1
|
Abd-Eldaim M, Maarouf M, Potgieter L, Kania SA. Amino Acid Variations of The Immuno-Dominant Domain of Respiratory Syncytial Virus Attachment Glycoprotein (G) Affect the Antibody Responses In BALB/c Mice. J Virol Methods 2023; 316:114712. [PMID: 36958697 DOI: 10.1016/j.jviromet.2023.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of respiratory illness in ruminants and infants. The G glycoprotein of RSV serves as the viral attachment ligand. Despite currently available vaccines, RSV immunity is insufficient, and re-infections occur. Vaccine studies employing the G-protein's 174-187 amino acids, representing the immunodominant domain, have protected mice and calves against infections. To investigate the causes of vaccination failure, we designed four synthetic peptides for the ruminant RSV isolates (391-2, Maryland-BRSV, European-BRSV, and ORSV) using the immune-dominant sequence and vaccinated mice groups with them. The produced antibodies targeting each peptide were evaluated using ELISA and flow cytometry to determine their reactivity against the linear antigen and the native form of the G protein, respectively. Antibodies responded to homologous and heterologous peptides as determined by ELISA. Using flow cytometry-analysis targeting the natively folded protein, most generated antibodies reacted only with their homologous strain. However, antibodies raised to 391-2 peptide reacted with homologous and heterologous Maryland-BRSV viral epitopes. Accordingly, inadequate immunity and recurring RSV infections might be attributed to variations of antibodies targeting the immunodominant region of the G-protein.
Collapse
Affiliation(s)
- Mohamed Abd-Eldaim
- Department of Virology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Maarouf
- Department of Virology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt.
| | - Leon Potgieter
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville TN, USA
| | - Stephen A Kania
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville TN, USA
| |
Collapse
|
2
|
Liu Z, Wu S, Xian Y, Gu Z, Liu W, Chen D, Zhou R. Seroprevalence of neutralizing antibodies against respiratory syncytial virus in healthy adults in Guangzhou, southern China. J Med Virol 2022; 94:4378-4382. [PMID: 35474462 DOI: 10.1002/jmv.27815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 11/10/2022]
Abstract
Respiratory syncytial virus (RSV) is the major cause of pneumonia and bronchiolitis in infants and young children, and mediates substantial morbidity and mortality in the elderly and immunocompromised globally. Development a safe and effective RSV vaccine and an optimized neutralizing antibody (NAb) with strong virus-neutralizing activity is appealing. To gain some detailed knowledge on the humoral immune response to RSV subgroup A (RSV-A) and RSV-B, we investigated the seroprevalence of pre-existing NAbs by using the microneutralization assay in healthy adult from Guangzhou, southern China. We found that the overall seropositive rate was 84.86% for anti-RSV NAbs. Furthermore, the seropositive rates were 68.47% and 73.61% for anti-RSV-A NAbs and anti-RSV-B NAbs, respectively. In addition, although the seropositive rates and NAb levels were not associated with the blood type, type AB individuals displaying higher seropositive rates for anti-RSV-A NAbs with high titer (≥ 288) and anti-RSV-B NAbs, especially those with moderate titer (≥ 72-< 288). The seropositive rates and titers were comparable between anti-RSV-A NAbs and anti-RSV-B NAbs in the AB blood type group. Interestingly, only when the NAb titer of the serum to RSV-A was not less than 288, was it not less than 18 to RSV-B, and vice versa. These results would be helpful for a better understanding of the human serum NAb responses to RSV-A and RSV-B. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhenwei Liu
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China.,Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shangzhi Wu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuting Xian
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zihao Gu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Dehui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
The Clinical Characteristics, Severity, and Seasonality of RSV Subtypes Among Hospitalized Children in Jordan. Pediatr Infect Dis J 2021; 40:808-813. [PMID: 34260483 DOI: 10.1097/inf.0000000000003193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infection (ARI) in young children worldwide. Multiple factors affect RSV disease severity, and data regarding differences between RSV subtypes severity are controversial. This study aimed to evaluate the clinical characteristics, seasonality and severity of RSV subtypes in children. METHODS As part of a prospective ARI surveillance study conducted from March 2010 to March 2013 in Amman, Jordan, children less than 2 years with fever and/or respiratory symptoms were enrolled. Demographic and clinical characteristics were collected through parental interviews and medical chart review. The treating physician collected severity score data at admission. Nasal and throat swabs were collected and tested. Multivariable regression models were used to compare the odds of increased disease severity across a priori selected predictors of interest. RESULTS Overall, 1397/3168 (44%) children were RSV positive, with a mean age of 5.3 months (±4.8 SD), 59.7% were male, 6.4% had an underlying medical condition (UMC), 63.6% were RSV-A positive, 25.2% were RSV-B positive, 0.6% were positive for both, and 10.6% could not be typed. Both RSV subtypes peaked in January-March of each year. RSV A-positive children were more likely to present with decreased appetite but less likely to have viral co-detection than RSV B-positive children. Independent factors associated with RSV disease severity included cycle threshold value, vitamin D level, age, UMC, prematurity and severity score, but not RSV subtypes. CONCLUSION RSV subtypes co-circulated and had similar severity profiles; future preventive and treatment measures should target both subtypes.
Collapse
|
4
|
Anderson LJ, Jadhao SJ, Paden CR, Tong S. Functional Features of the Respiratory Syncytial Virus G Protein. Viruses 2021; 13:1214. [PMID: 34372490 PMCID: PMC8310105 DOI: 10.3390/v13071214] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract infections in children <5 years of age worldwide and repeated infections throughout life leading to serious disease in the elderly and persons with compromised immune, cardiac, and pulmonary systems. The disease burden has made it a high priority for vaccine and antiviral drug development but without success except for immune prophylaxis for certain young infants. Two RSV proteins are associated with protection, F and G, and F is most often pursued for vaccine and antiviral drug development. Several features of the G protein suggest it could also be an important to vaccine or antiviral drug target design. We review features of G that effect biology of infection, the host immune response, and disease associated with infection. Though it is not clear how to fit these together into an integrated picture, it is clear that G mediates cell surface binding and facilitates cellular infection, modulates host responses that affect both immunity and disease, and its CX3C aa motif contributes to many of these effects. These features of G and the ability to block the effects with antibody, suggest G has substantial potential in vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Larry J. Anderson
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Samadhan J. Jadhao
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Clinton R. Paden
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA; (C.R.P.); (S.T.)
| | - Suxiang Tong
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA; (C.R.P.); (S.T.)
| |
Collapse
|
5
|
Perchetti GA, Wilcox N, Chu HY, Katz J, Khatry SK, LeClerq SC, Tielsch JM, Jerome KR, Englund JA, Kuypers J. Human Metapneumovirus Infection and Genotyping of Infants in Rural Nepal. J Pediatric Infect Dis Soc 2021; 10:408-416. [PMID: 33137178 DOI: 10.1093/jpids/piaa118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute respiratory tract infections are a serious clinical burden in infants; human metapneumovirus (HMPV) is an important etiological agent. We investigated genotypic variation and molecular epidemiological patterns among infants infected with HMPV in Sarlahi, Nepal, to better characterize infection in a rural, low-resource setting. METHODS Between May 2011 and April 2014, mid-nasal swabs were collected from 3528 infants who developed respiratory symptoms during a longitudinal maternal influenza vaccine study. Sequencing glycoprotein genes permitted genotyping and analyses among subtypes. RESULTS HMPV was detected by reverse-transcriptase polymerase chain reaction (RT-PCR) in 187 (5%) infants, with seasonality observed during fall and winter months. Phylogenetic investigation of complete and partial coding sequences for the F and G genes, respectively, revealed that 3 genotypes were circulating: A2, B1, and B2. HMPV-B was most frequently detected with a single type predominating each season. Both HMPV genotypes exhibited comparable median viral loads. Clinically significant differences between genotypes were limited to increased cough duration and general respiratory symptoms for type B. CONCLUSIONS In rural Nepal, multiple HMPV genotypes circulate simultaneously with an alternating predominance of a single genotype and definitive seasonality. No difference in viral load was detected by genotype and symptom severity was not correlated with RT-PCR cycle threshold or genotype.
Collapse
Affiliation(s)
- Garrett A Perchetti
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Naomi Wilcox
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joanne Katz
- Department of International Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Subarna K Khatry
- Department of International Health, Johns Hopkins University, Baltimore, Maryland, USA.,Nepal Nutrition Intervention Project Sarlahi, Kathmandu, Nepal
| | - Steven C LeClerq
- Department of International Health, Johns Hopkins University, Baltimore, Maryland, USA.,Nepal Nutrition Intervention Project Sarlahi, Kathmandu, Nepal
| | - James M Tielsch
- Department of Global Health, George Washington University, Washington, DC, USA
| | - Keith R Jerome
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Jane Kuypers
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Borochova K, Niespodziana K, Focke-Tejkl M, Hofer G, Keller W, Valenta R. Dissociation of the respiratory syncytial virus F protein-specific human IgG, IgA and IgM response. Sci Rep 2021; 11:3551. [PMID: 33574352 PMCID: PMC7878790 DOI: 10.1038/s41598-021-82893-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is one of the most important causes of severe respiratory tract infections in early childhood. The only prophylactic protection is the neutralizing antibody, palivizumab, which targets a conformational epitope of the RSV fusion (F) protein. The F protein is generated as a F0 precursor containing two furin cleavage sites allowing excision of the P27 fragment and then gives rise to a fusion-competent version consisting of the N-terminal F2 subunit and the a C-terminal F1 subunits linked by two disulphide bonds. To investigate natural human F-specific antibody responses, F2 conferring the species-specificity of RSV, was expressed in Escherichia coli. Furthermore, the F0 protein, comprising both subunits F2 and F1, was expressed as palivizumab-reactive glycoprotein in baculovirus-infected insect cells. Six overlapping F2-derived peptides lacking secondary structure were synthesized. The analysis of IgG, IgA and IgM responses of adult subjects to native versions and denatured forms of F2 and F0 and to unfolded F2-derived peptides revealed that mainly non-conformational F epitopes, some of which represented cryptic epitopes which are not exposed on the proteins were recognized. Furthermore, we found a dissociation of IgG, IgA and IgM antibody responses to F epitopes with F2 being a major target for the F-specific IgM response. The scattered and dissociated immune response to F may explain why the natural RSV-specific antibody response is only partially protective underlining the need for vaccines focusing human antibody responses towards neutralizing RSV epitopes.
Collapse
Affiliation(s)
- Kristina Borochova
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Niespodziana
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hofer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Graz, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.
- Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
7
|
Efstathiou C, Abidi SH, Harker J, Stevenson NJ. Revisiting respiratory syncytial virus's interaction with host immunity, towards novel therapeutics. Cell Mol Life Sci 2020; 77:5045-5058. [PMID: 32556372 PMCID: PMC7298439 DOI: 10.1007/s00018-020-03557-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Every year there are > 33 million cases of Respiratory Syncytial Virus (RSV)-related respiratory infection in children under the age of five, making RSV the leading cause of lower respiratory tract infection (LRTI) in infants. RSV is a global infection, but 99% of related mortality is in low/middle-income countries. Unbelievably, 62 years after its identification, there remains no effective treatment nor vaccine for this deadly virus, leaving infants, elderly and immunocompromised patients at high risk. The success of all pathogens depends on their ability to evade and modulate the host immune response. RSV has a complex and intricate relationship with our immune systems, but a clearer understanding of these interactions is essential in the development of effective medicines. Therefore, in a bid to update and focus our research community's understanding of RSV's interaction with immune defences, this review aims to discuss how our current knowledgebase could be used to combat this global viral threat.
Collapse
Affiliation(s)
- C Efstathiou
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - S H Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - J Harker
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - N J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Oral and Inhaled Ribavirin Treatment for Respiratory Syncytial Virus Infection in Lung Transplant Recipients. Transplantation 2020; 104:1280-1286. [PMID: 31568275 DOI: 10.1097/tp.0000000000002985] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection in lung transplant recipients (LTRs) causes mortality rates of 10%-20% despite antiviral therapy. Ribavirin (RBV) has been used to treat RSV-infected LTRs with limited data. METHODS A retrospective study including all LTRs at Duke Hospital during January 2013-May 2017 with positive RSV polymerase chain reaction respiratory specimens was performed. RESULTS Fifty-six of 70 patients in the oral RBV group and 29 of 32 in the inhaled RBV group had symptomatic RSV infection. One patient receiving oral RBV had to prematurely stop drug due to significant nausea and vomiting. While unadjusted all-cause 1-year mortality was significantly higher in the inhaled RBV group (24.1% versus 7.1% [oral RBV], P = 0.03), adjusted hazard ratio (HR) for death and oral RBV use (compared to inhaled RBV), accounting for oxygen requirement and need for mechanical ventilation, showed the HR for death and oral RBV use was 0.38 ([0.10, 1.46], P = 0.38). The HR for death in patients with supplemental oxygen >2 L/min at diagnosis was 6.18 ([1.33, 26.83], P = 0.02). Kaplan-Meier curves showed patients with forced expiratory volume in 1 second decline ≥5% and ≥10% at 90 days post-RSV infection had a higher 1-year mortality (P = 0.004 and P = 0.001, respectively). CONCLUSIONS Oral and inhaled RBV appear to be well tolerated in LTRs, and our data support the use of oral RBV as a safe alternative to inhaled ribavirin in LTRs. Oxygen requirement >2 L/min at diagnosis and forced expiratory volume in 1 second decline ≥5% postinfection may be markers for increased mortality.
Collapse
|
9
|
Borochova K, Niespodziana K, Stenberg Hammar K, van Hage M, Hedlin G, Söderhäll C, Focke-Tejkl M, Valenta R. Features of the Human Antibody Response against the Respiratory Syncytial Virus Surface Glycoprotein G. Vaccines (Basel) 2020; 8:vaccines8020337. [PMID: 32630611 PMCID: PMC7350215 DOI: 10.3390/vaccines8020337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections are a major cause of serious respiratory disease in infants. RSV occurs as two major subgroups A and B, which mainly differ regarding the surface glycoprotein G. The G protein is important for virus attachment and G-specific antibodies can protect against infection. We expressed the surface-exposed part of A2 strain-derived G (A2-G) in baculovirus-infected insect cells and synthesized overlapping peptides spanning complete A2-G. The investigation of the natural IgG response of adult subjects during a period of one year showed that IgG antibodies (i) recognize G significantly stronger than the fusion protein F0, (ii) target mainly non-conformational, sequential peptide epitopes from the exposed conserved region but also buried peptides, and (iii) exhibit a scattered but constant recognition profile during the observation period. The IgG subclass reactivity profile (IgG1 > IgG2 > IgG4 = IgG3) was indicative of a mixed Th1/Th2 response. Two strongly RSV-neutralizing sera including the 1st WHO standard contained high IgG anti-G levels. G-specific IgG increased strongly in children after wheezing attacks suggesting RSV as trigger factor. Our study shows that RSV G and G-derived peptides are useful for serological diagnosis of RSV-triggered exacerbations of respiratory diseases and underlines the importance of G for development of RSV-neutralizing vaccines.
Collapse
Affiliation(s)
- Kristina Borochova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarina Stenberg Hammar
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden;
| | - Gunilla Hedlin
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- Correspondence: ; Tel.: +431-40400-51130; Fax: +431-40400-51300
| |
Collapse
|
10
|
Ang LW, Mak TM, Cui L, Leo YS, Lee VJM, Lin RTP. Characterisation of respiratory syncytial virus activity in children and adults presenting with acute respiratory illness at primary care clinics in Singapore, 2014-2018. Influenza Other Respir Viruses 2020; 14:412-419. [PMID: 32090482 PMCID: PMC7298310 DOI: 10.1111/irv.12730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is an important respiratory pathogen that affects people of all ages. OBJECTIVES We examined the patterns of RSV circulation in 2014-2018, and investigated their age-specific differences in tropical Singapore. METHODS Nasopharyngeal and/or throat swabs were taken from outpatient attendees for the national influenza virological surveillance among those who presented with acute respiratory illness in the community. Specimens tested negative for influenza were then tested for RSV and other respiratory pathogens. RESULTS Among 8436 influenza-negative specimens tested during the five-year period, 5.8% (95% confidence interval 5.3%-6.3%) were positive for RSV. The peak of RSV activity occurred around middle of the year. The age-specific proportion of RSV detections showed a reverse J-shaped pattern; RSV positivity was the highest in young children ≤2 years of age (10.9%), followed by those aged 3-5 years (6.4%) and persons aged ≥65 years (5.3%), while the nadir was observed in the age group of 15-24 years (1.2%). RSV type A was predominantly circulating in children ≤5 years of age from 2014 to 2015 and 2017, whereas in 2016, they were more affected by type B. CONCLUSION Respiratory syncytial virus was more frequently detected among the two age groups that have been recommended for influenza vaccination; persons ≥65 years of age and children 6 months to <5 years of age. Characterisation of RSV activity in the community helps to better inform public health policies for effective prevention and control interventions.
Collapse
Affiliation(s)
- Li Wei Ang
- National Centre for Infectious Diseases, Singapore City, Singapore.,Public Health Group, Ministry of Health, Singapore City, Singapore
| | - Tze Minn Mak
- National Centre for Infectious Diseases, Singapore City, Singapore
| | - Lin Cui
- National Centre for Infectious Diseases, Singapore City, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore City, Singapore
| | | | | |
Collapse
|
11
|
Jagusic M, Slovic A, Ivancic-Jelecki J, Ljubin-Sternak S, Vilibić-Čavlek T, Tabain I, Forcic D. Molecular epidemiology of human respiratory syncytial virus and human metapneumovirus in hospitalized children with acute respiratory infections in Croatia, 2014-2017. INFECTION GENETICS AND EVOLUTION 2019; 76:104039. [PMID: 31521788 DOI: 10.1016/j.meegid.2019.104039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/09/2023]
Abstract
Acute respiratory infection (ARI) is the most common infection in children under 5 years of age and it is frequently caused by two pneumoviruses, human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV). Epidemic seasons of these viruses overlap and disease manifestations are highly similar, including severe lower ARI such as bronchiolitis or pneumonia. Reinfections with pneumoviruses are frequent and limited prevention treatment is available. Genetic diversity of HRSV and HMPV strains circulating in Croatia was monitored during four consecutive years (2014-2017). Co-circulation of multiple lineages was observed for both viruses. Within HRSV group A, ON1 strains gained strong predominance during the 4-year period, while previously dominant genotype NA1 was detected only sporadically. Similarly, newly occurring HMPV genotype A2c gained predominance over genotype A2b during this period, resulting in all infection in 2017 being caused by A2c. Along with phylogenetic analysis based on the commonly used fragments for detection and genotyping of these viruses, full length G and SH genes were also analysed. Evolutionary dynamics showed that inferred substitution rates of HRSV and HMPV are between 2.51 × 10-3 and 3.61 × 10-3 substitutions/site/year. This study established presence of recently described HMPV strains containing large duplications in the G gene in Croatia. Viruses with either of the two duplications belong to a subcluster A2c, which has completely replaced all other group A subclusters in 2017.
Collapse
Affiliation(s)
- M Jagusic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia; Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia
| | - A Slovic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia; Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia.
| | - J Ivancic-Jelecki
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia; Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia
| | - S Ljubin-Sternak
- Dr. Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; University of Zagreb School of Medicine, Zagreb, Croatia
| | - T Vilibić-Čavlek
- University of Zagreb School of Medicine, Zagreb, Croatia; Croatian National Institute of Public Health, Zagreb, Croatia
| | - I Tabain
- Croatian National Institute of Public Health, Zagreb, Croatia
| | - D Forcic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia; Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia
| |
Collapse
|
12
|
Ciarlitto C, Vittucci AC, Antilici L, Concato C, Di Camillo C, Zangari P, Villani A. Respiratory Syncityal Virus A and B: three bronchiolitis seasons in a third level hospital in Italy. Ital J Pediatr 2019; 45:115. [PMID: 31462274 PMCID: PMC6712785 DOI: 10.1186/s13052-019-0704-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is the main cause of hospitalization for bronchiolitis among infants. RSV is classified into two subtypes, A and B, whose predominance alternates during different epidemic seasons. The clinical impact of viral factors is controversial and many evidences suggest a critical role for the immune host response. Premature children are at the highest risk for severe RSV infection. The main aim of this study is to identify the different RSV subtypes circulating in the last three epidemic seasons and to evaluate whether any of them was associated with poor prognosis in term and preterm infants. Methods We performed a retrospective analysis of medical records for all patients aged less than one year which were hospitalized during the winter season between November 2015 and April 2018 with clinical diagnosis of bronchiolitis and nasopharyngeal aspirates positive for RSV. Results We enrolled 422 children, of which 50 were born preterm. During the analysis period, we observed a significant increase in the rates of oxygen supplementation and admission to intensive care unit. The evidence shows an alternating pattern in the prevalence of RSV subtypes among term born; in each epidemic season, the prevalent serotype is the cause of the majority of the cases requiring intensive care. Conversely, RSV-A is always prevalent in preterm children and caused most of the cases requiring intensive care. Conclusions During the 3 seasons analyzed, we observed an alternating prevalence of RSV A and B. While there are no differences in severity between RSV A and B in term population, RSV-A is prevalent and causes most of the severe cases in the premature group. Furthermore, an increase in RSV-related oxygen therapy and PICU admission has been documented not only in the premature population. Considering the absence of appropriate therapeutic strategies, our work emphasizes the importance of implementing prophylaxis measures against RSV and highlights the urgent need to gain knowledge about immune response to the virus, also in premature children. Electronic supplementary material The online version of this article (10.1186/s13052-019-0704-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Ciarlitto
- Academic Department of Pediatrics, Tor Vergata University of Rome, Rome, Italy. .,Academic Department of Pediatrics, Pediatric and Infectious Disease Unit, Children's Hospital Bambino Gesù (OPBG), Rome, Italy.
