1
|
Conte M, Xella A, Woodall RT, Cassady KA, Branciamore S, Brown CE, Rockne RC. CAR T-cell and oncolytic virus dynamics and determinants of combination therapy success for glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634499. [PMID: 39896563 PMCID: PMC11785192 DOI: 10.1101/2025.01.23.634499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Glioblastoma is a highly aggressive and treatment-resistant primary brain cancer. While chimeric antigen receptor (CAR) T-cell therapy has demonstrated promising results in targeting these tumors, it has not yet been curative. An innovative approach to improve CAR T-cell efficacy is to combine them with other immune modulating therapies. In this study, we investigate in vitro combination of IL-13Rα2 targeted CAR T-cells with an oncolytic virus (OV) and study the complex interplay between tumor cells, CAR T-cells, and OV dynamics with a novel mathematical model. We fit the model to data collected from experiments with each therapy individually and in combination to reveal determinants of therapy synergy and improved efficacy. Our analysis reveals that the virus bursting size is a critical parameter in determining the net tumor infection rate and overall combination treatment efficacy. Moreover, the model predicts that administering the oncolytic virus simultaneously with, or prior to, CAR T-cells could maximize therapeutic efficacy.
Collapse
Affiliation(s)
- Martina Conte
- Department of Mathematical, Physical and Computer Sciences, University of Parma Parco Area delle Scienze 53/A, 43124, Parma, Italy
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Agata Xella
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute Tampa, Florida, United States of America
| | - Ryan T. Woodall
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Kevin A. Cassady
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital Columbus, Ohio, United States of America
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus Ohio, United States of America
| | - Sergio Branciamore
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Christine E. Brown
- Departments of Hematology & Hematopoietic Cell Transplantation and Immuno–Oncology Beckman Research Institute, City of Hope National Medical Center Duarte, California, United States of America
| | - Russell C. Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| |
Collapse
|
2
|
Odidika S, Pirkl M, Lengauer T, Schommers P. Current methods for detecting and assessing HIV-1 antibody resistance. Front Immunol 2025; 15:1443377. [PMID: 39835119 PMCID: PMC11743526 DOI: 10.3389/fimmu.2024.1443377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Antiretroviral therapy is the standard treatment for HIV, but it requires daily use and can cause side effects. Despite being available for decades, there are still 1.5 million new infections and 700,000 deaths each year, highlighting the need for better therapies. Broadly neutralizing antibodies (bNAbs), which are highly active against HIV-1, represent a promising new approach and clinical trials have demonstrated the potential of bNAbs in the treatment and prevention of HIV-1 infection. However, HIV-1 antibody resistance (HIVAR) due to variants in the HIV-1 envelope glycoproteins (HIV-1 Env) is not well understood yet and poses a critical problem for the clinical use of bNAbs in treatment. HIVAR also plays an important role in the future development of an HIV-1 vaccine, which will require elicitation of bNAbs to which the circulating strains are sensitive. In recent years, a variety of methods have been developed to detect, characterize and predict HIVAR. Structural analysis of antibody-HIV-1 Env complexes has provided insight into viral residues critical for neutralization, while testing of viruses for antibody susceptibility has verified the impact of some of these residues. In addition, in vitro viral neutralization and adaption assays have shaped our understanding of bNAb susceptibility based on the envelope sequence. Furthermore, in vivo studies in animal models have revealed the rapid emergence of escape variants to mono- or combined bNAb treatments. Finally, similar variants were found in the first clinical trials testing bNAbs for the treatment of HIV-1-infected patients. These structural, in vitro, in vivo and clinical studies have led to the identification and validation of HIVAR for almost all available bNAbs. However, defined assays for the detection of HIVAR in patients are still lacking and for some novel, highly potent and broad-spectrum bNAbs, HIVAR have not been clearly defined. Here, we review currently available approaches for the detection, characterization and prediction of HIVAR.
Collapse
Affiliation(s)
- Stanley Odidika
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
| | - Martin Pirkl
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Lengauer
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Informatics and Saarland Informatics Campus, Saarbrücken, Germany
| | - Philipp Schommers
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
| |
Collapse
|
3
|
Nagashima S, Primadharsini PP, Takahashi M, Nishiyama T, Murata K, Okamoto H. Role of Rab13, Protein Kinase A, and Zonula Occludens-1 in Hepatitis E Virus Entry and Cell-to-Cell Spread: Comparative Analysis of Quasi-Enveloped and Non-Enveloped Forms. Pathogens 2024; 13:1130. [PMID: 39770389 PMCID: PMC11678111 DOI: 10.3390/pathogens13121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatitis E virus (HEV) exists in two distinct forms: a non-enveloped form (neHEV), which is present in feces and bile, and a quasi-enveloped form (eHEV), found in circulating blood and culture supernatants. This study aimed to elucidate the roles of Ras-associated binding 13 (Rab13) and protein kinase A (PKA) in the entry mechanisms of both eHEV and neHEV, utilizing small interfering RNA (siRNA) and chemical inhibitors. The results demonstrated that the entry of both viral forms is dependent on Rab13 and PKA. Further investigation into the involvement of tight junction (TJ) proteins revealed that the targeted knockdown of zonula occludens-1 (ZO-1) significantly impaired the entry of both eHEV and neHEV. In addition, in ZO-1 knockout (KO) cells inoculated with either viral form, HEV RNA levels in culture supernatants did not increase, even up to 16 days post-inoculation. Notably, the absence of ZO-1 did not affect the adsorption efficiency of eHEV or neHEV, nor did it influence HEV RNA replication. In cell-to-cell spread assays, ZO-1 KO cells inoculated with eHEV showed a lack of expression of HEV ORF2 and ORF3 proteins. In contrast, neHEV-infected ZO-1 KO cells showed markedly reduced ORF2 and ORF3 protein expression within virus-infected foci, compared to non-targeting knockout (NC KO) cells. These findings underscore the crucial role of ZO-1 in facilitating eHEV entry and mediating the cell-to-cell spread of neHEV in infected cells.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| | | | | | | | | | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| |
Collapse
|
4
|
Troshkina AA, Klochkov VV, Bikmullin AG, Klochkova EA, Blokhin DS. 1H, 13C, and 15N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy. BIOMOLECULAR NMR ASSIGNMENTS 2024:10.1007/s12104-024-10209-y. [PMID: 39612117 DOI: 10.1007/s12104-024-10209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
It has been shown that human seminal fluid is a major factor in enhancing HIV activity. The SEM2(49-107) peptide is a product of cleavage after ejaculation by internal prostheses of the semenogelin 2 protein, expressed in seminal vesicles. It is established that the peptide SEM2(49-107) forms amyloid fibrils, which increase probability of contracting HIV infection. In this nuclear magnetic resonance (NMR) study, we present almost complete (86%) resonance assignments for the 1H 15N and 13C atoms of the backbone and side-chain of the SEM2(49-107) peptide (BioMagResBank accession number 52356). The secondary structure of SEM2(49-107) peptide was estimated by using two approaches, secondary chemical shifts analysis (CSI) and TALOS-N prediction. Analysis of the secondary structure of the SEM2(49-107) peptide using both methods revealed that the peptide contains helical segments at the C-terminus. Also in this work, we used phase-sensitive 2D HSQC 1H- 15N experiments measuring longitudinal T1 and transverse T2 NMR relaxation times to report predicted secondary structure and backbone dynamics of the SEM2(49-107) peptide. This resonance assignment will form the basis of future NMR research, contributing to a better understanding of the peptide structure and internal dynamics of the molecule.
Collapse
Affiliation(s)
- Anastasia A Troshkina
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420008, Russia.
| | - Vladimir V Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420008, Russia
| | - Aydar G Bikmullin
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia
| | - Evelina A Klochkova
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia
| | - Dmitriy S Blokhin
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420008, Russia
| |
Collapse
|
5
|
Zeglinski K, Montellese C, Ritchie ME, Alhamdoosh M, Vonarburg C, Bowden R, Jordi M, Gouil Q, Aeschimann F, Hsu A. An optimized protocol for quality control of gene therapy vectors using nanopore direct RNA sequencing. Genome Res 2024; 34:1966-1975. [PMID: 39467647 DOI: 10.1101/gr.279405.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
Despite recent advances made toward improving the efficacy of lentiviral gene therapies, a sizeable proportion of produced vector contains an incomplete and thus potentially nonfunctional RNA genome. This can undermine gene delivery by the lentivirus as well as increase manufacturing costs and must be improved to facilitate the widespread clinical implementation of lentiviral gene therapies. Here, we compare three long-read sequencing technologies for their ability to detect issues in vector design and determine nanopore direct RNA sequencing to be the most powerful. We show how this approach identifies and quantifies incomplete RNA caused by cryptic splicing and polyadenylation sites, including a potential cryptic polyadenylation site in the widely used Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE). Using artificial polyadenylation of the lentiviral RNA, we also identify multiple hairpin-associated truncations in the analyzed lentiviral vectors (LVs), which account for most of the detected RNA fragments. Finally, we show that these insights can be used for the optimization of LV design. In summary, nanopore direct RNA sequencing is a powerful tool for the quality control and optimization of LVs, which may help to improve lentivirus manufacturing and thus the development of higher quality lentiviral gene therapies.
