1
|
Shah AU, Hemida MG. The Potential Roles of Host Cell miRNAs in Fine-Tuning Bovine Coronavirus (BCoV) Molecular Pathogenesis, Tissue Tropism, and Immune Regulation. Microorganisms 2024; 12:897. [PMID: 38792727 PMCID: PMC11124416 DOI: 10.3390/microorganisms12050897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Bovine coronavirus (BCoV) infection causes significant economic loss to the dairy and beef industries worldwide. BCoV exhibits dual tropism, infecting the respiratory and enteric tracts of cattle. The enteric BCoV isolates could also induce respiratory manifestations under certain circumstances. However, the mechanism of this dual tropism of BCoV infection has not yet been studied well. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a dual role in virus infection, mediating virus or modulating host immune regulatory genes through complex virus-host cell interactions. However, their role in BCoV infection remains unclear. This study aims to identify bovine miRNAs crucial for regulating virus-host interaction, influencing tissue tropism, and explore their potential as biomarkers and therapeutic agents against BCoV. We downloaded 18 full-length BCoV genomes (10 enteric and eight respiratory) from GenBank. We applied several bioinformatic tools to study the host miRNAs targeting various regions in the viral genome. We used the criteria of differential targeting between the enteric/respiratory isolates to identify some critical miRNAs as biological markers for BCoV infection. Using various online bioinformatic tools, we also searched for host miRNA target genes involved in BCoV infection, immune evasion, and regulation. Our results show that four bovine miRNAs (miR-2375, miR-193a-3p, miR-12059, and miR-494) potentially target the BCoV spike protein at multiple sites. These miRNAs also regulate the host immune suppressor pathways, which negatively impacts BCoV replication. Furthermore, we found that bta-(miR-2338, miR-6535, miR-2392, and miR-12054) also target the BCoV genome at certain regions but are involved in regulating host immune signal transduction pathways, i.e., type I interferon (IFN) and retinoic acid-inducible gene I (RIG-I) pathways. Moreover, both miR-2338 and miR-2392 also target host transcriptional factors RORA, YY1, and HLF, which are potential diagnostic markers for BCoV infection. Therefore, miR-2338, miR-6535, miR-2392, and miR-12054 have the potential to fine-tune BCoV tropism and immune evasion and enhance viral pathogenesis. Our results indicate that host miRNAs play essential roles in the BCoV tissue tropism, pathogenesis, and immune regulation. Four bovine miRNAs (miR-2375, bta-miR-193a-3p, bta-miR-12059, and bta-miR-494) target BCoV-S glycoprotein and are potentially involved in several immune suppression pathways during the viral infection. These miRNA candidates could serve as good genetic markers for BCoV infection. However, further studies are urgently needed to validate these identified miRNAs and their target genes in the context of BCoV infection and dual tropism and as genetic markers.
Collapse
Affiliation(s)
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
| |
Collapse
|
2
|
Wang Y, Li P, Xu L, de Vries AC, Rottier RJ, Wang W, Crombag MRB, Peppelenbosch MP, Kainov DE, Pan Q. Combating pan-coronavirus infection by indomethacin through simultaneously inhibiting viral replication and inflammatory response. iScience 2023; 26:107631. [PMID: 37664584 PMCID: PMC10474465 DOI: 10.1016/j.isci.2023.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
Severe infections with coronaviruses are often accompanied with hyperinflammation, requiring therapeutic strategies to simultaneously tackle the virus and inflammation. By screening a safe-in-human broad-spectrum antiviral agents library, we identified that indomethacin can inhibit pan-coronavirus infection in human cell and airway organoids models. Combining indomethacin with oral antiviral drugs authorized for treating COVID-19 results in synergistic anti-coronavirus activity. Coincidentally, screening a library of FDA-approved drugs identified indomethacin as the most potent potentiator of interferon response through increasing STAT1 phosphorylation. Combining indomethacin with interferon-alpha exerted synergistic antiviral effects against multiple coronaviruses. The anti-coronavirus activity of indomethacin is associated with activating interferon response. In a co-culture system of lung epithelial cells with macrophages, indomethacin inhibited both viral replication and inflammatory response. Collectively, indomethacin is a pan-coronavirus inhibitor that can simultaneously inhibit virus-triggered inflammatory response. The therapeutic potential of indomethacin can be further augmented by combining it with oral antiviral drugs or interferon-alpha.
Collapse
Affiliation(s)
- Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Annemarie C. de Vries
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Cell Biology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Marie-Rose B.S. Crombag
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7028 Trondheim, Norway
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Ma D, Wang X, Li M, Hu C, Tang L. Reconsideration of interferon treatment for viral diseases: Lessons from SARS, MERS, and COVID-19. Int Immunopharmacol 2023; 121:110485. [PMID: 37348227 PMCID: PMC10272952 DOI: 10.1016/j.intimp.2023.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Periodic pandemics of coronavirus (CoV)-related pneumonia have been a major challenging issue since the outbreak of severe acute respiratory syndrome (SARS) in 2002 and Middle East respiratory syndrome (MERS) in 2012. The ongoing pandemic of CoV disease (COVID-19) poses a substantial threat to public health. As for the treatment options, only limited antiviral agents have been approved hitherto, and clinicians mainly focus on currently available drugs including the conventional antiviral interferons (IFNs). In clinical practice, IFNs, when used either alone or in combination with ribavirin and/or lopinavir/ritonavir, have shown promising outcomes, to some extent, in SARS-CoV or MERS-CoV treatment. Although the efficacy and safety of IFNs in COVID-19 treatment remain unclear, their possible use merits further evaluation. We present a review that summarizes current evidence of IFN treatment for COVID-19 and elaborates on other challenges in terms of the timing of IFN treatment initiation, treatment duration, and IFN type to be used. The review findings suggested that IFN acts by directly inhibiting viral replication and activating immune cell subsets. However, there is a lack of well-designed and controlled clinical trials providing firm evidence for the efficacy or safety of IFN therapy for CoVs. Additionally, critically ill patients with multiple immunosuppression-associated comorbidities may not benefit from IFN therapy, necessitating screening of those patients who would most benefit from IFN treatment.
Collapse
Affiliation(s)
- Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, GuiZhou, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, GuiZhou, China
| | - Ximin Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chujiao Hu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, GuiZhou, China.
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, GuiZhou, China.
| |
Collapse
|
4
|
Salomão R, Assis V, de Sousa Neto IV, Petriz B, Babault N, Durigan JLQ, de Cássia Marqueti R. Involvement of Matrix Metalloproteinases in COVID-19: Molecular Targets, Mechanisms, and Insights for Therapeutic Interventions. BIOLOGY 2023; 12:843. [PMID: 37372128 PMCID: PMC10295079 DOI: 10.3390/biology12060843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
MMPs are enzymes involved in SARS-CoV-2 pathogenesis. Notably, the proteolytic activation of MMPs can occur through angiotensin II, immune cells, cytokines, and pro-oxidant agents. However, comprehensive information regarding the impact of MMPs in the different physiological systems with disease progression is not fully understood. In the current study, we review the recent biological advances in understanding the function of MMPs and examine time-course changes in MMPs during COVID-19. In addition, we explore the interplay between pre-existing comorbidities, disease severity, and MMPs. The reviewed studies showed increases in different MMP classes in the cerebrospinal fluid, lung, myocardium, peripheral blood cells, serum, and plasma in patients with COVID-19 compared to non-infected individuals. Individuals with arthritis, obesity, diabetes, hypertension, autoimmune diseases, and cancer had higher MMP levels when infected. Furthermore, this up-regulation may be associated with disease severity and the hospitalization period. Clarifying the molecular pathways and specific mechanisms that mediate MMP activity is important in developing optimized interventions to improve health and clinical outcomes during COVID-19. Furthermore, better knowledge of MMPs will likely provide possible pharmacological and non-pharmacological interventions. This relevant topic might add new concepts and implications for public health in the near future.
Collapse
Affiliation(s)
- Rebecca Salomão
- Laboratory of Molecular Analysis, Postgraduate Program in Health and Sciences and Technology, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil
| | - Victoria Assis
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-907, SP, Brazil;
| | - Bernardo Petriz
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia 71966-700, DF, Brazil;
- Laboratory of Exercise Molecular Physiology, University Center UDF, Brasília 71966-900, DF, Brazil
| | - Nicolas Babault
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France;
- Centre d’Expertise de la Performance, UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France
| | - João Luiz Quaglioti Durigan
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| | - Rita de Cássia Marqueti
- Laboratory of Molecular Analysis, Postgraduate Program in Health and Sciences and Technology, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil
- Laboratory of Molecular Analysis, Postgraduate Program in Rehabilitation Sciences, Faculty of Ceilândia, University of Brasilia, Brasilia 72220-275, DF, Brazil; (V.A.); (J.L.Q.D.)
| |
Collapse
|
5
|
Sun Q, Li X, Kuang E. Subversion of autophagy machinery and organelle-specific autophagy by SARS-CoV-2 and coronaviruses. Autophagy 2023; 19:1055-1069. [PMID: 36005882 PMCID: PMC10012907 DOI: 10.1080/15548627.2022.2116677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/09/2022] Open
Abstract
As a new emerging severe coronavirus, the knowledge on the SARS-CoV-2 and COVID-19 remains very limited, whereas many concepts can be learned from the homologous coronaviruses. Macroautophagy/autophagy is finely regulated by SARS-CoV-2 infection and plays important roles in SARS-CoV-2 infection and pathogenesis. This review will explore the subversion and mechanism of the autophagy-related machinery, vacuoles and organelle-specific autophagy during infection of SARS-CoV-2 and coronaviruses to provide meaningful insights into the autophagy-related therapeutic strategies for infectious diseases of SARS-CoV-2 and coronaviruses.
Collapse
Affiliation(s)
- Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojuan Li
- College of Clinic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Duncan JKS, Xu D, Licursi M, Joyce MA, Saffran HA, Liu K, Gohda J, Tyrrell DL, Kawaguchi Y, Hirasawa K. Interferon regulatory factor 3 mediates effective antiviral responses to human coronavirus 229E and OC43 infection. Front Immunol 2023; 14:930086. [PMID: 37197656 PMCID: PMC10183588 DOI: 10.3389/fimmu.2023.930086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 03/27/2023] [Indexed: 05/19/2023] Open
Abstract
Interferon regulatory factors (IRFs) are key elements of antiviral innate responses that regulate the transcription of interferons (IFNs) and IFN-stimulated genes (ISGs). While the sensitivity of human coronaviruses to IFNs has been characterized, antiviral roles of IRFs during human coronavirus infection are not fully understood. Type I or II IFN treatment protected MRC5 cells from human coronavirus 229E infection, but not OC43. Cells infected with 229E or OC43 upregulated ISGs, indicating that antiviral transcription is not suppressed. Antiviral IRFs, IRF1, IRF3 and IRF7, were activated in cells infected with 229E, OC43 or severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2). RNAi knockdown and overexpression of IRFs demonstrated that IRF1 and IRF3 have antiviral properties against OC43, while IRF3 and IRF7 are effective in restricting 229E infection. IRF3 activation effectively promotes transcription of antiviral genes during OC43 or 229E infection. Our study suggests that IRFs may be effective antiviral regulators against human coronavirus infection.
