19462, USA.
| | - Laurent M Humeau
- Inovio Pharmaceuticals, 660 West Germantown Pike, Suite 110, Plymouth Meeting, PA, 19462, USA
| |
Collapse
|
8
|
Asmal M, Lane S, Tian M, Nickel G, Venner C, Dirk B, Dikeakos J, Luedemann C, Mach L, Balachandran H, Buzby A, Rao S, Letvin N, Gao Y, Arts EJ. Pathogenic infection of Rhesus macaques by an evolving SIV-HIV derived from CCR5-using envelope genes of acute HIV-1 infections. Virology 2016; 499:298-312. [PMID: 27723488 DOI: 10.1016/j.virol.2016.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/31/2022]
Abstract
For studies on vaccines and therapies for HIV disease, SIV-HIV chimeric viruses harboring the HIV-1 env gene (SHIVenv) remain the best virus in non-human primate models. However, there are still very few SHIVenv viruses that can cause AIDS in non-CD8-depleted animals. In the present study, a recently created CCR5-using SHIVenv_B3 virus with env gene derived from acute/early HIV-1 infections (AHI) successfully established pathogenic infection in macaques. Through a series of investigations on the evolution, mutational profile, and phenotype of the virus and the resultant humoral immune response in infected rhesus macaques, we found that the E32K mutation in the Env C1 domain was associated with macaque pathogenesis, and that the electrostatic interactions in Env may favor E32K at the gp120 N terminus and "lock" the binding to heptad repeat 1 of gp41 in the trimer and produce a SHIVenv with increased fitness and pathogenesis during macaque infections.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/immunology
- Disease Models, Animal
- Evolution, Molecular
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/immunology
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/classification
- HIV-1/genetics
- HIV-1/immunology
- HIV-1/pathogenicity
- Humans
- Immunity, Humoral
- Macaca mulatta
- Molecular Sequence Data
- Mutation, Missense
- Phylogeny
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Sequence Alignment
- Simian Immunodeficiency Virus/classification
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/pathogenicity
- Virulence
Collapse
Affiliation(s)
- Mohammed Asmal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sophie Lane
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Meijuan Tian
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Gabrielle Nickel
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Colin Venner
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Brennan Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jimmy Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Corinne Luedemann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linh Mach
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harikrishnan Balachandran
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Adam Buzby
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Srinivas Rao
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Norman Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yong Gao
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Eric J Arts
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
| |
Collapse
|
9
|
An HIV gp120-CD4 Immunogen Does Not Elicit Autoimmune Antibody Responses in Cynomolgus Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:618-27. [PMID: 27193040 PMCID: PMC4933776 DOI: 10.1128/cvi.00115-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023]
Abstract
A promising concept for human immunodeficiency virus (HIV) vaccines focuses immunity on the highly conserved transition state structures and epitopes that appear when the HIV glycoprotein gp120 binds to its receptor, CD4. We are developing chimeric antigens (full-length single chain, or FLSC) in which gp120 and CD4 sequences are flexibly linked to allow stable intrachain complex formation between the two moieties (A. DeVico et al., Proc Natl Acad Sci U S A 104:17477-17482, 2007, doi:10.1073/pnas.0707399104; T. R. Fouts et al., J Virol 74:11427-11436, 2000, doi:10.1128/JVI.74.24.11427-11436.2000). Proof of concept studies with nonhuman primates show that FLSC elicited heterologous protection against simian-human immunodeficiency virus (SHIV)/simian immunodeficiency virus (SIV) (T. R. Fouts et al., Proc Natl Acad Sci U S A 112:E992-E999, 2016, doi:10.1073/pnas.1423669112), which correlated with antibodies against transition state gp120 epitopes. Nevertheless, advancement of any vaccine that comprises gp120-CD4 complexes must consider whether the CD4 component breaks tolerance and becomes immunogenic in the autologous host. To address this, we performed an immunotoxicology study with cynomolgus macaques vaccinated with either FLSC or a rhesus variant of FLSC containing macaque CD4 sequences (rhFLSC). Enzyme-linked immunosorbent assay (ELISA) binding titers, primary CD3(+) T cell staining, and temporal trends in T cell subset frequencies served to assess whether anti-CD4 autoantibody responses were elicited by vaccination. We find that immunization with multiple high doses of rhFLSC did not elicit detectable antibody titers despite robust responses to rhFLSC. In accordance with these findings, immunized animals had no changes in circulating CD4(+) T cell counts or evidence of autoantibody reactivity with cell surface CD4 on primary naive macaque T cells. Collectively, these studies show that antigens using CD4 sequences to stabilize transition state gp120 structures are unlikely to elicit autoimmune antibody responses, supporting the advancement of gp120-CD4 complex-based antigens, such as FLSC, into clinical testing.
Collapse
|
10
|
Musich T, Robert-Guroff M. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Rev Vaccines 2016; 15:1015-27. [PMID: 26910195 DOI: 10.1586/14760584.2016.1158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prime/boost vaccination strategies for HIV/SIV vaccine development have been used since the early 1990s and have become an established method for eliciting cell and antibody mediated immunity. Here we focus on induction of protective antibodies, both broadly neutralizing and non-neutralizing, with the viral envelope being the key target antigen. Prime/boost approaches are complicated by the diversity of autologous and heterologous priming vectors, and by various forms of envelope booster immunogens, many still in development as structural studies aim to design stable constructs with exposure of critical epitopes for protective antibody elicitation. This review discusses individual vaccine components, reviews recent prime/boost strategies and their outcomes, and highlights complicating factors arising as greater knowledge concerning induction of adaptive, protective immunity is acquired.
Collapse
Affiliation(s)
- Thomas Musich
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight major advances in the development and use of animal models for HIV-1 research during the last year. RECENT FINDINGS Animal model research during the last year has focused on the development and refinement of models; use of these models to explore key questions about HIV entry, immune control, and persistence; and key discoveries with these models testing therapeutic and vaccine concepts. Some of the greatest breakthroughs have been in understanding early events surrounding transmission, the effectiveness of broadly neutralizing human monoclonal antibodies as passive prophylaxis, and some new ideas in the area of eliminating the viral reservoir in established infection. SUMMARY Despite the lack of a flawless HIV-1 infection and pathogenesis model, the field utilizes several models that have already made important contributions to our understanding of early events, immune control, and the potential for novel therapies.
Collapse
|
12
|
Enhanced Immune Responses to HIV-1 Envelope Elicited by a Vaccine Regimen Consisting of Priming with Newcastle Disease Virus Expressing HIV gp160 and Boosting with gp120 and SOSIP gp140 Proteins. J Virol 2015; 90:1682-6. [PMID: 26581986 DOI: 10.1128/jvi.02847-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost.
