1
|
Chou AA, Lin CH, Chang YC, Chang HW, Lin YC, Pi CC, Kan YM, Chuang HF, Chen HW. Antiviral activity of Vigna radiata extract against feline coronavirus in vitro. Vet Q 2024; 44:1-13. [PMID: 38712855 PMCID: PMC11078076 DOI: 10.1080/01652176.2024.2349665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.
Collapse
Affiliation(s)
- Ai-Ai Chou
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- TACS-alliance Research Center, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Lin
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Chia-Chen Pi
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Yao-Ming Kan
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Fen Chuang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Kim Y, Pool E, Kim E, Dampalla CS, Nguyen HN, Johnson DK, Lovell S, Groutas WC, Chang KO. Potent small molecule inhibitors against the 3C protease of foot-and-mouth disease virus. Microbiol Spectr 2024; 12:e0337223. [PMID: 38466127 PMCID: PMC10986521 DOI: 10.1128/spectrum.03372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024] Open
Abstract
Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Emma Pool
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Eunji Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | - David K. Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
3
|
Westberg M, Su Y, Zou X, Huang P, Rustagi A, Garhyan J, Patel PB, Fernandez D, Wu Y, Hao C, Lo CW, Karim M, Ning L, Beck A, Saenkham-Huntsinger P, Tat V, Drelich A, Peng BH, Einav S, Tseng CTK, Blish C, Lin MZ. An orally bioavailable SARS-CoV-2 main protease inhibitor exhibits improved affinity and reduced sensitivity to mutations. Sci Transl Med 2024; 16:eadi0979. [PMID: 38478629 PMCID: PMC11193659 DOI: 10.1126/scitranslmed.adi0979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/21/2024] [Indexed: 05/09/2024]
Abstract
Inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function against these mutants are thus urgently needed. We hypothesized that the covalent hepatitis C virus protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more efficiently than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to those of NTV. A crucial feature of ML2006a4 is a derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Last, ML2006a4 was found to be less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory design can preemptively address potential resistance mechanisms to expand future treatment options against coronavirus variants.
Collapse
Affiliation(s)
- Michael Westberg
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Department of Chemistry, Aarhus University; 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University; 8000 Aarhus C, Denmark
| | - Yichi Su
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| | - Pinghan Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Jaishree Garhyan
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University; Stanford, CA 94305, USA
| | - Puja Bhavesh Patel
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University; Stanford, CA 94305, USA
| | - Daniel Fernandez
- Program in Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University; Stanford, CA 94305, USA
- Sarafan ChEM-H, Macromolecular Structure Knowledge Center, Stanford University; Stanford, CA 94305, USA
| | - Yan Wu
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| | - Chenzhou Hao
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
| | - Chieh-Wen Lo
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Marwah Karim
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Lin Ning
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
| | - Aimee Beck
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | | | - Vivian Tat
- Department of Pathology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Shirit Einav
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
- Department of Pathology, The University of Texas Medical Branch; Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Catherine Blish
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
4
|
Schmied K, Ehmann R, Kristen-Burmann C, Ebert N, Barut GT, Almeida L, Kelly JN, Thomann L, Stalder H, Lang R, Tekes G, Thiel V. An RNA replicon system to investigate promising inhibitors of feline coronavirus. J Virol 2024; 98:e0121623. [PMID: 38236006 PMCID: PMC10878086 DOI: 10.1128/jvi.01216-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an in vitro screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (Mpro), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system. Different combinations of these compounds also proved to be potent inhibitors, having an additive effect when combined. Remdesivir, GC376, and Nirmatrelvir all have a 50% cytotoxic concentration (CC50) more than 200 times higher than their half-maximal inhibitory concentrations (IC50), making them important candidates for future in vivo studies as well as clinically implemented drug candidates. In addition, results were acquired with a virus infection system, where Felis catus whole fetus 4 (Fcwf-4) cells were infected with a previously described recombinant GFP-expressing FIPV (based on the laboratory-adapted serotype I FIPV strain Black) and treated with the most promising compounds. Results acquired with the replicon system were comparable to the results acquired with the virus infection system, demonstrating that we successfully implemented the FCoV replicon system for antiviral screening. We expect that this system will greatly facilitate future screens for anti-FIPV compounds and provide a non-infectious system to study and evaluate drug-resistant mutations that may emerge in the FIPV genome.IMPORTANCEFIPV is of great significance in the cat population around the world, causing 0.3%-1.4% of feline deaths in veterinary practices (2). As there are neither effective preventive measures nor approved treatment options available, there is an urgent need to identify antiviral drugs against FIPV. Our FCoV replicon system provides a valuable tool for drug discovery in vitro. Due to the lack of cell culture systems for serotype I FCoVs (the serotype most prevalent in the feline population) (2), a different system is needed to study these viruses. A viral replicon system is a valuable tool for studying FCoVs. Overall, our results demonstrate the utility of the serotype I feline coronavirus replicon system for antiviral screening as well as to study this virus in general. We propose several compounds representing promising candidates for future clinical trials and ultimately with the potential to save cats suffering from FIP.
Collapse
Affiliation(s)
- Kimberly Schmied
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rosina Ehmann
- Institute of Virology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Nadine Ebert
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Güliz Tuba Barut
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna N. Kelly
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Lisa Thomann
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Lang
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Gergely Tekes
- Institute of Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
5
|
Grifagni D, Lenci E, De Santis A, Orsetti A, Barracchia CG, Tedesco F, Bellini Puglielli R, Lucarelli F, Lauriola A, Assfalg M, Cantini F, Calderone V, Guardavaccaro D, Trabocchi A, D’Onofrio M, Ciofi-Baffoni S. Development of a GC-376 Based Peptidomimetic PROTAC as a Degrader of 3-Chymotrypsin-like Protease of SARS-CoV-2. ACS Med Chem Lett 2024; 15:250-257. [PMID: 38352832 PMCID: PMC10860180 DOI: 10.1021/acsmedchemlett.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
We have applied a proteolysis targeting chimera (PROTAC) technology to obtain a peptidomimetic molecule able to trigger the degradation of SARS-CoV-2 3-chymotrypsin-like protease (3CLPro). The PROTAC molecule was designed by conjugating a GC-376 based dipeptidyl 3CLPro ligand to a pomalidomide moiety through a piperazine-piperidine linker. NMR and crystallographic data complemented with enzymatic and cellular studies showed that (i) the dipeptidyl moiety of PROTAC binds to the active site of the dimeric state of SARS-CoV-2 3CLPro forming a reversible covalent bond with the sulfur atom of catalytic Cys145, (ii) the linker and the pomalidomide cereblon-ligand of PROTAC protrude from the protein, displaying a high degree of flexibility and no interactions with other regions of the protein, and (iii) PROTAC reduces the protein levels of SARS-CoV-2 3CLPro in cultured cells. This study paves the way for the future applicability of peptidomimetic PROTACs to tackle 3CLPro-dependent viral infections.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Elena Lenci
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessia De Santis
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Orsetti
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | | | - Filomena Tedesco
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Raffaele Bellini Puglielli
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Lucarelli
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Angela Lauriola
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Michael Assfalg
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Francesca Cantini
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Vito Calderone
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniele Guardavaccaro
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Andrea Trabocchi
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Mariapina D’Onofrio
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Simone Ciofi-Baffoni
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Pérez-Vargas J, Worrall LJ, Olmstead AD, Ton AT, Lee J, Villanueva I, Thompson CAH, Dudek S, Ennis S, Smith JR, Shapira T, De Guzman J, Gang S, Ban F, Vuckovic M, Bielecki M, Kovacic S, Kenward C, Hong CY, Gordon DG, Levett PN, Krajden M, Leduc R, Boudreault PL, Niikura M, Paetzel M, Young RN, Cherkasov A, Strynadka NCJ, Jean F. A novel class of broad-spectrum active-site-directed 3C-like protease inhibitors with nanomolar antiviral activity against highly immune-evasive SARS-CoV-2 Omicron subvariants. Emerg Microbes Infect 2023; 12:2246594. [PMID: 37555275 PMCID: PMC10453993 DOI: 10.1080/22221751.2023.2246594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/10/2023]
Abstract
Antivirals with broad coronavirus activity are important for treating high-risk individuals exposed to the constantly evolving SARS-CoV-2 variants of concern (VOCs) as well as emerging drug-resistant variants. We developed and characterized a novel class of active-site-directed 3-chymotrypsin-like protease (3CLpro) inhibitors (C2-C5a). Our lead direct-acting antiviral (DAA), C5a, is a non-covalent, non-peptide with a dissociation constant of 170 nM against recombinant SARS-CoV-2 3CLpro. The compounds C2-C5a exhibit broad-spectrum activity against Omicron subvariants (BA.5, BQ.1.1, and XBB.1.5) and seasonal human coronavirus-229E infection in human cells. Notably, C5a has median effective concentrations of 30-50 nM against BQ.1.1 and XBB.1.5 in two different human cell lines. X-ray crystallography has confirmed the unique binding modes of C2-C5a to the 3CLpro, which can limit virus cross-resistance to emerging Paxlovid-resistant variants. We tested the effect of C5a with two of our newly discovered host-directed antivirals (HDAs): N-0385, a TMPRSS2 inhibitor, and bafilomycin D (BafD), a human vacuolar H+-ATPase [V-ATPase] inhibitor. We demonstrated a synergistic action of C5a in combination with N-0385 and BafD against Omicron BA.5 infection in human Calu-3 lung cells. Our findings underscore that a SARS-CoV-2 multi-targeted treatment for circulating Omicron subvariants based on DAAs (C5a) and HDAs (N-0385 or BafD) can lead to therapeutic benefits by enhancing treatment efficacy. Furthermore, the high-resolution structures of SARS-CoV-2 3CLpro in complex with C2-C5a will facilitate future rational optimization of our novel broad-spectrum active-site-directed 3C-like protease inhibitors.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Liam J. Worrall
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Andrea D. Olmstead
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Anh-Tien Ton
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Ivan Villanueva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Connor A. H. Thompson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Svenja Dudek
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Jason R. Smith
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Tirosh Shapira
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Joshua De Guzman
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shutong Gang
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Fuqiang Ban
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Michael Bielecki
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Suzana Kovacic
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Calem Kenward
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Christopher Yee Hong
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Danielle G. Gordon
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Paul N. Levett
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Robert N. Young
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Malireddi RKS, Bynigeri RR, Mall R, Connelly JP, Pruett-Miller SM, Kanneganti TD. Inflammatory cell death, PANoptosis, screen identifies host factors in coronavirus innate immune response as therapeutic targets. Commun Biol 2023; 6:1071. [PMID: 37864059 PMCID: PMC10589293 DOI: 10.1038/s42003-023-05414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
The COVID-19 pandemic, caused by the β-coronavirus (β-CoV) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to cause significant global morbidity and mortality. While vaccines have reduced the overall number of severe infections, there remains an incomplete understanding of viral entry and innate immune activation, which can drive pathology. Innate immune responses characterized by positive feedback between cell death and cytokine release can amplify the inflammatory cytokine storm during β-CoV-mediated infection to drive pathology. Therefore, there remains an unmet need to understand innate immune processes in response to β-CoV infections to identify therapeutic strategies. To address this gap, here we used an MHV model and developed a whole genome CRISPR-Cas9 screening approach to elucidate host molecules required for β-CoV infection and inflammatory cell death, PANoptosis, in macrophages, a sentinel innate immune cell. Our screen was validated through the identification of the known MHV receptor Ceacam1 as the top hit, and its deletion significantly reduced viral replication due to loss of viral entry, resulting in a downstream reduction in MHV-induced cell death. Moreover, this screen identified several other host factors required for MHV infection-induced macrophage cell death. Overall, these findings demonstrate the feasibility and power of using genome-wide PANoptosis screens in macrophage cell lines to accelerate the discovery of key host factors in innate immune processes and suggest new targets for therapeutic development to prevent β-CoV-induced pathology.