Collapse
Affiliation(s)
- Kathleen Zeglinski
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia;
| | - Christian Montellese
- CSL Behring, Research, CH-3014 Bern, Switzerland
- Swiss Institute for Translational Medicine, sitem-insel, 3010 Bern, Switzerland
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Monther Alhamdoosh
- Research Data Science Group, R&D, CSL, Parkville, Victoria 3000, Australia
| | - Cédric Vonarburg
- CSL Behring, Research, CH-3014 Bern, Switzerland
- Swiss Institute for Translational Medicine, sitem-insel, 3010 Bern, Switzerland
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Monika Jordi
- CSL Behring, Research, CH-3014 Bern, Switzerland
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Florian Aeschimann
- CSL Behring, Research, CH-3014 Bern, Switzerland
- Swiss Institute for Translational Medicine, sitem-insel, 3010 Bern, Switzerland
| | - Arthur Hsu
- Research Data Science Group, R&D, CSL, Parkville, Victoria 3000, Australia
| |
Collapse
|
6
|
Deng J, Shu H, Wang L, Zou X. Modeling virus-stimulated proliferation of CD4 + T-cell, cell-to-cell transmission and viral loss in HIV infection dynamics. Math Biosci 2024; 377:109302. [PMID: 39276975 DOI: 10.1016/j.mbs.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Human immunodeficiency virus (HIV) can persist in infected individuals despite prolonged antiretroviral therapy and it may spread through two modes: virus-to-cell and cell-to-cell transmissions. Understanding viral infection dynamics is pivotal for elucidating HIV pathogenesis. In this study, we incorporate the loss term of virions, and both virus-to-cell and cell-to-cell infection modes into a within-host HIV model, which also takes into consideration the proliferation of healthy target cells stimulated by free viruses. By constructing suitable Lyapunov function and applying geometric methods, we establish global stability results of the infection free equilibrium and the infection persistent equilibrium, respectively. Our findings highlight the crucial role of the basic reproduction number in the threshold dynamics. Moreover, we use the loss rate of virions as the bifurcation parameter to investigate stability switches of the positive equilibrium, local Hopf bifurcation, and its global continuation. Numerical simulations validate our theoretical results, revealing rich viral dynamics including backward bifurcation, saddle-node bifurcation, and bistability phenomenon in the sense that the infection free equilibrium and a limit cycle are both locally asymptotically stable. These insights contribute to a deeper understanding of HIV dynamics and inform the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Deng
- School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hongying Shu
- School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Lin Wang
- Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Xingfu Zou
- Department of Mathematics, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
7
|
Lou E, Vérollet C, Winkler F, Zurzolo C, Valdebenito-Silva S, Eugenin E. Tunneling nanotubes and tumor microtubes-Emerging data on their roles in intercellular communication and pathophysiology: Summary of an International FASEB Catalyst Conference October 2023. FASEB J 2024; 38:e23514. [PMID: 38466151 DOI: 10.1096/fj.202302551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
In the past decade, there has been a steady rise in interest in studying novel cellular extensions and their potential roles in facilitating human diseases, including neurologic diseases, viral infectious diseases, cancer, and others. One of the exciting new aspects of this field is improved characterization and understanding of the functions and potential mechanisms of tunneling nanotubes (TNTs), which are actin-based filamentous protrusions that are structurally distinct from filopodia. TNTs form and connect cells at long distance and serve as direct conduits for intercellular communication in a wide range of cell types in vitro and in vivo. More researchers are entering this field and investigating the role of TNTs in mediating cancer cell invasion and drug resistance, cellular transfer of proteins, RNA or organelles, and intercellular spread of infectious agents, such as viruses, bacteria, and prions. Even further, the elucidation of highly functional membrane tubes called "tumor microtubes" (TMs) in incurable gliomas has further paved a new path for understanding how and why the tumor type is highly invasive at the cellular level and also resistant to standard therapies. Due to the wide-ranging and rapidly growing applicability of TNTs and TMs in pathophysiology across the spectrum of biology, it has become vital to bring researchers in the field together to discuss advances and the future of research in this important niche of protrusion biology.
Collapse
Affiliation(s)
- Emil Lou
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Eliseo Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| |
Collapse
|
8
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
9
|
Huerta L, Gamboa-Meraz A, Estrada-Ochoa PS. Relevance of the Entry by Fusion at the Cytoplasmic Membrane vs. Fusion After Endocytosis in the HIV and SARS-Cov-2 Infections. Results Probl Cell Differ 2024; 71:329-344. [PMID: 37996685 DOI: 10.1007/978-3-031-37936-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
HIV-1 and SARS-Cov-2 fuse at the cell surface or at endosomal compartments for entry into target cells; entry at the cell surface associates to productive infection, whereas endocytosis of low pH-independent viruses may lead to virus inactivation, slow replication, or alternatively, to productive infection. Endocytosis and fusion at the cell surface are conditioned by cell type-specific restriction factors and the presence of enzymes required for activation of the viral fusogen. Whereas fusion with the plasma membrane is considered the main pathway to productive infection of low pH-independent entry viruses, endocytosis is also productive and may be the main route of the highly efficient cell-to-cell dissemination of viruses. Alternative receptors, membrane cofactors, and the presence of enzymes processing the fusion protein at the cell membrane, determine the balance between fusion and endocytosis in specific target cells. Characterization of the mode of entry in particular cell culture conditions is desirable to better assess the effect of neutralizing and blocking agents and their mechanism of action. Whatever the pathway of virus internalization, production of the viral proteins into the cells can lead to the expression of the viral fusion protein on the cell surface; if this protein is able to induce membrane fusion at physiological pH, it promotes the fusion of the infected cell with surrounding uninfected cells, leading to the formation of syncytia or heterokaryons. Importantly, particular membrane proteins and lipids act as cofactors to support fusion. Virus-induced cell-cell fusion leads to efficient virus replication into fused cells, cell death, inflammation, and severe disease.
Collapse
Affiliation(s)
- Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Mexico.
| | - Alejandro Gamboa-Meraz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Pablo Samuel Estrada-Ochoa
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, Mexico
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Ciudad de México, México
| |
Collapse
|
10
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
11
|
Osetrina DA, Kusova AM, Bikmullin AG, Klochkova EA, Yulmetov AR, Semenova EA, Mukhametzyanov TA, Usachev KS, Klochkov VV, Blokhin DS. Extent of N-Terminus Folding of Semenogelin 1 Cleavage Product Determines Tendency to Amyloid Formation. Int J Mol Sci 2023; 24:ijms24108949. [PMID: 37240295 DOI: 10.3390/ijms24108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
It is known that four peptide fragments of predominant protein in human semen Semenogelin 1 (SEM1) (SEM1(86-107), SEM1(68-107), SEM1(49-107) and SEM1(45-107)) are involved in fertilization and amyloid formation processes. In this work, the structure and dynamic behavior of SEM1(45-107) and SEM1(49-107) peptides and their N-domains were described. According to ThT fluorescence spectroscopy data, it was shown that the amyloid formation of SEM1(45-107) starts immediately after purification, which is not observed for SEM1(49-107). Seeing that the peptide amino acid sequence of SEM1(45-107) differs from SEM1(49-107) only by the presence of four additional amino acid residues in the N domain, these domains of both peptides were obtained via solid-phase synthesis and the difference in their dynamics and structure was investigated. SEM1(45-67) and SEM1(49-67) showed no principal difference in dynamic behavior in water solution. Furthermore, we obtained mostly disordered structures of SEM1(45-67) and SEM1(49-67). However, SEM1(45-67) contains a helix (E58-K60) and helix-like (S49-Q51) fragments. These helical fragments may rearrange into β-strands during amyloid formation process. Thus, the difference in full-length peptides' (SEM1(45-107) and SEM1(49-107)) amyloid-forming behavior may be explained by the presence of a structured helix at the SEM1(45-107) N-terminus, which contributes to an increased rate of amyloid formation.
Collapse
Affiliation(s)
- Daria A Osetrina
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Aleksandra M Kusova
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420111, Russia
| | - Aydar G Bikmullin
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420021, Russia
| | - Evelina A Klochkova
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420021, Russia
| | - Aydar R Yulmetov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Evgenia A Semenova
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Timur A Mukhametzyanov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Konstantin S Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420021, Russia
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center "Kazan Scientific Center of Russian Academy of Sciences", Kazan 420111, Russia
| | - Vladimir V Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Dmitriy S Blokhin
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| |
Collapse
|
12
|
Xu J. Dynamic analysis of a cytokine-enhanced viral infection model with infection age. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:8666-8684. [PMID: 37161216 DOI: 10.3934/mbe.2023380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent studies reveal that pyroptosis is associated with the release of inflammatory cytokines which can attract more target cells to be infected. In this paper, a novel age-structured virus infection model incorporating cytokine-enhanced infection is investigated. The asymptotic smoothness of the semiflow is studied. With the help of characteristic equations and Lyapunov functionals, we have proved that both the local and global stabilities of the equilibria are completely determined by the threshold $ \mathcal{R}_0 $. The result shows that cytokine-enhanced viral infection also contributes to the basic reproduction number $ \mathcal{R}_0 $, implying that it may not be enough to eliminate the infection by decreasing the basic reproduction number of the model without considering the cytokine-enhanced viral infection mode. Numerical simulations are carried out to illustrate the theoretical results.