Collapse
|
13
|
Karasavvas N, Karnasuta C, Savadsuk H, Madnote S, Inthawong D, Chantakulkij S, Rittiroongrad S, Nitayaphan S, Pitisuttithum P, Thongcharoen P, Siriyanon V, Andrews CA, Barnett SW, Tartaglia J, Sinangil F, Francis DP, Robb ML, Michael NL, Ngauy V, de Souza MS, Paris RM, Excler JL, Kim JH, O'Connell RJ. IgG Antibody Responses to Recombinant gp120 Proteins, gp70V1/V2 Scaffolds, and a CyclicV2 Peptide in Thai Phase I/II Vaccine Trials Using Different Vaccine Regimens. AIDS Res Hum Retroviruses 2015; 31:1178-86. [PMID: 26234467 PMCID: PMC4651018 DOI: 10.1089/aid.2015.0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RV144 correlates of risk analysis showed that IgG antibodies to gp70V1V2 scaffolds inversely correlated with risk of HIV acquisition. We investigated IgG antibody responses in RV135 and RV132, two ALVAC-HIV prime-boost vaccine trials conducted in Thailand prior to RV144. Both trials used ALVAC-HIV (vCP1521) at 0, 1, 3, and 6 months and HIV-1 gp120MNgD and gp120A244gD in alum (RV135) or gp120SF2 and gp120CM235 in MF59 (RV132) at 3 and 6 months. We assessed ELISA binding antibodies to the envelope proteins (Env) 92TH023, A244gD and MNgD, cyclicV2, and gp70V1V2 CaseA2 (subtype B) and 92TH023 (subtype CRF01_AE), and Env-specific IgG1 and IgG3. Antibody responses to gp120 A244gD, MNgD, and gp70V1V2 92TH023 scaffold were significantly higher in RV135 than in RV132. Antibodies to gp70V1V2 CaseA2 were detected only in RV135 vaccine recipients and IgG1 and IgG3 antibody responses to A244gD were significantly higher in RV135. IgG binding to gp70V1V2 CaseA2 and CRF01_AE scaffolds was higher with the AIDSVAX®B/E boost but both trials showed similar rates of antibody decline post-vaccination. MF59 did not result in higher IgG antibody responses compared to alum with the antigens tested. However, notable differences in the structure of the recombinant proteins and dosage used for immunizations may have contributed to the magnitude and specificity of IgG induced by the two trials.
Collapse
Affiliation(s)
- Nicos Karasavvas
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chitraporn Karnasuta
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Hathairat Savadsuk
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sirinan Madnote
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Dutsadee Inthawong
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Somsak Chantakulkij
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Surawach Rittiroongrad
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Vinai Siriyanon
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Susan W. Barnett
- Novartis Vaccines and Diagnostics, Inc., Cambridge, Massachusetts
| | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases (GSID), South San Francisco, California
| | - Donald P. Francis
- Global Solutions for Infectious Diseases (GSID), South San Francisco, California
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Viseth Ngauy
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark S. de Souza
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Robert M. Paris
- Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jean-Louis Excler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Robert J. O'Connell
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | |
Collapse
|
14
|
Barouch DH, Alter G, Broge T, Linde C, Ackerman ME, Brown EP, Borducchi EN, Smith KM, Nkolola JP, Liu J, Shields J, Parenteau L, Whitney JB, Abbink P, Ng'ang'a DM, Seaman MS, Lavine CL, Perry JR, Li W, Colantonio AD, Lewis MG, Chen B, Wenschuh H, Reimer U, Piatak M, Lifson JD, Handley SA, Virgin HW, Koutsoukos M, Lorin C, Voss G, Weijtens M, Pau MG, Schuitemaker H. Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys. Science 2015; 349:320-4. [PMID: 26138104 PMCID: PMC4653134 DOI: 10.1126/science.aab3886] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Preclinical studies of viral vector-based HIV-1 vaccine candidates have previously shown partial protection against neutralization-resistant virus challenges in rhesus monkeys. In this study, we evaluated the protective efficacy of adenovirus serotype 26 (Ad26) vector priming followed by purified envelope (Env) glycoprotein boosting. Rhesus monkeys primed with Ad26 vectors expressing SIVsmE543 Env, Gag, and Pol and boosted with AS01B-adjuvanted SIVmac32H Env gp140 demonstrated complete protection in 50% of vaccinated animals against a series of repeated, heterologous, intrarectal SIVmac251 challenges that infected all controls. Protective efficacy correlated with the functionality of Env-specific antibody responses. Comparable protection was also observed with a similar Ad/Env vaccine against repeated, heterologous, intrarectal SHIV-SF162P3 challenges. These data demonstrate robust protection by Ad/Env vaccines against acquisition of neutralization-resistant virus challenges in rhesus monkeys.
Collapse
Affiliation(s)
- Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Thomas Broge
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Caitlyn Linde
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | | | - Eric P Brown
- Thayer School of Engineering at Dartmouth, Hanover, NH 03755, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaitlin M Smith
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer Shields
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lily Parenteau
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David M Ng'ang'a
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - James R Perry
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenjun Li
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | - Bing Chen
- Children's Hospital, Boston, MA 02115, USA
| | | | - Ulf Reimer
- JPT Peptide Technologies GmbH, 12489 Berlin, Germany
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Scott A Handley
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert W Virgin
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | - Mo Weijtens
- Janssen Infectious Diseases and Vaccines (formerly Crucell), 2301 Leiden, Netherlands
| | - Maria G Pau
- Janssen Infectious Diseases and Vaccines (formerly Crucell), 2301 Leiden, Netherlands
| | - Hanneke Schuitemaker
- Janssen Infectious Diseases and Vaccines (formerly Crucell), 2301 Leiden, Netherlands
| |
Collapse
|
15
|
Feng H, Zhang H, Deng J, Wang L, He Y, Wang S, Seyedtabaei R, Wang Q, Liu L, Galipeau J, Compans RW, Wang BZ. Incorporation of a GPI-anchored engineered cytokine as a molecular adjuvant enhances the immunogenicity of HIV VLPs. Sci Rep 2015; 5:11856. [PMID: 26150163 PMCID: PMC4493578 DOI: 10.1038/srep11856] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/22/2015] [Indexed: 12/15/2022] Open
Abstract
HIV vaccines should elicit immune responses at both the mucosal portals of entry to block transmission and systemic compartments to clear disseminated viruses. Co-delivery of mucosal adjuvants has been shown to be essential to induce effective mucosal immunity by non-replicating vaccines. A novel cytokine, GIFT4, engineered by fusing GM-CSF and interleukin-4, was previously found to simulate B cell proliferation and effector function. Herein a membrane-anchored form of GIFT4 was constructed by fusing a glycolipid (GPI)-anchoring sequence and incorporated into Env-enriched HIV virus-like particles (VLPs) as a molecular adjuvant. Guinea pigs were immunized with the resulting HIV VLPs through an intramuscular priming-intranasal boosting immunization route. The GIFT4-containing VLPs induced higher levels of systemic antibody responses with significantly increased binding avidity and improved neutralizing breadth and potency to a panel of selected strains, as well as higher levels of IgG and IgA at several mucosal sites. Thus, the novel GPI-GIFT4-containging VLPs have the potential to be developed into a prophylactic HIV vaccine. Incorporation of GPI-anchored GIFT4 into VLPs as a molecular adjuvant represents a novel approach to increase their immunogenicity.
Collapse
Affiliation(s)
- Hao Feng
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Han Zhang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jiusheng Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Li Wang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Yuan He
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Shelly Wang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Roheila Seyedtabaei
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Qing Wang
- Department of Bioengineering, Henan University of Technology, Zhengzhou 450052, China
| | - Laiting Liu
- Department of Bioengineering, Henan University of Technology, Zhengzhou 450052, China
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Richard W Compans
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Crooks ET, Tong T, Chakrabarti B, Narayan K, Georgiev IS, Menis S, Huang X, Kulp D, Osawa K, Muranaka J, Stewart-Jones G, Destefano J, O’Dell S, LaBranche C, Robinson JE, Montefiori DC, McKee K, Du SX, Doria-Rose N, Kwong PD, Mascola JR, Zhu P, Schief WR, Wyatt RT, Whalen RG, Binley JM. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathog 2015; 11:e1004932. [PMID: 26023780 PMCID: PMC4449185 DOI: 10.1371/journal.ppat.1004932] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/04/2015] [Indexed: 12/28/2022] Open
Abstract
Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.
Collapse
Affiliation(s)
- Ema T. Crooks
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Tommy Tong
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Bimal Chakrabarti
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
| | - Kristin Narayan
- Altravax, Inc., Sunnyvale, California, United States of America
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sergey Menis
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Xiaoxing Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Daniel Kulp
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | | | - Guillaume Stewart-Jones
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Joanne Destefano
- International AIDS Vaccine Initiative, Design and Development Laboratory, Brooklyn, New York, United States of America
| | - Sijy O’Dell
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America
| | - James E. Robinson
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Krisha McKee
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sean X. Du
- Altravax, Inc., Sunnyvale, California, United States of America
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - William R. Schief
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Richard T. Wyatt
- International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center at The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
17
|
Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection. Proc Natl Acad Sci U S A 2015; 112:E992-9. [PMID: 25681373 DOI: 10.1073/pnas.1423669112] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation.