Collapse
Affiliation(s)
- R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ratnakar R Bynigeri
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, P.O. Box 9639, United Arab Emirates
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
8
|
Van Oers TJ, Piercey A, Belovodskiy A, Reiz B, Donnelly BL, Vuong W, Lemieux MJ, Nieman JA, Auclair K, Vederas JC. Deuteration for Metabolic Stabilization of SARS-CoV-2 Inhibitors GC373 and Nirmatrelvir. Org Lett 2023; 25:5885-5889. [PMID: 37523471 DOI: 10.1021/acs.orglett.3c02140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Nirmatrelvir and GC373 inhibit the SARS-CoV-2 3CL protease and hinder viral replication in COVID-19. As nirmatrelvir in Paxlovid is oxidized by cytochrome P450 3A4, ritonavir is coadministered to block this. However, ritonavir undesirably alters the metabolism of other drugs. Hydrogens can be replaced with deuterium in nirmatrelvir and GC373 to slow oxidation. Results show that deuterium slows oxidation of nirmatrelvir adjacent to nitrogen by ∼40% and that the type of warhead can switch the site of oxidative metabolism.
Collapse
Affiliation(s)
- Tayla J Van Oers
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Alexia Piercey
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Alexandr Belovodskiy
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Béla Reiz
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Bethan L Donnelly
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne Vuong
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - James A Nieman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
9
|
Choi JC, Jung SW, Choi IY, Kang YL, Lee DH, Lee SW, Park SY, Song CS, Choi IS, Lee JB, Oh C. Rottlerin-Liposome Inhibits the Endocytosis of Feline Coronavirus Infection. Vet Sci 2023; 10:380. [PMID: 37368766 DOI: 10.3390/vetsci10060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Rottlerin (R) is a natural extract from Mallotus philippensis with antiviral properties. Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) that is characterized by systemic granulomatous inflammation and high mortality. We investigated the antiviral effect of liposome-loaded R, i.e., rottlerin-liposome (RL), against FCoV. We demonstrated that RL inhibited FCoV replication in a dose-dependent manner, not only in the early endocytosis stage but also in the late stage of replication. RL resolved the low solubility issue of rottlerin and improved its inhibition efficacy at the cellular level. Based on these findings, we suggest that RL is worth further investigation as a potential treatment for FCoV.
Collapse
Affiliation(s)
- Jong-Chul Choi
- Qvet Co., Ltd., 606, Alumini Association Building of Konkuk University, 5 Achasan-ro 36-gil, Gwangjin-gu, Seoul 05066, Republic of Korea
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Won Jung
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Yeong Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeong-Lim Kang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong-Hun Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang-Won Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Soo Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Changin Oh
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA
| |
Collapse
|
10
|
Triratapiban C, Lueangaramkul V, Phecharat N, Pantanam A, Lekcharoensuk P, Theerawatanasirikul S. First study on in vitro antiviral and virucidal effects of flavonoids against feline infectious peritonitis virus at the early stage of infection. Vet World 2023; 16:618-630. [PMID: 37041840 PMCID: PMC10082729 DOI: 10.14202/vetworld.2023.618-630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 03/28/2023] Open
Abstract
Background and Aim: Feline infectious peritonitis (FIP), one of the most important infectious diseases in cats is caused by FIP virus (FIPV), a mutated variant of feline coronavirus. Feline infectious peritonitis has a negative impact on feline health, with extremely high mortality in clinical FIP-infected cats, particularly young cats. There are no approved drugs for FIP treatment, and therapeutic possibilities for FIP treatment are limited. This study aimed to utilize nature-derived bioactive flavonoids with antiviral properties to inhibit FIPV infection in Crandell–Rees feline kidney (CRFK) cells.
Materials and Methods: The cytotoxicity of 16 flavonoids was evaluated on CRFK cells using a colorimetric method (MTS) assay. Viral kinetics of FIPV at 50 tissue culture infectious dose (TCID50)/well was determined during the first 24-h post-infection (HPI). Antiviral activity was evaluated based on the replication steps of the virus life cycle, including pre-compound, attachment, penetration, post-viral entry, and virucidal assays. The antiviral efficacy of flavonoids against FIPV was determined based on positive FIPV-infected cells with the immunoperoxidase monolayer assay and viral load quantification using reverse transcription-quantitative polymerase chain reaction.
Results: Two flavonoids, namely, isoginkgetin and luteolin, inhibited FIPV replication during post-viral entry in a dose-dependent manner, with 50% maximal effective concentrations = 4.77 ± 0.09 and 36.28 ± 0.03 μM, respectively. Based on viral kinetics, both flavonoids could inhibit FIPV replication at the early stage of infection at 0–6-HPI for isoginkgetin and 2–6-HPI for luteolin using a time-of-addition assay. Isoginkgetin exerted a direct virucidal effect that reduced the viral titers by 2 and 1.89 log10 TCID50/mL at 60 and 120 min, respectively.
Conclusion: Isoginkgetin interfered with FIPV replication during both post-viral infection and virucidal experiments on CRFK cells, whereas luteolin inhibited the virus after infection. These results demonstrate the potential of herbal medicine for treating FIP.
Keywords: antiviral, feline coronavirus, feline infectious peritonitis virus, flavonoids, infectious disease.
Collapse
Affiliation(s)
- Chanittha Triratapiban
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Varanya Lueangaramkul
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nantawan Phecharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Achiraya Pantanam
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Corresponding author: Sirin Theerawatanasirikul, e-mail: Co-authors: CT: , VL: , NP: , AP: , PL:
| |
Collapse
|
11
|
Klacsová M, Čelková A, Búcsi A, Martínez JC, Uhríková D. Interaction of GC376, a SARS-COV-2 M PRO inhibitor, with model lipid membranes. Colloids Surf B Biointerfaces 2022; 220. [PMCID: PMC9557139 DOI: 10.1016/j.colsurfb.2022.112918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Partitioning and effect of antiviral GC376, a potential SARS-CoV-2 inhibitor, on model lipid membranes was studied using dynamic light scattering (DLS), UV–VIS spectrometry, Excimer fluorescence, Differential scanning calorimetry (DSC) and Small- and Wide-angle X-ray scattering (SAXS/WAXS). Partition coefficient of GC376 between lipid and water phase was found to be low, reaching KP = 46.8 ± 18.2. Results suggest that GC376 partitions into lipid bilayers at the level of lipid head-groups, close to the polar/hydrophobic interface. Changes in structural and thermodynamic properties strongly depend on the GC376/lipid mole ratio. Already at lowest mole ratios GC376 induces increase of lateral pressures, mainly in the interfacial region of the bilayer. Hereby, the pre- and main-transition temperature of the lipid system increases, what is attributed to tighter packing of acyl chains induced by GC376. At GC376/DPPC ≥ 0.03 mol/mol we detected formation of domains with different GC376 content resulting in the lateral phase separation and changes in both, main transition temperature and enthalpy. The observed changes are attributed to the response of the system on the increased lateral stresses induced by partitioning of GC376. Obtained results are discussed in context of liposome-based drug delivery systems for GC376 and in context of indirect mechanism of virus replication inhibition.