Collapse
Affiliation(s)
- Jinhu Xu
- School of Sciences, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
13
|
Fernandez-de Céspedes MV, Hoffman HK, Carter H, Simons LM, Naing L, Ablan SD, Scheiblin DA, Hultquist JF, van Engelenburg SB, Freed EO. Rab11-FIP1C Is Dispensable for HIV-1 Replication in Primary CD4 + T Cells, but Its Role Is Cell Type Dependent in Immortalized Human T-Cell Lines. J Virol 2022; 96:e0087622. [PMID: 36354340 PMCID: PMC9749476 DOI: 10.1128/jvi.00876-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) contains a long cytoplasmic tail harboring highly conserved motifs that direct Env trafficking and incorporation into virions and promote efficient virus spread. The cellular trafficking factor Rab11a family interacting protein 1C (FIP1C) has been implicated in the directed trafficking of Env to sites of viral assembly. In this study, we confirm that small interfering RNA (siRNA)-mediated depletion of FIP1C in HeLa cells modestly reduces Env incorporation into virions. To determine whether FIP1C is required for Env incorporation and HIV-1 replication in physiologically relevant cells, CRISPR-Cas9 technology was used to knock out the expression of this protein in several human T-cell lines-Jurkat E6.1, SupT1, and H9-and in primary human CD4+ T cells. FIP1C knockout caused modest reductions in Env incorporation in SupT1 cells but did not inhibit virus replication in SupT1 or Jurkat E6.1 T cells. In H9 cells, FIP1C knockout caused a cell density-dependent defect in virus replication. In primary CD4+ T cells, FIP1C knockout had no effect on HIV-1 replication. Furthermore, human T-cell leukemia virus type 1 (HTLV-1)-transformed cell lines that are permissive for HIV-1 replication do not express FIP1C. Mutation of an aromatic motif in the Env cytoplasmic tail (Y795W) implicated in FIP1C-mediated Env incorporation impaired virus replication independently of FIP1C expression in SupT1, Jurkat E6.1, H9, and primary T cells. Together, these results indicate that while FIP1C may contribute to HIV-1 Env incorporation in some contexts, additional and potentially redundant host factors are likely required for Env incorporation and virus dissemination in T cells. IMPORTANCE The incorporation of the HIV-1 envelope (Env) glycoproteins, gp120 and gp41, into virus particles is critical for virus infectivity. gp41 contains a long cytoplasmic tail that has been proposed to interact with host cell factors, including the trafficking factor Rab11a family interacting protein 1C (FIP1C). To investigate the role of FIP1C in relevant cell types-human T-cell lines and primary CD4+ T cells-we used CRISPR-Cas9 to knock out FIP1C expression and examined the effect on HIV-1 Env incorporation and virus replication. We observed that in two of the T-cell lines examined (Jurkat E6.1 and SupT1) and in primary CD4+ T cells, FIP1C knockout did not disrupt HIV-1 replication, whereas FIP1C knockout reduced Env expression and delayed replication in H9 cells. The results indicate that while FIP1C may contribute to Env incorporation in some cell lines, it is not an essential factor for efficient HIV-1 replication in primary CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Hannah Carter
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lwar Naing
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Sherimay D. Ablan
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - David A. Scheiblin
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
14
|
Dzhivhuho G, Holsey J, Honeycutt E, O'Farrell H, Rekosh D, Hammarskjold ML, Jackson PEH. HIV-1 Rev-RRE functional activity in primary isolates is highly dependent on minimal context-dependent changes in Rev. Sci Rep 2022; 12:18416. [PMID: 36319640 PMCID: PMC9626594 DOI: 10.1038/s41598-022-21714-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/30/2022] [Indexed: 01/01/2023] Open
Abstract
During HIV infection, intron-containing viral mRNAs are exported from the cell nucleus to the cytoplasm to complete the replication cycle. Cellular restrictions on the export of incompletely spliced transcripts are overcome by a viral protein, Rev, and an RNA structure found in all unspliced and incompletely spliced viral mRNAs, the Rev Response Element (RRE). Primary HIV isolates display substantial variation in the sequence and functional activity of Rev proteins. We analyzed Rev from two primary isolates with disparate activity that resulted in differences in in vitro fitness of replication-competent viral constructs. The results showed that amino acid differences within the oligomerization domain, but not the arginine-rich motif or the nuclear export signal, determined the level of Rev activity. Two specific amino acid substitutions were sufficient to alter the low-activity Rev to a high-activity phenotype. Other mutations in Rev sequences had unpredictable effects on activity that differed between the two Rev backbones. The sensitivity of Rev function level to small sequence changes likely permits modulation of Rev-RRE activity during HIV infection, which may play a role in pathogenesis. The functional consequences of Rev mutations differed between primary isolates, highlighting the challenge of generalizing studies of Rev conducted using laboratory HIV strains.
Collapse
Affiliation(s)
- Godfrey Dzhivhuho
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jordan Holsey
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ethan Honeycutt
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Heather O'Farrell
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - David Rekosh
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Patrick E H Jackson
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, VA, USA.
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Seth P, Sarkar N. A comprehensive mini-review on amyloidogenesis of different SARS-CoV-2 proteins and its effect on amyloid formation in various host proteins. 3 Biotech 2022; 12:322. [PMID: 36254263 PMCID: PMC9558030 DOI: 10.1007/s13205-022-03390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Amyloidogenesis is the inherent ability of proteins to change their conformation from native state to cross β-sheet rich fibrillar structures called amyloids which result in a wide range of diseases like Parkinson's disease, Alzheimer's disease, Finnish familial amyloidosis, ATTR amyloidosis, British and Danish dementia, etc. COVID-19, on the other hand is seen to have many similarities in symptoms with other amyloidogenic diseases and the overlap of these morbidities and symptoms led to the proposition whether SARS-CoV-2 proteins are undergoing amyloidogenesis and whether it is resulting in or aggravating amyloidogenesis of any human host protein. Thus the SARS-CoV-2 proteins in infected cells, i.e., Spike (S) protein, Nucleocapsid (N) protein, and Envelope (E) protein were tested via different machinery and amyloidogenesis in them were proven. In this review, we will analyze the pathway of amyloid formation in S-protein, N-protein, E-protein along with the effect that SARS-CoV-2 is creating on various host proteins leading to the unexpected onset of many morbidities like COVID-induced Acute Respiratory Distress Syndrome (ARDS), Parkinsonism in young COVID patients, formation of fibrin microthrombi in heart, etc., and their future implications.
Collapse
Affiliation(s)
- Prakriti Seth
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| |
Collapse
|
16
|
Ultrastructural analysis and three-dimensional reconstruction of cellular structures involved in SARS-CoV-2 spread. Histochem Cell Biol 2022; 159:47-60. [PMID: 36175690 PMCID: PMC9521873 DOI: 10.1007/s00418-022-02152-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
The cytoskeleton not only deals with numerous interaction and communication mechanisms at the cellular level but also has a crucial role in the viral infection cycle. Although numerous aspects of SARS-CoV-2 virus interaction at the cellular level have been widely studied, little has been reported about the structural and functional response of the cytoskeleton. This work aims to characterize, at the ultrastructural level, the modifications in the cytoskeleton of infected cells, namely, its participation in filopodia formation, the junction of these nanostructures forming bridges, the viral surfing, and the generation of tunnel effect nanotubes (TNT) as probable structures of intracellular viral dissemination. The three-dimensional reconstruction from the obtained micrographs allowed observing viral propagation events between cells in detail for the first time. More profound knowledge about these cell-cell interaction models in the viral spread mechanisms could lead to a better understanding of the clinical manifestations of COVID-19 disease and to find new therapeutic strategies.
Collapse
|
17
|
AlShamrani NH, Alshaikh MA, Elaiw AM, Hattaf K. Dynamics of HIV-1/HTLV-I Co-Infection Model with Humoral Immunity and Cellular Infection. Viruses 2022; 14:v14081719. [PMID: 36016341 PMCID: PMC9415130 DOI: 10.3390/v14081719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type I (HTLV-I) are two retroviruses which infect the same target, CD4+ T cells. This type of cell is considered the main component of the immune system. Since both viruses have the same means of transmission between individuals, HIV-1-infected patients are more exposed to the chance of co-infection with HTLV-I, and vice versa, compared to the general population. The mathematical modeling and analysis of within-host HIV-1/HTLV-I co-infection dynamics can be considered a robust tool to support biological and medical research. In this study, we have formulated and analyzed an HIV-1/HTLV-I co-infection model with humoral immunity, taking into account both latent HIV-1-infected cells and HTLV-I-infected cells. The model considers two modes of HIV-1 dissemination, virus-to-cell (V-T-C) and cell-to-cell (C-T-C). We prove the nonnegativity and boundedness of the solutions of the model. We find all steady states of the model and establish their existence conditions. We utilize Lyapunov functions and LaSalle’s invariance principle to investigate the global stability of all the steady states of the model. Numerical simulations were performed to illustrate the corresponding theoretical results. The effects of humoral immunity and C-T-C transmission on the HIV-1/HTLV-I co-infection dynamics are discussed. We have shown that humoral immunity does not play the role of clearing an HIV-1 infection but it can control HIV-1 infection. Furthermore, we note that the omission of C-T-C transmission from the HIV-1/HTLV-I co-infection model leads to an under-evaluation of the basic HIV-1 mono-infection reproductive ratio.