Collapse
|
18
|
Maternal Genital Tract Infection. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Bowles EJ, Schiffner T, Rosario M, Needham GA, Ramaswamy M, McGouran J, Kessler B, LaBranche C, McMichael AJ, Montefiori D, Sattentau QJ, Hanke T, Stewart-Jones GBE. Comparison of neutralizing antibody responses elicited from highly diverse polyvalent heterotrimeric HIV-1 gp140 cocktail immunogens versus a monovalent counterpart in rhesus macaques. PLoS One 2014; 9:e114709. [PMID: 25490553 PMCID: PMC4260879 DOI: 10.1371/journal.pone.0114709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022] Open
Abstract
Eliciting neutralizing antibodies capable of inactivating a broad spectrum of HIV-1 strains is a major goal of HIV-1 vaccine design. The challenge is that envelopes (Envs) of circulating viruses are almost certainly different from any Env used in a vaccine. A novel immunogen composed of a highly diverse set of gp140 Envs including subtypes A, B, C, D and F was developed to stimulate a more cross-neutralizing antibody response. Env heterotrimers composed of up to 54 different gp140s were produced with the aim of focusing the response to the conserved regions of Env while reducing the dominance of any individual hypervariable region. Heterotrimeric gp140 Envs of inter- and intra-subtype combinations were shown to bind CD4 and a panel of neutralizing monoclonal antibodies with similar affinity to monovalent UG37 gp140. Macaques immunized with six groups of heterotrimer mixtures showed slightly more potent neutralizing antibody responses in TZM-BL tier 1 and A3R5 tier 2 pseudovirus assays than macaques immunized with monovalent Env gp140, and exhibited a marginally greater focus on the CD4-binding site. Carbopol enhanced neutralization when used as an adjuvant instead of RIBI in combination with UG37 gp140. These data indicate that cross-subtype heterotrimeric gp140 Envs may elicit some improvement of the neutralizing antibody response in macaques compared to monovalent gp140 Env.
Collapse
Affiliation(s)
- Emma J. Bowles
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail: (EJB); (GSJ)
| | - Torben Schiffner
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Maximillian Rosario
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Gemma A. Needham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Meghna Ramaswamy
- Division of Retrovirology, Centre for AIDS Reagents, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Joanna McGouran
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Celia LaBranche
- Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrew J. McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - David Montefiori
- Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Quentin J. Sattentau
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Tomáš Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom
| | - Guillaume B. E. Stewart-Jones
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail: (EJB); (GSJ)
| |
Collapse
|
20
|
Abstract
Purpose of review To summarize the role of adjuvants in eliciting desirable antibody responses against HIV-1 with particular emphasis on both historical context and recent developments. Recent findings Increased understanding of the role of pattern recognition receptors such as Toll-like receptors in recruiting and directing the immune system has increased the variety of adjuvant formulations being tested in animal models and humans. Across all vaccine platforms, adjuvant formulations have been shown to enhance desirable immune responses such as higher antibody titers and increased functional activity. Although no vaccine formulation has yet succeeded in eliciting broad neutralizing antibodies against HIV-1, the ability of adjuvants to direct the immune response to immunogens suggests they will be critically important in any successful HIV-1 vaccine. Summary The parallel development of adjuvants along with better HIV-1 immunogens will be needed for a successful AIDS vaccine. Additional comparative testing will be required to determine the optimal adjuvant and immunogen regimen that can elicit antibody responses capable of blocking HIV-1 transmission.
Collapse
|
21
|
Thomas MA, Tuero I, Demberg T, Vargas-Inchaustegui DA, Musich T, Xiao P, Venzon D, LaBranche C, Montefiori DC, DiPasquale J, Reed SG, DeVico A, Fouts T, Lewis GK, Gallo RC, Robert-Guroff M. HIV-1 CD4-induced (CD4i) gp120 epitope vaccines promote B and T-cell responses that contribute to reduced viral loads in rhesus macaques. Virology 2014; 471-473:81-92. [PMID: 25461534 PMCID: PMC4312258 DOI: 10.1016/j.virol.2014.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/24/2014] [Accepted: 10/01/2014] [Indexed: 11/21/2022]
Abstract
To target the HIV CD4i envelope epitope, we primed rhesus macaques with replicating Ad-rhFLSC (HIV-1BaLgp120 linked to macaque CD4 D1 and D2), with or without Ad-SIVgag and Ad-SIVnef. Macaques were boosted with rhFLSC protein. Memory T-cells in PBMC, bronchoalveolar lavage and rectal tissue, antibodies with neutralizing and ADCC activity, and Env-specific secretory IgA in rectal secretions were elicited. Although protective neutralizing antibody levels were induced, SHIVSF162P4 acquisition following rectal challenge was not prevented. Rapid declines in serum ADCC activity, Env-specific memory B cells in PBMC and bone marrow, and systemic and mucosal memory T cells were observed immediately post-challenge together with delayed anamnestic responses. Innate immune signaling resulting from persisting Ad replication and the TLR-4 booster adjuvant may have been in conflict and reoriented adaptive immunity. A different adjuvant paired with replicating Ad, or a longer post-prime interval allowing vector clearance before boosting might foster persistent T- and B-cell memory.
Collapse
Affiliation(s)
- Michael A Thomas
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Iskra Tuero
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Thorsten Demberg
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Diego A Vargas-Inchaustegui
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Thomas Musich
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Peng Xiao
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Celia LaBranche
- Duke University Medical Center, Durham, NC 27710, United States
| | | | - Janet DiPasquale
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Steven G Reed
- Infectious Diseases Research Institute, Seattle, WA 98102, United States
| | - Anthony DeVico
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | - Timothy Fouts
- Profectus BioSciences, Inc., Baltimore, MD 21224, United States
| | - George K Lewis
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland, Baltimore, MD, United States
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
22
|
Antibody persistence and T-cell balance: two key factors confronting HIV vaccine development. Proc Natl Acad Sci U S A 2014; 111:15614-21. [PMID: 25349379 DOI: 10.1073/pnas.1413550111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The quest for a prophylactic AIDS vaccine is ongoing, but it is now clear that the successful vaccine must elicit protective antibody responses. Accordingly, intense efforts are underway to identify immunogens that elicit these responses. Regardless of the mechanism of antibody-mediated protection, be it neutralization, Fc-mediated effector function, or both, antibody persistence and appropriate T-cell help are significant problems confronting the development of a successful AIDS vaccine. Here, we discuss the evidence illustrating the poor persistence of antibody responses to Env, the envelope glycoprotein of HIV-1, and the related problem of CD4(+) T-cell responses that compromise vaccine efficacy by creating excess cellular targets of HIV-1 infection. Finally, we propose solutions to both problems that are applicable to all Env-based AIDS vaccines regardless of the mechanism of antibody-mediated protection.
Collapse
|
23
|
Abstract
Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.