| | - A C Vittucci
- Academic Department of Pediatrics, Pediatric and Infectious Disease Unit, Children's Hospital Bambino Gesù (OPBG), Rome, Italy
| | - L Antilici
- Academic Department of Pediatrics, Tor Vergata University of Rome, Rome, Italy
| | - C Concato
- Virology Unit, Bambino Gesù Children's Hospital (OPBG), Rome, Italy
| | - C Di Camillo
- Academic Department of Pediatrics, Pediatric and Infectious Disease Unit, Children's Hospital Bambino Gesù (OPBG), Rome, Italy
| | - P Zangari
- Academic Department of Pediatrics, Research Unit in Congenital and Perinatal Infection, Immune and Infection Disease Division, Children's Hospital Bambino Gesù (OPBG), Rome, Italy
| | - A Villani
- Academic Department of Pediatrics, Pediatric and Infectious Disease Unit, Children's Hospital Bambino Gesù (OPBG), Rome, Italy
| |
Collapse
|
13
|
Coultas JA, Smyth R, Openshaw PJ. Respiratory syncytial virus (RSV): a scourge from infancy to old age. Thorax 2019; 74:986-993. [PMID: 31383776 DOI: 10.1136/thoraxjnl-2018-212212] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/19/2019] [Accepted: 06/14/2019] [Indexed: 01/02/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common single cause of respiratory hospitalisation of infants and is the second largest cause of lower respiratory infection mortality worldwide. In adults, RSV is an under-recognised cause of deterioration in health, particularly in frail elderly persons. Infection rates typically rise in late autumn and early winter causing bronchiolitis in infants, common colds in adults and insidious respiratory illness in the elderly. Virus detection methods optimised for use in children have low detection rate in adults, highlighting the need for better diagnostic tests. There are many vaccines under development, mostly based on the surface glycoprotein F which exists in two conformations (prefusion and postfusion). Much of the neutralising antibody appears to be to the prefusion form. Vaccines being developed include live attenuated, subunit, particle based and live vectored agents. Different vaccine strategies may be appropriate for different target populations: at-risk infants, school-age children, adult caregivers and the elderly. Antiviral drugs are in clinical trial and may find a place in disease management. RSV disease is one of the major remaining common tractable challenges in infectious diseases and the era of vaccines and antivirals for RSV is on the near horizon.
Collapse
Affiliation(s)
| | - Rosalind Smyth
- Director of the Insitute and Professor of Child Health, Great Ormond Street Institute for Child Health, UCL, London, UK
| | | |
Collapse
|
14
|
Boyoglu-Barnum S, Chirkova T, Anderson LJ. Biology of Infection and Disease Pathogenesis to Guide RSV Vaccine Development. Front Immunol 2019; 10:1675. [PMID: 31402910 PMCID: PMC6677153 DOI: 10.3389/fimmu.2019.01675] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in young children and a substantial contributor to respiratory tract disease throughout life and as such a high priority for vaccine development. However, after nearly 60 years of research no vaccine is yet available. The challenges to developing an RSV vaccine include the young age, 2-4 months of age, for the peak of disease, the enhanced RSV disease associated with the first RSV vaccine, formalin-inactivated RSV with an alum adjuvant (FI-RSV), and difficulty achieving protection as illustrated by repeat infections with disease that occur throughout life. Understanding the biology of infection and disease pathogenesis has and will continue to guide vaccine development. In this paper, we review the roles that RSV proteins play in the biology of infection and disease pathogenesis and the corresponding contribution to live attenuated and subunit RSV vaccines. Each of RSV's 11 proteins are in the design of one or more vaccines. The G protein's contribution to disease pathogenesis through altering host immune responses as well as its role in the biology of infection suggest it can make a unique contribution to an RSV vaccine, both live attenuated and subunit vaccines. One of G's potential unique contributions to a vaccine is the potential for anti-G immunity to have an anti-inflammatory effect independent of virus replication. Though an anti-viral effect is essential to an effective RSV vaccine, it is important to remember that the goal of a vaccine is to prevent disease. Thus, other effects of the infection, such as G's alteration of the host immune response may provide opportunities to induce responses that block this effect and improve an RSV vaccine. Keeping in mind the goal of a vaccine is to prevent disease and not virus replication may help identify new strategies for other vaccine challenges, such as improving influenza vaccines and developing HIV vaccines.
Collapse
Affiliation(s)
| | - Tatiana Chirkova
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Larry J. Anderson
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
15
|
Buchholz UJ, Cunningham CK, Muresan P, Gnanashanmugam D, Sato P, Siberry GK, Rexroad V, Valentine M, Perlowski C, Schappell E, Thumar B, Luongo C, Barr E, Aziz M, Yogev R, Spector SA, Collins PL, McFarland EJ, Karron RA. Live Respiratory Syncytial Virus (RSV) Vaccine Candidate Containing Stabilized Temperature-Sensitivity Mutations Is Highly Attenuated in RSV-Seronegative Infants and Children. J Infect Dis 2019; 217:1338-1346. [PMID: 29509929 DOI: 10.1093/infdis/jiy066] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 01/09/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is the most important viral cause of severe respiratory illness in young children and lacks a vaccine. RSV cold-passage/stabilized 2 (RSVcps2) is a modification of a previously evaluated vaccine candidate in which 2 major attenuating mutations have been stabilized against deattenuation. Methods RSV-seronegative 6-24-month-old children received an intranasal dose of 105.3 plaque-forming units (PFU) of RSVcps2 (n = 34) or placebo (n = 16) (International Maternal Pediatric Adolescent AIDS Clinical Trials protocol P1114 and companion protocol CIR285). RSV serum neutralizing antibody titers before and 56 days after vaccination, vaccine virus infectivity (defined as vaccine virus shedding detectable in nasal wash and/or a ≥4-fold rise in serum antibodies), reactogenicity, and genetic stability were assessed. During the following RSV transmission season, participants were monitored for respiratory illness, with serum antibody titers measured before and after the season. Results A total of 85% of vaccinees were infected with RSVcps2 (median peak titer, 0.5 log10 PFU/mL by culture and 2.9 log10 copies/mL by polymerase chain reaction analysis); 77% shed vaccine virus, and 59% developed a ≥4-fold rise in RSV-serum neutralizing antibody titers. Respiratory tract and/or febrile illness occurred at the same rate (50%) in the vaccine and placebo groups. Deattenuation was not detected at either of 2 stabilized mutation sites. Conclusions RSVcps2 was well tolerated and moderately immunogenic and had increased genetic stability in 6-24-month-old RSV-seronegative children. Clinical Trials Registration NCT01852266 and NCT01968083.
Collapse
Affiliation(s)
| | - Coleen K Cunningham
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Paul Sato
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda
| | - George K Siberry
- Maternal Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda
| | | | | | | | - Elizabeth Schappell
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Bhagvinji Thumar
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, Bethesda
| | - Emily Barr
- Department of Pediatric Infectious Diseases, Aurora, Colorado.,Mucosal and Vaccine Research Program Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mariam Aziz
- Rush University Medical Center, Chicago, Illinois
| | - Ram Yogev
- Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stephen A Spector
- Clinical Trials Unit, International Maternal Pediatric Adolescent AIDS Clinical Trials Group, University of California, San Diego, California
| | - Peter L Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, Bethesda
| | - Elizabeth J McFarland
- Department of Pediatric Infectious Diseases, Aurora, Colorado.,Mucosal and Vaccine Research Program Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ruth A Karron
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | |
Collapse
|
16
|
Duplex real-time RT-PCR assay for detection and subgroup-specific identification of human respiratory syncytial virus. J Virol Methods 2019; 271:113676. [PMID: 31181218 PMCID: PMC7172218 DOI: 10.1016/j.jviromet.2019.113676] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of acute respiratory illness in young children worldwide. Reliable detection and identification of HRSV subgroup A and B infections are essential for accurate disease burden estimates in anticipation of licensure of novel HRSV vaccines and immunotherapies. To ensure continued reliability, molecular assays must remain current with evolving virus strains. We have developed a HRSV subgroup-specific real-time RT-PCR (rRT-PCR) assay for detection and subgroup identification using primers and subgroup-specific probes targeting a conserved region of the nucleoprotein gene combined in a single duplex reaction using all genome sequence data currently available in GenBank. The assay was validated for analytical sensitivity, specificity, reproducibility, and clinical performance with a geographically diverse collection of viral isolates and respiratory specimens in direct comparison with an established pan-HRSV rRT-PCR reference test. The assay was sensitive, reproducibly detecting as few as 5-10 copies/reaction of target RNA. The assay was specific, showing no amplification with a panel of 16 other common respiratory pathogens or predicted by in silico primer/probe analysis. The duplex rRT-PCR assay based on the most current available genome sequence data permits rapid, sensitive and specific detection and subgroup identification of HRSV.
Collapse
|
17
|
Persistence and continuous evolution of the human respiratory syncytial virus in northern Taiwan for two decades. Sci Rep 2019; 9:4704. [PMID: 30886248 PMCID: PMC6423049 DOI: 10.1038/s41598-019-41332-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 03/06/2019] [Indexed: 01/13/2023] Open
Abstract
The study aimed to characterize the molecular epidemiology, phylogenetic relationship, and population dynamics of the G protein gene in clinical respiratory syncytial virus (RSV) strains isolated from northern Taiwan. We analyzed a total of 160 and 116 G protein gene sequences of RSV-A and RSV-B representative strains, respectively, from 804 clinical viral stocks collected between July 2000 and June 2016. Population dynamic patterns of the RSV G protein gene were analyzed using Bayesian inference through the Markov chain Monte Carlo framework. A phylogenetic analysis revealed that RSV-A from Taiwan could be categorized into GA2, GA5, and GA7 lineages. GA2 of RSV-A could be further divided into NA1, NA2, NA4, and ON1 clades. These RSV-A lineages has been replaced over time, whereas RSV-B strains from Taiwan continually evolved from a single lineage with significant time-dependent waves. Four putative positive selection sites were observed in both RSV-A and RSV-B. The Bayesian skyline plot revealed that the local population dynamics of RSV were associated with lineage displacement events. Both circulating subtypes and population dynamics represented a unique local pattern. Our results affirm the necessity of continuing molecular surveillance of RSV to attain a more comprehensive understanding of epidemics.