Collapse
Affiliation(s)
- Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia,Corresponding author
| | - Adriána Čelková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia
| | - Alexander Búcsi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia
| | | | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov10, 832 32 Bratislava, Slovakia
| |
Collapse
|
12
|
Desmarets L, Callens N, Hoffmann E, Danneels A, Lavie M, Couturier C, Dubuisson J, Belouzard S, Rouillé Y. A reporter cell line for the automated quantification of SARS-CoV-2 infection in living cells. Front Microbiol 2022; 13:1031204. [PMID: 36246297 PMCID: PMC9558224 DOI: 10.3389/fmicb.2022.1031204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The SARS-CoV-2 pandemic and the urgent need for massive antiviral testing highlighted the lack of a good cell-based assay that allowed for a fast, automated screening of antivirals in high-throughput content with minimal handling requirements in a BSL-3 environment. The present paper describes the construction of a green fluorescent substrate that, upon cleavage by the SARS-CoV-2 main protease, re-localizes from the cytoplasm in non-infected cells to the nucleus in infected cells. The construction was stably expressed, together with a red fluorescent nuclear marker, in a highly susceptible clone derived from Vero-81 cells. With this fluorescent reporter cell line, named F1G-red, SARS-CoV-2 infection can be scored automatically in living cells by comparing the patterns of green and red fluorescence signals acquired by automated confocal microscopy in a 384-well plate format. We show the F1G-red system is sensitive to several SARS-CoV-2 variants of concern and that it can be used to assess antiviral activities of compounds in dose-response experiments. This high-throughput system will provide a reliable tool for antiviral screening against SARS-CoV-2.
Collapse
Affiliation(s)
- Lowiese Desmarets
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Nathalie Callens
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Eik Hoffmann
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Adeline Danneels
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Muriel Lavie
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Cyril Couturier
- INSERM U1177-Drugs and Molecules for Living Systems, Institut Pasteur Lille, Université de Lille, Lille, France
| | - Jean Dubuisson
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Sandrine Belouzard
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Yves Rouillé
- CNRS UMR 9017, INSERM U1019 Centre d’Infection et Immunité de Lille (CIIL), Institut Pasteur de Lille, Université de Lille, Lille, France
| |
Collapse
|
13
|
Ghosh AK, Mishevich JL, Mesecar A, Mitsuya H. Recent Drug Development and Medicinal Chemistry Approaches for the Treatment of SARS-CoV-2 Infection and COVID-19. ChemMedChem 2022; 17:e202200440. [PMID: 36165855 PMCID: PMC9538661 DOI: 10.1002/cmdc.202200440] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Indexed: 01/14/2023]
Abstract
COVID-19, caused by SARS-CoV-2 infection, continues to be a major public health crisis around the globe. Development of vaccines and the first cluster of antiviral drugs has brought promise and hope for prevention and treatment of severe coronavirus disease. However, continued development of newer, safer, and more effective antiviral drugs are critically important to combat COVID-19 and counter the looming pathogenic variants. Studies of the coronavirus life cycle revealed several important biochemical targets for drug development. In the present review, we focus on recent drug design and medicinal chemistry efforts in small molecule drug discovery, including the development of nirmatrelvir that targets viral protein synthesis and remdesivir and molnupiravir that target viral RdRp. These are recent FDA approved drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Arun K Ghosh
- Purdue UniversityDepartments of Chemistry and Medicinal Chemistry560 Oval Drive47907West LafayetteUNITED STATES
| | | | - Andrew Mesecar
- Purdue University College of ScienceBiochemistryUNITED STATES
| | - Hiroaki Mitsuya
- National Cancer InstituteHIV and AIDS Malignancy BranchUNITED STATES
| |
Collapse
|
14
|
Perera KD, Johnson D, Lovell S, Groutas WC, Chang KO, Kim Y. Potent Protease Inhibitors of Highly Pathogenic Lagoviruses: Rabbit Hemorrhagic Disease Virus and European Brown Hare Syndrome Virus. Microbiol Spectr 2022; 10:e0014222. [PMID: 35766511 PMCID: PMC9430360 DOI: 10.1128/spectrum.00142-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
Rabbit hemorrhagic disease (RHD) and European brown hare syndrome (EBHS) are highly contagious diseases caused by lagoviruses in the Caliciviridae family. These infectious diseases are associated with high mortality and a serious threat to domesticated and wild rabbits and hares, including endangered species such as riparian brush rabbits (Sylvilagus bachmani riparius). In the United States (U.S.), only isolated cases of RHD had been reported until Spring 2020. However, RHD caused by GI.2/rabbit hemorrhagic disease virus (RHDV)2/b was unexpectedly reported in April 2020 in New Mexico and has subsequently spread to several U.S. states, infecting wild rabbits and hares and making it highly likely that RHD will become endemic in the U.S. Vaccines are available for RHD; however, there is no specific treatment for this disease. Lagoviruses encode a 3C-like protease (3CLpro), which is essential for virus replication and a promising target for antiviral drug development. We have previously generated focused small-molecule libraries of 3CLpro inhibitors and demonstrated the in vitro potency and in vivo efficacy of some protease inhibitors against viruses encoding 3CLpro, including caliciviruses and coronaviruses. Here, we report the development of the enzyme and cell-based assays for the 3CLpro of GI.1c/RHDV, recombinant GI.3P-GI.2 (RHDV2/b), and GII.1/European brown hare syndrome virus (EBHSV) as well as the identification of potent lagovirus 3CLpro inhibitors, including GC376, a protease inhibitor being developed for feline infectious peritonitis. In addition, structure-activity relationship study and homology modeling of the 3CLpro and inhibitors revealed that lagovirus 3CLpro share similar structural requirements for inhibition with other calicivirus 3CLpro. IMPORTANCE Rabbit hemorrhagic disease (RHD) and European brown hare syndrome (EBHS) are viral diseases that affect lagomorphs with significant economic and ecological impacts. RHD vaccines are available, but specific antiviral treatment for these viral infections would be a valuable addition to the current control measures. Lagoviruses encode 3C-like protease (3CLpro), which is essential for virus replication and an attractive target for antiviral drug discovery. We have screened and identified potent small-molecule inhibitors that block lagovirus 3CLpro in the enzyme- and cell-based assays. Our results suggest that these compounds have the potential for further development as antiviral drugs for lagoviruses.
Collapse
Affiliation(s)
- Krishani Dinali Perera
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - David Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | - William C. Groutas
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
15
|
Tanaka Y, Tanabe E, Nonaka Y, Uemura M, Tajima T, Ochiai K. Ionophore Antibiotics Inhibit Type II Feline Coronavirus Proliferation In Vitro. Viruses 2022; 14:v14081734. [PMID: 36016355 PMCID: PMC9415497 DOI: 10.3390/v14081734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
Feline coronaviruses (FCoVs) infect cats worldwide and cause severe systemic diseases, such as feline infectious peritonitis (FIP). FIP has a high mortality rate, and drugs approved by the Food and Drug Administration have been ineffective for the treatment of FIP. Investigating host factors and the functions required for FCoV replication is necessary to develop effective drugs for the treatment of FIP. FCoV utilizes an endosomal trafficking system for cellular entry after binding between the viral spike (S) protein and its receptor. The cellular enzymes that cleave the S protein of FCoV to release the viral genome into the cytosol require an acidic pH optimized in the endosomes by regulating cellular ion concentrations. Ionophore antibiotics are compounds that form complexes with alkali ions to alter the endosomal pH conditions. This study shows that ionophore antibiotics, including valinomycin, salinomycin, and nigericin, inhibit FCoV proliferation in vitro in a dose-dependent manner. These results suggest that ionophore antibiotics should be investigated further as potential broad-spectrum anti-FCoV agents.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
- Research Center for Animal Life Science, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
- Correspondence: ; Tel.: +81-422-31-4151
| | - Eri Tanabe
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Yuki Nonaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Mitsuki Uemura
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Tsuyoshi Tajima
- Department of Veterinary Pharmacology, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Kazuhiko Ochiai
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
- Research Center for Animal Life Science, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| |
Collapse
|
16
|
Dai W, Jochmans D, Xie H, Yang H, Li J, Su H, Chang D, Wang J, Peng J, Zhu L, Nian Y, Hilgenfeld R, Jiang H, Chen K, Zhang L, Xu Y, Neyts J, Liu H. Design, Synthesis, and Biological Evaluation of Peptidomimetic Aldehydes as Broad-Spectrum Inhibitors against Enterovirus and SARS-CoV-2. J Med Chem 2022; 65:2794-2808. [PMID: 33872498 PMCID: PMC8084273 DOI: 10.1021/acs.jmedchem.0c02258] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/30/2022]
Abstract
A novel series of peptidomimetic aldehydes was designed and synthesized to target 3C protease (3Cpro) of enterovirus 71 (EV71). Most of the compounds exhibited high antiviral activity, and among them, compound 18p demonstrated potent enzyme inhibitory activity and broad-spectrum antiviral activity on a panel of enteroviruses and rhinoviruses. The crystal structure of EV71 3Cpro in complex with 18p determined at a resolution of 1.2 Å revealed that 18p covalently linked to the catalytic Cys147 with an aldehyde group. In addition, these compounds also exhibited good inhibitory activity against the 3CLpro and the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially compound 18p (IC50 = 0.034 μM, EC50 = 0.29 μM). According to our previous work, these compounds have no reasons for concern regarding acute toxicity. Compared with AG7088, compound 18p also exhibited good pharmacokinetic properties and more potent anticoronavirus activity, making it an excellent lead for further development.