Collapse
Affiliation(s)
- Joseph K. Sampson Duncan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Danyang Xu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Maria Licursi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Michael A. Joyce
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Holly A. Saffran
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kaiwen Liu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kensuke Hirasawa
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- *Correspondence: Kensuke Hirasawa,
| |
Collapse
|
7
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
8
|
Uddin MB, Liang Y, Shao S, Palani S, McKelvey M, Weaver SC, Sun K. Type I IFN Signaling Protects Mice from Lethal SARS-CoV-2 Neuroinvasion. Immunohorizons 2022; 6:716-721. [DOI: 10.4049/immunohorizons.2200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/24/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Multiple organ damage is common in patients with severe COVID-19, even though the underlying pathogenic mechanisms remain unclear. Acute viral infection typically activates type I IFN (IFN-I) signaling. The antiviral role of IFN-I is well characterized in vitro. However, our understanding of how IFN-I regulates host immune response to SARS-CoV-2 infection in vivo is incomplete. Using a human ACE2-transgenic mouse model, we show in the present study that IFN-I receptor signaling is essential for protection against the acute lethality of SARS-CoV-2 in mice. Interestingly, although IFN-I signaling limits viral replication in the lung, the primary infection site, it is dispensable for efficient viral clearance at the adaptive phase of SARS-CoV-2 infection. Conversely, we found that in the absence of IFN-I receptor signaling, the extreme animal lethality is consistent with heightened infectious virus and prominent pathological manifestations in the brain. Taken together, our results in this study demonstrate that IFN-I receptor signaling is required for restricting virus neuroinvasion, thereby mitigating COVID-19 severity.
Collapse
Affiliation(s)
- Md Bashir Uddin
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Yuejin Liang
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Shengjun Shao
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Sunil Palani
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Michael McKelvey
- †Department of Experimental Pathology, University of Texas Medical Branch, Galveston, TX
| | - Scott C. Weaver
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Keer Sun
- *Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| |
Collapse
|
9
|
Sun W. Host-Genome Similarity Characterizes the Adaption of SARS-CoV-2 to Humans. Biomolecules 2022; 12:972. [PMID: 35883528 PMCID: PMC9312508 DOI: 10.3390/biom12070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a high mutation rate and many variants have emerged in the last 2 years, including Alpha, Beta, Delta, Gamma and Omicron. Studies showed that the host-genome similarity (HGS) of SARS-CoV-2 is higher than SARS-CoV and the HGS of open reading frame (ORF) in coronavirus genome is closely related to suppression of innate immunity. Many works have shown that ORF 6 and ORF 8 of SARS-CoV-2 play an important role in suppressing IFN-β signaling pathway in vivo. However, the relation between HGS and the adaption of SARS-CoV-2 variants is still not clear. This work investigates HGS of SARS-CoV-2 variants based on a dataset containing more than 40,000 viral genomes. The relation between HGS of viral ORFs and the suppression of antivirus response is studied. The results show that ORF 7b, ORF 6 and ORF 8 are the top 3 genes with the highest HGS. In the past 2 years, the HGS values of ORF 8 and ORF 7B of SARS-CoV-2 have increased greatly. A remarkable correlation is discovered between HGS and inhibition of antivirus response of immune system, which suggests that the similarity between coronavirus and host gnome may be an indicator of the suppression of innate immunity. Among the five variants (Alpha, Beta, Delta, Gamma and Omicron), Delta has the highest HGS and Omicron has the lowest HGS. This finding implies that the high HGS in Delta variant may indicate further suppression of host innate immunity. However, the relatively low HGS of Omicron is still a puzzle. By comparing the mutations in genomes of Alpha, Delta and Omicron variants, a commonly shared mutation ACT > ATT is identified in high-HGS strain populations. The high HGS mutations among the three variants are quite different. This finding strongly suggests that mutations in high HGS strains are different in different variants. Only a few common mutations survive, which may play important role in improving the adaptability of SARS-CoV-2. However, the mechanism for how the mutations help SARS-CoV-2 escape immunity is still unclear. HGS analysis is a new method to study virus−host interaction and may provide a way to understand the rapid mutation and adaption of SARS-CoV-2.
Collapse
Affiliation(s)
- Weitao Sun
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Moga E, Lynton-Pons E, Domingo P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front Immunol 2022; 13:904686. [PMID: 35833134 PMCID: PMC9271749 DOI: 10.3389/fimmu.2022.904686] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Two years after the appearance of the SARS-CoV-2 virus, the causal agent of the current global pandemic, it is time to analyze the evolution of the immune protection that infection and vaccination provide. Cellular immunity plays an important role in limiting disease severity and the resolution of infection. The early appearance, breadth and magnitude of SARS-CoV-2 specific T cell response has been correlated with disease severity and it has been thought that T cell responses may be sufficient to clear infection with minimal disease in COVID-19 patients with X-linked or autosomal recessive agammaglobulinemia. However, our knowledge of the phenotypic and functional diversity of CD8+ cytotoxic lymphocytes, CD4+ T helper cells, mucosal-associated invariant T (MAIT) cells and CD4+ T follicular helper (Tfh), which play a critical role in infection control as well as long-term protection, is still evolving. It has been described how CD8+ cytotoxic lymphocytes interrupt viral replication by secreting antiviral cytokines (IFN-γ and TNF-α) and directly killing infected cells, negatively correlating with stages of disease progression. In addition, CD4+ T helper cells have been reported to be key pieces, leading, coordinating and ultimately regulating antiviral immunity. For instance, in some more severe COVID-19 cases a dysregulated CD4+ T cell signature may contribute to the greater production of pro-inflammatory cytokines responsible for pathogenic inflammation. Here we discuss how cellular immunity is the axis around which the rest of the immune system components revolve, since it orchestrates and leads antiviral response by regulating the inflammatory cascade and, as a consequence, the innate immune system, as well as promoting a correct humoral response through CD4+ Tfh cells. This review also analyses the critical role of cellular immunity in modulating the development of high-affinity neutralizing antibodies and germinal center B cell differentiation in memory and long-lived antibody secreting cells. Finally, since there is currently a high percentage of vaccinated population and, in some cases, vaccine booster doses are even being administered in certain countries, we have also summarized newer approaches to long-lasting protective immunity and the cross-protection of cellular immune response against SARS-CoV-2.
Collapse
Affiliation(s)
- Esther Moga
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Esther Moga,
| | - Elionor Lynton-Pons
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Domingo
- Unidad de enfermedades infecciosas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
11
|
Xue W, Ding C, Qian K, Liao Y. The Interplay Between Coronavirus and Type I IFN Response. Front Microbiol 2022; 12:805472. [PMID: 35317429 PMCID: PMC8934427 DOI: 10.3389/fmicb.2021.805472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the past few decades, newly evolved coronaviruses have posed a global threat to public health and animal breeding. To control and prevent the coronavirus-related diseases, understanding the interaction of the coronavirus and the host immune system is the top priority. Coronaviruses have evolved multiple mechanisms to evade or antagonize the host immune response to ensure their replication. As the first line and main component of innate immune response, type I IFN response is able to restrict virus in the initial infection stage; it is thus not surprising that the primary aim of the virus is to evade or antagonize the IFN response. Gaining a profound understanding of the interaction between coronaviruses and type I IFN response will shed light on vaccine development and therapeutics. In this review, we provide an update on the current knowledge on strategies employed by coronaviruses to evade type I IFN response.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kun Qian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Ying Liao,
| |
Collapse
|
12
|
Li K, Wohlford-Lenane C, Bartlett JA, McCray PB. Inter-individual Variation in Receptor Expression Influences MERS-CoV Infection and Immune Responses in Airway Epithelia. Front Public Health 2022; 9:756049. [PMID: 35059374 PMCID: PMC8763803 DOI: 10.3389/fpubh.2021.756049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory infection in humans, with symptom severity that ranges from asymptomatic to severe pneumonia. Known risk factors for severe MERS include male sex, older age, and the presence of various comorbidities. MERS-CoV gains entry into cells by binding its receptor, dipeptidyl peptidase 4 (DPP4), on the surface of airway epithelia. We hypothesized that expression of this receptor might be an additional determinant of outcomes in different individuals during MERS-CoV infection. To learn more about the role of DPP4 in facilitating MERS-CoV infection and spread, we used ELISA and immunofluorescent staining to characterize DPP4 expression in well-differentiated primary human airway epithelia (HAE). We noted wide inter-individual variation in DPP4 abundance, varying by as much as 1000-fold between HAE donors. This variability appears to influence multiple aspects of MERS-CoV infection and pathogenesis, with greater DPP4 abundance correlating with early, robust virus replication and increased cell sloughing. We also observed increased induction of interferon and some interferon-stimulated genes in response to MERS-CoV infection in epithelia with the greatest DPP4 abundance. Overall, our results indicate that inter-individual differences in DPP4 abundance are one host factor contributing to MERS-CoV replication and host defense responses, and highlight how HAE may serve as a useful model for identifying risk factors associated with heightened susceptibility to serious respiratory pathogens.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Christine Wohlford-Lenane
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jennifer A. Bartlett
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Paul B. McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
Alefishat E, Jelinek HF, Mousa M, Tay GK, Alsafar HS. Immune response to SARS-CoV-2 Variants: A focus on severity, susceptibility, and preexisting immunity. J Infect Public Health 2022; 15:277-288. [PMID: 35074728 PMCID: PMC8757655 DOI: 10.1016/j.jiph.2022.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
The heterogeneous phenotypes among patients with coronavirus disease 2019 (COVID-19) has drawn worldwide attention, especially those with severe symptoms without comorbid conditions. Immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative virus of COVID-19, occur mainly by the innate immune response via the interferon (IFN)-mediated pathways, and the adaptive immunity via the T lymphocyte and the antibody mediated pathways. The ability of the original Wuhan SARS-CoV-2 strain, and possibly more so with new emerging variants, to antagonize IFN-mediated antiviral responses can be behind the higher early viral load, higher transmissibility, and milder symptoms compared to SARS-CoV and are part of the continued clinical evolution of COVID-19. Since it first emerged, several variants of SARS-CoV-2 have been circulating worldwide. Variants that have the potential to elude natural or vaccine-mediated immunity are variants of concern. This review focuses on the main host factors that may explain the immune responses to SARS-CoV-2 and its variants in the context of susceptibility, severity, and preexisting immunity.
