1
|
Bu H, Zhang S, Li P, Liu Z, Liu Y, Li Z, Liu X, Wang Z, Feng L, Chen L, Qu L. Secreted phospholipase PLA2G2E contributes to regulation of T cell immune response against influenza virus infection. J Virol 2024; 98:e0019824. [PMID: 38591879 PMCID: PMC11092358 DOI: 10.1128/jvi.00198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024] Open
Abstract
The involvement of secreted phospholipase A2s in respiratory diseases, such as asthma and respiratory viral infections, is well-established. However, the specific role of secreted phospholipase A2 group IIE (PLA2G2E) during influenza virus infection remains unexplored. Here, we investigated the role of PLA2G2E during H1N1 influenza virus infection using a targeted mouse model lacking Pla2g2e gene (Pla2g2e-/-). Our findings demonstrated that Pla2g2e-/- mice had significantly lower survival rates and higher viral loads in lungs compared to wild-type mice following influenza virus infection. While Pla2g2e-/- mice displayed comparable innate and humoral immune responses to influenza virus challenge, the animals showed impaired influenza-specific cellular immunity and reduced T cell-mediated cytotoxicity. This indicates that PLA2G2E is involved in regulating specific T cell responses during influenza virus infection. Furthermore, transgenic mice expressing the human PLA2G2E gene exhibited resistance to influenza virus infection along with enhanced influenza-specific cellular immunity and T cell-mediated cytotoxicity. Pla2g2e deficiency resulted in perturbation of lipid mediators in the lung and T cells, potentially contributing to its impact on the anti-influenza immune response. Taken together, these findings suggest that targeting PLA2G2E could hold potential as a therapeutic strategy for managing influenza virus infections.IMPORTANCEThe influenza virus is a highly transmissible respiratory pathogen that continues to pose a significant public health concern. It effectively evades humoral immune protection conferred by vaccines and natural infection due to its continuous viral evolution through the genetic processes of antigenic drift and shift. Recognition of conserved non-mutable viral epitopes by T cells may provide broad immunity against influenza virus. In this study, we have demonstrated that phospholipase A2 group IIE (PLA2G2E) plays a crucial role in protecting against influenza virus infection through the regulation of T cell responses, while not affecting innate and humoral immune responses. Targeting PLA2G2E could therefore represent a potential therapeutic strategy for managing influenza virus infection.
Collapse
MESH Headings
- Animals
- Mice
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Influenza A Virus, H1N1 Subtype/immunology
- Lung/virology
- Lung/immunology
- Lung/pathology
- Humans
- Group II Phospholipases A2/genetics
- Group II Phospholipases A2/immunology
- T-Lymphocytes/immunology
- Mice, Knockout
- Immunity, Cellular
- Mice, Inbred C57BL
- Mice, Transgenic
- Viral Load
- Disease Models, Animal
- Immunity, Humoral
- Immunity, Innate
- Influenza, Human/immunology
- Influenza, Human/virology
- Female
Collapse
Affiliation(s)
- Hemeng Bu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zijian Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yichu Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhixia Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinglong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Mahallawi WH, Khabour OF. Pandemic H1N1 influenza virus triggers a strong T helper cell response in human nasopharynx-associated lymphoid tissues. Saudi J Biol Sci 2024; 31:103941. [PMID: 38327659 PMCID: PMC10847369 DOI: 10.1016/j.sjbs.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The pH1N1 belongs to influenza A family that is sometimes transmitted to humans via contact with pigs. Human tonsillar immune cells are widely used as in vitro models to study responses to influenza viruses. In the current study, human memory (M) and naïve (N) T cells responses in mononuclear cells of tonsil (TMCs) and peripheral blood (PBMCs) were stimulated by pH1N1/sH1N1, and then stained for estimation of T cells proliferation index. Individuals with an anti-pH1N1 hemagglutination (HA) inhibition (HAI) titer of forty or greater exhibited stronger HA-specific M-CD4+ T cells responses to pH1N1 in TMCs/PBMCs than those with an HAI titer of less than forty (P < 0.01). In addition, a positive correlation was observed between proliferation indices of M-CD4+ T cells induced by exposure to sH1N1/pH1N1 (p < 0.01). Moreover, a strong correlation (p < 0.001) was detected between subjects' age and their HA-specific M-CD4+ T cells induced by pH1N1 exposure, indicating that this response was age-dependent. Finally, stimulation of TMCs with pH1N1-HA resulted in a significant M-CD8+ T cells response (p < 0.05). In conclusion, pH1N1 HA elicits a strong M-CD4+ T cells response in TMCs. Additionally, this response correlates with the response to sH1N1 suggesting cross-reactivity in T cells epitopes directed against HAs of both viral strains.
Collapse
Affiliation(s)
- Waleed H. Mahallawi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Li L, Guo T, Yuan Y, Xiao J, Yang R, Wang H, Xu W, Yin Y, Zhang X. ΔA146Ply-HA stem protein immunization protects mice against influenza A virus infection and co-infection with Streptococcus pneumoniae. Mol Immunol 2023; 161:91-103. [PMID: 37531919 DOI: 10.1016/j.molimm.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Influenza virus (IV) is a common pathogen affecting the upper respiratory tract, that causes various diseases. Secondary bacterial pneumonia is a common complication and a major cause of death in influenza patients. Streptococcus pneumoniae (S. pneumoniae) is the predominant co-infected bacteria in the pandemic, which colonizes healthy people but can cause diseases in immunocompromised individuals. Vaccination is a crucial strategy for avoiding infection, however, no universal influenza vaccine (UIV) that is resistant to multiple influenza viruses is available. Despite its limited immunogenicity, the hemagglutinin (HA) stem is a candidate peptide for UIV. ΔA146Ply (pneumolysin with a single deletion of A146) not only retains the Toll-like receptor 4 agonist effect but also is a potential vaccine adjuvant and a candidate protein for the S. pneumoniae vaccine. We constructed the fusion protein ΔA146Ply-HA stem and studied its immunoprotective effect in mice infection models. The results showed that intramuscular immunization of ΔA146Ply-HA stem without adjuvant could induce specific antibodies against HA stem and specific CD4+ T and CD8+ T cellular immunity in BALB/c and C57BL/6 mice, which could improve the survival rate of mice infected with IAV and co-infected with S. pneumoniae, but the protective effect on BALB/c mice was better than that on C57BL/6 mice. ΔA146Ply-HA stem serum antibody could protect BALB/c and C57BL/6 mice from IAV, and recognized HA polypeptides of H3N2, H5N1, H7N9, and H9N2 viruses. Moreover, ΔA146Ply-HA stem intramuscular immunization had a high safety profile with no obvious toxic side effects. The results indicated that coupling ΔA146Ply with influenza protein as a vaccine was a safe and effective strategy against the IV and secondary S. pneumoniae infection.
Collapse
Affiliation(s)
- Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Rui Yang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hanyi Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Ng T, Malavet VF, Mansoor MA, Arvelo AC, Dhume K, Prokop E, McKinstry KK, Strutt TM. Intermediate Levels of Pre-Existing Protective Antibody Allow Priming of Protective T Cell Immunity against Influenza. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:628-639. [PMID: 36645384 PMCID: PMC9998374 DOI: 10.4049/jimmunol.2200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023]
Abstract
Overcoming interfering impacts of pre-existing immunity to generate universally protective influenza A virus (IAV)-specific T cell immunity through vaccination is a high priority. In this study, we passively transfer varied amounts of H1N1-IAV-specific immune serum before H1N1-IAV infection to determine how different levels of pre-existing Ab influence the generation and protective potential of heterosubtypic T cell responses in a murine model. Surprisingly, IAV nucleoprotein-specific CD4 and CD8 T cell responses are readily detected in infected recipients of IAV-specific immune serum regardless of the amount transferred. When compared with responses in control groups and recipients of low and intermediate levels of convalescent serum, nucleoprotein-specific T cell responses in recipients of high levels of IAV-specific serum, which prevent overt weight loss and reduce peak viral titers in the lungs, are, however, markedly reduced. Although detectable at priming, this response recalls poorly and is unable to mediate protection against a lethal heterotypic (H3N2) virus challenge at later memory time points. A similar failure to generate protective heterosubtypic T cell immunity during IAV priming is seen in offspring of IAV-primed mothers that naturally receive high titers of IAV-specific Ab through maternal transfer. Our findings support that priming of protective heterosubtypic T cell responses can occur in the presence of intermediate levels of pre-existing Ab. These results have high relevance to vaccine approaches aiming to incorporate and evaluate cellular and humoral immunity towards IAV and other viral pathogens against which T cells can protect against variants escaping Ab-mediated protection.
Collapse
Affiliation(s)
- Terry Ng
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Valeria Flores Malavet
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Mishfak A.M. Mansoor
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Andrea C. Arvelo
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Emily Prokop
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - K. Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Tara M. Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| |
Collapse
|
5
|
Henson TR, Richards KA, Gandhapudi SK, Woodward JG, Sant AJ. R-DOTAP Cationic Lipid Nanoparticles Outperform Squalene-Based Adjuvant Systems in Elicitation of CD4 T Cells after Recombinant Influenza Hemagglutinin Vaccination. Viruses 2023; 15:538. [PMID: 36851752 PMCID: PMC9959843 DOI: 10.3390/v15020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
It is clear that new approaches are needed to promote broadly protective immunity to viral pathogens, particularly those that are prone to mutation and escape from antibody-mediated immunity. Prototypic pathogens of this type are influenza and SARS-CoV-2, where the receptor-binding protein exhibits extremely high variability in its receptor-binding regions. T cells, known to target many viral proteins, and within these, highly conserved peptide epitopes, can contribute greatly to protective immunity through multiple mechanisms but are often poorly recruited by current vaccine strategies. Here, we have studied a promising novel pure enantio-specific cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (R-DOTAP), which was previously recognized for its ability to generate anti-tumor immunity through the induction of potent cytotoxic CD8 T cells. Using a preclinical mouse model, we have assessed an R-DOTAP nanoparticle adjuvant system for its ability to promote CD4 T cell responses to vaccination with recombinant influenza protein. Our studies revealed that R-DOTAP consistently outperformed a squalene-based adjuvant emulsion, even when it was introduced with a potent TLR agonist CpG, in the ability to elicit peptide epitope-specific CD4 T cells when quantified by IFN-γ and IL-2 ELISpot assays. Clinical testing of R-DOTAP containing vaccines in earlier work by others has demonstrated an acceptable safety profile. Hence, R-DOTAP can offer exciting opportunities as an immune stimulant for next-generation prophylactic recombinant protein-based vaccines.