Collapse
Affiliation(s)
- Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
24
|
Rossi A, Michelini Z, Leone P, Borghi M, Blasi M, Bona R, Spada M, Grasso F, Gugliotta A, Klotman ME, Cara A, Negri D. Optimization of mucosal responses after intramuscular immunization with integrase defective lentiviral vector. PLoS One 2014; 9:e107377. [PMID: 25210766 PMCID: PMC4161417 DOI: 10.1371/journal.pone.0107377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 08/15/2014] [Indexed: 11/24/2022] Open
Abstract
Many infectious agents infiltrate the host at the mucosal surfaces and then spread systemically. This implies that an ideal vaccine should induce protective immune responses both at systemic and mucosal sites to counteract invasive mucosal pathogens. We evaluated the in vivo systemic and mucosal antigen-specific immune response induced in mice by intramuscular administration of an integrase defective lentiviral vector (IDLV) carrying the ovalbumin (OVA) transgene as a model antigen (IDLV-OVA), either alone or in combination with sublingual adjuvanted OVA protein. Mice immunized intramuscularly with OVA and adjuvant were compared with IDLV-OVA immunization. Mice sublingually immunized only with OVA and adjuvant were used as a positive control of mucosal responses. A single intramuscular dose of IDLV-OVA induced functional antigen-specific CD8+ T cell responses in spleen, draining and distal lymph nodes and, importantly, in the lamina propria of the large intestine. These results were similar to those obtained in a prime-boost regimen including one IDLV immunization and two mucosal boosts with adjuvanted OVA or vice versa. Remarkably, only in groups vaccinated with IDLV-OVA, either alone or in prime-boost regimens, the mucosal CD8+ T cell response persisted up to several months from immunization. Importantly, following IDLV-OVA immunization, the mucosal boost with protein greatly increased the plasma IgG response and induced mucosal antigen-specific IgA in saliva and vaginal washes. Overall, intramuscular administration of IDLV followed by protein boosts using the sublingual route induced strong, persistent and complementary systemic and mucosal immune responses, and represents an appealing prime-boost strategy for immunization including IDLV as a delivery system.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Zuleika Michelini
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Pasqualina Leone
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Borghi
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Blasi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Bona
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Felicia Grasso
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Alessio Gugliotta
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Mary E. Klotman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrea Cara
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (DN); (AC)
| | - Donatella Negri
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (DN); (AC)
| |
Collapse
|
25
|
Shingai M, Donau OK, Plishka RJ, Buckler-White A, Mascola JR, Nabel GJ, Nason MC, Montefiori D, Moldt B, Poignard P, Diskin R, Bjorkman PJ, Eckhaus MA, Klein F, Mouquet H, Cetrulo Lorenzi JC, Gazumyan A, Burton DR, Nussenzweig MC, Martin MA, Nishimura Y. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. ACTA ACUST UNITED AC 2014; 211:2061-74. [PMID: 25155019 PMCID: PMC4172223 DOI: 10.1084/jem.20132494] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Five potent and broadly anti-HIV neutralizing monoclonal antibodies are able to block infection by two different SHIVs in monkeys. The authors show that antibodies targeting the outer glycan coat were the most effective and determined that titers of roughly 1:100 protected half the animals. It is widely appreciated that effective human vaccines directed against viral pathogens elicit neutralizing antibodies (NAbs). The passive transfer of anti–HIV-1 NAbs conferring sterilizing immunity to macaques has been used to determine the plasma neutralization titers, which must be present at the time of exposure, to prevent acquisition of SIV/HIV chimeric virus (SHIV) infections. We administered five recently isolated potent and broadly acting anti-HIV neutralizing monoclonal antibodies (mAbs) to rhesus macaques and challenged them intrarectally 24 h later with either of two different R5-tropic SHIVs. By combining the results obtained from 60 challenged animals, we determined that the protective neutralization titer in plasma preventing virus infection in 50% of the exposed monkeys was relatively modest (∼1:100) and potentially achievable by vaccination.
Collapse
Affiliation(s)
- Masashi Shingai
- Laboratory of Molecular Microbiology, Virology Laboratory, Vaccine Research Center, and Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Olivia K Donau
- Laboratory of Molecular Microbiology, Virology Laboratory, Vaccine Research Center, and Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ronald J Plishka
- Laboratory of Molecular Microbiology, Virology Laboratory, Vaccine Research Center, and Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, Virology Laboratory, Vaccine Research Center, and Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John R Mascola
- Laboratory of Molecular Microbiology, Virology Laboratory, Vaccine Research Center, and Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gary J Nabel
- Laboratory of Molecular Microbiology, Virology Laboratory, Vaccine Research Center, and Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Martha C Nason
- Laboratory of Molecular Microbiology, Virology Laboratory, Vaccine Research Center, and Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Brian Moldt
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037 Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037 Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037
| | - Pascal Poignard
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037 Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037 Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Pamela J Bjorkman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Michael A Eckhaus
- Diagnostic and Research Services Branch, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, 75724 Paris, France
| | | | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Dennis R Burton
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037 Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037 Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037 Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, MA 021142
| | - Michel C Nussenzweig
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, Virology Laboratory, Vaccine Research Center, and Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, Virology Laboratory, Vaccine Research Center, and Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
26
|
Tuero I, Robert-Guroff M. Challenges in mucosal HIV vaccine development: lessons from non-human primate models. Viruses 2014; 6:3129-58. [PMID: 25196380 PMCID: PMC4147690 DOI: 10.3390/v6083129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/23/2022] Open
Abstract
An efficacious HIV vaccine is urgently needed to curb the AIDS pandemic. The modest protection elicited in the phase III clinical vaccine trial in Thailand provided hope that this goal might be achieved. However, new approaches are necessary for further advances. As HIV is transmitted primarily across mucosal surfaces, development of immunity at these sites is critical, but few clinical vaccine trials have targeted these sites or assessed vaccine-elicited mucosal immune responses. Pre-clinical studies in non-human primate models have facilitated progress in mucosal vaccine development by evaluating candidate vaccine approaches, developing methodologies for collecting and assessing mucosal samples, and providing clues to immune correlates of protective immunity for further investigation. In this review we have focused on non-human primate studies which have provided important information for future design of vaccine strategies, targeting of mucosal inductive sites, and assessment of mucosal immunity. Knowledge gained in these studies will inform mucosal vaccine design and evaluation in human clinical trials.
Collapse
Affiliation(s)
- Iskra Tuero
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, Chen KH, Liu FT, Liu WT, Chen YMA, Huang JC. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 2014; 451:208-14. [PMID: 25073113 PMCID: PMC7092860 DOI: 10.1016/j.bbrc.2014.07.090] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 07/21/2014] [Indexed: 12/11/2022]
Abstract
The SARS coronavirus exhibits antibody-dependent enhancement (ADE). SARS-CoV ADE is strongly mediated by anti-spike but not anti-nucleocapsid Abs. Formerly untested HL-CZ cells are susceptible to SARS-CoV infection. Highly diluted anti-sera against SARS-CoV enhances SARS-CoV infectivity.