Collapse
Affiliation(s)
- Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Herbert F Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Guan K Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Discipline of Psychiatry, Medical School, the University of Western Australia, Perth WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Emirates Bio-Research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
Abstract
Pulmonary fibrosis is the end stage of a broad range of heterogeneous interstitial lung diseases and more than 200 factors contribute to it. In recent years, the relationship between virus infection and pulmonary fibrosis is getting more and more attention, especially after the outbreak of SARS-CoV-2 in 2019, however, the mechanisms underlying the virus-induced pulmonary fibrosis are not fully understood. Here, we review the relationship between pulmonary fibrosis and several viruses such as Human T-cell leukemia virus (HTLV), Human immunodeficiency virus (HIV), Cytomegalovirus (CMV), Epstein–Barr virus (EBV), Murine γ-herpesvirus 68 (MHV-68), Influenza virus, Avian influenza virus, Middle East Respiratory Syndrome (MERS)-CoV, Severe acute respiratory syndrome (SARS)-CoV and SARS-CoV-2 as well as the mechanisms underlying the virus infection induced pulmonary fibrosis. This may shed new light on the potential targets for anti-fibrotic therapy to treat pulmonary fibrosis induced by viruses including SARS-CoV-2.
Collapse
Affiliation(s)
- Wei Jie Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. .,Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
15
|
Chen F, Zou L, Williams B, Chao W. Targeting Toll-Like Receptors in Sepsis: From Bench to Clinical Trials. Antioxid Redox Signal 2021; 35:1324-1339. [PMID: 33588628 PMCID: PMC8817700 DOI: 10.1089/ars.2021.0005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Sepsis is a critical clinical syndrome with life-threatening organ dysfunction induced by a dysregulated host response to infection. Despite decades of intensive research, sepsis remains a leading cause of in-hospital mortality with few specific treatments. Recent Advances: Toll-like receptors (TLRs) are a part of the innate immune system and play an important role in host defense against invading pathogens such as bacteria, virus, and fungi. Using a combination of genetically modified animal models and pharmacological agents, numerous preclinical studies during the past two decades have demonstrated that dysregulated TLR signaling may contribute to sepsis pathogenesis. However, many clinical trials targeting inflammation and innate immunity such as TLR4 have yielded mixed results. Critical Issues: Here we review various TLRs and the specific molecules these TLRs sense-both the pathogen-associated and host-derived stress molecules, and their converging signaling pathways. We critically analyze preclinical investigations into the role of TLRs in animal sepsis, the complexity of targeting TLRs for sepsis intervention, and the disappointing clinical trials of the TLR4 antagonist eritoran. Future Directions: Future sepsis treatments will depend on better understanding the complex biological mechanisms of sepsis pathogenesis, the high heterogeneity of septic humans as defined by clinical presentations and unique immunological biomarkers, and improved stratifications for targeted interventions.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brittney Williams
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Schroeder S, Mache C, Kleine-Weber H, Corman VM, Muth D, Richter A, Fatykhova D, Memish ZA, Stanifer ML, Boulant S, Gultom M, Dijkman R, Eggeling S, Hocke A, Hippenstiel S, Thiel V, Pöhlmann S, Wolff T, Müller MA, Drosten C. Functional comparison of MERS-coronavirus lineages reveals increased replicative fitness of the recombinant lineage 5. Nat Commun 2021; 12:5324. [PMID: 34493730 PMCID: PMC8423819 DOI: 10.1038/s41467-021-25519-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2021] [Indexed: 01/20/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels across the Middle East and Africa. Virus-induced pneumonia in humans results from animal contact, with a potential for limited onward transmission. Phenotypic changes have been suspected after a novel recombinant clade (lineage 5) caused large nosocomial outbreaks in Saudi Arabia and South Korea in 2016. However, there has been no functional assessment. Here we perform a comprehensive in vitro and ex vivo comparison of viruses from parental and recombinant virus lineages (lineage 3, n = 7; lineage 4, n = 8; lineage 5, n = 9 viruses) from Saudi Arabia, isolated immediately before and after the shift toward lineage 5. Replication of lineage 5 viruses is significantly increased. Transcriptional profiling finds reduced induction of immune genes IFNB1, CCL5, and IFNL1 in lung cells infected with lineage 5 strains. Phenotypic differences may be determined by IFN antagonism based on experiments using IFN receptor knock out and signaling inhibition. Additionally, lineage 5 is more resilient against IFN pre-treatment of Calu-3 cells (ca. 10-fold difference in replication). This phenotypic change associated with lineage 5 has remained undiscovered by viral sequence surveillance, but may be a relevant indicator of pandemic potential. MERS-CoV is enzootic in dromedary camels, can spread to humans but undergoes limited onward transmission. Here, Schroeder et al. compare clinical isolates of MERS-CoV in vitro and show that the predominantly circulating recombinant lineage 5 possess a fitness advantage over parental lineage 3 and 4 due to reduced activation of innate immune signaling.
Collapse
Affiliation(s)
- Simon Schroeder
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christin Mache
- Unit 17, Influenza and other Respiratory Viruses, Robert Koch Institut, Berlin, Germany
| | - Hannah Kleine-Weber
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | - Doreen Muth
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Diana Fatykhova
- Dept. of Infectious and Respiratory Diseases, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ziad A Memish
- Research and Innovation Department, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Research Group "Cellular polarity and viral infection", German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Mitra Gultom
- Institute of Virology and Immunology (IVI), Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology (IVI), Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephan Eggeling
- Department of Thoracic Surgery, Vivantes Clinics Neukölln, Berlin, Germany
| | - Andreas Hocke
- Dept. of Infectious and Respiratory Diseases, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hippenstiel
- Dept. of Infectious and Respiratory Diseases, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Thorsten Wolff
- Unit 17, Influenza and other Respiratory Viruses, Robert Koch Institut, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,German Centre for Infection Research (DZIF), Berlin, Germany.
| |
Collapse
|
17
|
SARS-CoV-2 Spike protein enhances ACE2 expression via facilitating Interferon effects in bronchial epithelium. Immunol Lett 2021; 237:33-41. [PMID: 34228987 PMCID: PMC8254647 DOI: 10.1016/j.imlet.2021.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022]
Abstract
Objective In this study, we focused on the interaction between SARS-CoV-2 and host Type I Interferon (IFN) response, so as to identify whether IFN effects could be influenced by the products of SARS-CoV-2. Methods All the structural and non-structural proteins of SARS-CoV-2 were transfected and overexpressed in the bronchial epithelial cell line BEAS-2B respectively, and typical antiviral IFN-stimulated gene (ISG) ISG15 expression was detected by qRT-PCR. RNA-seq based transcriptome analysis was performed between control and Spike (S) protein-overexpressed BEAS-2B cells. The expression of ACE2 and IFN effector JAK-STAT signaling activation were detected in control and S protein-overexpressed BEAS-2B cells by qRT-PCR or/and Western blot respectively. The interaction between S protein with STAT1 and STAT2, and the association between JAK1 with downstream STAT1 and STAT2 were measured in BEAS-2B cells by co-immunoprecipitation (co-IP). Results S protein could activate IFN effects and downstream ISGs expression. By transcriptome analysis, overexpression of S protein induced a set of genes expression, including series of ISGs and the SARS-CoV-2 receptor ACE2. Mechanistically, S protein enhanced the association between the upstream JAK1 and downstream STAT1 and STAT2, so as to promote STAT1 and STAT2 phosphorylation and ACE2 expression. Conclusion SARS-CoV-2 S protein enhances ACE2 expression via facilitating IFN effects, which may help its infection.
Collapse
|
18
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
19
|
Bidram E, Esmaeili Y, Amini A, Sartorius R, Tay FR, Shariati L, Makvandi P. Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomater Sci Eng 2021; 7:2150-2176. [PMID: 33979143 PMCID: PMC8130531 DOI: 10.1021/acsbiomaterials.1c00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Human respiratory viral infections are the leading cause of morbidity and mortality around the world. Among the various respiratory viruses, coronaviruses (e.g., SARS-CoV-2) have created the greatest challenge and most frightening health threat worldwide. Human coronaviruses typically infect the upper respiratory tract, causing illnesses that range from common cold-like symptoms to severe acute respiratory infections. Several promising vaccine formulations have become available since the beginning of 2021. Nevertheless, achievement of herd immunity is still far from being realized. Social distancing remains the only effective measure against SARS-CoV-2 infection. Nanobiotechnology enables the design of nanobiosensors. These nanomedical diagnostic devices have opened new vistas for early detection of viral infections. The present review outlines recent research on the effectiveness of nanoplatforms as diagnostic and antiviral tools against coronaviruses. The biological properties of coronavirus and infected host organs are discussed. The challenges and limitations encountered in combating SARS-CoV-2 are highlighted. Potential nanodevices such as nanosensors, nanobased vaccines, and smart nanomedicines are subsequently presented for combating current and future mutated versions of coronaviruses.