Collapse
Affiliation(s)
- Thomas R. Henson
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Siva K. Gandhapudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| | - Jerold G. Woodward
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40506, USA
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Liu S, Huang Z, Fan R, Jia J, Deng X, Zou X, Li H, Cao B. Cycling and activated CD8 + T lymphocytes and their association with disease severity in influenza patients. BMC Immunol 2022; 23:40. [PMID: 36064355 PMCID: PMC9441835 DOI: 10.1186/s12865-022-00516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND T cell lymphopenia was a significant characteristic of severe influenza infection and it was associated with the functional changes of T cells. It is necessary to clarify the T cells characteristics of kinetic changes and their correlation with disease severity. METHODS In a cohort of hospitalized influenza patients with varying degrees of severity, we characterized lymphocyte populations using flow cytometry. RESULTS The numbers of cycling (Ki67+) T cells at the acute phase of severe influenza were higher, especially in the memory (CD45RO+) T cell subsets. T cells from hospitalized influenza patients also had significantly higher levels of the exhausted marker PD-1. Cycling status of T cells was associated with T cell activation during the acute phase of influenza infection. The recruitment of cycling and activated (CD38+HLA-DR+) CD8+ T cells subset is delayed in severe influenza patients. CONCLUSIONS The increased numbers of cycling memory (Ki67+CD45RO+) T cells subsets and delayed kinetics of activated (CD38+HLA-DR+) CD8+ T cells, could serve as possible biological markers for disease severity.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, Shandong, China
| | - Zhisheng Huang
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Ruyue Fan
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Ju Jia
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyan Deng
- Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Zou
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Hui Li
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Bin Cao
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China. .,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China. .,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Poon MML, Byington E, Meng W, Kubota M, Matsumoto R, Grifoni A, Weiskopf D, Dogra P, Lam N, Szabo PA, Ural BB, Wells SB, Rosenfeld AM, Brusko MA, Brusko TM, Connors TJ, Sette A, Sims PA, Luning Prak ET, Shen Y, Farber DL. Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. Cell Rep 2021; 37:110071. [PMID: 34852222 PMCID: PMC8719595 DOI: 10.1016/j.celrep.2021.110071] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
The persistence of anti-viral immunity is essential for protection and exhibits profound heterogeneity across individuals. Here, we elucidate the factors that shape maintenance and function of anti-viral T cell immunity in the body by comprehensive profiling of virus-specific T cells across blood, lymphoid organs, and mucosal tissues of organ donors. We use flow cytometry, T cell receptor sequencing, single-cell transcriptomics, and cytokine analysis to profile virus-specific CD8+ T cells recognizing the ubiquitous pathogens influenza and cytomegalovirus. Our results reveal that virus specificity determines overall magnitude, tissue distribution, differentiation, and clonal repertoire of virus-specific T cells. Age and sex influence T cell differentiation and dissemination in tissues, while T cell tissue residence and functionality are highly correlated with the site. Together, our results demonstrate how the covariates of virus, tissue, age, and sex impact the anti-viral immune response, which is important for targeting, monitoring, and predicting immune responses to existing and emerging viruses.
Collapse
Affiliation(s)
- Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eve Byington
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alba Grifoni
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nora Lam
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Basak Burcu Ural
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maigan A Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandro Sette
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
8
|
Intranasal Nanoparticle Vaccination Elicits a Persistent, Polyfunctional CD4 T Cell Response in the Murine Lung Specific for a Highly Conserved Influenza Virus Antigen That Is Sufficient To Mediate Protection from Influenza Virus Challenge. J Virol 2021; 95:e0084121. [PMID: 34076479 DOI: 10.1128/jvi.00841-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung-localized CD4 T cells play a critical role in the control of influenza virus infection and can provide broadly protective immunity. However, current influenza vaccination strategies primarily target influenza hemagglutinin (HA) and are administered peripherally to induce neutralizing antibodies. We have used an intranasal vaccination strategy targeting the highly conserved influenza nucleoprotein (NP) to elicit broadly protective lung-localized CD4 T cell responses. The vaccine platform consists of a self-assembling nanolipoprotein particle (NLP) linked to NP with an adjuvant. We have evaluated the functionality, in vivo localization, and persistence of the T cells elicited. Our study revealed that intranasal vaccination elicits a polyfunctional subset of lung-localized CD4 T cells that persist long term. A subset of these lung CD4 T cells localize to the airway, where they can act as early responders following encounter with cognate antigen. Polyfunctional CD4 T cells isolated from airway and lung tissue produce significantly more effector cytokines IFN-γ and TNF-α, as well as cytotoxic functionality. When adoptively transferred to naive recipients, CD4 T cells from NLP:NP-immunized lung were sufficient to mediate 100% survival from lethal challenge with H1N1 influenza virus. IMPORTANCE Exploiting new, more efficacious strategies to potentiate influenza virus-specific immune responses is important, particularly for at-risk populations. We have demonstrated the promise of direct intranasal protein vaccination to establish long-lived immunity in the lung with CD4 T cells that possess features and positioning in the lung that are associated with both immediate and long-term immunity, as well as demonstrating direct protective potential.
Collapse
|
9
|
Wu W, Tian L, Zhang W, Booth JL, Ainsua-Enrich E, Kovats S, Brown BR, Metcalf JP. Long-term cigarette smoke exposure dysregulates pulmonary T cell response and IFN-γ protection to influenza virus in mouse. Respir Res 2021; 22:112. [PMID: 33879121 PMCID: PMC8056367 DOI: 10.1186/s12931-021-01713-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a highly contagious, acute, febrile respiratory infection caused by a negative-sense, single-stranded RNA virus, which belongs in the Orthomyxoviridae family. Cigarette smoke (CS) exposure worsens influenza infection in terms of frequency and severity in both human and animal models. METHODS C57BL/6 mice with or without CS exposure for 6 weeks were inoculated intranasally with a single, non-lethal dose of the influenza A virus (IAV) A/Puerto Rico/8/1934 (PR8) strain. At 7 and 10 days after infection, lung and mediastinal lymph nodes (MLN) cells were collected to determine the numbers of total CD4 + and CD8 + T cells, and IAV-specific CD4 + and CD8 + T cells, using flow cytometry. Bronchoalveolar lavage fluid (BALF) was also collected to determine IFN-γ levels and total protein concentration. RESULTS Although long-term CS exposure suppressed early pulmonary IAV-antigen specific CD8 + and CD4 + T cell numbers and IFN-γ production in response to IAV infection on day 7 post-infection, CS enhanced numbers of these cells and IFN-γ production on day 10. The changes of total protein concentration in BALF are consistent with the changes in the IFN-γ amounts between day 7 and 10, which suggested that excessive IFN-γ impaired barrier function and caused lung injury at the later stage of infection. CONCLUSIONS Our results demonstrated that prior CS exposure caused a biphasic T cell and IFN-γ response to subsequent infection with influenza in the lung. Specifically, the number of IAV antigen-specific T cells on day 10 was greatly increased by CS exposure even though CS decreased the number of the same group of cells on day 7. The result suggested that CS affected the kinetics of the T cell response to IAV, which was suppressed at an early stage and exaggerated at a later stage. This study is the first to describe the different effect of long-term CS on T cell responses to IAV at early and late stages of infection in vivo.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
| | - Lili Tian
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Wei Zhang
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - J Leland Booth
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Erola Ainsua-Enrich
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Susan Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brent R Brown
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Jordan P Metcalf
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Topham DJ, DeDiego ML, Nogales A, Sangster MY, Sant A. Immunity to Influenza Infection in Humans. Cold Spring Harb Perspect Med 2021; 11:a038729. [PMID: 31871226 PMCID: PMC7919402 DOI: 10.1101/cshperspect.a038729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review discusses the human immune responses to influenza infection with some insights from studies using animal models, such as experimental infection of mice. Recent technological advances in the study of human immune responses have greatly added to our knowledge of the infection and immune responses, and therefore much of the focus is on recent studies that have moved the field forward. We consider the complexity of the adaptive response generated by many sequential encounters through infection and vaccination.
Collapse
Affiliation(s)
- David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Marta L DeDiego
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnologia Agraria y Ailmentaria, 28040 Madrid, Spain
| | - Mark Y Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Andrea Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
11
|
Brenna E, Davydov AN, Ladell K, McLaren JE, Bonaiuti P, Metsger M, Ramsden JD, Gilbert SC, Lambe T, Price DA, Campion SL, Chudakov DM, Borrow P, McMichael AJ. CD4 + T Follicular Helper Cells in Human Tonsils and Blood Are Clonally Convergent but Divergent from Non-Tfh CD4 + Cells. Cell Rep 2021; 30:137-152.e5. [PMID: 31914381 PMCID: PMC7029615 DOI: 10.1016/j.celrep.2019.12.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
T follicular helper (Tfh) cells are fundamental for B cell selection and antibody maturation in germinal centers. Circulating Tfh (cTfh) cells constitute a minor proportion of the CD4+ T cells in peripheral blood, but their clonotypic relationship to Tfh populations resident in lymph nodes and the extent to which they differ from non-Tfh CD4+ cells have been unclear. Using donor-matched blood and tonsil samples, we investigate T cell receptor (TCR) sharing between tonsillar Tfh cells and peripheral Tfh and non-Tfh cell populations. TCR transcript sequencing reveals considerable clonal overlap between peripheral and tonsillar Tfh cell subsets as well as a clear distinction between Tfh and non-Tfh cells. Furthermore, influenza-specific cTfh cell clones derived from blood can be found in the repertoire of tonsillar Tfh cells. Therefore, human blood samples can be used to gain insight into the specificity of Tfh responses occurring in lymphoid tissues, provided that cTfh subsets are studied.