Collapse
|
18
|
Mas V, Nair H, Campbell H, Melero JA, Williams TC. Antigenic and sequence variability of the human respiratory syncytial virus F glycoprotein compared to related viruses in a comprehensive dataset. Vaccine 2018; 36:6660-6673. [PMID: 30292456 PMCID: PMC6203811 DOI: 10.1016/j.vaccine.2018.09.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 11/17/2022]
Abstract
A comprehensive analysis of sequence variation was carried out comparing the fusion (F) protein of human respiratory syncytial viruses (hRSV) from antigenic groups A and B with the prototype sequence of the A2 strain, also belonging to antigenic group A. The limited number of full bovine RSV F sequences available were included, as well as an extensive set of F sequences from the related human metapneumovirus (hMPV). The results were analysed in the context of the recently determined three dimensional F protein structures, with antigenic sites mapped to these. Although a high degree of sequence conservation in hRSV F exists, and sequence changes did not correlate with location of antigenic sites, preferential accumulation of amino acid changes in certain antigenic sites was noted. When the analysis was extended to hMPV F, a high number of changes was noticed, in agreement with the limited degree of sequence conservation. However, some conserved regions were noted, which may account for the limited number of cross-reactive monoclonal antibodies described between hRSV F and hMPV F. These results provide information about the degree of sequence and antigenic variation currently found in the F protein of circulating viruses. They highlight the importance of establishing a baseline dataset to monitor for future changes that might evolve should preventative immunological measures be made widely available.
Collapse
Affiliation(s)
- Vicente Mas
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Harish Nair
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, UK
| | - Harry Campbell
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, UK
| | - Jose A Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas C Williams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK.
| |
Collapse
|
19
|
Joyce C, Scallan CD, Mateo R, Belshe RB, Tucker SN, Moore AC. Orally administered adenoviral-based vaccine induces respiratory mucosal memory and protection against RSV infection in cotton rats. Vaccine 2018; 36:4265-4277. [DOI: 10.1016/j.vaccine.2018.05.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
|
20
|
Permpalung N, Mahoney MV, McCoy C, Atsawarungruangkit A, Gold HS, Levine JD, Wong MT, LaSalvia MT, Alonso CD. Clinical characteristics and treatment outcomes among respiratory syncytial virus (RSV)-infected hematologic malignancy and hematopoietic stem cell transplant recipients receiving palivizumab. Leuk Lymphoma 2018; 60:85-91. [PMID: 29947555 DOI: 10.1080/10428194.2018.1468896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Palivizumab has been used to treat respiratory syncytial virus (RSV)-infected hematologic malignancy patients at our institution based on limited published data. We conducted this retrospective study to evaluate clinical outcomes and mortality rates of RSV-infected hematologic malignancy patients from 2007 to 2016. A total of 67 patients (19 received palivizumab and 47 received supportive care) were identified. Palivizumab-treated patients had a significantly higher proportion of underlying ischemic heart disease, graft-versus-host-disease, hypogammaglobulinemia, and concomitant pulmonary infections. There were no significant differences in mortality rates or readmission rates between the two groups. The estimated odds ratio for death in patients receiving palivizumab after adjusting for propensity scores and covariates were 0.12 ([0.01, 1.32], p = .08) and 0.09 ([0.01, 1.03], p = .05) respectively. After adjustment for factors associated with severity of illness, there was no difference in mortality among patients treated with palivizumab.
Collapse
Affiliation(s)
- Nitipong Permpalung
- a Department of Medicine , Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| | - Monica V Mahoney
- b Department of Pharmacy , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Christopher McCoy
- b Department of Pharmacy , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Amporn Atsawarungruangkit
- a Department of Medicine , Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| | - Howard S Gold
- a Department of Medicine , Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| | - James D Levine
- a Department of Medicine , Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| | | | - Mary T LaSalvia
- a Department of Medicine , Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| | - Carolyn D Alonso
- a Department of Medicine , Beth Israel Deaconess Medical Center and Harvard Medical School , Boston , MA , USA
| |
Collapse
|
21
|
Wilken L, McPherson A. Application of camelid heavy-chain variable domains (VHHs) in prevention and treatment of bacterial and viral infections. Int Rev Immunol 2017; 37:69-76. [PMID: 29182399 DOI: 10.1080/08830185.2017.1397657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Camelid heavy-chain variable domains (VHHs) are the smallest, intact, antigen-binding units to occur in nature. VHHs possess high degrees of solubility and robustness enabling generation of multivalent constructs with increased avidity - characteristics that mark their superiority to other antibody fragments and monoclonal antibodies. Capable of effectively binding to molecular targets inaccessible to classical immunotherapeutic agents and easily produced in microbial culture, VHHs are considered promising tools for pharmaceutical biotechnology. With the aim to demonstrate the perspective and potential of VHHs for the development of prophylactic and therapeutic drugs to target diseases caused by bacterial and viral infections, this review article will initially describe the structural features that underlie the unique properties of VHHs and explain the methods currently used for the selection and recombinant production of pathogen-specific VHHs, and then thoroughly summarize the experimental findings of five distinct studies that employed VHHs as inhibitors of host-pathogen interactions or neutralizers of infectious agents. Past and recent studies suggest the potential of camelid heavy-chain variable domains as a novel modality of immunotherapeutic drugs and a promising alternative to monoclonal antibodies. VHHs demonstrate the ability to interfere with bacterial pathogenesis by preventing adhesion to host tissue and sequestering disease-causing bacterial toxins. To protect from viral infections, VHHs may be employed as inhibitors of viral entry by binding to viral coat proteins or blocking interactions with cell-surface receptors. The implementation of VHHs as immunotherapeutic agents for infectious diseases is of considerable potential and set to contribute to public health in the near future.
Collapse
Affiliation(s)
- Lucas Wilken
- a School of Pharmacy and Life Sciences , Robert Gordon University , Garthdee Road, Aberdeen , United Kingdom.,b Department of Natural Sciences , Hochschule Bonn-Rhein-Sieg , Rheinbach , Germany
| | - Anne McPherson
- a School of Pharmacy and Life Sciences , Robert Gordon University , Garthdee Road, Aberdeen , United Kingdom
| |
Collapse
|
22
|
Jaberolansar N, Chappell KJ, Watterson D, Bermingham IM, Toth I, Young PR, Skwarczynski M. Induction of high titred, non-neutralising antibodies by self-adjuvanting peptide epitopes derived from the respiratory syncytial virus fusion protein. Sci Rep 2017; 7:11130. [PMID: 28894111 PMCID: PMC5593926 DOI: 10.1038/s41598-017-10415-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/08/2017] [Indexed: 11/09/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes severe lower respiratory tract illness in infants and young children. The significant morbidity and mortality rates associated with RSV infection make an effective RSV vaccine development a priority. Two neutralising antibody binding sites, Ø and II, located on the pre-fusion RSV F glycoprotein are prime candidates for epitope-focused vaccine design. We report on a vaccine strategy that utilises a lipid core peptide (LCP) delivery system with self-adjuvanting properties in conjunction with either the antigenic site Ø or II (B cell epitopes) along with PADRE as a T helper cell epitope. These LCP constructs adopted the desired helical conformation in solution and were recognised by their cognate antibodies D25 and Motavizumab, specific for site Ø and II on RSV F protein, respectively. The LCP constructs were capable of eliciting higher levels of antigen specific antibodies than those induced by antigens administered with complete Freund's adjuvant, demonstrating the potent adjuvanting properties of LCP delivery. However, the antibodies induced failed to recognise native F protein or neutralise virus infectivity. These results provide a note of caution in assuming that peptide vaccines, successfully designed to structurally mimic minimal linear B cell epitopes, will necessarily elicit the desired immune response.
Collapse
Affiliation(s)
- Noushin Jaberolansar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
| | - Imogen M Bermingham
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
23
|
Khan WH, Srungaram VLNR, Islam A, Beg I, Haider MSH, Ahmad F, Broor S, Parveen S. Biophysical characterization of G protein ectodomain of group B human respiratory syncytial virus from E. coli. Prep Biochem Biotechnol 2017; 46:483-8. [PMID: 26444871 DOI: 10.1080/10826068.2015.1084512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human respiratory syncytial virus (hRSV) is an important pathogen of acute respiratory tract infection. The G protein of hRSV is a transmembrane glycoprotein that is a neutralizing antigen and is thus a vaccine candidate. In this study, synthetic codon optimized ectodomain G protein [G(ΔTM)] of BA genotype of group B hRSV was cloned, expressed, and characterized using biophysical techniques. The molar absorption coefficient and mean residue ellipticity at 222 nm ([θ]222) of G (ΔTM) was found to be 7950 M(-1) cm(-1) and -19701.7 deg cm(2) dmol(-1) respectively. It was concluded that G(ΔTM) mainly consist of α-helix (74.9%) with some amount of β-sheet (4%). The protein was stable up to 85°C without any transition curve. However, heat-induced denaturation of G(ΔTM) resulted in total loss of β-sheet whereas not much change was observed in the α-helix part of the secondary structure. It was concluded that G(ΔTM) is an α-helical protein and it is highly stable at high temperature, but could be easily denatured using high concentrations of GdmCl/urea or acidic condition. This is the first investigation of cloning, expression, and characterization of G(ΔTM) of BA viruses from India. Structural characterization of G protein will assist in drug designing and vaccine development for hRSV.