Collapse
Affiliation(s)
- Elham Bidram
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Yasaman Esmaeili
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Abbas Amini
- Centre
for Infrastructure Engineering, Western
Sydney University, Locked
Bag 1797, Penrith 2751, New South Wales, Australia
- Department
of Mechanical Engineering, Australian College
of Kuwait, Al Aqsa Mosque
Street, Mishref, Safat 13015, Kuwait
| | - Rossella Sartorius
- Institute
of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, Naples 80131, Italy
| | - Franklin R. Tay
- The
Graduate
School, Augusta University, 1120 15th Street, Augusta, Georgia 30912, United States
| | - Laleh Shariati
- Applied
Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
- Department
of Biomaterials, Nanotechnology and Tissue Engineering, School of
Advanced Technologies in Medicine, Isfahan
University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Pooyan Makvandi
- Centre
for Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, Pontedera 56025, Pisa, Italy
| |
Collapse
|
20
|
Te N, Rodon J, Ballester M, Pérez M, Pailler-García L, Segalés J, Vergara-Alert J, Bensaid A. Type I and III IFNs produced by the nasal epithelia and dimmed inflammation are features of alpacas resolving MERS-CoV infection. PLoS Pathog 2021; 17:e1009229. [PMID: 34029358 PMCID: PMC8195365 DOI: 10.1371/journal.ppat.1009229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/11/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10. Middle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a respiratory disease causing high mortality in humans. In camelids, the main MERS-CoV reservoir host, viral infection leads to subclinical disease. Our study describes transcriptional regulations of innate immunological pathways underlying asymptomatic clinical manifestations of alpacas in response to MERS-CoV. Concomitant to the peak of infection, these animals elicited a strong transient type I and III interferon response and induction of the anti-inflammatory cytokine IL10 in the nasal mucosa. Meanwhile, a dimmed regulation of pro-inflammatory cytokines and induction of interferon stimulated genes was observed along the whole respiratory mucosa with a rapid clearance of the virus in tissues. Thus, innate immune responses occurring in the nasal mucosa might be key in controlling MERS-CoV disease by avoiding a cytokine storm. Understanding on how asymptomatic host reservoirs counteract MERS-CoV infection will aid in the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Caldes de Montbui, Spain
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Lola Pailler-García
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, UAB, Cerdanyola del Vallès, Spain
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
- * E-mail:
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Cerdanyola del Vallès, Spain
| |
Collapse
|
21
|
Munoz FM, Cramer JP, Dekker CL, Dudley MZ, Graham BS, Gurwith M, Law B, Perlman S, Polack FP, Spergel JM, Van Braeckel E, Ward BJ, Didierlaurent AM, Lambert PH. Vaccine-associated enhanced disease: Case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2021; 39:3053-3066. [PMID: 33637387 PMCID: PMC7901381 DOI: 10.1016/j.vaccine.2021.01.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
This is a Brighton Collaboration Case Definition of the term "Vaccine Associated Enhanced Disease" to be utilized in the evaluation of adverse events following immunization. The Case Definition was developed by a group of experts convened by the Coalition for Epidemic Preparedness Innovations (CEPI) in the context of active development of vaccines for SARS-CoV-2 vaccines and other emerging pathogens. The case definition format of the Brighton Collaboration was followed to develop a consensus definition and defined levels of certainty, after an exhaustive review of the literature and expert consultation. The document underwent peer review by the Brighton Collaboration Network and by selected Expert Reviewers prior to submission.
Collapse
Affiliation(s)
- Flor M Munoz
- Departments of Pediatrics, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Jakob P Cramer
- Coalition for Epidemic Preparedness Innovations, CEPI, London, UK
| | - Cornelia L Dekker
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Matthew Z Dudley
- Institute for Vaccine Safety, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Marc Gurwith
- Safety Platform for Emergency Vaccines, Los Altos Hills, CA, USA
| | - Barbara Law
- Safety Platform for Emergency Vaccines, Manta, Ecuador
| | - Stanley Perlman
- Department of Microbiology and Immunology, Department of Pediatrics, University of Iowa, USA
| | | | - Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, PA, USA
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, and Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Brian J Ward
- Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | | | | |
Collapse
|
22
|
Beams AB, Bateman R, Adler FR. Will SARS-CoV-2 Become Just Another Seasonal Coronavirus? Viruses 2021; 13:854. [PMID: 34067128 PMCID: PMC8150750 DOI: 10.3390/v13050854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
The future prevalence and virulence of SARS-CoV-2 is uncertain. Some emerging pathogens become avirulent as populations approach herd immunity. Although not all viruses follow this path, the fact that the seasonal coronaviruses are benign gives some hope. We develop a general mathematical model to predict when the interplay among three factors, correlation of severity in consecutive infections, population heterogeneity in susceptibility due to age, and reduced severity due to partial immunity, will promote avirulence as SARS-CoV-2 becomes endemic. Each of these components has the potential to limit severe, high-shedding cases over time under the right circumstances, but in combination they can rapidly reduce the frequency of more severe and infectious manifestation of disease over a wide range of conditions. As more reinfections are captured in data over the next several years, these models will help to test if COVID-19 severity is beginning to attenuate in the ways our model predicts, and to predict the disease.
Collapse
Affiliation(s)
- Alexander B. Beams
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
- Division of Epidemiology, University of Utah, Salt Lake City, UT 84108, USA;
| | | | - Frederick R. Adler
- Division of Epidemiology, University of Utah, Salt Lake City, UT 84108, USA;
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
23
|
Vafaeinezhad A, Atashzar MR, Baharlou R. The Immune Responses against Coronavirus Infections: Friend or Foe? Int Arch Allergy Immunol 2021; 182:863-876. [PMID: 33951640 PMCID: PMC8247827 DOI: 10.1159/000516038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 01/19/2023] Open
Abstract
Coronaviruses (CoVs) were first discovered in the 1960s. Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) has been identified as the cause of COVID-19, which spread throughout China and subsequently, across the world. As COVID-19 causes serious public health concerns across the world, investigating the characteristics of SARS-CoV-2 and its interaction with the host immune responses may provide a clearer picture of how the pathogen causes disease in some individuals. Interestingly, SARS-CoV-2 has 80% sequence homology with SARS-CoV-1 and 96-98% homology with CoVs isolated from bats. Therefore, the experience acquired in SARS and Middle East Respiratory Syndrome (MERS) epidemics may improve our understanding of the immune response and immunopathological changes in COVID-19 patients. In the present paper, we have reviewed the immune responses (including the innate and adaptive immunities) to SARS-CoV, MERS-CoV, and SARS-CoV-2, so as to improve our understanding of the concept of the COVID-19 disease, which will be helpful in developing vaccines and medications for treating the COVID-19 patients.
Collapse
Affiliation(s)
- Arefe Vafaeinezhad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
24
|
In search of drugs to alleviate suppression of the host's innate immune responses against SARS-CoV-2 using a molecular modeling approach. In Silico Pharmacol 2021; 9:26. [PMID: 33842190 PMCID: PMC8019474 DOI: 10.1007/s40203-021-00085-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the novel SARS-CoV-2 evade the host innate immunity, and subsequently the adaptive immune response, employing one protease called Papain-like protease (PLpro). The PLpro and the 3CL main protease are responsible for the cleavage of the polyproteins encoded by the + sense RNA genome of the virus to produce several non-structured proteins (NSPs). However, the PLpro also performs deubiquitination and deISGylation of host proteins and signaling molecules, and thus antagonize the host innate immune response, since ubiquitination and ISGylation are critical processes which invoke host's antiviral immune responses. Thus, to maintain host antiviral defense, inhibition of the PLpro is the primary therapeutic strategy. Furthermore, inhibition of the enzyme prevents replication of the virus. The present study employs molecular modeling approaches to determine potential of different approved and repurposed drugs and other compounds as inhibitors of the SARS-CoV-2 PLpro. The results of the study demonstrated that drugs like Stallimycin, and known protease inhibitors including Telaprevir, Grazoprevir and Boceprevir, were highly potent in inhibiting the enzyme. In addition, several plant-derived polyphenols, including Corylifol A and Kazinol J, were found to be potent inhibitors. Based on the findings, we suggest that clinical trials be initiated with these inhibitors. So far, PLpro inhibition has been given less attention as a strategy to contain COVID-19 pandemic, and thus the present study is of high significance and has therapeutic implications in containing the pandemic. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40203-021-00085-y.
Collapse
|
25
|
Liou TG, Adler FR, Cahill BC, Cox DR, Cox JE, Grant GJ, Hanson KE, Hartsell SC, Hatton ND, Helms MN, Jensen JL, Kartsonaki C, Li Y, Leung DT, Marvin JE, Middleton EA, Osburn-Staker SM, Packer KA, Shakir SM, Sturrock AB, Tardif KD, Warren KJ, Waddoups LJ, Weaver LJ, Zimmerman E, Paine R. SARS-CoV-2 innate effector associations and viral load in early nasopharyngeal infection. Physiol Rep 2021; 9:e14761. [PMID: 33625796 PMCID: PMC7903990 DOI: 10.14814/phy2.14761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022] Open
Abstract
COVID‐19 causes severe disease with poor outcomes. We tested the hypothesis that early SARS‐CoV‐2 viral infection disrupts innate immune responses. These changes may be important for understanding subsequent clinical outcomes. We obtained residual nasopharyngeal swab samples from individuals who requested COVID‐19 testing for symptoms at drive‐through COVID‐19 clinical testing sites operated by the University of Utah. We applied multiplex immunoassays, real‐time polymerase chain reaction assays and quantitative proteomics to 20 virus‐positive and 20 virus‐negative samples. ACE‐2 transcripts increased with infection (OR =17.4, 95% CI [CI] =4.78–63.8) and increasing viral N1 protein transcript load (OR =1.16, CI =1.10–1.23). Transcripts for two interferons (IFN) were elevated, IFN‐λ1 (OR =71, CI =7.07–713) and IFN‐λ2 (OR =40.2, CI =3.86–419), and closely associated with viral N1 transcripts (OR =1.35, CI =1.23–1.49 and OR =1.33 CI =1.20–1.47, respectively). Only transcripts for IP‐10 were increased among systemic inflammatory cytokines that we examined (OR =131, CI =1.01–2620). We found widespread discrepancies between transcription and translation. IFN proteins were unchanged or decreased in infected samples (IFN‐γ OR =0.90 CI =0.33–0.79, IFN‐λ2,3 OR =0.60 CI =0.48–0.74) suggesting viral‐induced shut‐off of host antiviral protein responses. However, proteins for IP‐10 (OR =3.74 CI =2.07–6.77) and several interferon‐stimulated genes (ISG) increased with viral load (BST‐1 OR =25.1, CI =3.33–188; IFIT1 OR =19.5, CI =4.25–89.2; IFIT3 OR =245, CI =15–4020; MX‐1 OR =3.33, CI =1.44–7.70). Older age was associated with substantial modifications of some effects. Ambulatory symptomatic patients had an innate immune response with SARS‐CoV‐2 infection characterized by elevated IFN, proinflammatory cytokine and ISG transcripts, but there is evidence of a viral‐induced host shut‐off of antiviral responses. Our findings may characterize the disrupted immune landscape common in patients with early disease.