Collapse
Affiliation(s)
- Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Alexey N Davydov
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, Milano 20139, Italy
| | - Maria Metsger
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | | | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Suzanne L Campion
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Dmitriy M Chudakov
- Central European Institute of Technology, Brno 601 77, Czech Republic; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow 117997, Russia
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
12
|
Knowlden ZAG, Richards KA, Moritzky SA, Sant AJ. Peptide Epitope Hot Spots of CD4 T Cell Recognition Within Influenza Hemagglutinin During the Primary Response to Infection. Pathogens 2019; 8:pathogens8040220. [PMID: 31694141 PMCID: PMC6963931 DOI: 10.3390/pathogens8040220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023] Open
Abstract
Antibodies specific for the hemagglutinin (HA) protein of influenza virus are critical for protective immunity to infection. Our studies show that CD4 T cells specific for epitopes derived from HA are the most effective in providing help for the HA-specific B cell responses to infection and vaccination. In this study, we asked whether HA epitopes recognized by CD4 T cells in the primary response to infection are equally distributed across the HA protein or if certain segments are enriched in CD4 T cell epitopes. Mice that collectively expressed eight alternative MHC (Major Histocompatibility Complex) class II molecules, that would each have different peptide binding specificities, were infected with an H1N1 influenza virus. CD4 T cell peptide epitope specificities were identified by cytokine EliSpots. These studies revealed that the HA-specific CD4 T cell epitopes cluster in two distinct regions of HA and that some segments of HA are completely devoid of CD4 T cell epitopes. When located on the HA structure, it appears that the regions that most poorly recruit CD4 T cells are sequestered within the interior of the HA trimer, perhaps inaccessible to the proteolytic machinery inside the endosomal compartments of antigen presenting cells.
Collapse
|
13
|
Pizzolla A, Wakim LM. Memory T Cell Dynamics in the Lung during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:374-381. [PMID: 30617119 DOI: 10.4049/jimmunol.1800979] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/08/2018] [Indexed: 01/06/2023]
Abstract
Influenza A virus is highly contagious, infecting 5-15% of the global population every year. It causes significant morbidity and mortality, particularly among immunocompromised and at-risk individuals. Influenza virus is constantly evolving, undergoing continuous, rapid, and unpredictable mutation, giving rise to novel viruses that can escape the humoral immunity generated by current influenza virus vaccines. Growing evidence indicates that influenza-specific T cells resident along the respiratory tract are highly effective at providing potent and rapid protection against this inhaled pathogen. As these T cells recognize fragments of the virus that are highly conserved and less prone to mutation, they have the potential to provide cross-strain protection against a wide breadth of influenza viruses, including newly emerging strains. In this review, we will discuss how influenza-specific memory T cells in the lung are established and maintained and how we can harness this knowledge to design broadly protective influenza A virus vaccines.
Collapse
Affiliation(s)
- Angela Pizzolla
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
14
|
Protein Vaccination Directs the CD4 + T Cell Response toward Shared Protective Epitopes That Can Be Recalled after Influenza Virus Infection. J Virol 2019; 93:JVI.00947-19. [PMID: 31341045 DOI: 10.1128/jvi.00947-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Vaccination is widely used to generate protective immunity against influenza virus. CD4+ T cells contribute in diverse ways to protective immunity, most notably, in the provision of help for the production of neutralizing antibodies. Several recent reports have suggested that influenza virus infection elicits CD4+ T cells whose specificity only partially overlaps that of T cells elicited by vaccination. This finding has raised serious concerns regarding the utility of currently licensed inactivated influenza virus vaccines and novel protein-based vaccines. Here, using controlled animal models that allowed a broad sampling of the CD4+ T cell repertoire, we evaluated protein vaccine- versus infection-generated CD4+ T cell epitopes. Our studies revealed that all the infection-elicited CD4+ T cell epitope specificities are also elicited by protein vaccination, although the immunodominance hierarchies can differ. Finally, using a reverse-engineered influenza virus and a heterologous protein vaccination and infection challenge strategy, we show that protein vaccine-elicited CD4+ memory T cells are recalled and boosted after infection and provide early help to accelerate hemagglutinin (HA)-specific antibody responses. The early CD4+ T cell response and HA-specific antibody production are associated with lowered viral titers during the infection challenge. Our data lend confidence to the ability of current protein-based vaccines to elicit influenza virus-specific CD4+ T cells that can potentiate protective immunity upon influenza virus infection.IMPORTANCE Most current and new influenza vaccine candidates consist of a single influenza virus protein or combinations of influenza virus proteins. For these vaccines to elicit CD4+ T cells that can be recalled after infection, the peptide epitopes should be shared between the two modes of confrontation. Recently, questions regarding the relatedness of epitope selection by influenza virus infection and protein vaccination have been raised. However, the studies reported here show that the specificity of CD4+ T cells elicited by protein-based vaccines overlaps that of T cells elicited by infection and that CD4+ T cells primed by protein vaccines are recalled and contribute to protection of the host from a future infection.
Collapse
|
15
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
16
|
Nienen M, Stervbo U, Mölder F, Kaliszczyk S, Kuchenbecker L, Gayova L, Schweiger B, Jürchott K, Hecht J, Neumann AU, Rahmann S, Westhoff T, Reinke P, Thiel A, Babel N. The Role of Pre-existing Cross-Reactive Central Memory CD4 T-Cells in Vaccination With Previously Unseen Influenza Strains. Front Immunol 2019; 10:593. [PMID: 31019503 PMCID: PMC6458262 DOI: 10.3389/fimmu.2019.00593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 11/13/2022] Open
Abstract
Influenza vaccination is a common approach to prevent seasonal and pandemic influenza. Pre-existing antibodies against close viral strains might impair antibody formation against previously unseen strains-a process called original antigenic sin. The role of this pre-existing cellular immunity in this process is, despite some hints from animal models, not clear. Here, we analyzed cellular and humoral immunity in healthy individuals before and after vaccination with seasonal influenza vaccine. Based on influenza-specific hemagglutination inhibiting (HI) titers, vaccinees were grouped into HI-negative and -positive cohorts followed by in-depth cytometric and TCR repertoire analysis. Both serological groups revealed cross-reactive T-cell memory to the vaccine strains at baseline that gave rise to the majority of vaccine-specific T-cells post vaccination. On the contrary, very limited number of vaccine-specific T-cell clones was recruited from the naive pool. Furthermore, baseline quantity of vaccine-specific central memory helper T-cells and clonotype richness of this population directly correlated with the vaccination efficacy. Our findings suggest that the deliberate recruitment of pre-existing cross-reactive cellular memory might help to improve vaccination outcome.
Collapse
Affiliation(s)
- Mikalai Nienen
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine, Immunology and Transplantation, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Felix Mölder
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sviatlana Kaliszczyk
- Center for Translational Medicine, Immunology and Transplantation, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | | | | | | | - Karsten Jürchott
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Avidan U Neumann
- Institute of Environmental Medicine, German Research Center for Environmental Health, Helmholtz Zentrum München, Augsburg, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Timm Westhoff
- Department of Internal Medicine, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Department of Nephrology and Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Andreas Thiel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Nina Babel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Center for Translational Medicine, Immunology and Transplantation, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany.,Department of Nephrology and Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
17
|
Jain S, George PJ, Deng W, Koussa J, Parkhouse K, Hensley SE, Jiang J, Lu J, Liu Z, Wei J, Zhan B, Bottazzi ME, Shen H, Lustigman S. The parasite-derived rOv-ASP-1 is an effective antigen-sparing CD4 + T cell-dependent adjuvant for the trivalent inactivated influenza vaccine, and functions in the absence of MyD88 pathway. Vaccine 2018; 36:3650-3665. [PMID: 29764680 DOI: 10.1016/j.vaccine.2018.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
Vaccination remains the most cost-effective biomedical approach for controlling influenza disease. In times of pandemics, however, these vaccines cannot be produced in sufficient quantities for worldwide use by the current manufacturing capacities and practices. What is needed is the development of adjuvanted vaccines capable of inducing an adequate or better immune response at a decreased antigen dose. Previously we showed that the protein adjuvant rOv-ASP-1 augments influenza-specific antibody titers and survival after virus challenge in both young adult and old-age mice when administered with the trivalent inactivated influenza vaccine (IIV3). In this study we show that a reduced amount of rOv-ASP-1, with 40-times less IIV3 can also induce protection. Apparently the potency of the rOv-ASP-1 adjuvanted IIV3 vaccine is independent of the IIV3-specific Th1/Th2 associated antibody responses, and independent of the presence of HAI antibodies. However, CD4+ T helper cells were indispensable for the protection. Further, rOv-ASP-1 with or without IIV3 elicited the increased level of various chemokines, which are known chemoattractant for immune cells, into the muscle 4 h after immunization, and significantly induced the recruitment of monocytes, macrophages and neutrophils into the muscles. The recruited monocytes had higher expression of the activation marker MHCII on their surface as well as CXCR3 and CCR2; receptors for IP-10 and MCP-1, respectively. These results show that the rOv-ASP-1 adjuvant allows substantial antigen sparing of IIV3 by stimulating at the site of injection the accumulation of chemokines and the recruitment of immune cells that can augment the activation of CD4+ T cell immune responses, essential for the production of antibody responses. Protection elicited by the rOv-ASP-1 adjuvanted IIV3 vaccine also appears to function in the absence of MyD88-signaling. Future studies will attempt to delineate the precise mechanisms by which the rOv-ASP-1 adjuvanted IIV3 vaccine works.
Collapse
Affiliation(s)
- Sonia Jain
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, United States
| | - Parakkal Jovvian George
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, United States
| | - Wanyan Deng
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 100045, China; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joseph Koussa
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, United States; Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kaela Parkhouse
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jiu Jiang
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Jie Lu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing 400715, China
| | - Zhuyun Liu
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Junfei Wei
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, United States.
| |
Collapse
|
18
|
Moise L, M Biron B, Boyle CM, Kurt Yilmaz N, Jang H, Schiffer C, M Ross T, Martin WD, De Groot AS. T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response. Hum Vaccin Immunother 2018; 14:2203-2207. [PMID: 30015562 PMCID: PMC6183197 DOI: 10.1080/21645515.2018.1495303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4+ T cell epitopes – without perturbing native antigen structure – by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4+ T cell memory to influenza immunity, (ii) the essential role CD4+ T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4+ T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.