Collapse
Affiliation(s)
- Wenhao Dai
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology and Immunology,
Rega Institute for Medical Research, Laboratory of Virology and
Chemotherapy, Leuven B-3000, Belgium
| | - Hang Xie
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
| | - Hang Yang
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of
Sciences, Wuhan, Hubei 430071, China
| | - Jian Li
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- College of Pharmacy, Nanjing University
of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, 210023,
China
| | - Haixia Su
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Di Chang
- Shanghai Key Laboratory of New Drug Design, School of
Pharmacy, East China University of Science and Technology, 130
Meilong Road, Shanghai 200237, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology,
Hangzhou Institute for Advanced Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| | - Jingjing Peng
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of
Pharmacy, East China University of Science and Technology, 130
Meilong Road, Shanghai 200237, China
| | - Yong Nian
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- College of Pharmacy, Nanjing University
of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, 210023,
China
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine,
University of Lübeck, 23562 Lübeck,
Germany
- German Center for Infection Research (DZIF),
University of Lübeck, 23562 Lübeck,
Germany
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology,
Hangzhou Institute for Advanced Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of
Sciences, Wuhan, Hubei 430071, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology,
Hangzhou Institute for Advanced Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology,
Rega Institute for Medical Research, Laboratory of Virology and
Chemotherapy, Leuven B-3000, Belgium
| | - Hong Liu
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- College of Pharmacy, Nanjing University
of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, 210023,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology,
Hangzhou Institute for Advanced Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| |
Collapse
|
17
|
Lu J, Chen SA, Khan MB, Brassard R, Arutyunova E, Lamer T, Vuong W, Fischer C, Young HS, Vederas JC, Lemieux MJ. Crystallization of Feline Coronavirus M pro With GC376 Reveals Mechanism of Inhibition. Front Chem 2022; 10:852210. [PMID: 35281564 PMCID: PMC8907848 DOI: 10.3389/fchem.2022.852210] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022] Open
Abstract
Coronaviruses infect a variety of hosts in the animal kingdom, and while each virus is taxonomically different, they all infect their host via the same mechanism. The coronavirus main protease (Mpro, also called 3CLpro), is an attractive target for drug development due to its essential role in mediating viral replication and transcription. An Mpro inhibitor, GC376, has been shown to treat feline infectious peritonitis (FIP), a fatal infection in cats caused by internal mutations in the feline enteric coronavirus (FECV). Recently, our lab demonstrated that the feline drug, GC373, and prodrug, GC376, are potent inhibitors of SARS-CoV-2 Mpro and solved the structures in complex with the drugs; however, no crystal structures of the FIP virus (FIPV) Mpro with the feline drugs have been published so far. Here, we present crystal structures of FIPV Mpro-GC373/GC376 complexes, revealing the inhibitors covalently bound to Cys144 in the active site, similar to SARS-CoV-2 Mpro. Additionally, GC376 has a higher affinity for FIPV Mpro with lower nanomolar Ki values compared to SARS-CoV and SARS-CoV-2 Mpro. We also show that improved derivatives of GC376 have higher potency for FIPV Mpro. Since GC373 and GC376 represent strong starting points for structure-guided drug design, determining the crystal structures of FIPV Mpro with these inhibitors are important steps in drug optimization and structure-based broad-spectrum antiviral drug discovery.
Collapse
Affiliation(s)
- Jimmy Lu
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sizhu Amelia Chen
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | | | - Raelynn Brassard
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Tess Lamer
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Wayne Vuong
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Rossetti GG, Ossorio MA, Rempel S, Kratzel A, Dionellis VS, Barriot S, Tropia L, Gorgulla C, Arthanari H, Thiel V, Mohr P, Gamboni R, Halazonetis TD. Non-covalent SARS-CoV-2 M pro inhibitors developed from in silico screen hits. Sci Rep 2022; 12:2505. [PMID: 35169179 PMCID: PMC8847420 DOI: 10.1038/s41598-022-06306-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 01/03/2023] Open
Abstract
Mpro, the main protease of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is essential for the viral life cycle. Accordingly, several groups have performed in silico screens to identify Mpro inhibitors that might be used to treat SARS-CoV-2 infections. We selected more than five hundred compounds from the top-ranking hits of two very large in silico screens for on-demand synthesis. We then examined whether these compounds could bind to Mpro and inhibit its protease activity. Two interesting chemotypes were identified, which were further evaluated by characterizing an additional five hundred synthesis on-demand analogues. The compounds of the first chemotype denatured Mpro and were considered not useful for further development. The compounds of the second chemotype bound to and enhanced the melting temperature of Mpro. The most active compound from this chemotype inhibited Mpro in vitro with an IC50 value of 1 μM and suppressed replication of the SARS-CoV-2 virus in tissue culture cells. Its mode of binding to Mpro was determined by X-ray crystallography, revealing that it is a non-covalent inhibitor. We propose that the inhibitors described here could form the basis for medicinal chemistry efforts that could lead to the development of clinically relevant inhibitors.
Collapse
Affiliation(s)
- Giacomo G Rossetti
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland.,FoRx Therapeutics AG, 4056, Basel, Switzerland
| | - Marianna A Ossorio
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | | | - Annika Kratzel
- Institute of Virology and Immunology, University of Bern, 3012, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Vasilis S Dionellis
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Samia Barriot
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Laurence Tropia
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA, 02115, USA.,Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA, 02115, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Volker Thiel
- Institute of Virology and Immunology, University of Bern, 3012, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Peter Mohr
- NANDASI Pharma Advisors, 4123, Allschwil, Switzerland
| | - Remo Gamboni
- NANDASI Pharma Advisors, 4123, Allschwil, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 1205, Geneva, Switzerland. .,FoRx Therapeutics AG, 4056, Basel, Switzerland.
| |
Collapse
|
19
|
Macip G, Garcia-Segura P, Mestres-Truyol J, Saldivar-Espinoza B, Pujadas G, Garcia-Vallvé S. A Review of the Current Landscape of SARS-CoV-2 Main Protease Inhibitors: Have We Hit the Bullseye Yet? Int J Mol Sci 2021; 23:259. [PMID: 35008685 PMCID: PMC8745775 DOI: 10.3390/ijms23010259] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 01/01/2023] Open
Abstract
In this review, we collected 1765 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M-pro inhibitors from the bibliography and other sources, such as the COVID Moonshot project and the ChEMBL database. This set of inhibitors includes only those compounds whose inhibitory capacity, mainly expressed as the half-maximal inhibitory concentration (IC50) value, against M-pro from SARS-CoV-2 has been determined. Several covalent warheads are used to treat covalent and non-covalent inhibitors separately. Chemical space, the variation of the IC50 inhibitory activity when measured by different methods or laboratories, and the influence of 1,4-dithiothreitol (DTT) are discussed. When available, we have collected the values of inhibition of viral replication measured with a cellular antiviral assay and expressed as half maximal effective concentration (EC50) values, and their possible relationship to inhibitory potency against M-pro is analyzed. Finally, the most potent covalent and non-covalent inhibitors that simultaneously inhibit the SARS-CoV-2 M-pro and the virus replication in vitro are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia, Spain; (G.M.); (P.G.-S.); (J.M.-T.); (B.S.-E.)
| | - Santiago Garcia-Vallvé
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia, Spain; (G.M.); (P.G.-S.); (J.M.-T.); (B.S.-E.)
| |
Collapse
|
20
|
Precursors of Viral Proteases as Distinct Drug Targets. Viruses 2021; 13:v13101981. [PMID: 34696411 PMCID: PMC8537868 DOI: 10.3390/v13101981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Collapse
|
21
|
Ramakrishnan SG, Robert B, Salim A, Ananthan P, Sivaramakrishnan M, Subramaniam S, Natesan S, Suresh R, Rajeshkumar G, Maran JP, Al-Dhabi NA, Karuppiah P, Valan Arasu M. Nanotechnology based solutions to combat zoonotic viruses with special attention to SARS, MERS, and COVID 19: Detection, protection and medication. Microb Pathog 2021; 159:105133. [PMID: 34390768 PMCID: PMC8358084 DOI: 10.1016/j.micpath.2021.105133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/01/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Zoonotic viruses originate from birds or animal sources and responsible for disease transmission from animals to people through zoonotic spill over and presents a significant global health concern due to lack of rapid diagnostics and therapeutics. The Corona viruses (CoV) were known to be transmitted in mammals. Early this year, SARS-CoV-2, a novel strain of corona virus, was identified as the causative pathogen of an outbreak of viral pneumonia in Wuhan, China. The disease later named corona virus disease 2019 (COVID-19), subsequently spread across the globe rapidly. Nano-particles and viruses are comparable in size, which serves to be a major advantage of using nano-material in clinical strategy to combat viruses. Nanotechnology provides novel solutions against zoonotic viruses by providing cheap and efficient detection methods, novel, and new effective rapid diagnostics and therapeutics. The prospective of nanotechnology in COVID 19 is exceptionally high due to their small size, large surface-to-volume ratio, susceptibility to modification, intrinsic viricidal activity. The nano-based strategies address the COVID 19 by extending their role in i) designing nano-materials for drug/vaccine delivery, ii) developing nano-based diagnostic approaches like nano-sensors iii) novel nano-based personal protection equipment to be used in prevention strategies.This review aims to bring attention to the significant contribution of nanotechnology to mitigate against zoonotic viral pandemics by prevention, faster diagnosis and medication point of view.