Collapse
Affiliation(s)
- Noura H. AlShamrani
- Department of Mathematics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Matuka A. Alshaikh
- Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21974, Saudi Arabia
| | - Ahmed M. Elaiw
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- Correspondence: or
| | - Khalid Hattaf
- Equipe de Recherche en Modélisation et Enseignement des Mathématiques (ERMEM), Centre Régional des Métiers de l’Education et de la Formation (CRMEF), Derb Ghalef, Casablanca 20340, Morocco
| |
Collapse
|
18
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
19
|
Kusova A, Abramova M, Skvortsova P, Yulmetov A, Mukhametzyanov T, Klochkov V, Blokhin D. Structure of amyloidogenic PAP(85-120) peptide by high-resolution NMR spectroscopy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Spatial structure of the fibril-forming SEM1(86–107) peptide in a complex with dodecylphosphocholine micelles. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022; 14:v14010152. [PMID: 35062355 PMCID: PMC8779814 DOI: 10.3390/v14010152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
So far, only two retroviruses, human immunodeficiency virus (HIV) (type 1 and 2) and human T-cell lymphotropic virus type 1 (HTLV-1), have been recognized as pathogenic for humans. Both viruses mainly infect CD4+ T lymphocytes. HIV replication induces the apoptosis of CD4 lymphocytes, leading to the development of acquired immunodeficiency syndrome (AIDS). After a long clinical latency period, HTLV-1 can transform lymphocytes, with subsequent uncontrolled proliferation and the manifestation of a disease called adult T-cell leukemia (ATLL). Certain infected patients develop neurological autoimmune disorder called HTLV-1-associated myelopathy, also known as tropical spastic paraparesis (HAM/TSP). Both viruses are transmitted between individuals via blood transfusion, tissue/organ transplantation, breastfeeding, and sexual intercourse. Within the host, these viruses can spread utilizing either cell-free or cell-to-cell modes of transmission. In this review, we discuss the mechanisms and importance of each mode of transmission for the biology of HIV-1 and HTLV-1.
Collapse
|
22
|
Kreger J, Komarova NL, Wodarz D. A hybrid stochastic-deterministic approach to explore multiple infection and evolution in HIV. PLoS Comput Biol 2021; 17:e1009713. [PMID: 34936647 PMCID: PMC8730440 DOI: 10.1371/journal.pcbi.1009713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 01/05/2022] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
To study viral evolutionary processes within patients, mathematical models have been instrumental. Yet, the need for stochastic simulations of minority mutant dynamics can pose computational challenges, especially in heterogeneous systems where very large and very small sub-populations coexist. Here, we describe a hybrid stochastic-deterministic algorithm to simulate mutant evolution in large viral populations, such as acute HIV-1 infection, and further include the multiple infection of cells. We demonstrate that the hybrid method can approximate the fully stochastic dynamics with sufficient accuracy at a fraction of the computational time, and quantify evolutionary end points that cannot be expressed by deterministic models, such as the mutant distribution or the probability of mutant existence at a given infected cell population size. We apply this method to study the role of multiple infection and intracellular interactions among different virus strains (such as complementation and interference) for mutant evolution. Multiple infection is predicted to increase the number of mutants at a given infected cell population size, due to a larger number of infection events. We further find that viral complementation can significantly enhance the spread of disadvantageous mutants, but only in select circumstances: it requires the occurrence of direct cell-to-cell transmission through virological synapses, as well as a substantial fitness disadvantage of the mutant, most likely corresponding to defective virus particles. This, however, likely has strong biological consequences because defective viruses can carry genetic diversity that can be incorporated into functional virus genomes via recombination. Through this mechanism, synaptic transmission in HIV might promote virus evolvability. The evolution of human immunodeficiency virus within patients is an important part of the disease process. In particular, the presence of mutants that are resistant against anti-viral drugs can result in challenges to the long-term control of the infection. To study disease progression, computer simulations have been useful. However, in some cases these simulations can be difficult because of the complexity of the model. Here, we use a computational complexity reducing algorithm to simulate mutant dynamics in large populations, which can approximate the full model at a fraction of the time. The use of this algorithm allows us to study different transmission methods, viral processes that occur between virus strains within individual cells, and important quantities such as the mutant distribution or the probability of mutant existence at a given infected cell population size. We find that the direct synaptic cell-to-cell transmission of the virus through virological synapses can have strong biological consequences because it can promote potentially defective viruses that carry genetic diversity which can be incorporated into functional virus genomes during infection. Through this process, synaptic transmission in human immunodeficiency virus might promote virus evolvability.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| | - Natalia L. Komarova
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| | - Dominik Wodarz
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
- Department of Population Health and Disease Prevention Program in Public Health Susan and Henry Samueli College of Health Sciences, University of California, Irvine, California, United States of America
| |
Collapse
|
23
|
Barría MI, Alvarez RA, Law K, Wolfson DL, Huser T, Chen BK. Endocytic Motif on a Biotin-Tagged HIV-1 Env Modulates the Co-Transfer of Env and Gag during Cell-to-Cell Transmission. Viruses 2021; 13:v13091729. [PMID: 34578310 PMCID: PMC8471404 DOI: 10.3390/v13091729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022] Open
Abstract
During HIV-1 transmission through T cell virological synapses, the recruitment of the envelope (Env) glycoprotein to the site of cell-cell contact is important for adhesion and for packaging onto nascent virus particles which assemble at the site. Live imaging studies in CD4 T cells have captured the rapid recruitment of the viral structural protein Gag to VSs. We explored the role of endocytic trafficking of Env initiated by a membrane proximal tyrosine motif during HIV transfer into target cells and examined the factors that allow Gag and Env to be transferred together across the synapse. To facilitate tracking of Env in live cells, we adapted an Env tagging method and introduced a biotin acceptor peptide (BAP) into the V4 loop of Env gp120, enabling sensitive fluorescent tracking of V4-biotinylated Env. The BAP-tagged and biotinylated HIVs were replication-competent in cell-free and cell-to-cell infection assays. Live cell fluorescent imaging experiments showed rapid internalized cell surface Env on infected cells. Cell-cell transfer experiments conducted with the Env endocytosis mutant (Y712A) showed increased transfer of Env. Paradoxically, this increase in Env transfer was associated with significantly reduced Gag transfer into target cells, when compared to viral transfer associated with WT Env. This Y712A Env mutant also exhibited an altered Gag/biotin Env fluorescence ratio during transfer that correlated with decreased productive cell-to-cell infection. These results may suggest that the internalization of Env into recycling pools plays an important role in the coordinated transfer of Gag and Env across the VS, which optimizes productive infection in target cells.
Collapse
Affiliation(s)
- María Inés Barría
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt 5501842, Chile;
| | - Raymond A. Alvarez
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.A.A.); (K.L.)
| | - Kenneth Law
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.A.A.); (K.L.)
| | - Deanna L. Wolfson
- Department of Physics and Technology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway;
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, Bielefeld University, 33615 Bielefeld, Germany;
| | - Benjamin K. Chen
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt 5501842, Chile;
- Correspondence:
| |
Collapse
|
24
|
Bystander CD4 T-cell death is inhibited by broadly neutralizing anti-HIV antibodies only at levels blocking cell-to-cell viral transmission. J Biol Chem 2021; 297:101098. [PMID: 34418431 PMCID: PMC8446805 DOI: 10.1016/j.jbc.2021.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/28/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
The progressive loss of CD4+ T cells during HIV infection of lymphoid tissues involves both the apoptotic death of activated and productively infected CD4 T cells and the pyroptotic death of large numbers of resting and abortively infected bystander CD4 T cells. HIV spreads both through cellular release of virions and cell-to-cell transmission involving the formation of virological synapses. Cell-to-cell transmission results in high-level transfer of large quantities of virions to the target cell exceeding that achieved with cell-free virions. Broadly neutralizing anti-HIV antibodies (bNAbs) binding to HIV envelope protein capably block cell-free virus spread, and when added at higher concentrations can also interdict cell-to-cell transmission. Exploiting these distinct dose–response differences, we now show that four different bNAbs block the pyroptotic death of bystander cells, but only when added at concentrations sufficient to block cell-to-cell transmission. These findings further support the conclusion that HIV killing of abortively infected bystander CD4 T cells requires cell-to-cell transfer of virions. As bNAbs attract more interest as potential therapeutics, it will be important to consider the higher concentrations of these antibodies required to block the inflammatory death of bystander CD4 T cells.