Collapse
Affiliation(s)
- Leonard Moise
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA.,c Department of Cell and Molecular Biology , University of Rhode Island , Providence , RI , USA
| | | | | | - Nese Kurt Yilmaz
- d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA
| | - Hyesun Jang
- e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA
| | - Celia Schiffer
- d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA
| | - Ted M Ross
- e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA.,f Department of Infectious Diseases , University of Georgia , Athens , GA , USA
| | | | - Anne S De Groot
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA.,c Department of Cell and Molecular Biology , University of Rhode Island , Providence , RI , USA
| |
Collapse
|
19
|
Sant AJ, Richards KA, Nayak J. Distinct and complementary roles of CD4 T cells in protective immunity to influenza virus. Curr Opin Immunol 2018; 53:13-21. [PMID: 29621639 PMCID: PMC6141328 DOI: 10.1016/j.coi.2018.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 02/01/2023]
Abstract
CD4 T cells play a multiplicity of roles in protective immunity to influenza. Included in these functions are help for high affinity antibody production, enhancement of CD8 T cell expansion, function and memory, acceleration of the early innate response to infection and direct cytotoxicity. The influenza-specific CD4 T cell repertoire in humans established through exposures to infection and vaccination has been found to be highly variable in abundance, specificity and functionality. Deficits in particular subsets of CD4 T cells recruited into the response result in diminished antibody responses and protection from infection. Therefore, improved strategies for vaccination should include better methods to identify deficiencies in the circulating CD4 T cell repertoire, and vaccine constructs that increase the representation of CD4 T cells of the correct specificity and functionality.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, USA.
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, USA
| | - Jennifer Nayak
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, USA; Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, USA
| |
Collapse
|
20
|
Dhume K, McKinstry KK. Early programming and late-acting checkpoints governing the development of CD4 T-cell memory. Immunology 2018; 155:53-62. [PMID: 29701246 DOI: 10.1111/imm.12942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
CD4 T cells contribute to protection against pathogens through numerous mechanisms. Incorporating the goal of memory CD4 T-cell generation into vaccine strategies therefore offers a powerful approach to improve their efficacy, especially in situations where humoral responses alone cannot confer long-term immunity. These threats include viruses such as influenza that mutate coat proteins to avoid neutralizing antibodies, but that are targeted by T cells that recognize more conserved protein epitopes shared by different strains. A major barrier in the design of such vaccines is that the mechanisms controlling the efficiency with which memory cells form remain incompletely understood. Here, we discuss recent insights into fate decisions controlling memory generation. We focus on the importance of three general cues: interleukin-2, antigen and co-stimulatory interactions. It is increasingly clear that these signals have a powerful influence on the capacity of CD4 T cells to form memory during two distinct phases of the immune response. First, through 'programming' that occurs during initial priming, and second, through 'checkpoints' that operate later during the effector stage. These findings indicate that novel vaccine strategies must seek to optimize cognate interactions, during which interleukin-2-, antigen- and co-stimulation-dependent signals are tightly linked, well beyond initial antigen encounter to induce robust memory CD4 T cells.
Collapse
Affiliation(s)
- Kunal Dhume
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Karl Kai McKinstry
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
21
|
Dong W, Bhide Y, Sicca F, Meijerhof T, Guilfoyle K, Engelhardt OG, Boon L, de Haan CAM, Carnell G, Temperton N, de Vries-Idema J, Kelvin D, Huckriede A. Cross-Protective Immune Responses Induced by Sequential Influenza Virus Infection and by Sequential Vaccination With Inactivated Influenza Vaccines. Front Immunol 2018; 9:2312. [PMID: 30356772 PMCID: PMC6189474 DOI: 10.3389/fimmu.2018.02312] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
Sequential infection with antigenically distinct influenza viruses induces cross-protective immune responses against heterologous virus strains in animal models. Here we investigated whether sequential immunization with antigenically distinct influenza vaccines can also provide cross-protection. To this end, we compared immune responses and protective potential against challenge with A(H1N1)pdm09 in mice infected sequentially with seasonal A(H1N1) virus followed by A(H3N2) virus or immunized sequentially with whole inactivated virus (WIV) or subunit (SU) vaccine derived from these viruses. Sequential infection provided solid cross-protection against A(H1N1)pdm09 infection while sequential vaccination with WIV, though not capable of preventing weight loss upon infection completely, protected the mice from reaching the humane endpoint. In contrast, sequential SU vaccination did not prevent rapid and extensive weight loss. Protection correlated with levels of cross-reactive but non-neutralizing antibodies of the IgG2a subclass, general increase of memory T cells and induction of influenza-specific CD4+ and CD8+ T cells. Adoptive serum transfer experiments revealed that despite lacking neutralizing activity, serum antibodies induced by sequential infection protected mice from weight loss and vigorous virus growth in the lungs upon A(H1N1)pdm09 virus challenge. Antibodies induced by WIV vaccination alleviated symptoms but could not control virus growth in the lung. Depletion of T cells prior to challenge revealed that CD8+ T cells, but not CD4+ T cells, contributed to cross-protection. These results imply that sequential immunization with WIV but not SU derived from antigenically distinct viruses could alleviate the severity of infection caused by a pandemic and may improve protection to unpredictable seasonal infection.
Collapse
Affiliation(s)
- Wei Dong
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, China
| | - Yoshita Bhide
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Federica Sicca
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tjarko Meijerhof
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kate Guilfoyle
- National Institute for Biological Standards and Controls, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Othmar G. Engelhardt
- National Institute for Biological Standards and Controls, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | | | - Cornelis A. M. de Haan
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - George Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - David Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Anke Huckriede
| |
Collapse
|
22
|
Li Y, Hu H, Qi Z, Sun J, Li Y, Feng Q, Guo C, Wang H, Zhao P, Liu Y, Zhao X, Wang G, Zhang H, Liu L, Hu J. Identification and characterization of epitopes from influenza A virus hemagglutinin that induce broadly cross-reactive antibodies. Int J Mol Med 2017; 41:1673-1682. [PMID: 29286160 DOI: 10.3892/ijmm.2017.3344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/15/2017] [Indexed: 11/06/2022] Open
Abstract
Influenza is the most common infectious disease and is caused by influenza A virus (IAV) infection. Hemagglutinin (HA) is an important viral protein of influenza A and is a major component of current IAV vaccines. The side effects associated with IAV vaccination are well studied; however, the HA‑induced immunopathological changes have remained largely elusive. The primary objective of the present study was to determine the tissue cross‑reactive epitopes of HA proteins. Monoclonal antibodies (McAbs) were generated according to traditional methods using purified HA proteins from influenza vaccine lysates. The specificity of these McAbs was analyzed using western blot analysis and ELISA. Human tissue microarrays were employed for immunohistochemical staining to screen these McAbs. Rat brain tissues were subjected to immunohistochemical staining and electron microscopy to demonstrate the subcellular localization of antibodies targeting specific antigens. A total of 67 hybridoma cell lines positive for McAb against HA antigen were obtained. Three cross‑reactive McAbs (H1‑13, H1‑15 and A1‑10) were discovered through tissue screening. Based on the 3 cross‑reactive McAbs and the amino acid sequence of HA, the presence of two broadly cross‑reactive HA epitopes, 194‑WGIHH‑198 and 365‑WYGYHH‑370, was assumed. McAbs against these synthetic epitope peptides were obtained. They reacted with porphyrin ring‑containing molecules, including hemoglobin (Hb) and protoporphyrin, and with numerous types of normal tissue. In conclusion, the present study identified two broadly cross‑reactive epitopes on HA (194‑WGIHH‑198 and 365‑WYGYHH‑370). Antibodies against these epitopes react with Hb and numerous types of important normal tissues/organs. These newly identified cross‑reactive epitopes from IAV HA may provide crucial information for influenza research.
Collapse
Affiliation(s)
- Yuan Li
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Hanyu Hu
- School of Public Health, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zongli Qi
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Jingying Sun
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Yan Li
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Qing Feng
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Chunyan Guo
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Haifang Wang
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Penghua Zhao
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Yang Liu
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Xiangrong Zhao
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Guanghua Wang
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| | - Hai Zhang
- Center of Experimental Animals, The 4th Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Libin Liu
- Department of Pharmacy Medical College of Xi'an Peihua University, Xi'an, Shaanxi 710125, P.R. China
| | - Jun Hu
- Central Experimental Laboratory, Shaanxi Provincial People's Hospital, Key Laboratory of Infection and Immunity of Shaanxi Province, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
23
|
Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge. J Virol 2017; 91:JVI.01579-17. [PMID: 28931689 DOI: 10.1128/jvi.01579-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats.IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing awareness of the contribution of neuraminidase (NA) to influenza virus vaccine efficacy. Although NA is immunologically subdominant to HA, and clinical studies have shown variable NA responses to vaccination, in this study, we show that vaccination with a parainfluenza virus 5 recombinant vaccine candidate expressing NA (PIV5-NA) from a pandemic influenza (pdmH1N1) virus or highly pathogenic avian influenza (H5N1) virus elicits robust, cross-reactive protection from influenza virus infection in two animal models. New vaccination strategies incorporating NA, including PIV5-NA, could improve seasonal influenza virus vaccine efficacy and provide protection against emerging influenza viruses.
Collapse
|
24
|
Influenza Pathogenesis in Genetically Defined Resistant and Susceptible Murine Strains
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:471-479. [PMID: 28955185 PMCID: PMC5612189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The murine infection model is a cornerstone for influenza virus research and includes aspects such as disease pathogenesis, immunobiology, and vaccine and antiviral drug development. One compelling feature of the murine model is the availability of inbred mouse strains, each with a unique genetic makeup and potential for variable responses to influenza infection. Using highly controlled infection studies, the response to influenza virus infection is classified on a spectrum from susceptible to resistant, reflecting severe morbidity and high mortality, to limited or no morbidity and no mortality. Although there have been a variety of studies establishing disparate pathogenesis amongst various murine strains, thus far, there is no consensus regarding the determinants of the outcome of infection. The goal of this review is to explore and discuss the differences in pathogenesis, as well as the innate and adaptive immune responses to influenza infection that have been described in susceptible and resistant mouse strains. Understanding how host genetics influences the response to influenza infection provides valuable insight into the variable responses seen in vaccine or drug efficacy studies, as well as indicates possible mechanisms contributing to increased disease severity in humans infected with influenza virus with no known risk factors.