Collapse
Affiliation(s)
- Wajihul Hasan Khan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | | | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Ilyas Beg
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Md Shakir H Haider
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Shobha Broor
- b Department of Microbiology , All India Institute of Medical Sciences , New Delhi , India
| | - Shama Parveen
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
24
|
Durigon EL, Botosso VF, de Oliveira DBL. Human Respiratory Syncytial Virus: Biology, Epidemiology, and Control. HUMAN VIROLOGY IN LATIN AMERICA 2017. [PMCID: PMC7121549 DOI: 10.1007/978-3-319-54567-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Calderón A, Pozo F, Calvo C, García-García M, González-Esguevillas M, Molinero M, Casas I. Genetic variability of respiratory syncytial virus A in hospitalized children in the last five consecutive winter seasons in Central Spain. J Med Virol 2016; 89:767-774. [PMID: 27696460 DOI: 10.1002/jmv.24703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/18/2022]
Abstract
Human respiratory syncytial virus group A (RSV-A) was detected in symptomatic hospital attended children in Central Spain for a continuous time period, September 2010 to April 2015. In order to accurately describe the epidemiology of this virus, the genetic diversity of the complete G gene and the clinical manifestations observed were jointly analyzed. Out of 3,011 respiratory specimens taken from 2,308 children, 640 were positive to RSV (21.3%) and 405 were RSV-A (63.2%). Complete G gene sequences of 166 randomly selected RSV-A virus identified NA1 and ON1 genotypes. In 2011-2012, ON1 emerged sporadically and become dominant in 2012-2013 with 38 cases (70%). In 2014-2015, all the 44 sequences contained the 72-nt duplication (100%). Clinical diagnosis of children with ON1 genotype were bronchiolitis in 55 (62.5%), recurrent wheezing or asthma exacerbations in 22 (25%), laryngotracheobronchitis in 3 (3.4%), and upper respiratory tract infections in eight. Results showed replacement and substitution of circulating NA1 genotype with the new ON1 genotype. Nevertheless, at this stage, none of the RSV-A genotypes identified have resulted in significant clinical differences. The amino acid composition of the complete G gene ON1 sequences demonstrated an accumulation of single changes not related with different clinical presentation. J. Med. Virol. 89:767-774, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ana Calderón
- Respiratory Virus and Influenza Unit, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Pozo
- Respiratory Virus and Influenza Unit, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Mónica González-Esguevillas
- Respiratory Virus and Influenza Unit, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Molinero
- Respiratory Virus and Influenza Unit, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Do LAH, Wilm A, van Doorn HR, Lam HM, Sim S, Sukumaran R, Tran AT, Nguyen BH, Tran TTL, Tran QH, Vo QB, Dac NAT, Trinh HN, Nguyen TTH, Binh BTL, Le K, Nguyen MT, Thai QT, Vo TV, Ngo NQM, Dang TKH, Cao NH, Tran TV, Ho LV, Farrar J, de Jong M, Chen S, Nagarajan N, Bryant JE, Hibberd ML. Direct whole-genome deep-sequencing of human respiratory syncytial virus A and B from Vietnamese children identifies distinct patterns of inter- and intra-host evolution. J Gen Virol 2016; 96:3470-3483. [PMID: 26407694 DOI: 10.1099/jgv.0.000298] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children ,2 years of age. Little is known about RSV intra-host genetic diversity over the course of infection or about the immune pressures that drive RSV molecular evolution. We performed whole-genome deep-sequencing on 53 RSV-positive samples (37 RSV subgroup A and 16 RSV subgroup B) collected from the upper airways of hospitalized children in southern Vietnam over two consecutive seasons. RSV A NA1 and RSV B BA9 were the predominant genotypes found in our samples, consistent with other reports on global RSV circulation during the same period. For both RSV A and B, the M gene was the most conserved, confirming its potential as a target for novel therapeutics. The G gene was the most variable and was the only gene under detectable positive selection. Further, positively selected sites inG were found in close proximity to and in some cases overlapped with predicted glycosylation motifs, suggesting that selection on amino acid glycosylation may drive viral genetic diversity. We further identified hotspots and coldspots of intra-host genetic diversity in the RSV genome, some of which may highlight previously unknown regions of functional importance.
Collapse
Affiliation(s)
- Lien Anh Ha Do
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Andreas Wilm
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ha Minh Lam
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Shuzhen Sim
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - Rashmi Sukumaran
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - Anh Tuan Tran
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Bach Hue Nguyen
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thi Thu Loan Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Quynh Huong Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Quoc Bao Vo
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | | | - Hong Nhien Trinh
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | | | - Bao Tinh Le Binh
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Khanh Le
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Minh Tien Nguyen
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Quang Tung Thai
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thanh Vu Vo
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | | | - Thi Kim Huyen Dang
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Ngoc Huong Cao
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Thu Van Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Lu Viet Ho
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Menno de Jong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Swaine Chen
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | | | - Juliet E Bryant
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Martin L Hibberd
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| |
Collapse
|
27
|
Yasui Y, Yamaji Y, Sawada A, Ito T, Nakayama T. Cell fusion assay by expression of respiratory syncytial virus (RSV) fusion protein to analyze the mutation of palivizumab-resistant strains. J Virol Methods 2016; 231:48-55. [PMID: 26794681 DOI: 10.1016/j.jviromet.2016.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/11/2015] [Accepted: 01/09/2016] [Indexed: 11/18/2022]
Abstract
Respiratory syncytial virus (RSV) consists of fusion (F), glyco (G), and small hydrophobic (SH) proteins as envelope proteins, and infects through cell fusion. F protein is expressed on the surface of infected cells, and induces cell fusion. In the present report, expression plasmids of the F, G and SH proteins were constructed and cell fusion activity was investigated under T7 RNA polymerase. F protein alone induced cell fusion at a lower concentration than previously reported, and co-expression of F and SH proteins induced cell fusion more efficiently than F protein alone. Palivizumab is the only prophylactic agent against RSV infection. Palivizumab-resistant strains having mutations of the F protein of K272E and S275F were reported. These mutations were introduced into an F-expression plasmid, and exhibited no inhibition of cell fusion with palivizumab. Among the RSV F protein mutants, N276S has been reported to have partial resistance against palivizumab, but the F expression plasmid with the N276S mutation showed a reduction in cell fusion in the presence of palivizumab, showing no resistance to palivizumab. The present expression system was useful for investigating the mechanisms of RSV cell fusion.
Collapse
Affiliation(s)
- Yosuke Yasui
- Keio University, Health Center, 4-1-1 Hiyoshi, Kouhoku, Yokohama, Kanagawa, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Yoshiaki Yamaji
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Akihito Sawada
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Takashi Ito
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| |
Collapse
|
28
|
Murakami K, Matsuura M, Ota M, Gomi Y, Yamanishi K, Mori Y. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity. Vaccine 2015; 33:6085-92. [PMID: 26116253 DOI: 10.1016/j.vaccine.2015.04.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/26/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines.
Collapse
Affiliation(s)
- Kouki Murakami
- Division of Clinical Virology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Kanonji Institute, Seto Center, The Research Foundation for Microbial Diseases of Osaka University, 4-1-70, Seto-cho, Kanonji 768-0065, Kagawa, Japan
| | - Masaaki Matsuura
- Kanonji Institute, Seto Center, The Research Foundation for Microbial Diseases of Osaka University, 4-1-70, Seto-cho, Kanonji 768-0065, Kagawa, Japan
| | - Megumi Ota
- Division of Clinical Virology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yasuyuki Gomi
- Kanonji Institute, Seto Center, The Research Foundation for Microbial Diseases of Osaka University, 4-1-70, Seto-cho, Kanonji 768-0065, Kagawa, Japan
| | - Koichi Yamanishi
- The Research Foundation for Microbial Diseases of Osaka University, 3-1, Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
29
|
Jaberolansar N, Toth I, Young PR, Skwarczynski M. Recent advances in the development of subunit-based RSV vaccines. Expert Rev Vaccines 2015; 15:53-68. [PMID: 26506139 DOI: 10.1586/14760584.2016.1105134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections causing pneumonia and bronchiolitis in infants. RSV also causes serious illness in elderly populations, immunocompromised patients and individuals with pulmonary or cardiac problems. The significant morbidity and mortality associated with RSV infection have prompted interest in RSV vaccine development. In the 1960s, a formalin-inactivated vaccine trial failed to protect children, and indeed enhanced pathology when naturally infected later with RSV. Hence, an alternative approach to traditional killed virus vaccines, which can induce protective immunity without serious adverse events, is desired. Several strategies have been explored in attempts to produce effective vaccine candidates including gene-based and subunit vaccines. Subunit-based vaccine approaches have shown promising efficacy in animal studies and several have reached clinical trials. The current stage of development of subunit-based vaccines against RSV is reviewed in this article.
Collapse
Affiliation(s)
- Noushin Jaberolansar
- a School of Chemistry and Molecular Biosciences , The University of Queensland , St Lucia , Queensland , Australia
| | - Istvan Toth
- a School of Chemistry and Molecular Biosciences , The University of Queensland , St Lucia , Queensland , Australia.,b Institute for Molecular Bioscience , The University of Queensland , St Lucia , Queensland , Australia.,c School of Pharmacy , The University of Queensland , Woolloongabba , Queensland , Australia
| | - Paul R Young
- a School of Chemistry and Molecular Biosciences , The University of Queensland , St Lucia , Queensland , Australia.,b Institute for Molecular Bioscience , The University of Queensland , St Lucia , Queensland , Australia.,d Australian Infectious Diseases Research Centre , The University of Queensland , St Lucia , Queensland , Australia
| | - Mariusz Skwarczynski
- a School of Chemistry and Molecular Biosciences , The University of Queensland , St Lucia , Queensland , Australia
| |
Collapse
|
30
|
Funchal GA, Jaeger N, Czepielewski RS, Machado MS, Muraro SP, Stein RT, Bonorino CBC, Porto BN. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PLoS One 2015; 10:e0124082. [PMID: 25856628 PMCID: PMC4391750 DOI: 10.1371/journal.pone.0124082] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/06/2015] [Indexed: 01/06/2023] Open
Abstract
Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV) is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs) are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.
Collapse
Affiliation(s)
- Giselle A. Funchal
- Clinical and Experimental Immunology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Cellular and Molecular Immunology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Natália Jaeger
- Cellular and Molecular Immunology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rafael S. Czepielewski
- Cellular and Molecular Immunology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Mileni S. Machado
- Clinical and Experimental Immunology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stéfanie P. Muraro
- Clinical and Experimental Immunology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Renato T. Stein
- Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Cristina B. C. Bonorino
- Cellular and Molecular Immunology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Bárbara N. Porto
- Clinical and Experimental Immunology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Wegzyn C, Toh LK, Notario G, Biguenet S, Unnebrink K, Park C, Makari D, Norton M. Safety and Effectiveness of Palivizumab in Children at High Risk of Serious Disease Due to Respiratory Syncytial Virus Infection: A Systematic Review. Infect Dis Ther 2014; 3:133-58. [PMID: 25297809 PMCID: PMC4269625 DOI: 10.1007/s40121-014-0046-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Lower respiratory tract infection (LRTI) is the leading cause of infant mortality globally in post-neonatal infants (i.e., 28-364 days of age). Respiratory syncytial virus (RSV) is the most commonly identified pathogen for infant LRTI and is the second most important cause of death in post-neonatal infants. Despite 50 years of RSV vaccine research, there is still no approved vaccine. Therefore, passive immunity with the monoclonal antibody palivizumab is the sole regulatory-approved option for the prevention of serious LRTI caused by RSV in pediatric patients at high risk of RSV disease. METHODS We conducted a comprehensive systematic literature review of randomized controlled trials (RCTs), open-label non-comparative clinical trials, and prospective observational studies/registries, and summarized the evidence related to the safety, efficacy, and effectiveness of palivizumab. RESULTS The efficacy of palivizumab, as measured by the relative reduction in RSV-related hospitalization rate compared with placebo ranged from 39% to 78% (P < 0.05) in the 2 pivotal RCTs. A meta-analysis of the RSV-related hospitalization rate from 5 randomized placebo-controlled trials yielded an overall odds ratio of 0.41 (95% CI, 0.31-0.55) in favor of palivizumab prophylaxis over placebo (P < 0.00001). Low rates of RSV-related hospitalizations were observed in palivizumab recipients consistently over time in more than 42,000 pediatric subjects across 7 RCTs, 4 open-label non-comparative trials, and 8 observational studies/registries conducted in 34 countries. In addition, among palivizumab-prophylaxed subjects with breakthrough RSV LRTI, rates of intensive care unit admission and mechanical ventilation from RSV hospitalization also were low and consistent across studies. With respect to safety, no differences were observed between palivizumab and placebo in the blinded RCTs. CONCLUSION Rates of RSV hospitalizations and RSV hospitalization-related endpoints in pediatric subjects who received prophylaxis with palivizumab were low and constant over time and across RCTs, open-label non-comparative trials, and observational studies/registries.