Collapse
|
25
|
Silvana V, Paul C, Ajasin D, Eugenin EA. Astrocytes are HIV reservoirs in the brain: A cell type with poor HIV infectivity and replication but efficient cell-to-cell viral transfer. J Neurochem 2021; 158:429-443. [PMID: 33655498 PMCID: PMC11102126 DOI: 10.1111/jnc.15336] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The major barrier to eradicating Human immunodeficiency virus-1 (HIV) infection is the generation of tissue-associated quiescent long-lasting viral reservoirs refractory to therapy. Upon interruption of anti-retroviral therapy (ART), HIV replication can be reactivated. Within the brain, microglia/macrophages and a small population of astrocytes are infected with HIV. However, the role of astrocytes as a potential viral reservoir is becoming more recognized because of the improved detection and quantification of HIV viral reservoirs. In this report, we examined the infectivity of human primary astrocytes in vivo and in vitro, and their capacity to maintain HIV infection, become latently infected, be reactivated, and transfer new HIV virions into neighboring cells. Analysis of human brain tissue sections obtained from HIV-infected individuals under effective and prolonged ART indicates that a small population of astrocytes has integrated HIV-DNA. In vitro experiments using HIV-infected human primary astrocyte cultures confirmed a low percentage of astrocytes had integrated HIV-DNA, with poor to undetectable replication. Even in the absence of ART, long-term culture results in latency that could be transiently reactivated with histone deacetylase inhibitor, tumor necrosis factor-alpha (TNF-α), or methamphetamine. Reactivation resulted in poor viral production but efficient cell-to-cell viral transfer into cells that support high viral replication. Together, our data provide a new understanding of astrocytes' role as viral reservoirs within the central nervous system (CNS).
Collapse
Affiliation(s)
- Valdebenito Silvana
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Castellano Paul
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - David Ajasin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| |
Collapse
|
26
|
Guo T, Qiu Z, Shen M, Rong L. Dynamics of a new HIV model with the activation status of infected cells. J Math Biol 2021; 82:51. [PMID: 33860365 PMCID: PMC8049625 DOI: 10.1007/s00285-021-01604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 11/06/2022]
Abstract
The activation status can dictate the fate of an HIV-infected CD4+ T cell. Infected cells with a low level of activation remain latent and do not produce virus, while cells with a higher level of activation are more productive and thus likely to transfer more virions to uninfected cells during cell-to-cell transmission. How the activation status of infected cells affects HIV dynamics under antiretroviral therapy remains unclear. We develop a new mathematical model that structures the population of infected cells continuously according to their activation status. The effectiveness of antiretroviral drugs in blocking cell-to-cell viral transmission decreases as the level of activation of infected cells increases because the more virions are transferred from infected to uninfected cells during cell-to-cell transmission, the less effectively the treatment is able to inhibit the transmission. The basic reproduction number \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{0}$$\end{document}R0 of the model is shown to determine the existence and stability of the equilibria. Using the principal spectral theory and comparison principle, we show that the infection-free equilibrium is locally and globally asymptotically stable when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{0}$$\end{document}R0 is less than one. By constructing Lyapunov functional, we prove that the infected equilibrium is globally asymptotically stable when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{0}$$\end{document}R0 is greater than one. Numerical investigation shows that even when treatment can completely block cell-free virus infection, virus can still persist due to cell-to-cell transmission. The random switch between infected cells with different activation levels can also contribute to the replenishment of the latent reservoir, which is considered as a major barrier to viral eradication. This study provides a new modeling framework to study the observations, such as the low viral load persistence, extremely slow decay of latently infected cells and transient viral load measurements above the detection limit, in HIV-infected patients during suppressive antiretroviral therapy.
Collapse
Affiliation(s)
- Ting Guo
- School of Science, Nanjing University of Science and Technology, Nanjing, 210094, China.,Department of Mathematics, University of Florida, Gainesville, FL, 32611, USA
| | - Zhipeng Qiu
- Center for Basic Teaching and Experiment, Nanjing University of Science and Technology Jiangyin Campus, Jiangyin, 214443, China
| | - Mingwang Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
27
|
SERINC5 Can Enhance Proinflammatory Cytokine Production by Primary Human Myeloid Cells in Response to Challenge with HIV-1 Particles. J Virol 2021; 95:JVI.02372-20. [PMID: 33597208 DOI: 10.1128/jvi.02372-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/02/2021] [Indexed: 11/20/2022] Open
Abstract
HIV-1 has to overcome physical barriers posed by host cell restriction factors (RFs) for efficient replication. Some RFs, including Trim5α and tetherin, trigger antiviral signaling in addition to directly impairing HIV replication. SERINC5 (S5) is an RF that is incorporated into HIV-1 particles to potently impair their infectivity and is efficiently antagonized by the viral pathogenesis factor Nef. Since effects of S5 on HIV-1 infectivity were mostly studied in reporter cell lines, we analyzed the effects of S5 during infection of primary HIV-1 target cells. In activated CD4+ T lymphocytes, virion incorporation of S5 only moderately impaired virion infectivity and was not associated with altered innate immune recognition. In contrast, in monocyte-derived macrophages, S5 virion incorporation potentiated the production of proinflammatory cytokines with very potent but donor-dependent effects on virion infectivity. Nef counteracted effects of S5 on both cytokine production and virion infectivity. Similar S5-induced cytokine production was observed in immature monocyte-derived dendritic cells. Notably, S5-mediated enhancement of cytokine production was not linked to the efficacy of productive infection and could be overcome by using vesicular stomatitis virus glycoprotein (VSV-G) but not infectivity restriction-insensitive HIV-1 Env for cell entry. Moreover, inhibiting entry of S5-negative HIV-1 ΔNef particles increased proinflammatory cytokine production comparably to virion incorporation of S5. Together, these results describe the sensitization of noninfectious HIV-1 particles to proinflammatory cytokine production by myeloid target cells as an additional and Nef-sensitive activity of S5. Moreover, the study reveals important cell-type and donor-dependent differences in the sensitivity of HIV target cells for antiviral effects of S5.IMPORTANCE SERINC5 (S5) is a host cell restriction factor (RF) that impairs the infectivity of HIV-1 particles in target cell lines. To assess the potential physiological relevance of this restriction, we assessed the effects of S5 on HIV-1 infection of relevant primary human target cells. We found that effects of S5 on infection of CD4+ T lymphocytes were negligible. In myeloid target cells, however, virion incorporation of S5 potently suppressed infectivity and promoted innate immune recognition of HIV-1 particles characterized by proinflammatory cytokine production. Both effects were not observed in cells of all donors analyzed, were exerted independently of one another, and were counteracted by the HIV-1 pathogenesis factor Nef. These results identify the sensitization of HIV-1 particles for innate immune recognition by myeloid target cells as a novel activity of S5 and emphasize the need to study RF function in the context of primary target cells and taking donor variabilities into account.
Collapse
|
28
|
|
29
|
Hikichi Y, Van Duyne R, Pham P, Groebner JL, Wiegand A, Mellors JW, Kearney MF, Freed EO. Mechanistic Analysis of the Broad Antiretroviral Resistance Conferred by HIV-1 Envelope Glycoprotein Mutations. mBio 2021; 12:e03134-20. [PMID: 33436439 PMCID: PMC7844542 DOI: 10.1128/mbio.03134-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the effectiveness of antiretroviral (ARV) therapy, virological failure can occur in some HIV-1-infected patients in the absence of mutations in drug target genes. We previously reported that, in vitro, the lab-adapted HIV-1 NL4-3 strain can acquire resistance to the integrase inhibitor dolutegravir (DTG) by acquiring mutations in the envelope glycoprotein (Env) that enhance viral cell-cell transmission. In this study, we investigated whether Env-mediated drug resistance extends to ARVs other than DTG and whether it occurs in other HIV-1 isolates. We demonstrate that Env mutations can reduce susceptibility to multiple classes of ARVs and also increase resistance to ARVs when coupled with target-gene mutations. We observe that the NL4-3 Env mutants display a more stable and closed Env conformation and lower rates of gp120 shedding than the WT virus. We also selected for Env mutations in clinically relevant HIV-1 isolates in the presence of ARVs. These Env mutants exhibit reduced susceptibility to DTG, with effects on replication and Env structure that are HIV-1 strain dependent. Finally, to examine a possible in vivo relevance of Env-mediated drug resistance, we performed single-genome sequencing of plasma-derived virus from five patients failing an integrase inhibitor-containing regimen. This analysis revealed the presence of several mutations in the highly conserved gp120-gp41 interface despite low frequency of resistance mutations in integrase. These results suggest that mutations in Env that enhance the ability of HIV-1 to spread via a cell-cell route may increase the opportunity for the virus to acquire high-level drug resistance mutations in ARV target genes.IMPORTANCE Although combination antiretroviral (ARV) therapy is highly effective in controlling the progression of HIV disease, drug resistance can be a major obstacle. Recent findings suggest that resistance can develop without ARV target gene mutations. We previously reported that mutations in the HIV-1 envelope glycoprotein (Env) confer resistance to an integrase inhibitor. Here, we investigated the mechanism of Env-mediated drug resistance and the possible contribution of Env to virological failure in vivo We demonstrate that Env mutations can reduce sensitivity to major classes of ARVs in multiple viral isolates and define the effect of the Env mutations on Env subunit interactions. We observed that many Env mutations accumulated in individuals failing integrase inhibitor therapy despite a low frequency of resistance mutations in integrase. Our findings suggest that broad-based Env-mediated drug resistance may impact therapeutic strategies and provide clues toward understanding how ARV-treated individuals fail therapy without acquiring mutations in drug target genes.