Collapse
|
25
|
Alam S, Chan C, Qiu X, Shannon I, White CL, Sant AJ, Nayak JL. Selective pre-priming of HA-specific CD4 T cells restores immunological reactivity to HA on heterosubtypic influenza infection. PLoS One 2017; 12:e0176407. [PMID: 28493882 PMCID: PMC5426616 DOI: 10.1371/journal.pone.0176407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/09/2017] [Indexed: 01/07/2023] Open
Abstract
A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- CD4-Positive T-Lymphocytes/immunology
- Epitopes/immunology
- Hemagglutinins, Viral/immunology
- Humans
- Immunologic Memory
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Pandemics
- Vaccination
Collapse
Affiliation(s)
- Shabnam Alam
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Cory Chan
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ian Shannon
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chantelle L. White
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jennifer L. Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Uchtenhagen H, Rims C, Blahnik G, Chow IT, Kwok WW, Buckner JH, James EA. Efficient ex vivo analysis of CD4+ T-cell responses using combinatorial HLA class II tetramer staining. Nat Commun 2016; 7:12614. [PMID: 27571776 PMCID: PMC5013714 DOI: 10.1038/ncomms12614] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023] Open
Abstract
MHC tetramers are an essential tool for characterizing antigen-specific CD4+ T cells. However, their ex vivo analysis is limited by the large sample requirements. Here we demonstrate a combinatorial staining approach that allows simultaneous characterization of multiple specificities to address this challenge. As proof of principle, we analyse CD4+ T-cell responses to the seasonal influenza vaccine, establishing a frequency hierarchy and examining differences in memory and activation status, lineage commitment and cytokine expression. We also observe cross-reactivity between an established epitope and recent variant and provide a means for probing T-cell receptor cross-reactivity. Using cord blood samples, we correlate the adult frequency hierarchy with the naive precursor frequencies. Last, we use our combinatorial staining approach to demonstrate that rheumatoid arthritis patients on therapy can mount effective responses to influenza vaccination. Together, these results demonstrate the utility of combinatorial tetramer staining and suggest that this approach may have broad applicability in human health and disease.
Collapse
Affiliation(s)
- Hannes Uchtenhagen
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
- Neuroimmunology Unit, Department of Neuroscience, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Cliff Rims
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
| | - Gabriele Blahnik
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
| | - I-Ting Chow
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Jane H. Buckner
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Diabetes Program and Tetramer Core Laboratory, Seattle, Washington 98101, USA
| |
Collapse
|
27
|
CD4 T cell epitope specificity determines follicular versus non-follicular helper differentiation in the polyclonal response to influenza infection or vaccination. Sci Rep 2016; 6:28287. [PMID: 27329272 PMCID: PMC4916409 DOI: 10.1038/srep28287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023] Open
Abstract
Follicular helper T cells (Tfh) are essential for B cell production of high-affinity, class-switched antibodies. Much interest in Tfh development focuses on the priming environment of CD4 T cells. Here we explored the role that peptide specificity plays in the partitioning of the polyclonal CD4 T cell repertoire between Tfh and NonTfh lineages during the response to influenza. Surprisingly, we found that CD4 T cells specific for different epitopes exhibited distinct tendencies to segregate into Tfh or NonTfh. To alter the microenvironment and abundance, viral antigens were introduced as purified recombinant proteins in adjuvant as native proteins. Also, the most prototypical epitopes were expressed in a completely foreign protein. In many cases, the epitope-specific response patterns of Tfh vs. NonTfh persisted. The functional TcR avidity of only a subset of epitope-specific cells correlated with the tendency to drive a Tfh response. Thus, we conclude that in a polyclonal CD4 T cell repertoire, features of TcR-peptide:MHC class II complex have a strong deterministic influence on the ability of CD4 T cells to become a Tfh or a NonTfh. Our data is most consistent with at least 2 checkpoints of Tfh selection that include both TcR affinity and B cell presentation.
Collapse
|
28
|
Olson MR, Chua BY, Good-Jacobson KL, Doherty PC, Jackson DC, Turner SJ. Competition within the virus-specific CD4 T-cell pool limits the T follicular helper response after influenza infection. Immunol Cell Biol 2016; 94:729-40. [PMID: 27101922 DOI: 10.1038/icb.2016.42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 01/14/2023]
Abstract
CD4 T follicular helper cells (TFH) are critical in the generation of potent and long-lived B-cell responses after viral infection. However, the factors that dictate the generation and maintenance of these cells are not fully understood. Here we use adoptive transfer of OTII T-cell receptor transgenic CD4 T cells, followed by infection with recombinant influenza A virus (IAV), as a means of identifying and tracking virus-specific CD4(+) T-cell responses. We show that T-cell competition within the virus-specific CD4 T-cell pool induced by IAV infection limits the proliferation and differentiation of IAV-specific CD4(+) TFH responses. In particular, increased T-cell competition for antigen results in a diminished IAV-specific TFH CD4 T-cell responses, particularly germinal center TFH responses. Strikingly, competition in the form of preexisting cellular immunity generated by heterosubtypic IAV immunization limits de novo CD4 T-cell responses in secondary lymphoid tissue. Taken together, these data show a profound linkage between antigen availability and promotion of TFH CD4(+) T-cell responses in response to infection. These data suggest that competition within the CD4 T-cell pool limits TFH responses and may be an important regulatory mechanism for controlling immunity.
Collapse
Affiliation(s)
- Matthew R Olson
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kim L Good-Jacobson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia.,St Jude Childrens Research Hospital, Memphis, TN, USA
| | - David C Jackson
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
29
|
DiPiazza A, Richards KA, Knowlden ZAG, Nayak JL, Sant AJ. The Role of CD4 T Cell Memory in Generating Protective Immunity to Novel and Potentially Pandemic Strains of Influenza. Front Immunol 2016; 7:10. [PMID: 26834750 PMCID: PMC4725218 DOI: 10.3389/fimmu.2016.00010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 11/24/2022] Open
Abstract
Recent events have made it clear that potentially pandemic strains of influenza regularly pose a threat to human populations. Therefore, it is essential that we develop better strategies to enhance vaccine design and evaluation to predict those that will be poor responders to vaccination and to identify those that are at particular risk of disease-associated complications following infection. Animal models have revealed the discrete functions that CD4 T cells play in developing immune response and to influenza immunity. However, humans have a complex immunological history with influenza through periodic infection and vaccination with seasonal variants, leading to the establishment of heterogeneous memory populations of CD4 T cells that participate in subsequent responses. The continual evolution of the influenza-specific CD4 T cell repertoire involves both specificity and function and overlays other restrictions on CD4 T cell activity derived from viral antigen handling and MHC class II:peptide epitope display. Together, these complexities in the influenza-specific CD4 T cell repertoire constitute a formidable obstacle to predicting protective immune response to potentially pandemic strains of influenza and in devising optimal vaccine strategies to potentiate these responses. We suggest that more precise efforts to identify and enumerate both the positive and negative contributors within the CD4 T cell compartment will aid significantly in the achievement of these goals.
Collapse
Affiliation(s)
- Anthony DiPiazza
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Katherine A Richards
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Zackery A G Knowlden
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Jennifer L Nayak
- Department of Pediatrics, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Andrea J Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| |
Collapse
|
30
|
Brazzoli M, Magini D, Bonci A, Buccato S, Giovani C, Kratzer R, Zurli V, Mangiavacchi S, Casini D, Brito LM, De Gregorio E, Mason PW, Ulmer JB, Geall AJ, Bertholet S. Induction of Broad-Based Immunity and Protective Efficacy by Self-amplifying mRNA Vaccines Encoding Influenza Virus Hemagglutinin. J Virol 2016; 90:332-44. [PMID: 26468547 PMCID: PMC4702536 DOI: 10.1128/jvi.01786-15] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/07/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Seasonal influenza is a vaccine-preventable disease that remains a major health problem worldwide, especially in immunocompromised populations. The impact of influenza disease is even greater when strains drift, and influenza pandemics can result when animal-derived influenza virus strains combine with seasonal strains. In this study, we used the SAM technology and characterized the immunogenicity and efficacy of a self-amplifying mRNA expressing influenza virus hemagglutinin (HA) antigen [SAM(HA)] formulated with a novel oil-in-water cationic nanoemulsion. We demonstrated that SAM(HA) was immunogenic in ferrets and facilitated containment of viral replication in the upper respiratory tract of influenza virus-infected animals. In mice, SAM(HA) induced potent functional neutralizing antibody and cellular immune responses, characterized by HA-specific CD4 T helper 1 and CD8 cytotoxic T cells. Furthermore, mice immunized with SAM(HA) derived from the influenza A virus A/California/7/2009 (H1N1) strain (Cal) were protected from a lethal challenge with the heterologous mouse-adapted A/PR/8/1934 (H1N1) virus strain (PR8). Sera derived from SAM(H1-Cal)-immunized animals were not cross-reactive with the PR8 virus, whereas cross-reactivity was observed for HA-specific CD4 and CD8 T cells. Finally, depletion of T cells demonstrated that T-cell responses were essential in mediating heterologous protection. If the SAM vaccine platform proves safe, well tolerated, and effective in humans, the fully synthetic SAM vaccine technology could provide a rapid response platform to control pandemic influenza. IMPORTANCE In this study, we describe protective immune responses in mice and ferrets after vaccination with a novel HA-based influenza vaccine. This novel type of vaccine elicits both humoral and cellular immune responses. Although vaccine-specific antibodies are the key players in mediating protection from homologous influenza virus infections, vaccine-specific T cells contribute to the control of heterologous infections. The rapid production capacity and the synthetic origin of the vaccine antigen make the SAM platform particularly exploitable in case of influenza pandemic.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cross Protection
- Disease Models, Animal
- Female
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Leukocyte Reduction Procedures
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Respiratory System/virology
- Survival Analysis
- Treatment Outcome
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Load
Collapse
Affiliation(s)
| | - Diletta Magini
- Novartis Vaccines and Diagnostics S.r.l., Siena, Italy Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | | - Vanessa Zurli
- Novartis Vaccines and Diagnostics S.r.l., Siena, Italy Dipartimento di Biologia, Università degli Studi di Padova, Padua, Italy
| | | | | | - Luis M Brito
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | | | - Peter W Mason
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | - Jeffrey B Ulmer
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | - Andrew J Geall
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | | |
Collapse
|
31
|
Grødeland G, Fossum E, Bogen B. Polarizing T and B Cell Responses by APC-Targeted Subunit Vaccines. Front Immunol 2015; 6:367. [PMID: 26257735 PMCID: PMC4507452 DOI: 10.3389/fimmu.2015.00367] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/06/2015] [Indexed: 11/13/2022] Open
Abstract
Current influenza vaccines mostly aim at the induction of specific neutralizing antibodies. While antibodies are important for protection against a particular virus strain, T cells can recognize epitopes that will offer broader protection against influenza. We have previously developed a DNA vaccine format by which protein antigens can be targeted specifically to receptors on antigen presenting cells (APCs). The DNA-encoded vaccine proteins are homodimers, each chain consisting of a targeting unit, a dimerization unit, and an antigen. The strategy of targeting antigen to APCs greatly enhances immune responses as compared to non-targeted controls. Furthermore, targeting of antigen to different receptors on APCs can polarize the immune response to different arms of immunity. Here, we discuss how targeting of hemagglutinin to MHC class II molecules increases Th2 and IgG1 antibody responses, whereas targeting to chemokine receptors XCR1 or CCR1/3/5 increases Th1 and IgG2a responses, in addition to CD8(+) T cell responses. We also discuss these results in relation to work published by others on APC-targeting. Differential targeting of APC surface molecules may allow the induction of tailor-made phenotypes of adaptive immune responses that are optimal for protection against various infectious agents, including influenza virus.