Collapse
Affiliation(s)
- Sankar Ganesh Ramakrishnan
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Becky Robert
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Anisha Salim
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - Padma Ananthan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | - Sadhasivam Subramaniam
- Bioprocess and Biomaterials laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore, India.
| | - Sivarajasekar Natesan
- Unit Operations laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Rahul Suresh
- Department of Physics, Bharathiar University, Coimbatore, India
| | - G Rajeshkumar
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore, Tamilnadu, India
| | - J Prakash Maran
- Department of Food Science and Nutrition, Periyar University, Salem, Tamilnadu, India.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
22
|
Delaplace M, Huet H, Gambino A, Le Poder S. Feline Coronavirus Antivirals: A Review. Pathogens 2021; 10:1150. [PMID: 34578182 PMCID: PMC8469112 DOI: 10.3390/pathogens10091150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Feline coronaviruses (FCoV) are common viral pathogens of cats. They usually induce asymptomatic infections but some FCoV strains, named Feline Infectious Peritonitis Viruses (FIPV) lead to a systematic fatal disease, the feline infectious peritonitis (FIP). While no treatments are approved as of yet, numerous studies have been explored with the hope to develop therapeutic compounds. In recent years, two novel molecules (GS-441524 and GC376) have raised hopes given the encouraging results, but some concerns about the use of these molecules persist, such as the fear of the emergence of viral escape mutants or the difficult tissue distribution of these antivirals in certain affected organs. This review will summarize current findings and leads in the development of antiviral therapy against FCoV both in vitro and in vivo, with the description of their mechanisms of action when known. It highlights the molecules, which could have a broader effect on different coronaviruses. In the context of the SARS-CoV-2 pandemic, the development of antivirals is an urgent need and FIP could be a valuable model to help this research area.
Collapse
Affiliation(s)
| | | | | | - Sophie Le Poder
- 1UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Maisons-Alfort, 94704 Paris, France; (M.D.); (H.H.); (A.G.)
| |
Collapse
|
23
|
Ayipo YO, Yahaya SN, Alananzeh WA, Babamale HF, Mordi MN. Pathomechanisms, therapeutic targets and potent inhibitors of some beta-coronaviruses from bench-to-bedside. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104944. [PMID: 34052418 PMCID: PMC8159710 DOI: 10.1016/j.meegid.2021.104944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023]
Abstract
Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-β and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia,Department of Chemistry, Kwara State University, P. M. B. 1530, Malete, Ilorin, Nigeria
| | - Sani Najib Yahaya
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| | - Waleed A. Alananzeh
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| | | | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia,Corresponding author
| |
Collapse
|
24
|
Dampalla CS, Zheng J, Perera KD, Wong LYR, Meyerholz DK, Nguyen HN, Kashipathy MM, Battaile KP, Lovell S, Kim Y, Perlman S, Groutas WC, Chang KO. Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2021; 118:e2101555118. [PMID: 34210738 PMCID: PMC8307543 DOI: 10.1073/pnas.2101555118] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Jian Zheng
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242
| | - Krishani Dinali Perera
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242
| | - David K Meyerholz
- Department of Pathology, The University of Iowa, Iowa City, IA 52242
| | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, KS 67260
| | | | | | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, KS 66047
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506;
| | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242;
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260;
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506;
| |
Collapse
|
25
|
Arutyunova E, Khan MB, Fischer C, Lu J, Lamer T, Vuong W, van Belkum MJ, McKay RT, Tyrrell DL, Vederas JC, Young HS, Lemieux MJ. N-Terminal Finger Stabilizes the S1 Pocket for the Reversible Feline Drug GC376 in the SARS-CoV-2 M pro Dimer. J Mol Biol 2021; 433:167003. [PMID: 33895266 PMCID: PMC8061786 DOI: 10.1016/j.jmb.2021.167003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
The main protease (Mpro, also known as 3CL protease) of SARS-CoV-2 is a high priority drug target in the development of antivirals to combat COVID-19 infections. A feline coronavirus antiviral drug, GC376, has been shown to be effective in inhibiting the SARS-CoV-2 main protease and live virus growth. As this drug moves into clinical trials, further characterization of GC376 with the main protease of coronaviruses is required to gain insight into the drug's properties, such as reversibility and broad specificity. Reversibility is an important factor for therapeutic proteolytic inhibitors to prevent toxicity due to off-target effects. Here we demonstrate that GC376 has nanomolar Ki values with the Mpro from both SARS-CoV-2 and SARS-CoV strains. Restoring enzymatic activity after inhibition by GC376 demonstrates reversible binding with both proteases. In addition, the stability and thermodynamic parameters of both proteases were studied to shed light on physical chemical properties of these viral enzymes, revealing higher stability for SARS-CoV-2 Mpro. The comparison of a new X-ray crystal structure of Mpro from SARS-CoV complexed with GC376 reveals similar molecular mechanism of inhibition compared to SARS-CoV-2 Mpro, and gives insight into the broad specificity properties of this drug. In both structures, we observe domain swapping of the N-termini in the dimer of the Mpro, which facilitates coordination of the drug's P1 position. These results validate that GC376 is a drug with an off-rate suitable for clinical trials.
Collapse
Affiliation(s)
- Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Conrad Fischer
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Jimmy Lu
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Tess Lamer
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Wayne Vuong
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Marco J van Belkum
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Ryan T McKay
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada.
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada.
| |
Collapse
|
26
|
Cáceres CJ, Cardenas-Garcia S, Carnaccini S, Seibert B, Rajao DS, Wang J, Perez DR. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. Sci Rep 2021; 11:9609. [PMID: 33953295 PMCID: PMC8100161 DOI: 10.1038/s41598-021-89013-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the defining global health emergency of this century. GC-376 is a Mpro inhibitor with antiviral activity against SARS-CoV-2 in vitro. Using the K18-hACE2 mouse model, the in vivo antiviral efficacy of GC-376 against SARS-CoV-2 was evaluated. GC-376 treatment was not toxic in K18-hACE2 mice. Overall outcome of clinical symptoms and survival upon SARS-CoV-2 challenge were not improved in mice treated with GC-376 compared to controls. The treatment with GC-376 slightly improved survival from 0 to 20% in mice challenged with a high virus dose at 105 TCID50/mouse. Most notably, GC-376 treatment led to milder tissue lesions, reduced viral loads, fewer presence of viral antigen, and reduced inflammation in comparison to vehicle-treated controls in mice challenged with a low virus dose at 103 TCID50/mouse. This was particularly the case in the brain where a 5-log reduction in viral titers was observed in GC-376 treated mice compared to vehicle controls. This study supports the notion that GC-376 represents a promising lead candidate for further development to treat SARS-CoV-2 infection and that the K18-hACE2 mouse model is suitable to study antiviral therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- C Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Silvia Carnaccini
- Tifton Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
27
|
Anirudhan V, Lee H, Cheng H, Cooper L, Rong L. Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. J Med Virol 2021; 93:2722-2734. [PMID: 33475167 PMCID: PMC8014870 DOI: 10.1002/jmv.26814] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
The 21st century has witnessed three outbreaks of coronavirus (CoVs) infections caused by severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, spreads rapidly and since the discovery of the first COVID-19 infection in December 2019, has caused 1.2 million deaths worldwide and 226,777 deaths in the United States alone. The high amino acid similarity between SARS-CoV and SARS-CoV-2 viral proteins supports testing therapeutic molecules that were designed to treat SARS infections during the 2003 epidemic. In this review, we provide information on possible COVID-19 treatment strategies that act via inhibition of the two essential proteins of the virus, 3C-like protease (3CLpro ) or papain-like protease (PLpro ).
Collapse
Affiliation(s)
- Varada Anirudhan
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, Biophysics Core at Research Resources CenterUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Han Cheng
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Laura Cooper
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Lijun Rong
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
28
|
Rossi G, Galosi L, Gavazza A, Cerquetella M, Mangiaterra S. Therapeutic approaches to coronavirus infection according to "One Health" concept. Res Vet Sci 2021; 136:81-88. [PMID: 33588098 PMCID: PMC7871813 DOI: 10.1016/j.rvsc.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
Coronaviridae constantly infect human and animals causing respiratory, gastroenteric or systemic diseases. Over time, these viruses have shown a marked ability to mutate, jumping over the human-animal barrier, thus becoming from enzootic to zoonotic. In the last years, numerous therapeutic protocols have been developed, mainly for severe acute respiratory syndromes in humans. The aim of this review is to summarize drugs or other approaches used in coronavirus infections focusing on different roles of these molecules or bacterial products on viral adhesion and replication or in modulating the host's immune system. Within the "One Health" concept, the study of viral pathogenic role and possible therapeutic approaches in both humans and animals is essential to protect public health.