The severe acute respiratory syndrome coronavirus (SARS-CoV) still carries the potential for reemergence, therefore efforts are being made to create a vaccine as a prophylactic strategy for control and prevention. Antibody-dependent enhancement (ADE) is a mechanism through which dengue viruses, feline coronaviruses, and HIV viruses take advantage of anti-viral humoral immune responses to infect host target cells. Here we describe our observations of SARS-CoV using ADE to enhance the infectivity of a HL-CZ human promonocyte cell line. Quantitative-PCR and immunofluorescence staining results indicate that SARS-CoV is capable of replication in HL-CZ cells, and of displaying virus-induced cytopathic effects and increased levels of TNF-α, IL-4 and IL-6 two days post-infection. According to flow cytometry data, the HL-CZ cells also expressed angiotensin converting enzyme 2 (ACE2, a SARS-CoV receptor) and higher levels of the FcγRII receptor. We found that higher concentrations of anti-sera against SARS-CoV neutralized SARS-CoV infection, while highly diluted anti-sera significantly increased SARS-CoV infection and induced higher levels of apoptosis. Results from infectivity assays indicate that SARS-CoV ADE is primarily mediated by diluted antibodies against envelope spike proteins rather than nucleocapsid proteins. We also generated monoclonal antibodies against SARS-CoV spike proteins and observed that most of them promoted SARS-CoV infection. Combined, our results suggest that antibodies against SARS-CoV spike proteins may trigger ADE effects. The data raise new questions regarding a potential SARS-CoV vaccine, while shedding light on mechanisms involved in SARS pathogenesis.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyh-Yuan Yang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Wei Shen
- Office of Occupational Safety and Health, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Kuan-Hsuan Chen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wu-Tse Liu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Microbiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jason C Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan; AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
28
|
Brito LA, Chan M, Shaw CA, Hekele A, Carsillo T, Schaefer M, Archer J, Seubert A, Otten GR, Beard CW, Dey AK, Lilja A, Valiante NM, Mason PW, Mandl CW, Barnett SW, Dormitzer PR, Ulmer JB, Singh M, O'Hagan DT, Geall AJ. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther 2014; 22:2118-2129. [PMID: 25027661 DOI: 10.1038/mt.2014.133] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/09/2014] [Indexed: 12/18/2022] Open
Abstract
Nucleic acid-based vaccines such as viral vectors, plasmid DNA, and mRNA are being developed as a means to address a number of unmet medical needs that current vaccine technologies have been unable to address. Here, we describe a cationic nanoemulsion (CNE) delivery system developed to deliver a self-amplifying mRNA vaccine. This nonviral delivery system is based on Novartis's proprietary adjuvant MF59, which has an established clinical safety profile and is well tolerated in children, adults, and the elderly. We show that nonviral delivery of a 9 kb self-amplifying mRNA elicits potent immune responses in mice, rats, rabbits, and nonhuman primates comparable to a viral delivery technology, and demonstrate that, relatively low doses (75 µg) induce antibody and T-cell responses in primates. We also show the CNE-delivered self-amplifying mRNA enhances the local immune environment through recruitment of immune cells similar to an MF59 adjuvanted subunit vaccine. Lastly, we show that the site of protein expression within the muscle and magnitude of protein expression is similar to a viral vector. Given the demonstration that self-amplifying mRNA delivered using a CNE is well tolerated and immunogenic in a variety of animal models, we are optimistic about the prospects for this technology.
Collapse
Affiliation(s)
- Luis A Brito
- Novartis Vaccines, Cambridge, Massachusetts, USA
| | | | | | - Armin Hekele
- Novartis Vaccines, Holly Springs, North Carolina, USA
| | | | | | - Jacob Archer
- Novartis Vaccines, Cambridge, Massachusetts, USA
| | | | | | | | - Antu K Dey
- Novartis Vaccines, Holly Springs, North Carolina, USA
| | - Anders Lilja
- Novartis Vaccines, Cambridge, Massachusetts, USA; Current address: Hookipa Biotech AG, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Alphavirus-based vaccines. Viruses 2014; 6:2392-415. [PMID: 24937089 PMCID: PMC4074933 DOI: 10.3390/v6062392] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022] Open
Abstract
Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.
Collapse
|
30
|
Vargas-Inchaustegui DA, Tuero I, Mohanram V, Musich T, Pegu P, Valentin A, Sui Y, Rosati M, Bear J, Venzon DJ, Kulkarni V, Alicea C, Pilkington GR, Liyanage NPM, Demberg T, Gordon SN, Wang Y, Hogg AE, Frey B, Patterson LJ, DiPasquale J, Montefiori DC, Sardesai NY, Reed SG, Berzofsky JA, Franchini G, Felber BK, Pavlakis GN, Robert-Guroff M. Humoral immunity induced by mucosal and/or systemic SIV-specific vaccine platforms suggests novel combinatorial approaches for enhancing responses. Clin Immunol 2014; 153:308-22. [PMID: 24907411 DOI: 10.1016/j.clim.2014.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 12/22/2022]
Abstract
Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in the bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest that combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Iskra Tuero
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Venkatramanan Mohanram
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Thomas Musich
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Poonam Pegu
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Yongjun Sui
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - David J Venzon
- Biostatistics and Data Management Section, CCR, NCI, NIH, Rockville, MD 20850, United States
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Guy R Pilkington
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Namal P M Liyanage
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Thorsten Demberg
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Shari N Gordon
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Yichuan Wang
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Alison E Hogg
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Blake Frey
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - L Jean Patterson
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Janet DiPasquale
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - David C Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | | | - Steven G Reed
- Infectious Diseases Research Institute, Seattle, WA 98102, United States
| | - Jay A Berzofsky
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, CCR, NCI, NIH, Frederick, MD 21702, United States
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The development of a preventive HIV vaccine remains an unresolved challenge. Animal models that can predict the results of HIV vaccine efficacy trials and identify the immune mechanisms responsible for vaccine protection would be most useful for HIV vaccine development. The purpose of the current review is to critique recent developments in the use of animal models of HIV infection in preclinical studies of AIDS vaccines and to describe how the use of improved animal models can inform the development of an HIV vaccine. RECENT FINDINGS The results of preclinical experiments with candidate HIV vaccines can vary with the SIV challenge virus used. It is now known that there is considerable variability in the neutralization sensitivity and that the level of viral sequence diversity within the challenge stocks varies. This has allowed more realistic preclinical vaccine studies with heterologous vaccine antigens and challenge viruses. Further, the dose of challenge virus and the route of virus challenge can modify the efficacy of candidate vaccines in preclinical studies. SUMMARY Recent experiments demonstrate that nonhuman primate models of AIDS can reproduce the complex biology of HIV transmission, recapitulate the results of HIV vaccine efficacy trials in humans and be used to identify correlates of protection.
Collapse
|
32
|
Korber B. Building on the past to define an efficient path to an HIV vaccine. Expert Rev Vaccines 2014; 10:929-31. [DOI: 10.1586/erv.11.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Barouch DH, Stephenson KE, Borducchi EN, Smith K, Stanley K, McNally AG, Liu J, Abbink P, Maxfield LF, Seaman MS, Dugast AS, Alter G, Ferguson M, Li W, Earl PL, Moss B, Giorgi EE, Szinger JJ, Eller LA, Billings EA, Rao M, Tovanabutra S, Sanders-Buell E, Weijtens M, Pau MG, Schuitemaker H, Robb ML, Kim JH, Korber BT, Michael NL. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell 2013; 155:531-9. [PMID: 24243013 DOI: 10.1016/j.cell.2013.09.061] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/05/2013] [Accepted: 09/27/2013] [Indexed: 01/24/2023]
Abstract
The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:
Collapse
Affiliation(s)
- Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Davis D, Koornstra W, Fagrouch Z, Verschoor EJ, Heeney JL, Bogers WMJM. In vitro neutralization of low dose inocula at physiological concentrations of a monoclonal antibody which protects macaques against SHIV challenge. PLoS One 2013; 8:e72702. [PMID: 23977339 PMCID: PMC3745472 DOI: 10.1371/journal.pone.0072702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Passive transfer of antibodies can be protective in the simian human immunodeficiency virus (SHIV)--rhesus macaque challenge model. The human monoclonal antibody IgG1 b12 neutralizes human immunodeficiency type 1 (HIV-1) in vitro and protects against challenge by SHIV. Our hypothesis is that neutralizing antibodies can only completely inactivate a relatively small number of infectious virus. METHODS AND FINDINGS We have used GHOST cell assays to quantify individual infectious events with HIV-1SF162 and its SHIV derivatives: the relatively neutralization sensitive SHIV(SF162P4) isolate and the more resistant SHIV(SF162P3). A plot of the number of fluorescent GHOST cells with increasing HIV-1SF162 dose is not linear. It is likely that with high-dose inocula, infection with multiple virus produces additive fluorescence in individual cells. In studies of the neutralization kinetics of IgG1 b12 against these isolates, events during the absorption phase of the assay, as well as the incubation phase, determine the level of neutralization. It is possible that complete inactivation of a virus is limited to the time it is exposed on the cell surface. Assays can be modified so that neutralization of these very low doses of virus can be quantified. A higher concentration of antibody is required to neutralize the same dose of resistant SHIV(SF162P3) than the sensitive SHIV(SF162P4). In the absence of selection during passage, the density of the CCR5 co-receptor on the GHOST cell surface is reduced. Changes in the CD4 : CCR5 density ratio influence neutralization. CONCLUSIONS Low concentrations of IgG1 b12 completely inactivate small doses of the neutralization resistant SHIV(SF162P3). Assays need to be modified to quantify this effect. Results from modified assays may predict protection following repeated low-dose shiv challenges in rhesus macaques. It should be possible to induce this level of antibody by vaccination so that modified assays could predict the outcome of human trials.