Collapse
Affiliation(s)
- Theodore G Liou
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA.,Center for Quantitative Biology, University of Utah, Salt Lake City, UT, USA
| | - Frederick R Adler
- Center for Quantitative Biology, University of Utah, Salt Lake City, UT, USA.,Department of Mathematics and School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Barbara C Cahill
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - James E Cox
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA.,Metabolomics, Proteomics and Mass Spectrometry Core, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Garett J Grant
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kimberly E Hanson
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| | - Stephen C Hartsell
- Division of Emergency Medicine, Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Nathan D Hatton
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - My N Helms
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Judy L Jensen
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit and Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yanping Li
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Daniel T Leung
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - James E Marvin
- Flow Cytometry Core Laboratory, University of Utah Health, Salt Lake City, UT, USA
| | - Elizabeth A Middleton
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sandra M Osburn-Staker
- Metabolomics, Proteomics and Mass Spectrometry Core, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kristyn A Packer
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Salika M Shakir
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| | - Anne B Sturrock
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Kristi J Warren
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA.,Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Lindsey J Waddoups
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lisa J Weaver
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth Zimmerman
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert Paine
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA.,Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
26
|
Abstract
Background The COVID-19 agent, SARS-CoV-2, is conspecific with SARS-CoV, the causal agent of the severe acute respiratory syndrome epidemic in 2002–03. Although the viruses share a completely homologous repertoire of proteins and use the same cellular entry receptor, their transmission efficiencies and pathogenetic traits differ. We aimed to compare interferon antagonism by SARS-CoV and SARS-CoV-2. Methods For this functional study, we infected Vero E6 and Calu-3 cells with strains of SARS-CoV and SARS-CoV-2. We studied differences in cell line-specific replication (Vero E6 vs Calu-3 cells) and analysed these differences in relation to TMPRSS2-dependent cell entry based on inhibition with the drug camostat mesilate. We evaluated viral sensitivity towards type I interferon treatment and assessed cytokine induction and type I interferon signalling in the host cells by RT-PCR and analysis of transcription factor activation and nuclear translocation. Based on reverse genetic engineering of SARS-CoV, we investigated the contribution of open reading frame 6 (ORF6) to the observed phenotypic differences in interferon signalling, because ORF6 encodes an interferon signalling antagonist. We did a luciferase-based interferon-stimulated response element promotor activation assay to evaluate the antagonistic capacity of SARS-CoV-2 wild-type ORF6 constructs and three mutants (Gln51Glu, Gln56Glu, or both) that represent amino acid substitutions between SARS-CoV and SARS-CoV-2 protein 6 in the carboxy-terminal domain. Findings Overall, replication was higher for SARS-CoV in Vero E6 cells and for SARS-CoV-2 in Calu-3 cells. SARS-CoV-2 was reliant on TMPRSS2, found only in Calu-3 cells, for more efficient entry. SARS-CoV-2 was more sensitive to interferon treatment, less efficient in suppressing cytokine induction via IRF3 nuclear translocation, and permissive of a higher level of induction of interferon-stimulated genes MX1 and ISG56. SARS-CoV-2 ORF6 expressed in the context of a fully replicating SARS-CoV backbone suppressed MX1 gene induction, but this suppression was less efficient than that by SARS-CoV ORF6. Mutagenesis showed that charged amino acids in residues 51 and 56 shift the phenotype towards more efficient interferon antagonism, as seen in SARS-CoV. Interpretation SARS-CoV-2 ORF6 interferes less efficiently with human interferon induction and interferon signalling than SARS-CoV ORF6. Because of the homology of the genes, onward selection for fitness could involve functional optimisation of interferon antagonism. Charged amino acids at positions 51 and 56 in ORF6 should be monitored for potential adaptive changes. Funding Bundesministerium für Bildung und Forschung, EU RECOVER project.
Collapse
|
27
|
Storci G, Bonifazi F, Garagnani P, Olivieri F, Bonafè M. The role of extracellular DNA in COVID-19: Clues from inflamm-aging. Ageing Res Rev 2021; 66:101234. [PMID: 33321254 PMCID: PMC7833688 DOI: 10.1016/j.arr.2020.101234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Epidemiological data convey severe prognosis and high mortality rate for COVID-19 in elderly men affected by age-related diseases. These subjects develop local and systemic hyper-inflammation, which are associated with thrombotic complications and multi-organ failure. Therefore, understanding SARS-CoV-2 induced hyper-inflammation in elderly men is a pressing need. Here we focus on the role of extracellular DNA, mainly mitochondrial DNA (mtDNA) and telomeric DNA (telDNA) in the modulation of systemic inflammation in these subjects. In particular, extracellular mtDNA is regarded as a powerful trigger of the inflammatory response. On the contrary, extracellular telDNA pool is estimated to be capable of inhibiting a variety of inflammatory pathways. In turn, we underpin that telDNA reservoir is progressively depleted during aging, and that it is scarcer in men than in women. We propose that an increase in extracellular mtDNA, concomitant with the reduction of the anti-inflammatory telDNA reservoir may explain hyper-inflammation in elderly male affected by COVID-19. This scenario is reminiscent of inflamm-aging, the portmanteau word that depicts how aging and aging related diseases are intimately linked to inflammation.
Collapse
Affiliation(s)
- Gianluca Storci
- Department of Experimental and Diagnostic Medicine, University of Bologna, Italy.
| | | | - Paolo Garagnani
- Department of Experimental and Diagnostic Medicine, University of Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Regenerative Therapy, IRCCS INRCA, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental and Diagnostic Medicine, University of Bologna, Italy.
| |
Collapse
|
28
|
Mdkhana B, Saheb Sharif-Askari N, Ramakrishnan RK, Goel S, Hamid Q, Halwani R. Nucleic Acid-Sensing Pathways During SARS-CoV-2 Infection: Expectations versus Reality. J Inflamm Res 2021; 14:199-216. [PMID: 33531826 PMCID: PMC7847386 DOI: 10.2147/jir.s277716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected millions of people and crippled economies worldwide. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for this pandemic has triggered avid research on its pathobiology to better understand the pathophysiology of COVID-19. In the absence of approved antiviral therapeutic strategies or vaccine platforms capable of effectively targeting this global threat, the hunt for effective therapeutics has led to many candidates being actively evaluated for their efficacy in controlling or preventing COVID-19. In this review, we gathered current evidence on the innate nucleic acid-sensing pathways expected to be elicited by SARS-CoV-2 and the immune evasion mechanisms they have developed to promote viral replication and infection. Within the nucleic acid-sensing pathways, SARS-CoV-2 infection and evasion mechanisms trigger the activation of NOD-signaling and NLRP3 pathways leading to the production of inflammatory cytokines, IL-1β and IL-6, while muting or blocking cGAS-STING and interferon type I and III pathways, resulting in decreased production of antiviral interferons and delayed innate response. Therefore, blocking the inflammatory arm and boosting the interferon production arm of nucleic acid-sensing pathways could facilitate early control of viral replication and dissemination, prevent disease progression, and cytokine storm development. We also discuss the rationale behind therapeutic modalities targeting these sensing pathways and their implications in the treatment of COVID-19.
Collapse
Affiliation(s)
- Bushra Mdkhana
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Swati Goel
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
29
|
Rabaan AA, Al-Ahmed SH, Sah R, Alqumber MA, Haque S, Patel SK, Pathak M, Tiwari R, Yatoo MI, Haq AU, Bilal M, Dhama K, Rodriguez-Morales AJ. MERS-CoV: epidemiology, molecular dynamics, therapeutics, and future challenges. Ann Clin Microbiol Antimicrob 2021; 20:8. [PMID: 33461573 PMCID: PMC7812981 DOI: 10.1186/s12941-020-00414-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
The Severe Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has gained research attention worldwide, given the current pandemic. Nevertheless, a previous zoonotic and highly pathogenic coronavirus, the Middle East Respiratory Syndrome coronavirus (MERS-CoV), is still causing concern, especially in Saudi Arabia and neighbour countries. The MERS-CoV has been reported from respiratory samples in more than 27 countries, and around 2500 cases have been reported with an approximate fatality rate of 35%. After its emergence in 2012 intermittent, sporadic cases, nosocomial infections and many community clusters of MERS continued to occur in many countries. Human-to-human transmission resulted in the large outbreaks in Saudi Arabia. The inherent genetic variability among various clads of the MERS-CoV might have probably paved the events of cross-species transmission along with changes in the inter-species and intra-species tropism. The current review is drafted using an extensive review of literature on various databases, selecting of publications irrespective of favouring or opposing, assessing the merit of study, the abstraction of data and analysing data. The genome of MERS-CoV contains around thirty thousand nucleotides having seven predicted open reading frames. Spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins are the four main structural proteins. The surface located spike protein (S) of betacoronaviruses has been established to be one of the significant factors in their zoonotic transmission through virus-receptor recognition mediation and subsequent initiation of viral infection. Three regions in Saudi Arabia (KSA), Eastern Province, Riyadh and Makkah were affected severely. The epidemic progression had been the highest in 2014 in Makkah and Riyadh and Eastern Province in 2013. With a lurking epidemic scare, there is a crucial need for effective therapeutic and immunological remedies constructed on sound molecular investigations.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Mohammed A Alqumber
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Alusteng Srinagar, Shalimar, Srinagar, Jammu and Kashmir, 190006, India
| | - Abrar Ul Haq
- Division of Clinical Veterinary Medicine Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher E Kashmir University of Agricultural Sciences and Technology, Kashmir, Shuhama, Srinagar, 190006, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia. .,Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia. .,School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
30
|
Haji Abdolvahab M, Moradi-Kalbolandi S, Zarei M, Bose D, Majidzadeh-A K, Farahmand L. Potential role of interferons in treating COVID-19 patients. Int Immunopharmacol 2021; 90:107171. [PMID: 33221168 PMCID: PMC7608019 DOI: 10.1016/j.intimp.2020.107171] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
The recently public health crises in the world is emerged by spreading the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also named COVID-19. The virus is originated in bats and transported to humans via undefined intermediate animals. This virus can produce from weak to severe respiratory diseases including acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), pneumonia and even death in patients. The COVID-19 disease is distributed by inhalation via contaminated droplets or contact with infected environment. The incubation time is from 2 to 14 day and the symptoms are typically fever, sore throat, cough, malaise, fatigue, breathlessness among others. It needs to be considered that many infected people are asymptomatic. Developing various immunological and virological methods to diagnose this disease is supported by several laboratories. Treatment is principally supportive; however, there are several agents that are using in treating of COVID-19 patients. Interferons (IFNs) have shown to be crucial in fighting with COVID-19 disease and can be a suitable candidate in treatment of these patients. Combination therapy can be more effective than monotherapy to cure this disease. Prevention necessitates to be performed by isolation of suspected people and home quarantine as well as taking care to infected people with mild or strict disease at hospitals. As the outbreak of SARS-CoV-2 has accelerated, developing effective therapy is an urgent requirement to battle the virus and prevent further pandemic. In this manuscript we reviewed available information about SARS-CoV-2 and probable therapies for COVID-19 patients.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mohammad Zarei
- Department of Pathology & Laboratory Medicine, Center for Mitochondrial & Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deepanwita Bose
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran.
| |
Collapse
|
31
|
Hussein O. Second wave of Covid-19 is determined by immune mechanism. Med Hypotheses 2020; 144:110238. [PMID: 33254544 PMCID: PMC7467093 DOI: 10.1016/j.mehy.2020.110238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 10/25/2022]
Abstract
A second wave of new severe acute respiratory syndrome coronavirus 2 (Covid-19) cases is widely feared. In fact resurgence of cases has been clearly observed in several countries that had seen flattening of the epidemic curve. In general, relaxation of community control measures is almost always blamed for the resurgence of cases. In this letter, the author describes an immunological explanation for the double-peaked epidemic curve of new viral diseases including Covid-19. According to this hypothesis, a second wave of cases is due to the effective innate immunity in some of the population. These individuals may later develop clinical disease upon repeated exposure. This theory claims that a double-peaked pattern of new cases in a new viral epidemic is intrinsically determined by the pattern of pathogen interaction with the host. According to this hypothesis, relaxation of the community control measures is not responsible; at least in part, for resurgence of cases.