Collapse
Affiliation(s)
- Gunnveig Grødeland
- Department of Clinical Medicine, K.G. Jebsen Centre for Influenza Vaccine Research (JIV), Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Even Fossum
- Department of Clinical Medicine, K.G. Jebsen Centre for Influenza Vaccine Research (JIV), Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Bjarne Bogen
- Department of Clinical Medicine, K.G. Jebsen Centre for Influenza Vaccine Research (JIV), Oslo University Hospital, University of Oslo , Oslo , Norway ; Centre for Immune Regulation (CIR), Institute of Immunology, University of Oslo , Oslo , Norway
| |
Collapse
|
32
|
Altenburg AF, Rimmelzwaan GF, de Vries RD. Virus-specific T cells as correlate of (cross-)protective immunity against influenza. Vaccine 2015; 33:500-6. [DOI: 10.1016/j.vaccine.2014.11.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/30/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
|
33
|
Nayak JL, Richards KA, Yang H, Treanor JJ, Sant AJ. Effect of influenza A(H5N1) vaccine prepandemic priming on CD4+ T-cell responses. J Infect Dis 2014; 211:1408-17. [PMID: 25378637 PMCID: PMC4425838 DOI: 10.1093/infdis/jiu616] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/27/2014] [Indexed: 01/19/2023] Open
Abstract
Introduction. Previous priming with avian influenza vaccines results in more rapid and more robust neutralizing antibody responses upon revaccination, but the role CD4+ T cells play in this process is not currently known. Methods. Human subjects previously enrolled in trials of inactivated influenza A(H5N1) vaccines and naive subjects were immunized with an inactivated subunit influenza A/Indonesia/5/05(H5N1) vaccine. Neutralizing antibody responses were measured by a microneutralization assay, and hemagglutinin (HA)-specific and nucleoprotein (NP)-specific CD4+ T-cell responses were quantified using interferon γ enzyme-linked immunosorbent spot assays. Results. While vaccination induced barely detectable CD4+ T-cell responses specific for HA in the previously unprimed group, primed subjects had readily detectable HA-specific memory CD4+ T cells at baseline and mounted a more robust response to HA-specific epitopes after vaccination. There were no differences between groups when conserved NP-specific CD4+ T-cell responses were examined. Interestingly, neutralizing antibody responses following revaccination were significantly higher in individuals who mounted a CD4+ T-cell response to the H5 HA protein, a correlation not observed for NP-specific responses. Conclusions. These findings suggest that prepandemic vaccination results in an enriched population of HA-specific CD4+ T cells that are recruited on rechallenge with a drifted vaccine variant and contribute to more robust and more rapid neutralizing antibody responses.
Collapse
Affiliation(s)
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology
| | - John J Treanor
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, New York
| | - Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| |
Collapse
|
34
|
Altenburg AF, Kreijtz JHCM, de Vries RD, Song F, Fux R, Rimmelzwaan GF, Sutter G, Volz A. Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses 2014; 6:2735-61. [PMID: 25036462 PMCID: PMC4113791 DOI: 10.3390/v6072735] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022] Open
Abstract
Respiratory viruses infections caused by influenza viruses, human parainfluenza virus (hPIV), respiratory syncytial virus (RSV) and coronaviruses are an eminent threat for public health. Currently, there are no licensed vaccines available for hPIV, RSV and coronaviruses, and the available seasonal influenza vaccines have considerable limitations. With regard to pandemic preparedness, it is important that procedures are in place to respond rapidly and produce tailor made vaccines against these respiratory viruses on short notice. Moreover, especially for influenza there is great need for the development of a universal vaccine that induces broad protective immunity against influenza viruses of various subtypes. Modified Vaccinia Virus Ankara (MVA) is a replication-deficient viral vector that holds great promise as a vaccine platform. MVA can encode one or more foreign antigens and thus functions as a multivalent vaccine. The vector can be used at biosafety level 1, has intrinsic adjuvant capacities and induces humoral and cellular immune responses. However, there are some practical and regulatory issues that need to be addressed in order to develop MVA-based vaccines on short notice at the verge of a pandemic. In this review, we discuss promising novel influenza virus vaccine targets and the use of MVA for vaccine development against various respiratory viruses.
Collapse
Affiliation(s)
- Arwen F Altenburg
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Joost H C M Kreijtz
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Fei Song
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center (EMC), P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, LMU, University of Munich, 80539, Munich, Germany.
| |
Collapse
|
35
|
La Gruta NL, Turner SJ. T cell mediated immunity to influenza: mechanisms of viral control. Trends Immunol 2014; 35:396-402. [PMID: 25043801 DOI: 10.1016/j.it.2014.06.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 12/31/2022]
Abstract
Infection with influenza A virus (IAV) is a major cause of worldwide morbidity and mortality. Recent findings indicate that T cell immunity is key to limiting severity of disease arising from IAV infection, particularly in instances where antibody immunity is ineffective. As such, there is a need to understand better the mechanisms that mediate effective IAV-specific cellular immunity, especially given that T cell immunity must form an integral part of any vaccine designed to elicit crossreactive immunity against existing and new strains of influenza virus. Here, we review the current understanding of cellular immunity to IAV, highlighting recent findings that demonstrate important roles for both CD4+ and CD8+ T cell immunity in protection from IAV-mediated disease.
Collapse
Affiliation(s)
- Nicole L La Gruta
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
36
|
Asthma increases susceptibility to heterologous but not homologous secondary influenza. J Virol 2014; 88:9166-81. [PMID: 24899197 DOI: 10.1128/jvi.00265-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Asthma was the most common comorbidity observed among patients hospitalized with influenza A virus during the 2009 pandemic. However, little remains known about how the asthmatic phenotype influences protective immune responses against respiratory viral pathogens. Using the ovalbumin-induced allergic lung inflammation model, we found that asthmatic mice, unlike nonasthmatic mice, were highly susceptible to secondary heterologous virus challenge. While primary virus infection generated protective memory immune responses against homologous secondary virus challenge in both asthmatic and nonasthmatic mice, full protection against heterologous A/California/04/2009 (CA04) viral infection was observed only in nonasthmatic mice. Significant reductions in CA04-specific IgA, IgG, and IgM levels and in CA04-neutralizing activity of bronchoalveolar lavage fluid (BALF) was observed following secondary CA04 challenge of PR8-immunized asthmatic mice. Furthermore, transfer of immune BALF obtained from nonasthmatic, but not asthmatic, donors following secondary viral infection generated protection against CA04 in naive recipients. Nonspecific B-cell activation by CpG inoculation restored protection in PR8-immunized, CA04-challenged asthmatic mice. These results demonstrate a causal link between defective mucosal antibody responses and the heightened susceptibility of asthmatic mice to influenza infection and provide a mechanistic explanation for the observation that asthma was a major risk factor during the 2009 influenza pandemic. IMPORTANCE The prevalence of asthma worldwide is increasing each year. Unfortunately, there is no cure for asthma. Asthmatic individuals not only suffer from consistent wheezing and coughing but are also believed to be more prone to serious lung infections that result in bronchitis and pneumonia. However, little is known about the influence of asthma on host mucosal immunity. Here we show that antibody responses during secondary heterologous influenza infections are suboptimal and that this is responsible for the increased mortality in asthmatic mice from viral infections. Understanding the mechanism of increased susceptibility will aid in developing new antiviral therapies for asthmatic patients.