Collapse
Affiliation(s)
- David Davis
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Cu Y, Broderick KE, Banerjee K, Hickman J, Otten G, Barnett S, Kichaev G, Sardesai NY, Ulmer JB, Geall A. Enhanced Delivery and Potency of Self-Amplifying mRNA Vaccines by Electroporation in Situ. Vaccines (Basel) 2013; 1:367-83. [PMID: 26344119 PMCID: PMC4494232 DOI: 10.3390/vaccines1030367] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 01/06/2023] Open
Abstract
Nucleic acid-based vaccines such as viral vectors, plasmid DNA (pDNA), and mRNA are being developed as a means to address limitations of both live-attenuated and subunit vaccines. DNA vaccines have been shown to be potent in a wide variety of animal species and several products are now licensed for commercial veterinary but not human use. Electroporation delivery technologies have been shown to improve the generation of T and B cell responses from synthetic DNA vaccines in many animal species and now in humans. However, parallel RNA approaches have lagged due to potential issues of potency and production. Many of the obstacles to mRNA vaccine development have recently been addressed, resulting in a revival in the use of non-amplifying and self-amplifying mRNA for vaccine and gene therapy applications. In this paper, we explore the utility of EP for the in vivo delivery of large, self-amplifying mRNA, as measured by reporter gene expression and immunogenicity of genes encoding HIV envelope protein. These studies demonstrated that EP delivery of self-amplifying mRNA elicited strong and broad immune responses in mice, which were comparable to those induced by EP delivery of pDNA.
Collapse
Affiliation(s)
- Yen Cu
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | | | - Kaustuv Banerjee
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Julie Hickman
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Gillis Otten
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Susan Barnett
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Gleb Kichaev
- Inovio Pharmaceuticals, Blue Bell, PA 19422, USA
| | | | - Jeffrey B Ulmer
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Andrew Geall
- Novartis Vaccines & Diagnostics, Inc., 350 Massachusetts Ave, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Choi Y, Chang J. Viral vectors for vaccine applications. Clin Exp Vaccine Res 2013; 2:97-105. [PMID: 23858400 PMCID: PMC3710930 DOI: 10.7774/cevr.2013.2.2.97] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/26/2013] [Accepted: 05/09/2013] [Indexed: 12/16/2022] Open
Abstract
Traditional approach of inactivated or live-attenuated vaccine immunization has resulted in impressive success in the reduction and control of infectious disease outbreaks. However, many pathogens remain less amenable to deal with the traditional vaccine strategies, and more appropriate vaccine strategy is in need. Recent discoveries that led to increased understanding of viral molecular biology and genetics has rendered the used of viruses as vaccine platforms and as potential anti-cancer agents. Due to their ability to effectively induce both humoral and cell-mediated immune responses, viral vectors are deemed as an attractive alternative to the traditional platforms to deliver vaccine antigens as well as to specifically target and kill tumor cells. With potential targets ranging from cancers to a vast number of infectious diseases, the benefits resulting from successful application of viral vectors to prevent and treat human diseases can be immense.
Collapse
Affiliation(s)
- Youngjoo Choi
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
37
|
Vargas-Inchaustegui DA, Robert-Guroff M. Fc receptor-mediated immune responses: new tools but increased complexity in HIV prevention. Curr HIV Res 2013; 11:407-20. [PMID: 24191937 PMCID: PMC6288814 DOI: 10.2174/1570162x113116660063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
Abstract
The modest success of the RV144 HIV vaccine trial in Thailand and the ensuing suggestion that a Fc-receptormediated antibody activity might have played a role in the protection observed have intensified investigations on Fcrelated immune responses. HIV neutralizing antibodies have been and continue to be the focal point of research into humoral immune protection. However, recent knowledge that their protective efficacy can be augmented by Fc-FcR interactions has increased the complexity of identifying immune correlates of protection. If anything, continued studies of both humoral and cellular immune mechanisms point to the lack of a single protective anti-HIV immune response. Here we focus on humoral immunity, analyzing the role played by Fc receptor-related responses and discussing how new knowledge of their interactions requires further investigation, but may also spur novel vaccination approaches. We initially address classical Fc-receptor mediated anti-viral mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell mediated viral inhibition (ADCVI), and antibody-dependent cellular phagocytosis (ADCP), as well as the effector cells that mediate these functions. Next, we summarize key aspects of FcR-Fc interactions that are important for potential control of HIV/SIV such as FcR polymorphisms and post-transcriptional modifications. Finally we discuss less commonly studied non-mechanistic anti-HIV immune functions: antibody avidity and envelopespecific B cell memory. Overall, a spectrum of immune responses, reflecting the immune system's redundancy, will likely be needed to prevent HIV infection and/or disease progression. Aside from elicitation of critical immune mechanisms, a successful vaccine will need to induce mature B cell responses and long-lasting immune memory.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Building 41, Room D804, Bethesda, MD 20192-5065, USA.
| | | |
Collapse
|
38
|
Center RJ, Miller A, Wheatley AK, Campbell SM, Siebentritt C, Purcell DFJ. Utility of the Sindbis replicon system as an Env-targeted HIV vaccine. Vaccine 2013; 31:2260-6. [PMID: 23499600 DOI: 10.1016/j.vaccine.2013.02.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/20/2013] [Accepted: 02/28/2013] [Indexed: 02/06/2023]
Abstract
Sindbis replicon-based vaccine vectors are designed to combine the immunostimulatory properties of replicating viruses with the superior safety profile of non-replicating systems. In this study we performed a detailed assessment of Sindbis (SIN) replicon vectors expressing HIV-1 envelope protein (Env) for the induction of cell-mediated and humoral immune responses in a small animal model. SIN-derived virus-like particles (VLP) elicited Env-specific antibody responses that were detectable after boosting with recombinant Env protein. This priming effect could be mediated by replicon activity alone but may be enhanced by Env attached to the surface of VLP, offering a potential advantage for this mode of replicon delivery for Env based vaccination strategies. In contrast, the Env-specific CTL responses that were elicited by SIN-VLP were entirely dependent on replicon activity. SIN-VLP priming induced more durable humoral responses than immunization with protein only. This is important from a vaccine perspective, given the intrinsic tendency of Env to induce short-lived antibody responses in the context of vaccination or infection. These results indicate that further efforts to enhance the magnitude and durability of the HIV-1 Env-specific immune responses generated by Sindbis vectors, either alone or as part of prime-boost regimens, are justified.
Collapse
Affiliation(s)
- Rob J Center
- Department of Microbiology and Immunology, University of Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine.