Collapse
Affiliation(s)
- Osama Hussein
- Surgery Department, Mansoura University Oncology Center, Egypt.
| |
Collapse
|
32
|
Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol 2020; 41:1100-1115. [PMID: 33132005 PMCID: PMC7556779 DOI: 10.1016/j.it.2020.10.004] [Citation(s) in RCA: 725] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) marks the third highly pathogenic coronavirus to spill over into the human population. SARS-CoV-2 is highly transmissible with a broad tissue tropism that is likely perpetuating the pandemic. However, important questions remain regarding its transmissibility and pathogenesis. In this review, we summarize current SARS-CoV-2 research, with an emphasis on transmission, tissue tropism, viral pathogenesis, and immune antagonism. We further present advances in animal models that are important for understanding the pathogenesis of SARS-CoV-2, vaccine development, and therapeutic testing. When necessary, comparisons are made from studies with SARS to provide further perspectives on coronavirus infectious disease 2019 (COVID-19), as well as draw inferences for future investigations.
Collapse
Affiliation(s)
- Andrew G Harrison
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
33
|
Alhetheel A, Albarrag A, Shakoor Z, Somily A, Barry M, Altalhi H, Bakhrebah M, Nassar M, Alfageeh MB, Assiri A, Alfaraj SH, Memish ZA. Assessment of Th1/Th2 cytokines among patients with Middle East respiratory syndrome coronavirus infection. Int Immunol 2020; 32:799-804. [PMID: 32645711 PMCID: PMC7454581 DOI: 10.1093/intimm/dxaa047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/08/2020] [Indexed: 01/17/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a member of the beta-coronavirus genus of zoonotic origin that emerged in the Arabian Peninsula and is associated with significant morbidity and mortality. This study was conducted to assess the plasma levels of cytokines to evaluate the Th1/Th2 status among 46 MERS-CoV-infected patients (19 asymptomatic and 27 symptomatic) and 52 normal healthy controls using a customized luminex kit. Comparative analysis of data between MERS-CoV-infected patients and normal healthy controls revealed that although no difference was observed between asymptomatic MERS-CoV patients and controls, the mean plasma levels of interleukin (IL)-10 (44.69 ± 40.04 pg ml-1 versus 14.84 ± 6.96 pg ml-1; P < 0.0001), IL-4 (22.46 ± 8.02 pg ml-1 versus 16.01 ± 9.97 pg ml-1; P < 0.0001), IL-5 (10.78 ± 2.86 pg ml-1 versus 8.06 ± 1.41 pg ml-1; P < 0.0001) and IL-13 (14.51 ± 3.97 pg ml-1 versus 11.53 ± 4.16 pg ml-1; P < 0.003) in MERS-CoV symptomatic patients were significantly higher than the normal controls. The mean plasma levels of interferon (IFN)-γ and IL-12 were no different among the study groups. The cytokine profile among symptomatic MERS-CoV-infected patients was skewed to a Th2 type immune response.
Collapse
Affiliation(s)
- Abdulkarim Alhetheel
- King Khalid University Hospital, Riyadh, Saudi Arabia
- Department of Pathology, Riyadh, Saudi Arabia
| | - Ahmed Albarrag
- King Khalid University Hospital, Riyadh, Saudi Arabia
- Department of Pathology, Riyadh, Saudi Arabia
| | - Zahid Shakoor
- King Khalid University Hospital, Riyadh, Saudi Arabia
- Department of Pathology, Riyadh, Saudi Arabia
| | - Ali Somily
- King Khalid University Hospital, Riyadh, Saudi Arabia
- Department of Infectious diseases, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mazin Barry
- King Khalid University Hospital, Riyadh, Saudi Arabia
- Department of Infectious diseases, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hifa Altalhi
- King Khalid University Hospital, Riyadh, Saudi Arabia
| | | | - Majed Nassar
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | | - Sarah H Alfaraj
- Corona Center, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Ziad A Memish
- Research and Innovation Center, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Feuillet V, Canard B, Trautmann A. Combining Antivirals and Immunomodulators to Fight COVID-19. Trends Immunol 2020; 42:31-44. [PMID: 33281063 PMCID: PMC7664349 DOI: 10.1016/j.it.2020.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
The majority of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals remain paucisymptomatic, contrasting with a minority of infected individuals in danger of death. Here, we speculate that the robust disease resistance of most individuals is due to a swift production of type I interferon (IFNα/β), presumably sufficient to lower the viremia. A minority of infected individuals with a preexisting chronic inflammatory state fail to mount this early efficient response, leading to a delayed harmful inflammatory response. To improve the epidemiological scenario, we propose combining: (i) the development of efficient antivirals administered early enough to assist in the production of endogenous IFNα/β; (ii) potentiating early IFN responses; (iii) administering anti-inflammatory treatments when needed, but not too early to interfere with endogenous antiviral responses. Although the coronavirus disease 2019 (COVID-19) pandemic is exceptional, lessons may be learned from previous outbreaks (coronavirus, dengue, influenza viruses), especially when considering drug design and cytokine storms. We propose that efficient treatments for COVID-19 patients should combine antivirals and immunomodulators. This combination and, especially the use of immunomodulators, might be adapted according to the disease stage. Among the repurposed antiviral drugs currently being tested against COVID-19, none shows high potency. We posit that the innate type 1 interferon (IFNα/β)-dependent antiviral immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection should be amplified. To this end, we propose two putative approaches: the inhibition of transforming growth factor (TGFβ) signaling, and perhaps, the administration of 1,8-cineole. We suggest that an early diagnosis during COVID-19 is essential when aiming to purposely combine antivirals with the use of an immunomodulator (e.g., a drug to potentiate IFNα/β), ideally early in the disease course to lower the risk of cytokine storm manifestation. When the disease becomes severe, the new combination should prioritize targeting of the cytokine storm.
Collapse
Affiliation(s)
- Vincent Feuillet
- Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Bruno Canard
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
| | - Alain Trautmann
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| |
Collapse
|
35
|
Liou TG, Adler FR, Cahill BC, Cox DR, Cox JE, Grant GJ, Hanson KE, Hartsell SC, Hatton ND, Helms MN, Jensen JL, Kartsonaki C, Li Y, Leung DT, Marvin JE, Middleton EA, Osburn-Staker SM, Packer KA, Shakir SM, Sturrock AB, Tardif KD, Warren KJ, Waddoups LJ, Weaver LJ, Zimmerman E, Paine R. SARS-CoV-2 Innate Effector Associations and Viral Load in Early Nasopharyngeal Infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.30.20223545. [PMID: 33173878 PMCID: PMC7654861 DOI: 10.1101/2020.10.30.20223545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
To examine innate immune responses in early SARS-CoV-2 infection that may change clinical outcomes, we compared nasopharyngeal swab data from 20 virus-positive and 20 virus-negative individuals. Multiple innate immune-related and ACE-2 transcripts increased with infection and were strongly associated with increasing viral load. We found widespread discrepancies between transcription and translation. Interferon proteins were unchanged or decreased in infected samples suggesting virally-induced shut-off of host anti-viral protein responses. However, IP-10 and several interferon-stimulated gene proteins increased with viral load. Older age was associated with modifications of some effects. Our findings may characterize the disrupted immune landscape of early disease.
Collapse
|
36
|
Kirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104502. [PMID: 32798769 PMCID: PMC7425554 DOI: 10.1016/j.meegid.2020.104502] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023]
Abstract
Human Coronaviruses (HCoV), periodically emerging across the world, are potential threat to humans such as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) - diseases termed as COVID-19. Current SARS-CoV-2 outbreak have fueled ongoing efforts to exploit various viral target proteins for therapy, but strategies aimed at blocking the viral proteins as in drug and vaccine development have largely failed. In fact, evidence has now shown that coronaviruses undergoes rapid recombination to generate new strains of altered virulence; additionally, escaped the host antiviral defense system and target humoral immune system which further results in severe deterioration of the body such as by cytokine storm. This demands the understanding of phenotypic and genotypic classification, and pathogenesis of SARS-CoV-2 for the production of potential therapy. In lack of clear clinical evidences for the pathogenesis of COVID-19, comparative analysis of previous pandemic HCoVs associated immunological responses can provide insights into COVID-19 pathogenesis. In this review, we summarize the possible origin and transmission mode of CoVs and the current understanding on the viral genome integrity of known pandemic virus against SARS-CoV-2. We also consider the host immune response and viral evasion based on available clinical evidences which would be helpful to remodel COVID-19 pathogenesis; and hence, development of therapeutics against broad spectrum of coronaviruses.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- Department of Science, Modern Institute of Technology, Dhalwala, Rishikesh, Uttarakhand, India
| | - Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
37
|
Felgenhauer U, Schoen A, Gad HH, Hartmann R, Schaubmar AR, Failing K, Drosten C, Weber F. Inhibition of SARS-CoV-2 by type I and type III interferons. J Biol Chem 2020; 295:13958-13964. [PMID: 32587093 PMCID: PMC7549028 DOI: 10.1074/jbc.ac120.013788] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the devastating COVID-19 lung disease pandemic. Here, we tested the inhibitory activities of the antiviral interferons of type I (IFN-α) and type III (IFN-λ) against SARS-CoV-2 and compared them with those against SARS-CoV-1, which emerged in 2003. Using two mammalian epithelial cell lines (human Calu-3 and simian Vero E6), we found that both IFNs dose-dependently inhibit SARS-CoV-2. In contrast, SARS-CoV-1 was restricted only by IFN-α in these cell lines. SARS-CoV-2 generally exhibited a broader IFN sensitivity than SARS-CoV-1. Moreover, ruxolitinib, an inhibitor of IFN-triggered Janus kinase/signal transducer and activator of transcription signaling, boosted SARS-CoV-2 replication in the IFN-competent Calu-3 cells. We conclude that SARS-CoV-2 is sensitive to exogenously added IFNs. This finding suggests that type I and especially the less adverse effect-prone type III IFN are good candidates for the management of COVID-19.