Collapse
Affiliation(s)
- Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Rachel Van Duyne
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Phuong Pham
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jennifer L Groebner
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ann Wiegand
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - John W Mellors
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary F Kearney
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
30
|
Abstract
The innate immune system is comprised of both cellular and humoral players that recognise and eradicate invading pathogens. Therefore, the interplay between retroviruses and innate immunity has emerged as an important component of viral pathogenesis. HIV-1 infection in humans that results in hematologic abnormalities and immune suppression is well represented by changes in the CD4/CD8 T cell ratio and consequent cell death causing CD4 lymphopenia. The innate immune responses by mucosal barriers such as complement, DCs, macrophages, and NK cells as well as cytokine/chemokine profiles attain great importance in acute HIV-1 infection, and thus, prevent mucosal capture and transmission of HIV-1. Conversely, HIV-1 has evolved to overcome innate immune responses through RNA-mediated rapid mutations, pathogen-associated molecular patterns (PAMPs) modification, down-regulation of NK cell activity and complement receptors, resulting in increased secretion of inflammatory factors. Consequently, epithelial tissues lining up female reproductive tract express innate immune sensors including anti-microbial peptides responsible for forming primary barriers and have displayed an effective potent anti-HIV activity during phase I/II clinical trials.
Collapse
|
31
|
Elucidating the Basis for Permissivity of the MT-4 T-Cell Line to Replication of an HIV-1 Mutant Lacking the gp41 Cytoplasmic Tail. J Virol 2020; 94:JVI.01334-20. [PMID: 32938764 DOI: 10.1128/jvi.01334-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
HIV-1 encodes an envelope glycoprotein (Env) that contains a long cytoplasmic tail (CT) harboring trafficking motifs implicated in Env incorporation into virus particles and viral transmission. In most physiologically relevant cell types, the gp41 CT is required for HIV-1 replication, but in the MT-4 T-cell line the gp41 CT is not required for a spreading infection. To help elucidate the role of the gp41 CT in HIV-1 transmission, in this study, we investigated the viral and cellular factors that contribute to the permissivity of MT-4 cells to gp41 CT truncation. We found that the kinetics of HIV-1 production and virus release are faster in MT-4 than in the other T-cell lines tested, but MT-4 cells express equivalent amounts of HIV-1 proteins on a per-cell basis relative to cells not permissive to CT truncation. MT-4 cells express higher levels of plasma-membrane-associated Env than nonpermissive cells, and Env internalization from the plasma membrane is less efficient than that from another T-cell line, SupT1. Paradoxically, despite the high levels of Env on the surface of MT-4 cells, 2-fold less Env is incorporated into virus particles produced from MT-4 than SupT1 cells. Contact-dependent transmission between cocultured 293T and MT-4 cells is higher than in cocultures of 293T with most other T-cell lines tested, indicating that MT-4 cells are highly susceptible to cell-to-cell infection. These data help to clarify the long-standing question of how MT-4 cells overcome the requirement for the HIV-1 gp41 CT and support a role for gp41 CT-dependent trafficking in Env incorporation and cell-to-cell transmission in physiologically relevant cell lines.IMPORTANCE The HIV-1 Env cytoplasmic tail (CT) is required for efficient Env incorporation into nascent particles and viral transmission in primary CD4+ T cells. The MT-4 T-cell line has been reported to support multiple rounds of infection of HIV-1 encoding a gp41 CT truncation. Uncovering the underlying mechanism of MT-4 T-cell line permissivity to gp41 CT truncation would provide key insights into the role of the gp41 CT in HIV-1 transmission. This study reveals that multiple factors contribute to the unique ability of a gp41 CT truncation mutant to spread in cultures of MT-4 cells. The lack of a requirement for the gp41 CT in MT-4 cells is associated with the combined effects of rapid HIV-1 protein production, high levels of cell-surface Env expression, and increased susceptibility to cell-to-cell transmission compared to nonpermissive cells.
Collapse
|
32
|
Abstract
A critical step in the life cycle of a virus is spread to a new target cell, which generally involves the release of new viral particles from the infected cell which can then initiate infection in the next target cell. While cell-free viral particles released into the extracellular environment are necessary for long distance spread, there are disadvantages to this mechanism. These include the presence of immune system components, the low success rate of infection by single particles, and the relative fragility of viral particles in the environment. Several mechanisms of direct cell-to-cell spread have been reported for animal viruses which would avoid the issues associated with cell-free particles. A number of viruses can utilize several different mechanisms of direct cell-to-cell spread, but our understanding of the differential usage by these pathogens is modest. Although the mechanisms of cell-to-cell spread differ among viruses, there is a common exploitation of key pathways and components of the cellular cytoskeleton. Remarkably, some of the viral mechanisms of cell-to-cell spread are surprisingly similar to those used by bacteria. Here we summarize the current knowledge of the conventional and non-conventional mechanisms of viral spread, the common methods used to detect viral spread, and the impact that these mechanisms can have on viral pathogenesis.
Collapse
Affiliation(s)
- Nicolas Cifuentes-Munoz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, San Miguel, Santiago, Chile
| | - Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
33
|
Guo T, Qiu Z, Kitagawa K, Iwami S, Rong L. Modeling HIV multiple infection. J Theor Biol 2020; 509:110502. [PMID: 32998053 DOI: 10.1016/j.jtbi.2020.110502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/09/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Multiple infection of target cells by human immunodeficiency virus (HIV) may lead to viral escape from host immune responses and drug resistance to antiretroviral therapy, bringing more challenges to the control of infection. The mechanisms underlying HIV multiple infection and their relative contributions are not fully understood. In this paper, we develop and analyze a mathematical model that includes sequential cell-free virus infection (i.e.one virus is transmitted each time in a sequential infection of target cells by virus) and cell-to-cell transmission (i.e.multiple viral genomes are transmitted simultaneously from infected to uninfected cells). By comparing model prediction with the distribution data of proviral genomes in HIV-infected spleen cells, we find that multiple infection can be well explained when the two modes of viral transmission are both included. Numerical simulation using the parameter estimates from data fitting shows that the majority of T cell infections are attributed to cell-to-cell transmission and this transmission mode also accounts for more than half of cell's multiple infections. These results suggest that cell-to-cell transmission plays a critical role in forming HIV multiple infection and thus has important implications for HIV evolution and pathogenesis.
Collapse
Affiliation(s)
- Ting Guo
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China; Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| | - Zhipeng Qiu
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kosaku Kitagawa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8190395, Japan
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8190395, Japan
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
34
|
Geng Y, Xu J. Stability and bifurcation analysis for a delayed viral infection model with full logistic proliferation. INT J BIOMATH 2020. [DOI: 10.1142/s1793524520500333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we study a delayed viral infection model with cellular infection and full logistic proliferations for both healthy and infected cells. The global asymptotic stabilities of the equilibria are studied by constructing Lyapunov functionals. Moreover, we investigated the existence of Hopf bifurcation at the infected equilibrium by regarding the possible combination of the two delays as bifurcation parameters. The results show that time delays may destabilize the infected equilibrium and lead to Hopf bifurcation. Finally, numerical simulations are carried out to illustrate the main results and explore the dynamics including Hopf bifurcation and stability switches.
Collapse
Affiliation(s)
- Yan Geng
- School of Science, Xi’an Polytechnic University, Xi’an 710048, Shaanxi, P. R. China
| | - Jinhu Xu
- School of Sciences, Xi’an University of Technology, Xi’an 710049, Shaanxi, P. R. China
| |
Collapse
|
35
|
Lotfi S, Nasser H, Noyori O, Hiyoshi M, Takeuchi H, Koyanagi Y, Suzu S. M-Sec facilitates intercellular transmission of HIV-1 through multiple mechanisms. Retrovirology 2020; 17:20. [PMID: 32650782 PMCID: PMC7350586 DOI: 10.1186/s12977-020-00528-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 01/08/2023] Open
Abstract
Background HIV-1 promotes the formation of tunneling nanotubes (TNTs) that connect distant cells, aiding cell-to-cell viral transmission between macrophages. Our recent study suggests that the cellular protein M-Sec plays a role in these processes. However, the timing, mechanism, and to what extent M-Sec contributes to HIV-1 transmission is not fully understood, and the lack of a cell line model that mimics macrophages has hindered in-depth analysis. Results We found that HIV-1 increased the number, length and thickness of TNTs in a manner dependent on its pathogenic protein Nef and M-Sec in U87 cells, as observed in macrophages. In addition, we found that M-Sec was required not only for TNT formation but also motility of U87 cells, both of which are beneficial for viral transmission. In fact, M-Sec knockdown in U87 cells led to a significantly delayed viral production in both cellular and extracellular fractions. This inhibition was observed for wild-type virus, but not for a mutant virus lacking Nef, which is known to promote not only TNT formation but also migration of infected macrophages. Conclusions By taking advantage of useful features of U87 cells, we provided evidence that M-Sec mediates a rapid and efficient cell–cell transmission of HIV-1 at an early phase of infection by enhancing both TNT formation and cell motility.