Collapse
Affiliation(s)
- Laura E McCoy
- Wohl Virion Centre, Division of Infection and Immunity, University College London, London WC1E 6BT, England, UK
| | | |
Collapse
|
40
|
Eugene HS, Pierce-Paul BR, Cragio JK, Ross TM. Rhesus macaques vaccinated with consensus envelopes elicit partially protective immune responses against SHIV SF162p4 challenge. Virol J 2013; 10:102. [PMID: 23548077 PMCID: PMC3637437 DOI: 10.1186/1743-422x-10-102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022] Open
Abstract
The development of a preventative HIV/AIDS vaccine is challenging due to the diversity of viral genome sequences, especially in the viral envelope (Env₁₆₀). Since it is not possible to directly match the vaccine strain to the vast number of circulating HIV-1 strains, it is necessary to develop an HIV-1 vaccine that can protect against a heterologous viral challenge. Previous studies from our group demonstrated that a mixture of wild type clade B Env(gp160s) were able to protect against a heterologous clade B challenge more effectively than a consensus clade B Envg(p160) vaccine. In order to broaden the immune response to other clades of HIV, in this study rhesus macaques were vaccinated with a polyvalent mixture of purified HIV-1 trimerized consensus Envg(p140) proteins representing clades A, B, C, and E. The elicited immune responses were compared to a single consensus Env(gp140) representing all isolates in group M (Con M). Both vaccines elicited anti- Env(gp140) IgG antibodies that bound an equal number of HIV-1 Env(gp160) proteins representing clades A, B and C. In addition, both vaccines elicited antibodies that neutralized the HIV-1(SF162) isolate. However, the vaccinated monkeys were not protected against SHIV(SF162p4) challenge. These results indicate that consensus Env(gp160) vaccines, administered as purified Env(gp140) trimers, elicit antibodies that bind to Env(gp160s) from strains representing multiple clades of HIV-1, but these vaccines did not protect against heterologous SHIV challenge.
Collapse
Affiliation(s)
- Hermancia S Eugene
- Center for Vaccine Research, University of Pittsburgh, 9047 BST3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
41
|
Mucosal priming with a replicating-vaccinia virus-based vaccine elicits protective immunity to simian immunodeficiency virus challenge in rhesus monkeys. J Virol 2013; 87:5669-77. [PMID: 23487457 DOI: 10.1128/jvi.03247-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mucosal surfaces are not targeted by most human immunodeficiency virus type 1 (HIV-1) vaccines, despite being major routes for HIV-1 transmission. Here we report a novel vaccination regimen consisting of a mucosal prime with a modified replicating vaccinia virus Tiantan strain (MVTT(SIVgpe)) and an intramuscular boost with a nonreplicating adenovirus strain (Ad5(SIVgpe)). This regimen elicited robust cellular immune responses with enhanced magnitudes, sustainability, and polyfunctionality, as well as higher titers of neutralizing antibodies against the simian immunodeficiency virus SIV(mac1A11) in rhesus monkeys. The reductions in peak and set-point viral loads were significant in most animals, with one other animal being protected fully from high-dose intrarectal inoculation of SIV(mac239). Furthermore, the animals vaccinated with this regimen were healthy, while ~75% of control animals developed simian AIDS. The protective effects correlated with the vaccine-elicited SIV-specific CD8(+) T cell responses against Gag and Pol. Our study provides a novel strategy for developing an HIV-1 vaccine by using the combination of a replicating vector and mucosal priming.
Collapse
|
42
|
Grimm SK, Ackerman ME. Vaccine design: emerging concepts and renewed optimism. Curr Opin Biotechnol 2013; 24:1078-88. [PMID: 23474232 DOI: 10.1016/j.copbio.2013.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/29/2013] [Accepted: 02/15/2013] [Indexed: 01/15/2023]
Abstract
Arguably, vaccination represents the single most effective medical intervention ever developed. Yet, vaccines have failed to provide any or adequate protection against some of the most significant global diseases. The pathogens responsible for these vaccine-recalcitrant diseases have properties that allow them to evade immune surveillance and misdirect or eliminate the immune response. However, genomic and systems biology tools, novel adjuvants and delivery systems, and refined molecular insight into protective immunity have started to redefine the landscape, and results from recent efficacy trials of HIV and malaria vaccines have instilled hope that another golden age of vaccines may be on the horizon.
Collapse
|
43
|
|
44
|
Abstract
INTRODUCTION One of the challenges facing the development of an AIDS vaccine is eliciting antibody (Ab) capable of preventing the acquisition of HIV. Broadly neutralizing Ab (bnAb) that can prevent HIV infection has proven to be difficult to elicit. Here, we consider the potential for protective non-neutralizing Ab (pnnAb) to provide the much needed Ab component for an HIV vaccine. Such Ab acts by "tagging" virus or infected cells for destruction by the innate immune system. AREAS COVERED We review interactions between the Fc region of immunoglobulin G (IgG) and Fcϒ receptors or complement that can lead to the destruction of HIV or HIV-infected cells, correlations between the presence of pnnAb and the prevention of HIV and simian immunodeficiency virus (SIV) infections, differences between classical HIV-specific bnAb and HIV-specific pnnAb, HIV envelope antigens and adjuvants which have been hypothesized to generate pnnAb, and the use of avidity as a serological correlate for pnnAb. EXPERT OPINION We hypothesize that selection of HIV for the poor ability to elicit bnAb has also selected it for slow entry into cells and a window of opportunity for pnnAb to tag virus for destruction by innate immune responses.
Collapse
|
45
|
Karasavvas N, Billings E, Rao M, Williams C, Zolla-Pazner S, Bailer RT, Koup RA, Madnote S, Arworn D, Shen X, Tomaras GD, Currier JR, Jiang M, Magaret C, Andrews C, Gottardo R, Gilbert P, Cardozo TJ, Rerks-Ngarm S, Nitayaphan S, Pitisuttithum P, Kaewkungwal J, Paris R, Greene K, Gao H, Gurunathan S, Tartaglia J, Sinangil F, Korber BT, Montefiori DC, Mascola JR, Robb ML, Haynes BF, Ngauy V, Michael NL, Kim JH, de Souza, for the MOPH TAVEG Collab MS. The Thai Phase III HIV Type 1 Vaccine trial (RV144) regimen induces antibodies that target conserved regions within the V2 loop of gp120. AIDS Res Hum Retroviruses 2012; 28:1444-57. [PMID: 23035746 DOI: 10.1089/aid.2012.0103] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Thai Phase III clinical trial (RV144) showed modest efficacy in preventing HIV-1 acquisition. Plasma collected from HIV-1-uninfected trial participants completing all injections with ALVAC-HIV (vCP1521) prime and AIDSVAX B/E boost were tested for antibody responses against HIV-1 gp120 envelope (Env). Peptide microarray analysis from six HIV-1 subtypes and group M consensus showed that vaccination induced antibody responses to the second variable (V2) loop of gp120 of multiple subtypes. We further evaluated V2 responses by ELISA and surface plasmon resonance using cyclic (Cyc) and linear V2 loop peptides. Thirty-one of 32 vaccine recipients tested (97%) had antibody responses against Cyc V2 at 2 weeks postimmunization with a reciprocal geometric mean titer (GMT) of 1100 (range: 200-3200). The frequency of detecting plasma V2 antibodies declined to 19% at 28 weeks post-last injection (GMT: 110, range: 100-200). Antibody responses targeted the mid-region of the V2 loop that contains conserved epitopes and has the amino acid sequence KQKVHALFYKLDIVPI (HXB2 Numbering sequence 169-184). Valine at position 172 was critical for antibody binding. The frequency of V3 responses at 2 weeks postimmunization was modest (18/32, 56%) with a GMT of 185 (range: 100-800). In contrast, naturally infected HIV-1 individuals had a lower frequency of antibody responses to V2 (10/20, 50%; p=0.003) and a higher frequency of responses to V3 (19/20, 95%), with GMTs of 400 (range: 100-3200) and 3570 (range: 200-12,800), respectively. RV144 vaccination induced antibodies that targeted a region of the V2 loop that contains conserved epitopes. Early HIV-1 transmission events involve V2 loop interactions, raising the possibility that anti-V2 antibodies in RV144 may have contributed to viral inhibition.