Collapse
Affiliation(s)
- Ulrike Felgenhauer
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Andreas Schoen
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Hans Henrik Gad
- Department for Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department for Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andreas R Schaubmar
- Unit for Biomathematics and Data Processing, FB10-Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Klaus Failing
- Unit for Biomathematics and Data Processing, FB10-Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Christian Drosten
- German Centre for Infection Research (DZIF), partner sites Giessen and Charité Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University, Giessen, Germany
- German Centre for Infection Research (DZIF), partner sites Giessen and Charité Berlin, Germany
| |
Collapse
|
38
|
Keam S, Megawati D, Patel SK, Tiwari R, Dhama K, Harapan H. Immunopathology and immunotherapeutic strategies in severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol 2020; 30:e2123. [PMID: 32648313 PMCID: PMC7404843 DOI: 10.1002/rmv.2123] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) and pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a major concern globally. As of 14 April 2020, more than 1.9 million COVID-19 cases have been reported in 185 countries. Some patients with COVID-19 develop severe clinical manifestations, while others show mild symptoms, suggesting that dysregulation of the host immune response contributes to disease progression and severity. In this review, we have summarized and discussed recent immunological studies focusing on the response of the host immune system and the immunopathology of SARS-CoV-2 infection as well as immunotherapeutic strategies for COVID-19. Immune evasion by SARS-CoV-2, functional exhaustion of lymphocytes, and cytokine storm have been discussed as part of immunopathology mechanisms in SARS-CoV-2 infection. Some potential immunotherapeutic strategies to control the progression of COVID-19, such as passive antibody therapy and use of interferon αβ and IL-6 receptor (IL-6R) inhibitor, have also been discussed. This may help us to understand the immune status of patients with COVID-19, particularly those with severe clinical presentation, and form a basis for further immunotherapeutic investigations.
Collapse
Affiliation(s)
- Synat Keam
- School of MedicineUniversity of Western AustraliaPerthAustralia
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health SciencesWarmadewa UniversityDenpasarIndonesia
- Department of Medical Microbiology and ImmunologyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary SciencesUP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go‐Anusandhan Sansthan (DUVASU)MathuraIndia
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteBareillyIndia
| | - Harapan Harapan
- Medical Research Unit, School of MedicineUniversitas Syiah KualaBanda AcehIndonesia
- Tropical Disease Centre, School of MedicineUniversitas Syiah KualaBanda AcehIndonesia
- Department of Microbiology, School of MedicineUniversitas Syiah KualaBanda AcehIndonesia
| |
Collapse
|
39
|
Zhang YY, Li BR, Ning BT. The Comparative Immunological Characteristics of SARS-CoV, MERS-CoV, and SARS-CoV-2 Coronavirus Infections. Front Immunol 2020; 11:2033. [PMID: 32922406 PMCID: PMC7457039 DOI: 10.3389/fimmu.2020.02033] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Immune dysfunction and aberrant cytokine storms often lead to rapid exacerbation of the disease during late infection stages in SARS-CoV and MERS-CoV patients. However, the underlying immunopathology mechanisms are not fully understood, and there has been little progress in research regarding the development of vaccines, anti-viral drugs, and immunotherapy. The newly discovered SARS-CoV-2 (2019-nCoV) is responsible for the third coronavirus pandemic in the human population, and this virus exhibits enhanced pathogenicity and transmissibility. SARS-CoV-2 is highly genetically homologous to SARS-CoV, and infection may result in a similar clinical disease (COVID-19). In this review, we provide detailed knowledge of the pathogenesis and immunological characteristics of SARS and MERS, and we present recent findings regarding the clinical features and potential immunopathogenesis of COVID-19. Host immunological characteristics of these three infections are summarised and compared. We aim to provide insights and scientific evidence regarding the pathogenesis of COVID-19 and therapeutic strategies targeting this disease.
Collapse
Affiliation(s)
| | - Bi-ru Li
- Department of Paediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo-tao Ning
- Department of Paediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Wong LYR, Ye ZW, Lui PY, Zheng X, Yuan S, Zhu L, Fung SY, Yuen KS, Siu KL, Yeung ML, Cai Z, Woo PCY, Yuen KY, Chan CP, Jin DY. Middle East Respiratory Syndrome Coronavirus ORF8b Accessory Protein Suppresses Type I IFN Expression by Impeding HSP70-Dependent Activation of IRF3 Kinase IKKε. THE JOURNAL OF IMMUNOLOGY 2020; 205:1564-1579. [PMID: 32747502 DOI: 10.4049/jimmunol.1901489] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus causing severe disease and mortality. MERS-CoV infection failed to elicit robust IFN response, suggesting that the virus might have evolved strategies to evade host innate immune surveillance. In this study, we identified and characterized type I IFN antagonism of MERS-CoV open reading frame (ORF) 8b accessory protein. ORF8b was abundantly expressed in MERS-CoV-infected Huh-7 cells. When ectopically expressed, ORF8b inhibited IRF3-mediated IFN-β expression induced by Sendai virus and poly(I:C). ORF8b was found to act at a step upstream of IRF3 to impede the interaction between IRF3 kinase IKKε and chaperone protein HSP70, which is required for the activation of IKKε and IRF3. An infection study using recombinant wild-type and ORF8b-deficient MERS-CoV further confirmed the suppressive role of ORF8b in type I IFN induction and its disruption of the colocalization of HSP70 with IKKε. Ectopic expression of HSP70 relieved suppression of IFN-β expression by ORF8b in an IKKε-dependent manner. Enhancement of IFN-β induction in cells infected with ORF8b-deficient virus was erased when HSP70 was depleted. Taken together, HSP70 chaperone is important for IKKε activation, and MERS-CoV ORF8b suppresses type I IFN expression by competing with IKKε for interaction with HSP70.
Collapse
Affiliation(s)
- Lok-Yin Roy Wong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zi-Wei Ye
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; and
| | - Pak-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xuyang Zheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; and
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kam-Leung Siu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Man-Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; and
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Patrick Chiu-Yat Woo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; and
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong; and
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong;
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong;
| |
Collapse
|
41
|
Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, Wang C, Wang Y, Li L, Ren L, Guo F, Zhao Z, Zhou Z, Xiang Z, Wang J. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun 2020; 11:3810. [PMID: 32733001 PMCID: PMC7392898 DOI: 10.1038/s41467-020-17665-9] [Citation(s) in RCA: 734] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022] Open
Abstract
The pandemic of COVID-19 has posed an unprecedented threat to global public health. However, the interplay between the viral pathogen of COVID-19, SARS-CoV-2, and host innate immunity is poorly understood. Here we show that SARS-CoV-2 induces overt but delayed type-I interferon (IFN) responses. By screening 23 viral proteins, we find that SARS-CoV-2 NSP1, NSP3, NSP12, NSP13, NSP14, ORF3, ORF6 and M protein inhibit Sendai virus-induced IFN-β promoter activation, whereas NSP2 and S protein exert opposite effects. Further analyses suggest that ORF6 inhibits both type I IFN production and downstream signaling, and that the C-terminus region of ORF6 is critical for its antagonistic effect. Finally, we find that IFN-β treatment effectively blocks SARS-CoV-2 replication. In summary, our study shows that SARS-CoV-2 perturbs host innate immune response via both its structural and nonstructural proteins, and thus provides insights into the pathogenesis of SARS-CoV-2. The pandemic of SARS-CoV-2 post a significant threat to public health. Here the authors show, by screening 23 viral proteins, that both structural and non-structural SARS-CoV-2 proteins are capable of modulating host innate immunity and type interferon responses, with this information serves to warrant further studies on SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.,Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Ruiyi Ma
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Wenjing Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Xia Xiao
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Zhongqin Tian
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Conghui Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Ying Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Li Li
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Lili Ren
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.,Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Fei Guo
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Zhendong Zhao
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University Genome Editing Research Center, School of Life Sciences, Peking University, 100871, Beijing, China.
| | - Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China. .,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China. .,Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China. .,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China. .,Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, P.R. China.
| |
Collapse
|
42
|
Zhang Y, Xu Q, Sun Z, Zhou L. Current targeted therapeutics against COVID-19: Based on first-line experience in China. Pharmacol Res 2020; 157:104854. [PMID: 32360585 PMCID: PMC7192075 DOI: 10.1016/j.phrs.2020.104854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a novel strain, causing a global pandemic since the end of 2019. The majority of patients showed nonspecific symptoms such as fever, dry cough, and fatigue. Most patients have a good prognosis while some with severe conditions could rapidly progress to acute respiratory distress syndrome, septic shock, metabolic acidosis, coagulation dysfunction, and even die. The exacerbation of the patient's condition may be due to a cytokine storm in the body. Effective targeted therapies including antiviral and immunization are urgently needed. Although many clinical trials are already underway and the majority of patients have received antiviral therapy based on medication experience with severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), and preliminary results from some clinical trials, there are no antiviral drugs proven to be effective currently. We summarize the current therapeutic medicines used in the clinic, hope to be able to provide some implications for clinical medication.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Qianhao Xu
- The First School of Clinical Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Zhuoyan Sun
- School of Medical Imaging, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
43
|
The Middle East Respiratory Syndrome Coronavirus: An Emerging Virus of Global Threat. EMERGING AND REEMERGING VIRAL PATHOGENS 2020. [PMCID: PMC7148737 DOI: 10.1016/b978-0-12-819400-3.00008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Middle East respiratory syndrome (MERS) is a viral respiratory illness caused by a coronavirus (CoV), first identified in Saudi Arabia in 2012. Since then, almost 2000 cases have been reported from 27 countries, with Saudi Arabia being the epicenter. This newly emerging virus is highly pathogenic and has a case mortality rate of 35%. It is similar to the CoV causing severe acute respiratory syndrome CoV (SARS-CoV) in that both belong to the genus beta CoVs that are of zoonotic origin and cause lower respiratory infection. The natural reservoir for MERS-CoV remains unknown. Serological studies indicate that most dromedary camels in the Middle East have been infected with this virus, and they maybe the potential intermediate host. However, the mode of transmission from camels to humans is poorly understood. The majority of confirmed human cases have resulted from human-to-human transmission, most probably via respiratory route. Patients most at risk of developing severe MERS-CoV infection appear to be those with underlying conditions such as diabetes, hypertension, obesity, cardiac diseases, chronic respiratory diseases, and cancer. Unlike SARS-CoV, MERS-CoV is considered an ongoing public health problem, particularly for the Middle East region. In this chapter, we outline the prevailing information regarding the emergence and epidemiology of this virus, its mode of transmission and pathogenicity, its clinical features, and the potential strategies for prevention.