Collapse
Affiliation(s)
- Giacomo Rossi
- Corresponding author at: School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95 – 62024, Matelica (MC), Italy
| | | | | | | | | |
Collapse
|
29
|
Citarella A, Scala A, Piperno A, Micale N. SARS-CoV-2 M pro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules 2021; 11:607. [PMID: 33921886 PMCID: PMC8073203 DOI: 10.3390/biom11040607] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The uncontrolled spread of the COVID-19 pandemic caused by the new coronavirus SARS-CoV-2 during 2020-2021 is one of the most devastating events in the history, with remarkable impacts on the health, economic systems, and habits of the entire world population. While some effective vaccines are nowadays approved and extensively administered, the long-term efficacy and safety of this line of intervention is constantly under debate as coronaviruses rapidly mutate and several SARS-CoV-2 variants have been already identified worldwide. Then, the WHO's main recommendations to prevent severe clinical complications by COVID-19 are still essentially based on social distancing and limitation of human interactions, therefore the identification of new target-based drugs became a priority. Several strategies have been proposed to counteract such viral infection, including the repurposing of FDA already approved for the treatment of HIV, HCV, and EBOLA, inter alia. Among the evaluated compounds, inhibitors of the main protease of the coronavirus (Mpro) are becoming more and more promising candidates. Mpro holds a pivotal role during the onset of the infection and its function is intimately related with the beginning of viral replication. The interruption of its catalytic activity could represent a relevant strategy for the development of anti-coronavirus drugs. SARS-CoV-2 Mpro is a peculiar cysteine protease of the coronavirus family, responsible for the replication and infectivity of the parasite. This review offers a detailed analysis of the repurposed drugs and the newly synthesized molecules developed to date for the treatment of COVID-19 which share the common feature of targeting SARS-CoV-2 Mpro, as well as a brief overview of the main enzymatic and cell-based assays to efficaciously screen such compounds.
Collapse
Affiliation(s)
| | | | | | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (A.S.); (A.P.)
| |
Collapse
|
30
|
Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral screening and testing. Proc Natl Acad Sci U S A 2021; 118:2025866118. [PMID: 33766889 PMCID: PMC8053989 DOI: 10.1073/pnas.2025866118] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research and antiviral discovery are hampered by the lack of a cell-based virus replication system that can be readily adopted without biosafety level 3 (BSL-3) restrictions. Here, the construction of a noninfectious SARS-CoV-2 reporter replicon and its application in deciphering viral replication mechanisms and evaluating SARS-CoV-2 inhibitors are presented. The replicon genome is replication competent but does not produce progeny virions. Its replication can be inhibited by RdRp mutations or by known SARS-CoV-2 antiviral compounds. Using this system, a high-throughput antiviral assay has also been developed. Significant differences in potencies of several SARS-CoV-2 inhibitors in different cell lines were observed, which highlight the challenges of discovering antivirals capable of inhibiting viral replication in vivo and the importance of testing compounds in multiple cell culture models. The generation of a SARS-CoV-2 replicon provides a powerful platform to expand the global research effort to combat COVID-19.
Collapse
|
31
|
Wen L, Tang K, Chik KKH, Chan CCY, Tsang JOL, Liang R, Cao J, Huang Y, Luo C, Cai JP, Ye ZW, Yin F, Chu H, Jin DY, Yuen KY, Yuan S, Chan JFW. In silico structure-based discovery of a SARS-CoV-2 main protease inhibitor. Int J Biol Sci 2021; 17:1555-1564. [PMID: 33907519 PMCID: PMC8071767 DOI: 10.7150/ijbs.59191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 11/05/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum concentration (132µM). Further drug compound optimization to develop more stable analogues with longer half-lives should be performed. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Lei Wen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chris Chun-Yiu Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jessica Oi-Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ronghui Liang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yaoqiang Huang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zi-Wei Ye
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Feifei Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
32
|
Shi Y, Shuai L, Wen Z, Wang C, Yan Y, Jiao Z, Guo F, Fu ZF, Chen H, Bu Z, Peng G. The preclinical inhibitor GS441524 in combination with GC376 efficaciously inhibited the proliferation of SARS-CoV-2 in the mouse respiratory tract. Emerg Microbes Infect 2021; 10:481-492. [PMID: 33691601 PMCID: PMC7993387 DOI: 10.1080/22221751.2021.1899770] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The unprecedented coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a serious threat to global public health. Development of effective therapies against SARS-CoV-2 is urgently needed. Here, we evaluated the antiviral activity of a remdesivir parent nucleotide analog, GS441524, which targets the coronavirus RNA-dependent RNA polymerase enzyme, and a feline coronavirus prodrug, GC376, which targets its main protease, using a mouse-adapted SARS-CoV-2 infected mouse model. Our results showed that GS441524 effectively blocked the proliferation of SARS-CoV-2 in the mouse upper and lower respiratory tracts via combined intranasal (i.n.) and intramuscular (i.m.) treatment. However, the ability of high-dose GC376 (i.m. or i.n. and i.m.) was weaker than GS441524. Notably, low-dose combined application of GS441524 with GC376 could effectively protect mice against SARS-CoV-2 infection via i.n. or i.n. and i.m. treatment. Moreover, we found that the pharmacokinetic properties of GS441524 is better than GC376, and combined application of GC376 and GS441524 had a synergistic effect. Our findings support the further evaluation of the combined application of GC376 and GS441524 in future clinical studies.
Collapse
Affiliation(s)
- Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lei Shuai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Chong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhe Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Fenglin Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.,National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin, People's Republic of China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
33
|
Mengist HM, Dilnessa T, Jin T. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front Chem 2021; 9:622898. [PMID: 33889562 PMCID: PMC8056153 DOI: 10.3389/fchem.2021.622898] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
The Coronavirus disease-19 (COVID-19) pandemic is still devastating the world causing significant social, economic, and political chaos. Corresponding to the absence of globally approved antiviral drugs for treatment and vaccines for controlling the pandemic, the number of cases and/or mortalities are still rising. Current patient management relies on supportive treatment and the use of repurposed drugs as an indispensable option. Of a crucial role in the viral life cycle, ongoing studies are looking for potential inhibitors to the main protease (Mpro) of severe acute respiratory syndrome Coronavirus -2 (SARS-CoV-2) to tackle the pandemic. Although promising results have been achieved in searching for drugs inhibiting the Mpro, work remains to be done on designing structure-based improved drugs. This review discusses the structural basis of potential inhibitors targeting SARS-CoV-2 Mpro, identifies gaps, and provides future directions. Further, compounds with potential Mpro based antiviral activity are highlighted.
Collapse
Affiliation(s)
- Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of innate immunity and chronic disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Laboratory Science, College of Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Tebelay Dilnessa
- Department of Medical Laboratory Science, College of Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of innate immunity and chronic disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
34
|
Joaquín Cáceres C, Cardenas-Garcia S, Carnaccini S, Seibert B, Rajao DS, Wang J, Perez DR. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33532776 DOI: 10.1101/2021.01.27.428428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the defining global health emergency of this century. GC-376 is a M pro inhibitor with antiviral activity against SARS-CoV-2 in vitro . Using the K18-hACE2 mouse model, the in vivo antiviral efficacy of GC-376 against SARS-CoV-2 was evaluated. GC-376 treatment was not toxic in K18-hACE2 mice and produced milder tissue lesions, reduced viral loads, fewer presence of viral antigen, and reduced inflammation in comparison to vehicle-treated controls, most notably in the brain in mice challenged with a low virus dose. Although GC-376 was not sufficient to improve neither clinical symptoms nor survival, it did show a positive effect against SARS-CoV-2 in vivo . This study supports the notion that the K18-hACE2 mouse model is suitable to study antiviral therapies against SARS-CoV-2, and GC-376 represents a promising lead candidate for further development to treat SARS-CoV-2 infection.
Collapse
|
35
|
Izes AM, Yu J, Norris JM, Govendir M. Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats. Vet Q 2020; 40:322-330. [PMID: 33138721 PMCID: PMC7671703 DOI: 10.1080/01652176.2020.1845917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a viral-induced, immune-mediated disease of cats caused by virulent biotypes of feline coronaviruses (FCoV), known as the feline infectious peritonitis virus (FIPV). Historically, three major pharmacological approaches have been employed to treat FIP: (1) immunomodulators to stimulate the patient’s immune system non-specifically to reduce the clinical effects of the virus through a robust immune response, (2) immunosuppressive agents to dampen clinical signs temporarily, and (3) re-purposed human antiviral drugs, all of which have been unsuccessful to date in providing reliable efficacious treatment options for FIPV. Recently, antiviral studies investigating the broad-spectrum coronavirus protease inhibitor, GC376, and the adenosine nucleoside analogue GS-441524, have resulted in increased survival rates and clinical cure in many patients. However, prescriber access to these antiviral therapies is currently problematic as they have not yet obtained registration for veterinary use. Consequently, FIP remains challenging to treat. The purpose of this review is to provide an update on the current status of therapeutics for FIP. Additionally, due to interest in coronaviruses resulting from the current human pandemic, this review provides information on domesticated cats identified as SARS-CoV-2 positive.
Collapse
Affiliation(s)
- Aaron M Izes
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Jane Yu
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Jacqueline M Norris
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
|
37
|
Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat Commun 2020; 11:4282. [PMID: 32855413 PMCID: PMC7453019 DOI: 10.1038/s41467-020-18096-2] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
The main protease, Mpro (or 3CLpro) in SARS-CoV-2 is a viable drug target because of its essential role in the cleavage of the virus polypeptide. Feline infectious peritonitis, a fatal coronavirus infection in cats, was successfully treated previously with a prodrug GC376, a dipeptide-based protease inhibitor. Here, we show the prodrug and its parent GC373, are effective inhibitors of the Mpro from both SARS-CoV and SARS-CoV-2 with IC50 values in the nanomolar range. Crystal structures of SARS-CoV-2 Mpro with these inhibitors have a covalent modification of the nucleophilic Cys145. NMR analysis reveals that inhibition proceeds via reversible formation of a hemithioacetal. GC373 and GC376 are potent inhibitors of SARS-CoV-2 replication in cell culture. They are strong drug candidates for the treatment of human coronavirus infections because they have already been successful in animals. The work here lays the framework for their use in human trials for the treatment of COVID-19.