Collapse
Affiliation(s)
- Sameh Lotfi
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hesham Nasser
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.,Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, 41511, Egypt
| | - Osamu Noyori
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Masateru Hiyoshi
- Department of Safety Research On Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto University, KyotoKyoto, 606-8507, Japan
| | - Shinya Suzu
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
36
|
Hattaf K, Dutta H. Modeling the dynamics of viral infections in presence of latently infected cells. CHAOS, SOLITONS, AND FRACTALS 2020; 136:109916. [PMID: 32518473 PMCID: PMC7271877 DOI: 10.1016/j.chaos.2020.109916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 05/21/2023]
Abstract
The study aims to develop a new mathematical model in order to explain the dynamics of viral infections in vivo such as HIV infection. The model includes three classes of cells, takes into account the cure of infected cells in latent period and also incorporates three modes of transmission. The mention modes are modeled by three general incidence functions covering several special cases available in the literature. The basic properties of the model as well as its stability analysis have been carried out rigorously. Further, an application is given and also numerical simulation results have been incorporated supporting the analytical results.
Collapse
Affiliation(s)
- Khalid Hattaf
- Centre Régional des Métiers de l’Education et de la Formation (CRMEF), 20340 Derb Ghalef, Casablanca, Morocco
- Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, P.O Box 7955 Sidi Othman, Casablanca, Morocco
| | - Hemen Dutta
- Department of Mathematics, Gauhati University, Guwahati 781014, India
| |
Collapse
|
37
|
Grossman Z, Singh NJ, Simonetti FR, Lederman MM, Douek DC, Deeks SG. 'Rinse and Replace': Boosting T Cell Turnover To Reduce HIV-1 Reservoirs. Trends Immunol 2020; 41:466-480. [PMID: 32414695 DOI: 10.1016/j.it.2020.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Latent HIV-1 persists indefinitely during antiretroviral therapy (ART) as an integrated silent genome in long-lived memory CD4+ T cells. In untreated infections, immune activation increases the turnover of intrinsically long-lived provirus-containing CD4+ T cells. Those are 'washed out' as a result of their activation, which when coupled to viral protein expression can facilitate local inflammation and recruitment of uninfected cells to activation sites, causing latently infected cells to compete for survival. De novo infection can counter this washout. During ART, inflammation and CD4+ T cell activation wane, resulting in reduced cell turnover and a persistent reservoir. We propose accelerating reservoir washout during ART by triggering sequential waves of polyclonal CD4+ T cell activation while simultaneously enhancing virus protein expression. Reservoir reduction as an adjunct to other therapies might achieve lifelong viral control.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- 'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
39
|
Monel B, McKeon A, Lamothe-Molina P, Jani P, Boucau J, Pacheco Y, Jones RB, Le Gall S, Walker BD. HIV Controllers Exhibit Effective CD8 + T Cell Recognition of HIV-1-Infected Non-activated CD4 + T Cells. Cell Rep 2020; 27:142-153.e4. [PMID: 30943397 PMCID: PMC6449512 DOI: 10.1016/j.celrep.2019.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/25/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Even with sustained antiretroviral therapy, resting CD4+ T cells remain a persistent reservoir of HIV infection, representing a critical barrier to curing HIV. Here, we demonstrate that CD8+ T cells recognize infected, non-activated CD4+ T cells in the absence of de novo protein production, as measured by immune synapse formation, degranulation, cytokine production, and killing of infected cells. Immune recognition is induced by HLA-I presentation of peptides derived from incoming viral particles, and recognition occurred either following cell-free virus infection or following cell-to-cell spread. CD8+ T cells from HIV controllers mediate more effective immune recognition than CD8+ T cells from progressors. These results indicate that non-activated HIV-infected CD4+ T cells can be targeted by CD8+ T cells directly after HIV entry, before reverse transcription, and thus before the establishment of latency, and suggest a mechanism whereby the immune response may reduce the size of the HIV reservoir.
Collapse
Affiliation(s)
- Blandine Monel
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Annmarie McKeon
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Pedro Lamothe-Molina
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Priya Jani
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Yovana Pacheco
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - R Brad Jones
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sylvie Le Gall
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
40
|
Environmental Restrictions: A New Concept Governing HIV-1 Spread Emerging from Integrated Experimental-Computational Analysis of Tissue-Like 3D Cultures. Cells 2020; 9:cells9051112. [PMID: 32365826 PMCID: PMC7291240 DOI: 10.3390/cells9051112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
HIV-1 can use cell-free and cell-associated transmission modes to infect new target cells, but how the virus spreads in the infected host remains to be determined. We recently established 3D collagen cultures to study HIV-1 spread in tissue-like environments and applied iterative cycles of experimentation and computation to develop a first in silico model to describe the dynamics of HIV-1 spread in complex tissue. These analyses (i) revealed that 3D collagen environments restrict cell-free HIV-1 infection but promote cell-associated virus transmission and (ii) defined that cell densities in tissue dictate the efficacy of these transmission modes for virus spread. In this review, we discuss, in the context of the current literature, the implications of this study for our understanding of HIV-1 spread in vivo, which aspects of in vivo physiology this integrated experimental-computational analysis takes into account, and how it can be further improved experimentally and in silico.
Collapse
|
41
|
Kreger J, Komarova NL, Wodarz D. Effect of synaptic cell-to-cell transmission and recombination on the evolution of double mutants in HIV. J R Soc Interface 2020; 17:20190832. [PMID: 32208824 DOI: 10.1098/rsif.2019.0832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recombination in HIV infection can impact virus evolution in vivo in complex ways, as has been shown both experimentally and mathematically. The effect of free virus versus synaptic, cell-to-cell transmission on the evolution of double mutants, however, has not been investigated. Here, we do so by using a stochastic agent-based model. Consistent with data, we assume spatial constraints for synaptic but not for free-virus transmission. Two important effects of the viral spread mode are observed: (i) for disadvantageous mutants, synaptic transmission protects against detrimental effects of recombination on double mutant persistence. Under free virus transmission, recombination increases double mutant levels for negative epistasis, but reduces them for positive epistasis. This reduction for positive epistasis is much diminished under predominantly synaptic transmission, and recombination can, in fact, lead to increased mutant levels. (ii) The mode of virus spread also directly influences the evolutionary fate of double mutants. For disadvantageous mutants, double mutant production is the predominant driving force, and hence synaptic transmission leads to highest double mutant levels due to increased transmission efficiency. For advantageous mutants, double mutant spread is the most important force, and hence free virus transmission leads to fastest invasion due to better mixing. For neutral mutants, both production and spread of double mutants are important, and hence an optimal mixture of free virus and synaptic transmission maximizes double mutant fractions. Therefore, both free virus and synaptic transmission can enhance or delay double mutant evolution. Implications for drug resistance in HIV are discussed.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Mathematics, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Natalia L Komarova
- Department of Mathematics, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Dominik Wodarz
- Department of Mathematics, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA.,Department of Population Health and Disease Prevention Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
42
|
Waters R, Ndengane M, Abrahams MR, Diedrich CR, Wilkinson RJ, Coussens AK. The Mtb-HIV syndemic interaction: why treating M. tuberculosis infection may be crucial for HIV-1 eradication. Future Virol 2020; 15:101-125. [PMID: 32273900 PMCID: PMC7132588 DOI: 10.2217/fvl-2019-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accelerated tuberculosis and AIDS progression seen in HIV-1 and Mycobacterium tuberculosis (Mtb)-coinfected individuals indicates the important interaction between these syndemic pathogens. The immunological interaction between HIV-1 and Mtb has been largely defined by how the virus exacerbates tuberculosis disease pathogenesis. Understanding of the mechanisms by which pre-existing or subsequent Mtb infection may favor the replication, persistence and progression of HIV, is less characterized. We present a rationale for the critical consideration of ‘latent’ Mtb infection in HIV-1 prevention and cure strategies. In support of this position, we review evidence of the effect of Mtb infection on HIV-1 acquisition, replication and persistence. We propose that ‘latent’ Mtb infection may have considerable impact on HIV-1 pathogenesis and the continuing HIV-1 epidemic in sub-Saharan Africa.
Collapse
Affiliation(s)
- Robyn Waters
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, WC, South Africa
| | - Mthawelanga Ndengane
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa
| | - Melissa-Rose Abrahams
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa
| | - Collin R Diedrich
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom.,The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa.,Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia.,Division of Medical Biology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville 3279, VIC, Australia
| |
Collapse
|
43
|
Virgilio MC, Collins KL. The Impact of Cellular Proliferation on the HIV-1 Reservoir. Viruses 2020; 12:E127. [PMID: 31973022 PMCID: PMC7077244 DOI: 10.3390/v12020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a chronic infection that destroys the immune system in infected individuals. Although antiretroviral therapy is effective at preventing infection of new cells, it is not curative. The inability to clear infection is due to the presence of a rare, but long-lasting latent cellular reservoir. These cells harboring silent integrated proviral genomes have the potential to become activated at any moment, making therapy necessary for life. Latently-infected cells can also proliferate and expand the viral reservoir through several methods including homeostatic proliferation and differentiation. The chromosomal location of HIV proviruses within cells influences the survival and proliferative potential of host cells. Proliferating, latently-infected cells can harbor proviruses that are both replication-competent and defective. Replication-competent proviral genomes contribute to viral rebound in an infected individual. The majority of available techniques can only assess the integration site or the proviral genome, but not both, preventing reliable evaluation of HIV reservoirs.