Collapse
|
37
|
CD4 T cell help is limiting and selective during the primary B cell response to influenza virus infection. J Virol 2013; 88:314-24. [PMID: 24155379 DOI: 10.1128/jvi.02077-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus vaccination strategies are focused upon the elicitation of protective antibody responses through administration of viral protein through either inactivated virions or live attenuated virus. Often overlooked in this strategy is the CD4 T cell response: how it develops into memory, and how it may support future primary B cell responses to heterologous infection. Through the utilization of a peptide-priming regimen, this study describes a strategy for developing CD4 T cell memory with the capacity to robustly expand in the lung-draining lymph node after live influenza virus infection. Not only were frequencies of antigen-specific CD4 T cells enhanced, but these cells also supported an accelerated primary B cell response to influenza virus-derived protein, evidenced by high anti-nucleoprotein (NP) serum antibody titers early, while there is still active viral replication ongoing in the lung. NP-specific antibody-secreting cells and heightened frequencies of germinal center B cells and follicular T helper cells were also readily detectable in the draining lymph node. Surprisingly, a boosted memory CD4 T cell response was not sufficient to provide intermolecular help for antibody responses. Our study demonstrates that CD4 T cell help is selective and limiting to the primary antibody response to influenza virus infection and that preemptive priming of CD4 T cell help can promote effective and rapid conversion of naive B cells to mature antibody-secreting cells.
Collapse
|
38
|
Influenza virus specific CD8⁺ T cells exacerbate infection following high dose influenza challenge of aged mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:876314. [PMID: 24187666 PMCID: PMC3800650 DOI: 10.1155/2013/876314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
Abstract
Influenza viruses cause severe illnesses and death, mainly in the aged population. Protection afforded by licensed vaccines through subtype-specific neutralizing antibodies is incomplete, especially when the vaccine antigens fail to closely match those of the circulating viral strains. Efforts are underway to generate a so-called universal influenza vaccine expressing conserved viral sequences that induce broad protection to multiple strains of influenza virus through the induction of CD8+ T cells. Here we assess the effect of a potent antiviral CD8+ T cell response on influenza virus infection of young and aged mice. Our results show that CD8+ T cell-inducing vaccines can provide some protection to young mice, but they exacerbate influenza virus-associated disease in aged mice, causing extensive lung pathology and death.
Collapse
|
39
|
Milner JJ, Sheridan PA, Karlsson EA, Schultz-Cherry S, Shi Q, Beck MA. Diet-induced obese mice exhibit altered heterologous immunity during a secondary 2009 pandemic H1N1 infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2474-85. [PMID: 23904168 PMCID: PMC3756476 DOI: 10.4049/jimmunol.1202429] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the 2009 pandemic H1N1 influenza A virus (pH1N1) outbreak, obese individuals were at greater risk for morbidity and mortality from pandemic infection. However, the mechanisms contributing to greater infection severity in obese individuals remain unclear. Although most individuals lacked pre-existing, neutralizing Ab protection to the novel pH1N1 virus, heterologous defenses conferred from exposure to circulating strains or vaccination have been shown to impart protection against pH1N1 infection in humans and mice. Because obese humans and mice have impaired memory T cell and Ab responses following influenza vaccination or infection, we investigated the impact of obesity on heterologous protection from pH1N1 infection using a mouse model of diet-induced obesity. Lean and obese mice were infected with influenza A/Puerto Rico/8/34 (PR8) and 5 wk later challenged with a lethal dose of heterologous pH1N1. Cross-neutralizing Ab protection was absent in this model, but obese mice exhibited a significantly lower level of nonneutralizing, cross-reactive pH1N1 nucleoprotein Abs following the primary PR8 infection. Further, obese mice had elevated viral titers, greater lung inflammation and lung damage, and more cytotoxic memory CD8(+) T cells in the lung airways. Although obese mice had more regulatory T cells (Tregs) in the lung airways than did lean controls during the pH1N1 challenge, Tregs isolated from obese mice were 40% less suppressive than Tregs isolated from lean mice. In sum, excessive inflammatory responses to pH1N1 infection, potentially owing to greater viral burden and impaired Treg function, may be a novel mechanism by which obesity contributes to greater pH1N1 severity.
Collapse
Affiliation(s)
- J. Justin Milner
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patricia A. Sheridan
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erik A. Karlsson
- Department of Infectious Diseases, St. Jude Children’s Research Hospital Memphis, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital Memphis, Memphis, TN, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melinda A. Beck
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Nayak JL, Alam S, Sant AJ. Cutting edge: Heterosubtypic influenza infection antagonizes elicitation of immunological reactivity to hemagglutinin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1001-5. [PMID: 23794632 PMCID: PMC6728918 DOI: 10.4049/jimmunol.1203520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza-specific immunity in humans is unique because there are repeated exposures to viral strains containing genetically conserved epitopes recruiting memory CD4 T cells and novel epitopes stimulating naive CD4 T cells, possibly resulting in competition between memory and naive lymphocytes. In this study, we evaluated the effect of this competition on CD4 T cell and B cell response specificity using a murine model of sequential influenza infection. We found striking and selective decreases in CD4 T cell reactivity to nonconserved hemagglutinin (HA) epitopes following secondary influenza infection. Surprisingly, this shift in CD4 T cell specificity was associated with dramatic decreases in HA-specific Ab. These results suggest that repeated exposure to influenza viruses and vaccines containing conserved internal proteins may have unintended and negative consequences on the ability to induce HA-specific Ab to novel pandemic strains of influenza. These finding could have important implications on pandemic influenza preparedness strategies.
Collapse
Affiliation(s)
- Jennifer L. Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, 601 Elmwood Ave, Box 690, Rochester, NY 14642
| | - Shabnam Alam
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave, Box 609, Rochester, NY 14642
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave, Box 609, Rochester, NY 14642
| |
Collapse
|
41
|
Clearance of influenza virus infections by T cells: risk of collateral damage? Curr Opin Virol 2013; 3:430-7. [PMID: 23721864 DOI: 10.1016/j.coviro.2013.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 02/02/2023]
Abstract
Influenza A viruses are a major cause of respiratory infections in humans. To protect against influenza, vaccines mainly aim at the induction of antibodies against the two surface proteins and do not protect against influenza A viruses from other subtypes. There is an increasing interest in heterosubtypic immunity that does protect against different subtypes. CD8 and CD4 T cells have a beneficial effect on the course of influenza A virus infection and can recognize conserved IAV epitopes. The T cell responses are tightly regulated to avoid collateral damage due to overreaction. Different studies have shown that an aberrant T cell response to an influenza virus infection could be harmful and could contribute to immunopathology. Here we discuss the recent findings on the balance between the beneficial and detrimental effects of T cell responses in influenza virus infections.
Collapse
|
42
|
Bragstad K, Vinner L, Hansen MS, Nielsen J, Fomsgaard A. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection. Vaccine 2013; 31:2281-8. [PMID: 23499598 DOI: 10.1016/j.vaccine.2013.02.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/15/2013] [Accepted: 02/28/2013] [Indexed: 01/08/2023]
Abstract
The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA vaccine components. We found that pigs challenged with a virus homologous to the HA and NA DNA vaccine components were well protected from infection. In addition, heterologous challenge virus was cleared rapidly compared to the unvaccinated control pigs. Immunisation by electroporation induced HI antibodies >40 HAU/ml seven days after second vaccination. Heterologous virus challenge as long as ten weeks after last immunisation was able to trigger a vaccine antibody HI response 26 times higher than in the control pigs. The H3N2 DNA vaccine HA and NA genes also triggered an effective vaccine response with protective antibody titres towards heterologous H3N2 virus. The described influenza DNA vaccine is able to induce broadly protective immune responses even in a larger animal, like the pig, against both heterologous and homologous virus challenges despite relatively low HI titres after vaccination. The ability of this DNA vaccine to limit virus shedding may have an impact on virus spread among pigs which could possibly extend to humans as well, thereby diminishing the risk for epidemics and pandemics to evolve.
Collapse
Affiliation(s)
- Karoline Bragstad
- Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | | | | | | | | |
Collapse
|
43
|
Brewoo JN, Powell TD, Jones JC, Gundlach NA, Young GR, Chu H, Das SC, Partidos CD, Stinchcomb DT, Osorio JE. Cross-protective immunity against multiple influenza virus subtypes by a novel modified vaccinia Ankara (MVA) vectored vaccine in mice. Vaccine 2013; 31:1848-55. [PMID: 23376279 DOI: 10.1016/j.vaccine.2013.01.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 01/21/2023]
Abstract
Development of an influenza vaccine that provides cross-protective immunity remains a challenge. Candidate vaccines based on a recombinant modified vaccinia Ankara (MVA) viral vector expressing antigens from influenza (MVA/Flu) viruses were constructed. A vaccine candidate, designated MVA/HA1/C13L/NP, that expresses the hemagglutinin from pandemic H1N1 (A/California/04/09) and the nucleoprotein (NP) from highly pathogenic H5N1 (A/Vietnam/1203/04) fused to a secretory signal sequence from vaccinia virus was highly protective. The vaccine elicited strong antibody titers to homologous H1N1 viruses while cross-reactive antibodies to heterologous viruses were not detectable. In mice, this MVA/HA1/C13L/NP vaccine conferred complete protection against lethal challenge with A/Vietnam/1203/04 (H5N1), A/Norway/3487-2/09 (pandemic H1N1) or A/Influenza/Puerto Rico/8/34 (seasonal H1N1) and partial protection (57.1%) against challenge with seasonal H3N2 virus (A/Aichi/68). The protective efficacy of the vaccine was not affected by pre-existing immunity to vaccinia. Our findings highlight MVA as suitable vector to express multiple influenza antigens that could afford broad cross-protective immunity against multiple subtypes of influenza virus.