Collapse
|
38
|
Rathnayake AD, Zheng J, Kim Y, Perera KD, Mackin S, Meyerholz DK, Kashipathy MM, Battaile KP, Lovell S, Perlman S, Groutas WC, Chang KO. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice. Sci Transl Med 2020; 12:scitranslmed.abc5332. [PMID: 32747425 PMCID: PMC7574915 DOI: 10.1126/scitranslmed.abc5332] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus 3C-like proteases (3CLpro) are attractive therapeutic targets because they play a vital role in coronavirus replication. Rathnayake et al. now report a series of optimized coronavirus 3CLpro inhibitors that blocked replication of the human coronaviruses MERS-CoV and SARS-CoV-2 in cultured cells. Administration of a lead compound to a MERS-CoV mouse model demonstrated proof-of-concept efficacy. These findings suggest that this lead compound should be investigated further as a potential therapeutic for human coronavirus infection. Pathogenic coronaviruses are a major threat to global public health, as exemplified by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and the newly emerged SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). We describe herein the structure-guided optimization of a series of inhibitors of the coronavirus 3C-like protease (3CLpro), an enzyme essential for viral replication. The optimized compounds were effective against several human coronaviruses including MERS-CoV, SARS-CoV, and SARS-CoV-2 in an enzyme assay and in cell-based assays using Huh-7 and Vero E6 cell lines. Two selected compounds showed antiviral effects against SARS-CoV-2 in cultured primary human airway epithelial cells. In a mouse model of MERS-CoV infection, administration of a lead compound 1 day after virus infection increased survival from 0 to 100% and reduced lung viral titers and lung histopathology. These results suggest that this series of compounds has the potential to be developed further as antiviral drugs against human coronaviruses.
Collapse
Affiliation(s)
- Athri D Rathnayake
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Krishani Dinali Perera
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Samantha Mackin
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA.
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
39
|
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that causes respiratory illnesses mainly in children. In severe cases, it can lead to neurological complications such as acute flaccid myelitis (AFM). EV-D68 belongs to the enterovirus genera of the Picornaviridae family, which also includes many other significant human pathogens such as poliovirus, enterovirus A71, and rhinovirus. There are currently no vaccines or antivirals against EV-D68. In this review, we present the current understanding of the link between EV-D68 and AFM, the mechanism of viral replication, and recent progress in developing EV-D68 antivirals by targeting various viral proteins and host factors that are essential for viral replication. The future directions of EV-D68 antiviral drug discovery and the criteria for drugs to reach clinical trials are also discussed.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| |
Collapse
|
40
|
Kennedy MA. Feline Infectious Peritonitis: Update on Pathogenesis, Diagnostics, and Treatment. Vet Clin North Am Small Anim Pract 2020; 50:1001-1011. [PMID: 32563530 DOI: 10.1016/j.cvsm.2020.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Feline infectious peritonitis (FIP) is a mysterious and lethal disease of cats. The causative agent, feline coronavirus (FCoV), is ubiquitous in most feline populations, yet the disease is sporadic in nature. Mutations in the infecting virus combined with an inappropriate immune response to the FCoV contribute to the development of FIP. Diagnosis can be challenging because signs may be vague, clinical pathology parameters are nonspecific, and the gold standard for diagnosis is invasive: histopathology of affected tissue. This article discusses the developments in the understanding of this disease as well as the progress in diagnosis and treatment.
Collapse
Affiliation(s)
- Melissa A Kennedy
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Room A205 VMC, 2407 River Drive, Knoxville, TN 37996-4543, USA.
| |
Collapse
|
41
|
Naik B, Gupta N, Ojha R, Singh S, Prajapati VK, Prusty D. High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. Int J Biol Macromol 2020; 160:1-17. [PMID: 32470577 PMCID: PMC7250083 DOI: 10.1016/j.ijbiomac.2020.05.184] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022]
Abstract
The present-day world is severely suffering from the recently emerged SARS-CoV-2. The lack of prescribed drugs for the deadly virus has stressed the likely need to identify novel inhibitors to alleviate and stop the pandemic. In the present high throughput virtual screening study, we used in silico techniques like receptor-ligand docking, Molecular dynamic (MD), and ADME properties to screen natural compounds. It has been documented that many natural compounds display antiviral activities, including anti–SARS-CoV effect. The present study deals with compounds of Natural Product Activity and Species Source (NPASS) database with known biological activity that probably impedes the activity of six essential enzymes of the virus. Promising drug-like compounds were identified, demonstrating better docking score and binding energy for each druggable targets. After an extensive screening analysis, three novel multi-target natural compounds were predicted to subdue the activity of three/more major drug targets simultaneously. Concerning the utility of natural compounds in the formulation of many therapies, we propose these compounds as excellent lead candidates for the development of therapeutic drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India.
| |
Collapse
|
42
|
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. Chembiochem 2020; 21:730-738. [PMID: 32022370 PMCID: PMC7162020 DOI: 10.1002/cbic.202000047] [Citation(s) in RCA: 521] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 11/08/2022]
Abstract
With the current trajectory of the 2019-nCoV outbreak unknown, public health and medicinal measures will both be needed to contain spreading of the virus and to optimize patient outcomes. Although little is known about the virus, an examination of the genome sequence shows strong homology with its better-studied cousin, SARS-CoV. The spike protein used for host cell infection shows key nonsynonymous mutations that might hamper the efficacy of previously developed therapeutics but remains a viable target for the development of biologics and macrocyclic peptides. Other key drug targets, including RNA-dependent RNA polymerase and coronavirus main proteinase (3CLpro), share a strikingly high (>95 %) homology to SARS-CoV. Herein, we suggest four potential drug candidates (an ACE2-based peptide, remdesivir, 3CLpro-1 and a novel vinylsulfone protease inhibitor) that could be used to treat patients suffering with the 2019-nCoV. We also summarize previous efforts into drugging these targets and hope to help in the development of broad-spectrum anti-coronaviral agents for future epidemics.
Collapse
Affiliation(s)
- Jared S. Morse
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Tyler Lalonde
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Shiqing Xu
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
43
|
Structural Basis for Inhibiting Porcine Epidemic Diarrhea Virus Replication with the 3C-Like Protease Inhibitor GC376. Viruses 2020; 12:v12020240. [PMID: 32098094 PMCID: PMC7077318 DOI: 10.3390/v12020240] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/26/2020] [Accepted: 01/31/2020] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), being highly virulent and contagious in piglets, has caused significant damage to the pork industries of many countries worldwide. There are no commercial drugs targeting coronaviruses (CoVs), and few studies on anti-PEDV inhibitors. The coronavirus 3C-like protease (3CLpro) has a conserved structure and catalytic mechanism and plays a key role during viral polyprotein processing, thus serving as an appealing antiviral drug target. Here, we report the anti-PEDV effect of the broad-spectrum inhibitor GC376 (targeting 3Cpro or 3CLpro of viruses in the picornavirus-like supercluster). GC376 was highly effective against the PEDV 3CLpro and exerted similar inhibitory effects on two PEDV strains. Furthermore, the structure of the PEDV 3CLpro in complex with GC376 was determined at 1.65 Å. We elucidated structural details and analyzed the differences between GC376 binding with the PEDV 3CLpro and GC376 binding with the transmissible gastroenteritis virus (TGEV) 3CLpro. Finally, we explored the substrate specificity of PEDV 3CLpro at the P2 site and analyzed the effects of Leu group modification in GC376 on inhibiting PEDV infection. This study helps us to understand better the PEDV 3CLpro substrate specificity, providing information on the optimization of GC376 for development as an antiviral therapeutic against coronaviruses.
Collapse
|
44
|
Morse JS, Lalonde T, Xu S, Liu W. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020. [PMID: 32511285 DOI: 10.26434/chemrxiv.11728983.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With the current trajectory of the 2019-nCoV outbreak unknown, public health and medicinal measures will both be needed to contain spreading of the virus and to optimize patient outcomes. While little is known about the virus, an examination of the genome sequence shows strong homology with its more well-studied cousin, SARS-CoV. The spike protein used for host cell infection shows key nonsynonymous mutations which may hamper efficacy of previously developed therapeutics but remains a viable target for the development of biologics and macrocyclic peptides. Other key drug targets, including RdRp and 3CLpro, share a strikingly high (>95%) homology to SARS-CoV. Herein, we suggest 4 potential drug candidates (an ACE2-based peptide, remdesivir, 3CLpro-1 and a novel vinylsulfone protease inhibitor) that can be used to treat patients suffering with the 2019-nCoV. We also summarize previous efforts into drugging these targets and hope to help in the development of broad spectrum anti-coronaviral agents for future epidemics.
Collapse
|
45
|
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:11728983. [PMID: 32511285 PMCID: PMC7251965 DOI: 10.26434/chemrxiv.11728983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 01/27/2020] [Indexed: 01/06/2023]
Abstract
With the current trajectory of the 2019-nCoV outbreak unknown, public health and medicinal measures will both be needed to contain spreading of the virus and to optimize patient outcomes. While little is known about the virus, an examination of the genome sequence shows strong homology with its more well-studied cousin, SARS-CoV. The spike protein used for host cell infection shows key nonsynonymous mutations which may hamper efficacy of previously developed therapeutics but remains a viable target for the development of biologics and macrocyclic peptides. Other key drug targets, including RdRp and 3CLpro, share a strikingly high (>95%) homology to SARS-CoV. Herein, we suggest 4 potential drug candidates (an ACE2-based peptide, remdesivir, 3CLpro-1 and a novel vinylsulfone protease inhibitor) that can be used to treat patients suffering with the 2019-nCoV. We also summarize previous efforts into drugging these targets and hope to help in the development of broad spectrum anti-coronaviral agents for future epidemics.