Collapse
|
44
|
Nelemans T, Kikkert M. Viral Innate Immune Evasion and the Pathogenesis of Emerging RNA Virus Infections. Viruses 2019; 11:v11100961. [PMID: 31635238 PMCID: PMC6832425 DOI: 10.3390/v11100961] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Positive-sense single-stranded RNA (+ssRNA) viruses comprise many (re-)emerging human pathogens that pose a public health problem. Our innate immune system and, in particular, the interferon response form the important first line of defence against these viruses. Given their genetic flexibility, these viruses have therefore developed multiple strategies to evade the innate immune response in order to optimize their replication capacity. Already many molecular mechanisms of innate immune evasion by +ssRNA viruses have been identified. However, research addressing the effect of host innate immune evasion on the pathology caused by viral infections is less prevalent in the literature, though very relevant and interesting. Since interferons have been implicated in inflammatory diseases and immunopathology in addition to their protective role in infection, antagonizing the immune response may have an ambiguous effect on the clinical outcome of the viral disease. Therefore, this review discusses what is currently known about the role of interferons and host immune evasion in the pathogenesis of emerging coronaviruses, alphaviruses and flaviviruses.
Collapse
Affiliation(s)
- Tessa Nelemans
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands.
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands.
| |
Collapse
|
45
|
Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody. Int J Mol Sci 2019; 20:ijms20205073. [PMID: 31614869 PMCID: PMC6829326 DOI: 10.3390/ijms20205073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs.
Collapse
|
46
|
Lee JY, Bae S, Myoung J. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-β promoter activation: its implication for vaccine design. J Microbiol 2019; 57:803-811. [PMID: 31452044 PMCID: PMC7091237 DOI: 10.1007/s12275-019-9272-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a causative agent of severe-to-fatal pneumonia especially in patients with pre-existing conditions, such as smoking and chronic obstructive pulmonary disease (COPD). MERS-CoV transmission continues to be reported in the Saudi Arabian Peninsula since its discovery in 2012. However, it has rarely been epidemic outside the area except one large outbreak in South Korea in May 2015. The genome of the epidemic MERS-CoV isolated from a Korean patient revealed its homology to previously reported strains. MERS-CoV encodes 5 accessory proteins and generally, they do not participate in the genome transcription and replication but rather are involved in viral evasion of the host innate immune responses. Here we report that ORF8b, an accessory protein of MERS-CoV, strongly inhibits both MDA5- and RIG-I-mediated activation of interferon beta promoter activity while downstream signaling molecules were left largely unaffected. Of note, MDA5 protein levels were significantly down-regulated by ORF8b and co-expression of ORF4a and ORF4b. These novel findings will facilitate elucidation of mechanisms of virus-encoded evasion strategies, thus helping design rationale antiviral countermeasures against deadly MERS-CoV infection.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National University, Jeonju, 54531, Republic of Korea
| | - Sojung Bae
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National University, Jeonju, 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National University, Jeonju, 54531, Republic of Korea.
| |
Collapse
|
47
|
Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, Sompallae R, McCray PB, Meyerholz DK, Perlman S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest 2019; 129:3625-3639. [PMID: 31355779 DOI: 10.1172/jci126363] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Type 1 IFNs (IFN-I) generally protect mammalian hosts from virus infections, but in some cases, IFN-I is pathogenic. Because IFN-I is protective, it is commonly used to treat virus infections for which no specific approved drug or vaccine is available. The Middle East respiratory syndrome-coronavirus (MERS-CoV) is such an infection, yet little is known about the role of IFN-I in this setting. Here, we show that IFN-I signaling is protective during MERS-CoV infection. Blocking IFN-I signaling resulted in delayed virus clearance, enhanced neutrophil infiltration, and impaired MERS-CoV-specific T cell responses. Notably, IFN-I administration within 1 day after infection (before virus titers peak) protected mice from lethal infection, despite a decrease in IFN-stimulated gene (ISG) and inflammatory cytokine gene expression. In contrast, delayed IFN-β treatment failed to effectively inhibit virus replication, increased infiltration and activation of monocytes, macrophages, and neutrophils in the lungs, and enhanced proinflammatory cytokine expression, resulting in fatal pneumonia in an otherwise sublethal infection. Together, these results suggest that the relative timing of the IFN-I response and maximal virus replication is key in determining outcomes, at least in infected mice. By extension, IFN-αβ or combination therapy may need to be used cautiously to treat viral infections in clinical settings.
Collapse
Affiliation(s)
- Rudragouda Channappanavar
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Acute and Tertiary Care, and.,Department of Microbiology and Immunology, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Anthony R Fehr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | | | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthias Mack
- Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | - Paul B McCray
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
48
|
Kim J, Yang YL, Jang YS. Human β-defensin 2 is involved in CCR2-mediated Nod2 signal transduction, leading to activation of the innate immune response in macrophages. Immunobiology 2019; 224:502-510. [PMID: 31126693 PMCID: PMC7114636 DOI: 10.1016/j.imbio.2019.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
Beta-defensins contribute to host innate defense against various pathogens, including viruses, although the details of their roles in innate immune cells are unclear. We previously reported that human β-defensin 2 (HBD 2) activates primary innate immunity against viral infection and suggested that it plays a role in the induction of the adaptive immune response. We analyzed the mechanisms by which HBD 2 primes innate antiviral immunity and polarized activation of macrophage-like THP-1 cells using the receptor-binding domain (RBD) of Middle East respiratory syndrome coronavirus (MERS-CoV) spike protein (S RBD) as a model antigen. The expression of nucleotide-binding oligomerization domain containing 2 (Nod2), type I interferons, (IFNs), and proinflammatory mediators was enhanced in S RBD-HBD 2-treated THP-1 cells. S RBD-HBD 2 treatment also enhanced phosphorylation and activation of receptor-interacting serine/threonine-protein kinase 2 and IFN regulatory factor 3 compared to S RBD alone. Finally, HBD 2-conjugated S RBD interacted with C-C chemokine receptor 2 (CCR2), and Nod2 was involved in HBD 2-mediated CCR2 signaling, which was associated with the activation and M1 polarization of THP-1 cells. Therefore, HBD 2 promotes CCR2-mediated Nod2 signaling, which induces production of type I IFNs and an inflammatory response, and enhances primary innate immunity leading to an effective adaptive immune response to HBD 2-conjugated antigen.
Collapse
Affiliation(s)
- Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, 54896, South Korea
| | - Ye Lin Yang
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju, 54856, South Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, 54896, South Korea; Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju, 54856, South Korea.
| |
Collapse
|
49
|
Choudhry H, Bakhrebah MA, Abdulaal WH, Zamzami MA, Baothman OA, Hassan MA, Zeyadi M, Helmi N, Alzahrani F, Ali A, Zakaria MK, Kamal MA, Warsi MK, Ahmed F, Rasool M, Jamal MS. Middle East respiratory syndrome: pathogenesis and therapeutic developments. Future Virol 2019; 14:237-246. [PMID: 32201499 PMCID: PMC7080179 DOI: 10.2217/fvl-2018-0201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
The first case of Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in the year 2012, which spread rapidly and increased to more than 2200 in 2018. This highly pathogenic virus with high mortality rate is among one of the major public health concerns. Saudi Arabia remains to be the most affected region with the majority of MERS-CoV cases, and currently, no effective drugs and vaccines are available for prevention and treatment. A large amount of information is now available regarding the virus, its structure, route of transmission and its pathophysiology. Therefore, this review summarizes the current understanding of MERS-CoV's pathogenesis, treatment options and recent scientific advancements in vaccine and other therapeutic developments, and the major steps taken for MERS prevention control.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammed A Bakhrebah
- Life Science & environment Research Institute, National Center for Genome Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh 12371, Saudi Arabia.,Life Science & environment Research Institute, National Center for Genome Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh 12371, Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Othman A Baothman
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed A Hassan
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Basic Medical Sciences, College of Medicine & Health Sciences, Hadhramout University, Yemen.,Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Basic Medical Sciences, College of Medicine & Health Sciences, Hadhramout University, Yemen
| | - Mustafa Zeyadi
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nawal Helmi
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal Alzahrani
- Hematology Lab Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Hematology Lab Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf Ali
- Hematology Lab Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli, 25 - 71122, Foggia, Italy.,Hematology Lab Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli, 25 - 71122, Foggia, Italy
| | - Mohammad Khalid Zakaria
- The Pirbright Institute, Ash Road, GU240NF, Surrey, United Kingdom.,The Pirbright Institute, Ash Road, GU240NF, Surrey, United Kingdom
| | - Mohammad Azhar Kamal
- Department of Biochemistry, University of Jeddah, Jeddah 23890, Saudi Arabia.,Department of Biochemistry, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Mohiuddin Khan Warsi
- The Pirbright Institute, Ash Road, GU240NF, Surrey, United Kingdom.,The Pirbright Institute, Ash Road, GU240NF, Surrey, United Kingdom
| | - Firoz Ahmed
- The Pirbright Institute, Ash Road, GU240NF, Surrey, United Kingdom.,The Pirbright Institute, Ash Road, GU240NF, Surrey, United Kingdom
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Sarwar Jamal
- Hematology Lab Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Hematology Lab Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
50
|
Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Infection, Immunological Response, and Vaccine Development. J Immunol Res 2019; 2019:6491738. [PMID: 31089478 PMCID: PMC6476043 DOI: 10.1155/2019/6491738] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in late 2012. Since its emergence, a total of 2279 patients from 27 countries have been infected across the globe according to a World Health Organization (WHO) report (Feb. 12th, 2019). Approximately 806 patients have died. The virus uses its spike proteins as adhesive factors that are proinflammatory for host entry through a specific receptor called dipeptidyl peptidase-4 (DPP4). This receptor is considered a key factor in the signaling and activation of the acquired and innate immune responses in infected patients. Using potent antigens in combination with strong adjuvants may effectively trigger the activation of specific MERS-CoV cellular responses as well as the production of neutralizing antibodies. Unfortunately, to date, there is no effective approved treatment or vaccine for MERS-CoV. Thus, there are urgent needs for the development of novel MERS-CoV therapies as well as vaccines to help minimize the spread of the virus from infected patients, thereby mitigating the risk of any potential pandemics. Our main goals are to highlight and describe the current knowledge of both the innate and adaptive immune responses to MERS-CoV and the current state of MERS-CoV vaccine development. We believe this study will increase our understanding of the mechanisms that enhance the MERS-CoV immune response and subsequently contribute to the control of MERS-CoV infections.
Collapse
|