Collapse
|
44
|
Abstract
Sant and McMichael discuss new advances in detecting CD4+ T cells at the right time and place during viral infection. Protective immunity to chronic and acute viral infection relies on both the innate and adaptive immune response. Although neutralizing antibody production by B cells and cytotoxic activity of CD8+ T cells are well-accepted components of the adaptive immune response to viruses, identification of the specific role of CD4+ T cells in protection has been more challenging to establish. Delineating the contribution of CD4+ T cells has been complicated by their functional heterogeneity, breadth in antigen specificity, transient appearance in circulation, and sequestration in tissue sites of infection. In this minireview, we discuss recent progress in identifying the multiple roles of CD4+ T cells in orchestrating and mediating the immune responses against viral pathogens. We highlight several recent reports, including one published in this issue, that have employed comprehensive and sophisticated approaches to provide new evidence for CD4+ T cells as direct effectors in antiviral immunity.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and the Immunology Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14623, USA.
| | | |
Collapse
|
45
|
The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection against influenza A virus. Immunol Cell Biol 2012; 91:96-104. [PMID: 23146941 DOI: 10.1038/icb.2012.54] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we examined the reactivity of human peripheral blood mononuclear cells to a panel of influenza A virus (IAV) CD8(+) T-cell epitopes that are recognised by the major human leukocyte antigen (HLA) groups represented in the human population. We examined the level of recognition in a sample of the human population and the potential coverage that could be achieved if these were incorporated into a T-cell epitope-based vaccine. We then designed a candidate influenza vaccine that incorporated three of the examined HLA-A2-restricted influenza epitopes into Pam2Cys-based lipopeptides. These lipopeptides do not require the addition of an adjuvant and can be delivered directly to the respiratory mucosa enabling the generation of local memory cell populations that are crucial for clearance of influenza. Intranasal administration of a mixture of three lipopeptides to HLA-A2 transgenic HHD mice elicited multiple CD8(+) T-cell specificities in the spleen and lung that closely mimicked the response generated following natural infection with influenza. These CD8(+) T cells were associated with viral reduction following H3N1 influenza virus challenge for as long as 3 months after lipopeptide administration. In addition, lipopeptides containing IAV-targeting epitopes conferred substantial benefit against death following infection with a virulent H1N1 strain. Because CD8(+) T cell epitopes are often derived from highly conserved regions of influenza viruses, such vaccines need not be reformulated annually and unlike current antibody-inducing vaccines could provide cross-protective immunity against newly emerging pandemic viruses.
Collapse
|
46
|
Nayak JL, Fitzgerald TF, Richards KA, Yang H, Treanor JJ, Sant AJ. CD4+ T-cell expansion predicts neutralizing antibody responses to monovalent, inactivated 2009 pandemic influenza A(H1N1) virus subtype H1N1 vaccine. J Infect Dis 2012; 207:297-305. [PMID: 23148285 PMCID: PMC3532833 DOI: 10.1093/infdis/jis684] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background. The ability of influenza vaccines to elicit CD4+ T cells and the relationship between induction of CD4+ T cells and vaccine-induced neutralizing antibody responses has been controversial. The emergence of swine-origin 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) provided a unique opportunity to examine responses to an influenza vaccine composed of both novel and previously encountered antigens and to probe the relationship between B-cell and T-cell responses to vaccination. Methods. We tracked CD4+ T-cell and antibody responses of human subjects vaccinated with monovalent subunit A(H1N1)pdm09 vaccine. The specificity and magnitude of the CD4+ T-cell response was evaluated using cytokine enzyme-linked immunosorbent spot assays in conjugation with peptide pools representing distinct influenza virus proteins. Results. Our studies revealed that vaccination induced readily detectable CD4+ T cells specific for conserved portions of hemagglutinin (HA) and the internal viral proteins. Interestingly, expansion of HA-specific CD4+ T cells was most tightly correlated with the antibody response. Conclusions. These results indicate that CD4+ T-cell expansion may be a limiting factor in development of neutralizing antibody responses to pandemic influenza vaccines and suggest that approaches to facilitate CD4+ T-cell recruitment may increase the neutralizing antibody produced in response to vaccines against novel influenza strains.
Collapse
Affiliation(s)
- Jennifer L Nayak
- Department of Pediatrics, Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Richards KA, Chaves FA, Alam S, Sant AJ. Trivalent inactivated influenza vaccines induce broad immunological reactivity to both internal virion components and influenza surface proteins. Vaccine 2012; 31:219-25. [PMID: 23099328 DOI: 10.1016/j.vaccine.2012.10.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/29/2012] [Accepted: 10/10/2012] [Indexed: 01/18/2023]
Abstract
There are a number of related goals of influenza vaccination, including elicitation of protective antibodies and induction of cellular CD4 and CD8+ T cell responses. Because CD4+ T cell expansion and functionality are influenced by peptide specificity and T cell gene expression can be modified by repeated re-stimulations, it is important to evaluate how frequent influenza vaccinations affect CD4+ T cell dependent functions in protective immunity to influenza. Trivalent influenza vaccines (TIV) have production of neutralizing antibodies to HA as their primary goal and main criteria for efficacy. Accordingly, they are not characterized for any other viral components. In the current study, we evaluated whether other influenza virus proteins were present in commercial TIV at levels sufficient for immunogenicity in vivo. Mice that differed with regard to their expressed class II molecules were used in concert with peptide-stimulated cytokine ELISPOT assays to comprehensively evaluate the CD4+ T cell antigen specificity induced by the TIV. Our studies revealed that NA, NP, M1 and NS1 were present in sufficient quantities in the TIV to prime and boost CD4+ T cells. These results suggest that in humans, the broad CD4+ T cell repertoire induced by live infection is continually boosted and maintained throughout life by regular vaccination with licensed intramuscular split vaccines. The implications raised by our findings on CD4+ T cell functionality in influenza are discussed.
Collapse
Affiliation(s)
- Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | | | | | | |
Collapse
|
48
|
Leddon SA, Sant AJ. The peptide specificity of the endogenous T follicular helper cell repertoire generated after protein immunization. PLoS One 2012; 7:e46952. [PMID: 23077537 PMCID: PMC3471970 DOI: 10.1371/journal.pone.0046952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/10/2012] [Indexed: 01/24/2023] Open
Abstract
T follicular helper (Tfh) cells potentiate high-affinity, class-switched antibody responses, the predominant correlate of protection from vaccines. Despite intense interest in understanding both the generation and effector functions of this lineage, little is known about the epitope specificity of Tfh cells generated during polyclonal responses. To date, studies of peptide-specific Tfh cells have relied on either the transfer of TcR transgenic cells or use of peptide∶MHC class II tetramers and antibodies to stain TcR and follow limited peptide specificities. In order to comprehensively evaluate polyclonal responses generated from the natural endogenous TcR repertoire, we developed a sorting strategy to separate Tfh cells from non-Tfh cells and found that their epitope-specific responses could be tracked with cytokine-specific ELISPOT assays. The immunodominance hierarchies of Tfh and non-Tfh cells generated in response to immunization with several unrelated protein antigens were remarkably similar. Additionally, increasing the kinetic stability of peptide-MHC class II complexes enhanced the priming of both Tfh and conventional CD4 T cells. These findings may provide us with a strategy to rationally and selectively modulate epitope-specific Tfh responses. By understanding the parameters that control epitope-specific priming, vaccines may be tailored to enhance or focus Tfh responses to facilitate optimal B cell responses.
Collapse
Affiliation(s)
- Scott A. Leddon
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Cross-allele cytotoxic T lymphocyte responses against 2009 pandemic H1N1 influenza A virus among HLA-A24 and HLA-A3 supertype-positive individuals. J Virol 2012; 86:13281-94. [PMID: 23015716 DOI: 10.1128/jvi.01841-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lack of a universal vaccine against all serotypes of influenza A viruses and recent progress on T cell-related vaccines against influenza A virus illuminate the important role of human leukocyte antigen (HLA)-restricted cytotoxic T lymphocytes (CTLs) in anti-influenza virus immunity. However, the diverse HLA alleles among humans complicate virus-specific cellular immunity research, and elucidation of cross-HLA allele T cell responses to influenza virus specificity requires further detailed work. An ideal CTL epitope-based vaccine would cover a broad spectrum of epitope antigens presented by most, if not all, of the HLAs. Here, we evaluated the 2009 pandemic influenza A (H1N1) virus-specific T cell responses among the HLA-A24(+) population using a rationally designed peptide pool during the 2009 pandemic. Unexpectedly, cross-HLA allele T cell responses against the influenza A virus peptides were detected among both HLA-A11(+) and HLA-A24(+) donors. Furthermore, we found cross-responses in the entire HLA-A3 supertype population (including HLA-A11, -A31, -A33, and -A30). The cross-allele antigenic peptides within the peptide pool were identified and characterized, and the crystal structures of the major histocompatibility complex (MHC)-peptide complexes were determined. The subsequent HLA-A24-defined cross-allele peptides recognized by the HLA-A11(+) population were shown to mildly bind to the HLA-A*1101 molecule. Together with the structural models, these results partially explain the cross-allele responses. Our findings elucidate the promiscuity of the cross-allele T cell responses against influenza A viruses and are beneficial for the development of a T cell epitope-based vaccine applied in a broader population.
Collapse
|
50
|
A human CD4+ T cell epitope in the influenza hemagglutinin is cross-reactive to influenza A virus subtypes and to influenza B virus. J Virol 2012; 86:9233-43. [PMID: 22718815 DOI: 10.1128/jvi.06325-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The hemagglutinin protein (HA) of the influenza virus family is a major antigen for protective immunity. Thus, it is a relevant target for developing vaccines. Here, we describe a human CD4(+) T cell epitope in the influenza virus HA that lies in the fusion peptide of the HA. This epitope is well conserved in all 16 subtypes of the HA protein of influenza A virus and the HA protein of influenza B virus. By stimulating peripheral blood mononuclear cells (PBMCs) from a healthy adult donor with peptides covering the entire HA protein based on the sequence of A/Japan/305/1957 (H2N2), we generated a T cell line specific to this epitope. This CD4(+) T cell line recognizes target cells infected with influenza A virus seasonal H1N1 and H3N2 strains, a reassortant H2N1 strain, the 2009 pandemic H1N1 strain, and influenza B virus in cytotoxicity assays and intracellular-cytokine-staining assays. It also lysed target cells infected with avian H5N1 virus. We screened healthy adult PBMCs for T cell responses specific to this epitope and found individuals who had ex vivo gamma interferon (IFN-γ) responses to the peptide epitope in enzyme-linked immunospot (ELISPOT) assays. Almost all donors who responded to the epitope had the HLA-DRB1*09 allele, a relatively common HLA allele. Although natural infection or standard vaccination may not induce strong T and B cell responses to this highly conserved epitope in the fusion peptide, it may be possible to develop a vaccination strategy to induce these CD4(+) T cells, which are cross-reactive to both influenza A and B viruses.
Collapse
|