Collapse
Affiliation(s)
- Jared S. Morse
- The Texas A&M Drug Discovery Laboratory, Department of
Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Tyler Lalonde
- The Texas A&M Drug Discovery Laboratory, Department of
Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory, Department of
Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Wenshe R. Liu
- The Texas A&M Drug Discovery Laboratory, Department of
Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| |
Collapse
|
46
|
Chen S, Tian J, Li Z, Kang H, Zhang J, Huang J, Yin H, Hu X, Qu L. Feline Infectious Peritonitis Virus Nsp5 Inhibits Type I Interferon Production by Cleaving NEMO at Multiple Sites. Viruses 2019; 12:v12010043. [PMID: 31905881 PMCID: PMC7019732 DOI: 10.3390/v12010043] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in cats. The type I interferon (type I IFN)-mediated immune responses provide host protection from infectious diseases. Several coronaviruses have been reported to evolve diverse strategies to evade host IFN response. However, whether feline infectious peritonitis virus (FIPV) antagonizes the type I IFN signaling remains unclear. In this study, we demonstrated that FIPV strain DF2 infection not only failed to induce interferon-β (IFN-β) and interferon-stimulated gene (ISG) production, but also inhibited Sendai virus (SEV) or polyinosinic-polycytidylic acid (poly(I:C))-induced IFN-β production. Subsequently, we found that one of the non-structural proteins encoded by the FIPV genome, nsp5, interrupted type I IFN signaling in a protease-dependent manner by cleaving the nuclear factor κB (NF-κB) essential modulator (NEMO) at three sites—glutamine132 (Q132), Q205, and Q231. Further investigation revealed that the cleavage products of NEMO lost the ability to activate the IFN-β promoter. Mechanistically, the nsp5-mediated NEMO cleavage disrupted the recruitment of the TRAF family member-associated NF-κB activator (TANK) to NEMO, which reduced the phosphorylation of interferon regulatory factor 3 (IRF3), leading to the inhibition of type I IFN production. Our research provides new insights into the mechanism for FIPV to counteract host innate immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoliang Hu
- Correspondence: (X.H.); (L.Q.); Tel.: +86-451-5105-1785 (X.H.); +86-451-5105-1788 (L.Q.)
| | - Liandong Qu
- Correspondence: (X.H.); (L.Q.); Tel.: +86-451-5105-1785 (X.H.); +86-451-5105-1788 (L.Q.)
| |
Collapse
|
47
|
Perera KD, Rathnayake AD, Liu H, Pedersen NC, Groutas WC, Chang KO, Kim Y. Characterization of amino acid substitutions in feline coronavirus 3C-like protease from a cat with feline infectious peritonitis treated with a protease inhibitor. Vet Microbiol 2019; 237:108398. [PMID: 31585653 PMCID: PMC6779346 DOI: 10.1016/j.vetmic.2019.108398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
Abstract
Feline infectious peritonitis (FIP) is a highly fatal disease caused by a virulent feline coronavirus in domestic and wild cats. We have previously reported the synthesis of potent coronavirus 3C-like protease (3CLpro) inhibitors and the efficacy of a protease inhibitor, GC376, in client-owned cats with FIP. In this study, we studied the effect of the amino acid changes in 3CLpro of feline coronavirus from a feline patient who received antiviral treatment for prolonged duration. We generated recombinant 3CLpro containing the identified amino acid changes (N25S, A252S or K260 N) and determined their susceptibility to protease inhibitors in the fluorescence resonance energy transfer assay. The assay showed that N25S in 3CLpro confers a small change (up to 1.68-fold increase in the 50% inhibitory concentration) in susceptibility to GC376, but other amino acid changes do not affect susceptibility. Modelling of 3CLpro carrying the amino acid changes was conducted to probe the structural basis for these findings. The results of this study may explain the observed absence of clinical resistance to the long-term antiviral treatment in the patients.
Collapse
Affiliation(s)
- Krishani Dinali Perera
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Hongwei Liu
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
48
|
Mettelman RC, O'Brien A, Whittaker GR, Baker SC. Generating and evaluating type I interferon receptor-deficient and feline TMPRSS2-expressing cells for propagating serotype I feline infectious peritonitis virus. Virology 2019; 537:226-236. [PMID: 31539770 PMCID: PMC7112123 DOI: 10.1016/j.virol.2019.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
Feline coronavirus infection can progress to a fatal infectious peritonitis, which is a widespread feline disease without an effective vaccine. Generating feline cells with reduced ability to respond to interferon (IFN) is an essential step facilitating isolation of new candidate vaccine strains. Here, we describe the use of Crispr/Cas technology to disrupt type I IFN signaling in two feline cell lines, AK-D and Fcwf-4 CU, and evaluate the replication kinetics of a serotype I feline infectious peritonitis virus (FIPV) within these cells. We report that polyclonal cell populations and a clonal isolate, termed Fcwf-4 IRN, exhibited significantly diminished IFN-responsiveness and allowed FIPV replication kinetics comparable to parental cells. Furthermore, we demonstrate that replication of FIPV is enhanced by ectopic expression of a host serine protease, TMPRSS2, in these cells. We discuss the potential of these cells for isolating new clinical strains and for propagating candidate vaccine strains of FIPV.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States
| | - Amornrat O'Brien
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States
| | - Gary R Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Susan C Baker
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States.
| |
Collapse
|
49
|
Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg 2019; 21:271-281. [PMID: 30755068 PMCID: PMC6435921 DOI: 10.1177/1098612x19825701] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The aim of this study was to determine the safety and efficacy of the nucleoside analog GS-441524 for cats suffering from various forms of naturally acquired feline infectious peritonitis (FIP). METHODS Cats ranged from 3.4-73 months of age (mean 13.6 months); 26 had effusive or dry-to-effusive FIP and five had non-effusive disease. Cats with severe neurological and ocular FIP were not recruited. The group was started on GS-441524 at a dosage of 2.0 mg/kg SC q24h for at least 12 weeks and increased when indicated to 4.0 mg/kg SC q24h. RESULTS Four of the 31 cats that presented with severe disease died or were euthanized within 2-5 days and a fifth cat after 26 days. The 26 remaining cats completed the planned 12 weeks or more of treatment. Eighteen of these 26 cats remain healthy at the time of publication (OnlineFirst, February 2019) after one round of treatment, while eight others suffered disease relapses within 3-84 days. Six of the relapses were non-neurological and two neurological. Three of the eight relapsing cats were treated again at the same dosage, while five cats had the dosage increased from 2.0 to 4.0 mg/kg q24h. The five cats treated a second time at the higher dosage, including one with neurological disease, responded well and also remain healthy at the time of publication. However, one of the three cats re-treated at the original lower dosage relapsed with neurological disease and was euthanized, while the two remaining cats responded favorably but relapsed a second time. These two cats were successfully treated a third time at the higher dosage, producing 25 long-time survivors. One of the 25 successfully treated cats was subsequently euthanized due to presumably unrelated heart disease, while 24 remain healthy. CONCLUSIONS AND RELEVANCE GS-441524 was shown to be a safe and effective treatment for FIP. The optimum dosage was found to be 4.0 mg/kg SC q24h for at least 12 weeks.
Collapse
Affiliation(s)
- Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Michael Bannasch
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Elizabeth Montgomery
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Molly Liepnieks
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Hongwei Liu
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
50
|
Perera KD, Galasiti Kankanamalage AC, Rathnayake AD, Honeyfield A, Groutas W, Chang KO, Kim Y. Protease inhibitors broadly effective against feline, ferret and mink coronaviruses. Antiviral Res 2018; 160:79-86. [PMID: 30342822 PMCID: PMC6240502 DOI: 10.1016/j.antiviral.2018.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/25/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022]
Abstract
Ferret and mink coronaviruses typically cause catarrhal diarrhea in ferrets and minks, respectively. In recent years, however, systemic fatal coronavirus infection has emerged in ferrets, which resembles feline infectious peritonitis (FIP) in cats. FIP is a highly fatal systemic disease caused by a virulent feline coronavirus infection in cats. Despite the importance of coronavirus infections in these animals, there are no effective commercial vaccines or antiviral drugs available for these infections. We have previously reported the efficacy of a protease inhibitor in cats with FIP, demonstrating that a virally encoded 3C-like protease (3CLpro) is a valid target for antiviral drug development for coronavirus infections. In this study, we extended our previous work on coronavirus inhibitors and investigated the structure-activity relationships of a focused library of protease inhibitors for ferret and mink 3CLpro. Using the fluorescence resonance energy transfer assay, we identified potent inhibitors broadly effective against feline, ferret and mink coronavirus 3CLpro. Multiple amino acid sequence analysis and modelling of 3CLpro of ferret and mink coronaviruses were conducted to probe the structural basis for these findings. The results of this study provide support for further research to develop broad-spectrum antiviral agents for multiple coronavirus infections. To the best of our knowledge, this is the first report on small molecule inhibitors of ferret and mink coronaviruses.
Collapse
Affiliation(s)
- Krishani Dinali Perera
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | | | - Amanda Honeyfield
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - William Groutas
- Department of Chemistry, Wichita State University, Wichita, KS, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|