Collapse
|
32
|
Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol 2014; 88:10569-83. [PMID: 24990999 DOI: 10.1128/jvi.01503-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. In the present study, we investigated the effect of prophylactic treatment with the intact and F(ab')2 forms of an anti-G protein monoclonal antibody (MAb), 131-2G, on the humoral and cellular adaptive immune responses to RSV rA2-line19F (r19F) challenge in BALB/c mice. The F(ab')2 form of 131-2G does not decrease virus replication, but intact 131-2G does. The serum specimens for antibodies and spleen cells for memory T cell responses to RSV antigens were analyzed at 30, 45, 75, and 95 days postinfection (p.i.) with or without prior treatment with 131-2G. The ratios of Th2 to Th1 antibody isotypes at each time p.i indicated that both forms of MAb 131-2G shifted the subclass response from a Th2 (IgG1 and IgG2b) to a Th1 (IgG2A) bias. The ratio of IgG1 to IgG2A antibody titer was 3-fold to 10-fold higher for untreated than MAb-treated mice. There was also some increase in IgG (22% ± 13% increase) and neutralization (32% increase) in antibodies with MAb 131-2G prophylaxis at 75 days p.i. Treatment with 131-2G significantly (P ≤ 0.001) decreased the percentage of interleukin-4 (IL-4)-positive CD4 and CD8 cells in RSV-stimulated spleen cells at all times p.i., while the percentage of interferon gamma (IFN-γ) T cells significantly (P ≤ 0.001) increased ≥ 75 days p.i. The shift from a Th2- to a Th1-biased T cell response in treated compared to untreated mice likely was directed by the much higher levels of T-box transcription factor (T-bet) (≥ 45% versus <10%) in CD4 and CD8 T cells and lower levels of Gata-3 (≤ 2% versus ≥ 6%) in CD4 T cells in peptide-stimulated, day 75 p.i. spleen cells. These data show that the RSV G protein affects both humoral and cellular adaptive immune responses, and induction of 131-2G-like antibodies might improve the safety and long-term efficacy of an RSV vaccine. IMPORTANCE The data in this report suggest that the RSV G protein not only contributes to disease but also dampens the host immune response to infection. Both effects of G likely contribute to difficulties in achieving an effective vaccine. The ability of MAb 131-2G to block these effects of G suggests that inducing antibodies similar to 131-2G should prevent disease and enhance the adaptive immune response with later RSV infection. The fact that 131-2G binds to the 13-amino-acid region conserved among all strains and that flanking sequences are conserved within group A or group B strains simplifies the task of developing a vaccine to induce 131-2G-like antibodies. If our findings in mice apply to humans, then including the 131-2G binding region of G in a vaccine should improve its safety and efficacy.
Collapse
|
33
|
Cheon IS, Shim BS, Park SM, Choi Y, Jang JE, Jung DI, Kim JO, Chang J, Yun CH, Song MK. Development of safe and effective RSV vaccine by modified CD4 epitope in G protein core fragment (Gcf). PLoS One 2014; 9:e94269. [PMID: 24736750 PMCID: PMC3988050 DOI: 10.1371/journal.pone.0094269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/13/2014] [Indexed: 12/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory tract infection in infants and young children worldwide, but currently no safe and effective vaccine is available. The RSV G glycoprotein (RSVG), a major attachment protein, is an important target for the induction of protective immune responses during RSV infection. However, it has been thought that a CD4+ T cell epitope (a.a. 183–195) within RSVG is associated with pathogenic pulmonary eosinophilia. To develop safe and effective RSV vaccine using RSV G protein core fragment (Gcf), several Gcf variants resulting from modification to CD4+ T cell epitope were constructed. Mice were immunized with each variant Gcf, and the levels of RSV-specific serum IgG were measured. At day 4 post-challenge with RSV subtype A or B, lung viral titers and pulmonary eosinophilia were determined and changes in body weight were monitored. With wild type Gcf derived from RSV A2 (wtAGcf), although RSV A subtype-specific immune responses were induced, vaccine-enhanced disease characterized by excessive pulmonary eosinophil recruitment and body weight loss were evident, whereas wtGcf from RSV B1 (wtBGcf) induced RSV B subtype-specific immune responses without the signs of vaccine-enhanced disease. Mice immunized with Th-mGcf, a fusion protein consisting CD4+ T cell epitope from RSV F (F51–66) conjugated to mGcf that contains alanine substitutions at a.a. position 185 and 188, showed higher levels of RSV-specific IgG response than mice immunized with mGcf. Both wtAGcf and Th-mGcf provided complete protection against RSV A2 and partial protection against RSV B. Importantly, mice immunized with Th-mGcf did not develop vaccine-enhanced disease following RSV challenge. Immunization of Th-mGcf provided protection against RSV infection without the symptom of vaccine-enhanced disease. Our study provides a novel strategy to develop a safe and effective mucosal RSV vaccine by manipulating the CD4+ T cell epitope within RSV G protein.
Collapse
Affiliation(s)
- In Su Cheon
- Laboratory Sciences Division, International Vaccine Institute, Seoul, Republic of Korea
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- World Class University Biomodulation Major and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Byoung-Shik Shim
- Laboratory Sciences Division, International Vaccine Institute, Seoul, Republic of Korea
| | - Sung-Moo Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- World Class University Biomodulation Major and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Youngjoo Choi
- Laboratory Sciences Division, International Vaccine Institute, Seoul, Republic of Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ji Eun Jang
- Laboratory Sciences Division, International Vaccine Institute, Seoul, Republic of Korea
| | - Dae Im Jung
- Laboratory Sciences Division, International Vaccine Institute, Seoul, Republic of Korea
| | - Jae-Ouk Kim
- Laboratory Sciences Division, International Vaccine Institute, Seoul, Republic of Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- World Class University Biomodulation Major and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- * E-mail: (MS); (CHY)
| | - Man Ki Song
- Laboratory Sciences Division, International Vaccine Institute, Seoul, Republic of Korea
- * E-mail: (MS); (CHY)
| |
Collapse
|
34
|
Epidemiological changes of respiratory syncytial virus (RSV) infections in Israel. PLoS One 2014; 9:e90515. [PMID: 24594694 PMCID: PMC3940902 DOI: 10.1371/journal.pone.0090515] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/02/2014] [Indexed: 01/16/2023] Open
Abstract
RSV is the leading cause of lower respiratory-tract infections in infants and therefore demands in-depth epidemiological characterization. We investigated here the distribution of RSV types in Israel between the years 2005–2012. Clinical samples were collected from 11,018 patients hospitalized due to respiratory illnesses and were evaluated for the presence of various respiratory viruses, including RSV A and RSV B. Until 2008, each year was characterized by the presence of one dominant type of RSV. However, from 2008, both RSV A and B types were detected at significant levels, particularly among infants aged 0–2 years. Furthermore, significant changes in the RSV A and RSV B subtypes circulating in Israel since 2008 were observed. Finally, we demonstrate that, irrespectively of the changes observed in RSV epidemiology, when the pandemic H1N1pdm09 influenza virus appeared in 2009, RSV infections were delayed and were detected when infection with H1N1pdm09 had declined.
Collapse
|
35
|
Robinson MJ, Tan CS, Fenwick F, Chambers CJ, Routledge EG, Toms GL. Generation and epitope mapping of a sub-group cross-reactive anti-respiratory syncytial virus G glycoprotein monoclonal antibody which is protective in vivo. J Med Virol 2014; 86:1267-77. [PMID: 24415460 DOI: 10.1002/jmv.23881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2013] [Indexed: 11/07/2022]
Abstract
Passively administered antibodies to conserved epitopes on the attachment (G) glycoprotein of human respiratory syncytial virus (hRSV) have potential in the immunoprophylaxis of human infections. This study set out to generate monoclonal antibodies (MAbs) recognizing all prevalent lineages of HRSV and capable of immunoprophylaxis in mice. Two murine MAbs of broad specificity for prevalent virus strains were generated by immunization of mice with hRSV of sub-group A followed by selection of hybridomas on recombinant G glycoprotein from a sub-group B virus. The anti-G hybridomas generated secreted antibody of high affinity but negligible neutralizing capacity one of which was tested in mice and found to be protective against live virus challenge. Western blotting and partial epitope mapping on transiently expressed G-glycoprotein fragments indicate that these antibodies recognize a complex epitope on the protein backbone of the molecule involving residues both C'- and N-terminal to the central conserved motif.
Collapse
Affiliation(s)
- Mark J Robinson
- Institute of Cellular Medicine, The Medical School, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Jorquera PA, Choi Y, Oakley KE, Powell TJ, Boyd JG, Palath N, Haynes LM, Anderson LJ, Tripp RA. Nanoparticle vaccines encompassing the respiratory syncytial virus (RSV) G protein CX3C chemokine motif induce robust immunity protecting from challenge and disease. PLoS One 2013; 8:e74905. [PMID: 24040360 PMCID: PMC3769300 DOI: 10.1371/journal.pone.0074905] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/06/2013] [Indexed: 01/03/2023] Open
Abstract
Nanoparticle vaccines were produced using layer-by-layer fabrication and incorporating respiratory syncytial virus (RSV) G protein polypeptides comprising the CX3C chemokine motif. BALB/c mice immunized with G protein nanoparticle vaccines produced a neutralizing antibody response that inhibited RSV replication in the lungs following RSV challenge. ELISPOT analysis showed that G nanoparticle vaccinated mice had increased levels of RSV G protein-specific IL-4 and IFN-γ secreting cells compared to controls following RSV challenge. Remarkably, RSV challenge of G protein nanoparticle vaccinated mice resulted in increased RSV M2-specific IL-4 and IFN-γ secreting T cells, and increased M2-specific H-2Kd-tetramer positive CD8+ T cells in the lungs compared to controls. Cell type analysis showed vaccination was not associated with increased pulmonary eosinophilia following RSV challenge. These results demonstrate that vaccination of mice with the RSV G protein nanoparticle vaccines induces a potent neutralizing antibody response, increased G protein- and M2- specific T cell responses, and a reduction in RSV disease pathogenesis.