Collapse
Affiliation(s)
- Nicos Karasavvas
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Erik Billings
- U.S. Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Mangala Rao
- USMHRP, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Constance Williams
- Department of Pathology and Pharmacology, NYU School of Medicine, New York, New York
| | - Susan Zolla-Pazner
- Department of Pathology and Pharmacology, NYU School of Medicine, New York, New York
- Veterans Affairs Harbor Healthcare System, New York, New York
| | - Robert T. Bailer
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sirinan Madnote
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Duangnapa Arworn
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Jeffrey R. Currier
- U.S. Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Mike Jiang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Craig Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charla Andrews
- U.S. Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Peter Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Timothy J. Cardozo
- Department of Pathology and Pharmacology, NYU School of Medicine, New York, New York
| | | | - Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok Thailand
| | - Punnee Pitisuttithum
- Vaccine Trial Center and Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jaranit Kaewkungwal
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Robert Paris
- USMHRP, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Kelli Greene
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | | | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, California
| | - Bette T. Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - John R. Mascola
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Merlin L. Robb
- U.S. Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Viseth Ngauy
- Department of Retrovirology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Nelson L. Michael
- USMHRP, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jerome H. Kim
- USMHRP, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | |
Collapse
|
46
|
Klasse PJ, Moore JP. Good CoP, bad CoP? Interrogating the immune responses to primate lentiviral vaccines. Retrovirology 2012; 9:80. [PMID: 23025660 PMCID: PMC3484039 DOI: 10.1186/1742-4690-9-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/14/2012] [Indexed: 11/17/2022] Open
Abstract
Correlates of protection (CoPs) against infection by primate lentiviruses remain undefined. Modest protection against HIV-1 was observed in one human vaccine trial, whereas previous trials and vaccine-challenge experiments in non-human primates have yielded inconsistent but intriguing results. Although high levels of neutralizing antibodies are known to protect macaques from mucosal and intravenous viral challenges, antibody or other adaptive immune responses associated with protection might also be mere markers of innate immunity or susceptibility. Specific strategies for augmenting the design of both human trials and animal experiments could help to identify mechanistic correlates of protection and clarify the influences of confounding factors. Robust protection may, however, require the combined actions of immune responses and other host factors, thereby limiting what inferences can be drawn from statistical associations. Here, we discuss how to analyze immune protection against primate lentiviruses, and how host factors could influence both the elicitation and effectiveness of vaccine-induced responses.
Collapse
Affiliation(s)
- Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornel University, 1300 York Avenue, Box 62, New York, NY 10065-4896, USA.
| | | |
Collapse
|
47
|
Abstract
Despite more than two decades of research and development on nucleic acid vaccines, there is still no commercial product for human use. Taking advantage of the recent innovations in systemic delivery of short interfering RNA (siRNA) using lipid nanoparticles (LNPs), we developed a self-amplifying RNA vaccine. Here we show that nonviral delivery of a 9-kb self-amplifying RNA encapsulated within an LNP substantially increased immunogenicity compared with delivery of unformulated RNA. This unique vaccine technology was found to elicit broad, potent, and protective immune responses, that were comparable to a viral delivery technology, but without the inherent limitations of viral vectors. Given the many positive attributes of nucleic acid vaccines, our results suggest that a comprehensive evaluation of nonviral technologies to deliver self-amplifying RNA vaccines is warranted.
Collapse
|
48
|
Lack of interference with immunogenicity of a chimeric alphavirus replicon particle-based influenza vaccine by preexisting antivector immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:991-8. [PMID: 22623651 DOI: 10.1128/cvi.00031-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antivector immunity has been recognized as a potential caveat of using virus-based vaccines. In the present study, an alphavirus-based replicon particle vaccine platform, which has demonstrated robust immunogenicity in animal models, was tested for effects of antivector immunity on immunogenicity against hemagglutinin of influenza virus as a target antigen and efficacy for protection against lethal challenge with the virus. Chimeric alphavirus-based replicon particles, comprising Venezuelan equine encephalitis virus nonstructural and Sindbis virus structural components, induced efficient protective antibody responses, which were not adversely influenced after multiple immunizations with the same vector expressing various antigens.
Collapse
|
49
|
Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, Evans DT, Montefiori DC, Karnasuta C, Sutthent R, Liao HX, DeVico AL, Lewis GK, Williams C, Pinter A, Fong Y, Janes H, DeCamp A, Huang Y, Rao M, Billings E, Karasavvas N, Robb ML, Ngauy V, de Souza MS, Paris R, Ferrari G, Bailer RT, Soderberg KA, Andrews C, Berman PW, Frahm N, De Rosa SC, Alpert MD, Yates NL, Shen X, Koup RA, Pitisuttithum P, Kaewkungwal J, Nitayaphan S, Rerks-Ngarm S, Michael NL, Kim JH. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 2012; 366:1275-86. [PMID: 22475592 PMCID: PMC3371689 DOI: 10.1056/nejmoa1113425] [Citation(s) in RCA: 1537] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke University Human Vaccine Institute and the Center for HIV/AIDS Vaccine Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cox JH, Ferrari MG, Earl P, Lane JR, Jagodzinski LL, Polonis VR, Kuta EG, Boyer JD, Ratto-Kim S, Eller LA, Pham DT, Hart L, Montefiori D, Ferrari G, Parrish S, Weiner DB, Moss B, Kim JH, Birx D, VanCott TC. Inclusion of a CRF01_AE HIV envelope protein boost with a DNA/MVA prime-boost vaccine: Impact on humoral and cellular immunogenicity and viral load reduction after SHIV-E challenge. Vaccine 2012; 30:1830-40. [PMID: 22234262 PMCID: PMC3324265 DOI: 10.1016/j.vaccine.2011.12.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 01/13/2023]
Abstract
The current study assessed the immunogenicity and protective efficacy of various prime-boost vaccine regimens in rhesus macaques using combinations of recombinant DNA (rDNA), recombinant MVA (rMVA), and subunit gp140 protein. The rDNA and rMVA vectors were constructed to express Env from HIV-1 subtype CRF01_AE and Gag-Pol from CRF01_AE or SIVmac 239. One of the rMVAs, MVA/CMDR, has been recently tested in humans. Immunizations were administered at months 0 and 1 (prime) and months 3 and 6 (boost). After priming, HIV env-specific serum IgG was detected in monkeys receiving gp140 alone or rMVA but not in those receiving rDNA. Titers were enhanced in these groups after boosting either with gp140 alone or with rMVA plus gp140. The groups that received the rDNA prime developed env-specific IgG after boosting with rMVA with or without gp140. HIV Env-specific serum IgG binding antibodies were elicited more frequently and of higher titer, and breadth of neutralizing antibodies was increased with the inclusion of the subunit Env boost. T cell responses were measured by tetramer binding to Gag p11c in Mamu-A*01 macaques, and by IFN-γ ELISPOT assay to SIV-Gag. T cell responses were induced after vaccination with the highest responses seen in macaques immunized with rDNA and rMVA. Macaques were challenged intravenously with a novel SHIV-E virus (SIVmac239 Gag-Pol with an HIV-1 subtype E-Env CAR402). Post challenge with SHIV-E, antibody titers were boosted in all groups and peaked at 4 weeks. Robust T cell responses were seen in all groups post challenge and in macaques immunized with rDNA and rMVA a clear boosting of responses was seen. A greater than two-log drop in RNA copies/ml at peak viremia and earlier set point was achieved in macaques primed with rDNA, and boosted with rMVA/SHIV-AE plus gp140. Post challenge viremia in macaques immunized with other regimens was not significantly different to that of controls. These results demonstrate that a gp140 subunit and inclusion of SIV Gag-Pol may be critical for control of SHIV post challenge.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/blood
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/immunology
- Gene Products, pol/immunology
- HIV Antibodies/blood
- HIV-1/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunization, Secondary
- Immunoglobulin G/blood
- Macaca mulatta
- Male
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
|