Collapse
Affiliation(s)
- Patricia A. Jorquera
- Department of Infectious Disease, University of Georgia, Athens, Georgia, United States of America
| | - Youngjoo Choi
- Department of Infectious Disease, University of Georgia, Athens, Georgia, United States of America
| | - Katie E. Oakley
- Department of Infectious Disease, University of Georgia, Athens, Georgia, United States of America
| | - Thomas J. Powell
- Artificial Cell Technologies, New Haven, Connecticut, United States of America
| | - James G. Boyd
- Artificial Cell Technologies, New Haven, Connecticut, United States of America
| | - Naveen Palath
- Artificial Cell Technologies, New Haven, Connecticut, United States of America
| | - Lia M. Haynes
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Larry J. Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ralph A. Tripp
- Department of Infectious Disease, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Anderson LJ. Respiratory syncytial virus vaccine development. Semin Immunol 2013; 25:160-71. [PMID: 23778071 DOI: 10.1016/j.smim.2013.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/03/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
Abstract
The importance of RSV as a respiratory pathogen in young children made it a priority for vaccine development shortly after it was discovered. Unfortunately, after over 50 years of vaccine development no vaccine has yet been licensed and it is not certain which if any vaccines being developed will be successful. The first candidate vaccine, a formalin inactivated RSV vaccine (FI-RSV), was tested in children in the 1960s and predisposed young recipients to more serious disease with later natural infection. The ongoing challenges in developing RSV vaccines are balanced by advances in our understanding of the virus, the host immune response to vaccines and infection, and pathogenesis of disease. It seems likely that with efficient and appropriately focused effort a safe and effective vaccine is within reach. There are at least 4 different target populations for an RSV vaccine, i.e. the RSV naïve young infant, the RSV naïve infant >4-6 months of age, pregnant women, and elderly adults. Each target population has different issues related to vaccine development. Numerous vaccines from live attenuated RSV to virus like particle vaccines have been developed and evaluated in animals. Very few vaccines have been studied in humans and studies in humans are needed to determine which vaccines are worth moving toward licensure. Some changes in the approach may improve the efficiency of evaluating candidate vaccines. The complexity of the challenges for developing RSV vaccines suggests that collaboration among academic, government, and funding institutions and industry is needed to most efficiently achieve an RSV vaccine.
Collapse
Affiliation(s)
- Larry J Anderson
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, United States.
| |
Collapse
|
38
|
Molecular epidemiology and phylodynamics of the human respiratory syncytial virus fusion protein in northern Taiwan. PLoS One 2013; 8:e64012. [PMID: 23734183 PMCID: PMC3667090 DOI: 10.1371/journal.pone.0064012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/08/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND AIMS The glycoprotein (G protein) and fusion protein (F protein) of respiratory syncytial virus (RSV) both show genetic variability, but few studies have examined the F protein gene. This study aimed to characterize the molecular epidemiology and phylodynamics of the F protein gene in clinical RSV strains isolated in northern Taiwan from 2000-2011. METHODS RSV isolates from children presenting with acute respiratory symptoms between July 2000 and June 2011 were typed based on F protein gene sequences. Phylogeny construction and evaluation were performed using the neighbor-joining (NJ) and maximum likelihood (ML) methods. Phylodynamic patterns in RSV F protein genes were analyzed using the Bayesian Markov Chain Monte Carlo framework. Selection pressure on the F protein gene was detected using the Datamonkey website interface. RESULTS From a total of 325 clinical RSV strains studied, phylogenetic analysis showed that 83 subgroup A strains (RSV-A) could be further divided into three clusters, whereas 58 subgroup B strains (RSV-B) had no significant clustering. Three amino acids were observed to differ between RSV-A and -B (positions 111, 113, and 114) in CTL HLA-B*57- and HLA-A*01-restricted epitopes. One positive selection site was observed in RSV-B, while none was observed in RSV-A. The evolution rate of the virus had very little change before 2000, then slowed down between 2000 and 2005, and evolved significantly faster after 2005. The dominant subtypes of RSV-A in each epidemic were replaced by different subtypes in the subsequent epidemic. CONCLUSIONS Before 2004, RSV-A infections were involved in several small epidemics and only very limited numbers of strains evolved and re-emerged in subsequent years. After 2005, the circulating RSV-A strains were different from those of the previous years and continued evolving through 2010. Phylodynamic pattern showed the evolutionary divergence of RSV increased significantly in the recent 5 years in northern Taiwan.
Collapse
|
39
|
Garg R, Shrivastava P, van Drunen Littel-van den Hurk S. The role of dendritic cells in innate and adaptive immunity to respiratory syncytial virus, and implications for vaccine development. Expert Rev Vaccines 2013; 11:1441-57. [PMID: 23252388 DOI: 10.1586/erv.12.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Respiratory syncytial virus (RSV) is a common human pathogen that causes cold-like symptoms in most healthy adults and children. However, RSV often moves into the lower respiratory tract in infants and young children predisposed to respiratory illness, making it the most common cause of pediatric broncheolitis and pneumonia. The development of an appropriate balanced immune response is critical for recovery from RSV, while an unbalanced and/or excessively vigorous response may lead to immunopathogenesis. Different dendritic cell (DC) subsets influence the magnitude and quality of the host response to RSV infection, with myeloid DCs mediating and plasmacytoid DCs modulating immunopathology. Furthermore, stimulation of DCs through Toll-like receptors is essential for induction of protective immunity to RSV. These characteristics have implications for the rational design of a RSV vaccine.
Collapse
Affiliation(s)
- Ravendra Garg
- VIDO-Intervac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | | | | |
Collapse
|
40
|
|
41
|
Abstract
Respiratory syncytial virus (RSV) is one of the most clinically important viruses infecting young children, the elderly, and the immunocompromised. Over the past decade, the most significant advance in the prevention of RSV disease has been the development of high-titered antibody products. Infection control is the only other strategy to prevent RSV disease. A humanized monoclonal antibody directed against the fusion (F) protein palivizumab, (Synagis®, MedImmune, Inc., Gaithersburg, MD), is given routinely on a monthly basis to premature infants and young children less than 24 months of age with underlying medical problems including prematurity, chronic lung disease, or cardiac disease to prevent RSV disease and hospitalization. Other products utilizing polyclonal or monoclonal antibodies or antibody fragments against the F protein have been developed and some already tested in patient populations. The only licensed antiviral treatment available today is ribavirin, a guanosine analogue generally administered as a small particle aerosol to immunocompromised patients with lower respiratory tract disease due to RSV. This drug has also been utilized in oral and intravenous forms, again mainly in immunocompromised patients. Promising new antiviral agents under development by multiple pharmaceutical and biotechnology companies include small molecule fusion inhibitors, attachment inhibitors, inhibitors of RNA synthesis, and small interfering RNA particles (siRNA).
Collapse
|
42
|
Melero JA, Moore ML. Influence of respiratory syncytial virus strain differences on pathogenesis and immunity. Curr Top Microbiol Immunol 2013; 372:59-82. [PMID: 24362684 DOI: 10.1007/978-3-642-38919-1_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular epidemiology studies have provided convincing evidence of antigenic and sequence variability among respiratory syncytial virus (RSV) isolates. Circulating viruses have been classified into two antigenic groups (A and B) that correlate with well-delineated genetic groups. Most sequence and antigenic differences (both inter- and intra-groups) accumulate in two hypervariable segments of the G-protein gene. Sequences of the G gene have been used for phylogenetic analyses. These studies have shown a worldwide distribution of RSV strains with both local and global replacement of dominant viruses with time. Although data are still limited, there is evidence that strain variation may contribute to differences in pathogenicity. In addition, there is some but limited evidence that RSV variation may be, at least partially, immune (antibody) driven. However, there is the paradox in RSV that, in contrast to other viruses (e.g., influenza viruses) the epitopes recognized by the most effective RSV-neutralizing antibodies are highly conserved. In contrast, antibodies that recognize strain-specific epitopes are poorly neutralizing. It is likely that this apparent contradiction is due to the lack of a comprehensive knowledge of the duration and specificities of the human antibody response against RSV antigens. Since there are some data supporting a group- (or clade-) specific antibody response after a primary infection in humans, it may be wise to consider the incorporation of strains representative of groups A and B (or their antigens) in future RSV vaccine development.
Collapse
Affiliation(s)
- José A Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain,
| | | |
Collapse
|
43
|
Caidi H, Harcourt JL, Tripp RA, Anderson LJ, Haynes LM. Combination therapy using monoclonal antibodies against respiratory syncytial virus (RSV) G glycoprotein protects from RSV disease in BALB/c mice. PLoS One 2012; 7:e51485. [PMID: 23300550 PMCID: PMC3531420 DOI: 10.1371/journal.pone.0051485] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/02/2012] [Indexed: 02/03/2023] Open
Abstract
Therapeutic options to control respiratory syncytial virus (RSV) are limited, thus development of new therapeutics is high priority. Previous studies with a monoclonal antibody (mAb) reactive to an epitope proximal to the central conserved region (CCR) of RSV G protein (mAb 131-2G) showed therapeutic efficacy for reducing pulmonary inflammation RSV infection in BALB/c mice. Here, we show a protective effect in RSV-infected mice therapeutically treated with a mAb (130-6D) reactive to an epitope within the CCR of G protein, while treatment with a mAb specific for a carboxyl G protein epitope had no effect. Combined treatment with mAbs 130-6D and 131-2G significantly decreased RSV-associated pulmonary inflammation compared to either antibody alone. The results suggest that anti-RSV G protein mAbs that react at or near the CCR and can block RSV G protein-mediated activities are effective at preventing RSV disease and may be an effective strategy for RSV therapeutic treatment.
Collapse
Affiliation(s)
- Hayat Caidi
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Jennifer L. Harcourt
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Ralph A. Tripp
- College of Veterinary Medicine, Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Larry J. Anderson
- Division of Pediatric Infectious Diseases, Emory Children’s Center, Atlanta, Georgia, United States of America
| | - Lia M. Haynes
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Xiao S, Nayak B, Samuel A, Paldurai A, Kanabagattebasavarajappa M, Prajitno TY, Bharoto EE, Collins PL, Samal SK. Generation by reverse genetics of an effective, stable, live-attenuated newcastle disease virus vaccine based on a currently circulating, highly virulent Indonesian strain. PLoS One 2012; 7:e52751. [PMID: 23285174 PMCID: PMC3528709 DOI: 10.1371/journal.pone.0052751] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/21/2012] [Indexed: 12/01/2022] Open
Abstract
Newcastle disease virus (NDV) can cause severe disease in chickens. Although NDV vaccines exist, there are frequent reports of outbreaks in vaccinated chickens. During 2009–2010, despite intense vaccination, NDV caused major outbreaks among commercial poultry farms in Indonesia. These outbreaks raised concern regarding the protective immunity of current vaccines against circulating virulent strains in Indonesia. In this study, we investigated whether a recombinant attenuated Indonesian NDV strain could provide better protection against prevalent Indonesian viruses. A reverse genetics system for the highly virulent NDV strain Banjarmasin/010/10 (Ban/010) isolated in Indonesia in 2010 was constructed. The Ban/010 virus is classified in genotype VII of class II NDV, which is genetically distinct from the commercial vaccine strains B1 and LaSota, which belong to genotype II, and shares only 89 and 87% amino acid identity for the protective antigens F and HN, respectively. A mutant virus, named Ban/AF, was developed in which the virulent F protein cleavage site motif “RRQKR↓F” was modified to an avirulent motif “GRQGR↓L” by three amino acid substitutions (underlined). The Ban/AF vaccine virus did not produce syncytia or plaques in cell culture, even in the presence of added protease. Pathogenicity tests showed that Ban/AF was completely avirulent. Ban/AF replicated efficiently during 10 consecutive passages in chickens and remained genetically stable. Serological analysis showed that Ban/AF induced higher neutralization and hemagglutination inhibition antibody titers against the prevalent viruses than the commercial vaccines B1 or LaSota. Both Ban/AF and commercial vaccines provided protection against clinical disease and mortality after challenge with virulent NDV strain Ban/010 (genotype VII) or GB Texas (genotype II). However, Ban/AF significantly reduced challenge virus shedding from the vaccinated birds compared to B1 vaccine. These results suggest that Ban/AF can provide better protection than commercial vaccines and is a promising vaccine candidate against NDV strains circulating in Indonesia.
Collapse
Affiliation(s)
- Sa Xiao
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Baibaswata Nayak
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Arthur Samuel
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | | | | | | | - Peter L. Collins
- Laboratory of infectious diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, United States of America
| | - Siba K. Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Rallabhandi P, Phillips RL, Boukhvalova MS, Pletneva LM, Shirey KA, Gioannini TL, Weiss JP, Chow JC, Hawkins LD, Vogel SN, Blanco JCG. Respiratory syncytial virus fusion protein-induced toll-like receptor 4 (TLR4) signaling is inhibited by the TLR4 antagonists Rhodobacter sphaeroides lipopolysaccharide and eritoran (E5564) and requires direct interaction with MD-2. mBio 2012; 3:e00218-12. [PMID: 22872782 PMCID: PMC3419526 DOI: 10.1128/mbio.00218-12] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 11/26/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2(-/-) macrophages, where MD-2(-/-) macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4-CD14-MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology. IMPORTANCE This study shows for the first time that the fusion (F) protein of respiratory syncytial virus (RSV), a major cause of bronchiolitis and death, particularly in infants and young children, physically interacts with the Toll-like receptor 4 (TLR4) coreceptor, MD-2, through its N-terminal domain. We show that F protein-induced TLR4 activation can be blocked by lipid A analog antagonists. This observation provides a strong experimental rationale for testing such antagonists in animal models of RSV infection for potential use in people.
Collapse
Affiliation(s)
- Prasad Rallabhandi
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Choi Y, Mason CS, Jones LP, Crabtree J, Jorquera PA, Tripp RA. Antibodies to the central conserved region of respiratory syncytial virus (RSV) G protein block RSV G protein CX3C-CX3CR1 binding and cross-neutralize RSV A and B strains. Viral Immunol 2012; 25:193-203. [PMID: 22551066 DOI: 10.1089/vim.2011.0094] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a primary cause of severe lower respiratory tract disease in infants, young children, and the elderly worldwide, and despite decades of effort, there remains no safe and effective vaccine. RSV modifies the host immune response during infection by CX3C chemokine mimicry adversely affecting pulmonary leukocyte chemotaxis and CX3CR1+ RSV-specific T-cell responses. In this study we investigated whether immunization of mice with RSV G protein polypeptides from strain A2 could induce antibodies that block G protein-CX3CR1 interactions of both RSV A and B strains. The results show that mice immunized with RSV A2 G polypeptides generate antibodies that block binding of RSV A2 and B1 native G proteins to CX3CR1, and that these antibodies effectively cross-neutralize both A and B strains of RSV. These findings suggest that vaccines that induce RSV G protein-CX3CR1 blocking antibodies may provide a disease intervention strategy in the efforts to develop safe and efficacious RSV vaccines.
Collapse
Affiliation(s)
- Youngjoo Choi
- College of Veterinary Medicine, Department of Infectious Disease, University of Georgia, Athens, Georgia, USA
| | | | | | | | | | | |
Collapse
|
47
|
Selection and characterization of human respiratory syncytial virus escape mutants resistant to a polyclonal antiserum raised against the F protein. Arch Virol 2012; 157:1071-80. [PMID: 22411099 DOI: 10.1007/s00705-012-1274-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/02/2012] [Indexed: 10/28/2022]
Abstract
A human respiratory syncytial virus (HRSV) neutralization escape mutant was obtained after 56 serial passages in the presence of a polyclonal antiserum raised against the F protein. Nucleotide sequence analysis of this escape mutant virus revealed two amino acid substitutions: Asn268Ile and Val533Met. When this virus was allowed to grow in the absence of the anti-F polyclonal serum, only the mutation Asn268Ile was stably maintained. Both the double and single escape mutant viruses lost reactivity with mAbs belonging to antigenic site II of the fusion protein of RSV. Mutation Asn268Ile has already been reported in RS viruses that are resistant to mAbs 47F and 11 and palivizumab (PZ). We have thus identified a novel mutation (Val533Met) in the transmembrane domain of the F protein that was selected under immune pressure.
Collapse
|
48
|
Kim S, Joo DH, Lee JB, Shim BS, Cheon IS, Jang JE, Song HH, Kim KH, Song MK, Chang J. Dual role of respiratory syncytial virus glycoprotein fragment as a mucosal immunogen and chemotactic adjuvant. PLoS One 2012; 7:e32226. [PMID: 22384186 PMCID: PMC3288084 DOI: 10.1371/journal.pone.0032226] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 01/25/2012] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine to prevent RSV infection. The G glycoprotein of RSV, a major attachment protein, is a potentially important target for protective antiviral immune responses and has been shown to exhibit chemotactic activity through CX3C mimicry. Here, we show that sublingual or intranasal immunization of a purified G protein fragment of amino acids from 131 to 230, designated Gcf, induces strong serum IgG and mucosal IgA responses. Interestingly, these antibody responses could be elicited by Gcf even in the absence of any adjuvant, indicating a novel self-adjuvanting property of our vaccine candidate. Gcf exhibited potent chemotactic activity in in vitro cell migration assay and cysteine residues are necessary for chemotactic activity and self-adjuvanticity of Gcf in vivo. Mucosal immunization with Gcf also provides protection against RSV challenge without any significant lung eosinophilia or vaccine-induced weight loss. Together, our data demonstrate that mucosal administration of Gcf vaccine elicits beneficial protective immunity and represents a promising vaccine regimen preventing RSV infection.
Collapse
Affiliation(s)
- Sol Kim
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Dong-Hyun Joo
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Jee-Boong Lee
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Byoung-Shik Shim
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - In Su Cheon
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Ji-Eun Jang
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Ho-Hyun Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Kyung-Hyo Kim
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Man Ki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
- * E-mail: (JC); (MKS)
| | - Jun Chang
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- * E-mail: (JC); (MKS)
| |
Collapse
|
49
|
Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 2011; 162:80-99. [PMID: 21963675 PMCID: PMC3221877 DOI: 10.1016/j.virusres.2011.09.020] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Human respiratory syncytial virus (RSV) is a ubiquitous pathogen that infects everyone worldwide early in life and is a leading cause of severe lower respiratory tract disease in the pediatric population as well as in the elderly and in profoundly immunosuppressed individuals. RSV is an enveloped, nonsegmented negative-sense RNA virus that is classified in Family Paramyxoviridae and is one of its more complex members. Although the replicative cycle of RSV follows the general pattern of the Paramyxoviridae, it encodes additional proteins. Two of these (NS1 and NS2) inhibit the host type I and type III interferon (IFN) responses, among other functions, and another gene encodes two novel RNA synthesis factors (M2-1 and M2-2). The attachment (G) glycoprotein also exhibits unusual features, such as high sequence variability, extensive glycosylation, cytokine mimicry, and a shed form that helps the virus evade neutralizing antibodies. RSV is notable for being able to efficiently infect early in life, with the peak of hospitalization at 2-3 months of age. It also is notable for the ability to reinfect symptomatically throughout life without need for significant antigenic change, although immunity from prior infection reduces disease. It is widely thought that re-infection is due to an ability of RSV to inhibit or subvert the host immune response. Mechanisms of viral pathogenesis remain controversial. RSV is notable for a historic, tragic pediatric vaccine failure involving a formalin-inactivated virus preparation that was evaluated in the 1960s and that was poorly protective and paradoxically primed for enhanced RSV disease. RSV also is notable for the development of a successful strategy for passive immunoprophylaxis of high-risk infants using RSV-neutralizing antibodies. Vaccines and new antiviral drugs are in pre-clinical and clinical development, but controlling RSV remains a formidable challenge.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antiviral Agents/administration & dosage
- Child
- Communicable Disease Control/organization & administration
- Cytokines/immunology
- Humans
- Immunity, Innate
- Infant
- RNA, Viral/genetics
- RNA, Viral/immunology
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - José A. Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
50
|
Whole genome sequencing and evolutionary analysis of human respiratory syncytial virus A and B from Milwaukee, WI 1998-2010. PLoS One 2011; 6:e25468. [PMID: 21998661 PMCID: PMC3188560 DOI: 10.1371/journal.pone.0025468] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/05/2011] [Indexed: 01/24/2023] Open
Abstract
Background Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory-tract infections in infants and young children worldwide. Despite this, only six complete genome sequences of original strains have been previously published, the most recent of which dates back 35 and 26 years for RSV group A and group B respectively. Methodology/Principal Findings We present a semi-automated sequencing method allowing for the sequencing of four RSV whole genomes simultaneously. We were able to sequence the complete coding sequences of 13 RSV A and 4 RSV B strains from Milwaukee collected from 1998–2010. Another 12 RSV A and 5 RSV B strains sequenced in this study cover the majority of the genome. All RSV A and RSV B sequences were analyzed by neighbor-joining, maximum parsimony and Bayesian phylogeny methods. Genetic diversity was high among RSV A viruses in Milwaukee including the circulation of multiple genotypes (GA1, GA2, GA5, GA7) with GA2 persisting throughout the 13 years of the study. However, RSV B genomes showed little variation with all belonging to the BA genotype. For RSV A, the same evolutionary patterns and clades were seen consistently across the whole genome including all intergenic, coding, and non-coding regions sequences. Conclusions/Significance The sequencing strategy presented in this work allows for RSV A and B genomes to be sequenced simultaneously in two working days and with a low cost. We have significantly increased the amount of genomic data that is available for both RSV A and B, providing the basic molecular characteristics of RSV strains circulating in Milwaukee over the last 13 years. This information can be used for comparative analysis with strains circulating in other communities around the world which should also help with the development of new strategies for control of RSV, specifically vaccine development and improvement of RSV diagnostics.
Collapse
|