Collapse
Affiliation(s)
- Maria C. Virgilio
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen L. Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
45
|
Grossman Z. Immunological Paradigms, Mechanisms, and Models: Conceptual Understanding Is a Prerequisite to Effective Modeling. Front Immunol 2019; 10:2522. [PMID: 31749803 PMCID: PMC6848063 DOI: 10.3389/fimmu.2019.02522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Most mathematical models that describe the individual or collective actions of cells aim at creating faithful representations of limited sets of data in a self-consistent manner. Consistency with relevant physiological rules pertaining to the greater picture is rarely imposed. By themselves, such models have limited predictive or even explanatory value, contrary to standard claims. Here I try to show that a more critical examination of currently held paradigms is necessary and could potentially lead to models that pass the test of time. In considering the evolution of paradigms over the past decades I focus on the “smart surveillance” theory of how T cells can respond differentially, individually and collectively, to both self- and foreign antigens depending on various “contextual” parameters. The overall perspective is that physiological messages to cells are encoded not only in the biochemical connections of signaling molecules to the cellular machinery but also in the magnitude, kinetics, and in the time- and space-contingencies, of sets of stimuli. By rationalizing the feasibility of subthreshold interactions, the “dynamic tuning hypothesis,” a central component of the theory, set the ground for further theoretical and experimental explorations of dynamically regulated immune tolerance, homeostasis and diversity, and of the notion that lymphocytes participate in nonclassical physiological functions. Some of these efforts are reviewed. Another focus of this review is the concomitant regulation of immune activation and homeostasis through the operation of a feedback mechanism controlling the balance between renewal and differentiation of activated cells. Different perspectives on the nature and regulation of chronic immune activation in HIV infection have led to conflicting models of HIV pathogenesis—a major area of research for theoretical immunologists over almost three decades—and can have profound impact on ongoing HIV cure strategies. Altogether, this critical review is intended to constructively influence the outlook of prospective model builders and of interested immunologists on the state of the art and to encourage conceptual work.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
46
|
Ladinsky MS, Khamaikawin W, Jung Y, Lin S, Lam J, An DS, Bjorkman PJ, Kieffer C. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. eLife 2019; 8:46916. [PMID: 31657719 PMCID: PMC6839903 DOI: 10.7554/elife.46916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Immune progenitor cells differentiate in bone marrow (BM) and then migrate to tissues. HIV-1 infects multiple BM cell types, but virus dissemination within BM has been poorly understood. We used light microscopy and electron tomography to elucidate mechanisms of HIV-1 dissemination within BM of HIV-1–infected BM/liver/thymus (BLT) mice. Tissue clearing combined with confocal and light sheet fluorescence microscopy revealed distinct populations of HIV-1 p24-producing cells in BM early after infection, and quantification of these populations identified macrophages as the principal subset of virus-producing cells in BM over time. Electron tomography demonstrated three modes of HIV-1 dissemination in BM: (i) semi-synchronous budding from T-cell and macrophage membranes, (ii) mature virus association with virus-producing T-cell uropods contacting putative target cells, and (iii) macrophages engulfing HIV-1–producing T-cells and producing virus within enclosed intracellular compartments that fused to invaginations with access to the extracellular space. These results illustrate mechanisms by which the specialized environment of the BM can promote virus spread locally and to distant lymphoid tissues.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Wannisa Khamaikawin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yujin Jung
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Samantha Lin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Jennifer Lam
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Dong Sung An
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Collin Kieffer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
47
|
Rapid Elimination of Broadly Neutralizing Antibodies Correlates with Treatment Failure in the Acute Phase of Simian-Human Immunodeficiency Virus Infection. J Virol 2019; 93:JVI.01077-19. [PMID: 31375583 DOI: 10.1128/jvi.01077-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
Early human immunodeficiency virus type 1 (HIV-1) treatment during the acute period of infection can significantly limit the seeding of viral reservoirs and modify the course of disease. However, while a number of HIV-1 broadly neutralizing antibodies (bnAbs) have demonstrated remarkable efficacy as prophylaxis in macaques chronically infected with simian-human immunodeficiency virus (SHIV), intriguingly, their inhibitory effects were largely attenuated in the acute period of SHIV infection. To investigate the mechanism for the disparate performance of bnAbs in different periods of SHIV infection, we used LSEVh-LS-F, a bispecific bnAb targeting the CD4 binding site and CD4-induced epitopes, as a representative bnAb and assessed its potential therapeutic benefit in controlling virus replication in acutely or chronically SHIV-infected macaques. We found that a single infusion of LSEVh-LS-F resulted in rapid decline of plasma viral loads to undetectable levels without emergence of viral resistance in the chronically infected macaques. In contrast, the inhibitory effect was robust but transient in the acutely infected macaques, despite the fact that all macaques had comparable plasma viral loads initially. Infusing multiple doses of LSEVh-LS-F did not extend its inhibitory duration. Furthermore, the pharmacokinetics of the infused LSEVh-LS-F in the acutely SHIV-infected macaques significantly differed from that in the uninfected or chronically infected macaques. Host SHIV-specific immune responses may play a role in the viremia-dependent pharmacokinetics. Our results highlight the correlation between the fast clearance of infused bnAbs and the treatment failure in the acute period of SHIV infection and may have important implications for the therapeutic use of bnAbs to treat acute HIV infections.IMPORTANCE Currently, there is no bnAb-based monotherapy that has been reported to clear the virus in the acute SHIV infection period. Since early HIV treatment is considered critical to restricting the establishment of viral reservoirs, investigation into the mechanism for treatment failure in acutely infected macaques would be important for the therapeutic use of bnAbs and eventually towards the functional cure of HIV/AIDS. Here we report the comparative study of the therapeutic efficacy of a bnAb in acutely and chronically SHIV-infected macaques. This study revealed the correlation between the fast clearance of infused bnAbs and treatment failure during the acute period of infection.
Collapse
|
48
|
Showa SP, Nyabadza F, Hove-Musekwa SD. On the efficiency of HIV transmission: Insights through discrete time HIV models. PLoS One 2019; 14:e0222574. [PMID: 31532803 PMCID: PMC6750597 DOI: 10.1371/journal.pone.0222574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/03/2019] [Indexed: 11/18/2022] Open
Abstract
There are different views on which of the two forms of viral spread is more efficient in vivo between cell-free and cell-associated virus. In this study, discrete time human immunodeficiency virus models are formulated and analysed with the goal of determining the form of viral spread that is more efficient in vivo. It is shown that on its own, cell-free viral spread cannot sustain an infection owing to the low infectivity of cell-free virus and cell-associated virus can sustain an infection because of the high infectivity of cell-associated virus. When acting concurrently, cell-associated virus is more efficient in spreading the infection upon exposure to the virus. However, in the long term, the two forms of viral spread contribute almost equally. Both forms of viral spread are shown to be able to initiate an infection.
Collapse
Affiliation(s)
- Sarudzai P Showa
- Department of Applied Mathematics, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Farai Nyabadza
- Department of Mathematics and Applied Mathematics, Auckland Park Campus, University of Johannesburg, Johannesburg, South Africa
| | - Senelani D Hove-Musekwa
- Department of Applied Mathematics, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
49
|
Liu Y, Niu Y, Li L, Timani KA, He VL, Sanburns C, Xie J, He JJ. Tat expression led to increased histone 3 tri-methylation at lysine 27 and contributed to HIV latency in astrocytes through regulation of MeCP2 and Ezh2 expression. J Neurovirol 2019; 25:508-519. [PMID: 31020497 PMCID: PMC6750972 DOI: 10.1007/s13365-019-00751-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/03/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are susceptible to HIV infection and potential latent HIV reservoirs. Tat is one of three abundantly expressed HIV early genes in HIV-infected astrocytes and has been shown to be a major pathogenic factor for HIV/neuroAIDS. In this study, we sought to determine if and how Tat expression would affect HIV infection and latency in astrocytes. Using the glycoprotein from vesicular stomatitis virus-pseudotyped red-green HIV (RGH) reporter viruses, we showed that HIV infection was capable of establishing HIV latency in astrocytes. We also found that Tat expression decreased the generation of latent HIV-infected cells. Activation of latent HIV-infected astrocytes showed that treatment of GSK126, a selective inhibitor of methyltransferase enhancer of zeste homolog 2 (Ezh2) that is specifically responsible for tri-methylation of histone 3 lysine 27 (H3K27me3), led to activation of significantly more latent HIV-infected Tat-expressing astrocytes. Molecular analysis showed that H3K27me3, Ezh2, MeCP2, and Tat all exhibited a similar bimodal expression kinetics in the course of HIV infection and latency in astrocytes, although H3K27me3, Ezh2, and MeCP2 were expressed higher in Tat-expressing astrocytes and their expression were peaked immediately preceding Tat expression. Subsequent studies showed that Tat expression alone was sufficient to induce H3K27me3 expression, likely through its regulation of Ezh2 and MeCP2 expression. Taken together, these results showed for the first time that Tat expression induced H3K27me3 expression and contributed to HIV latency in astrocytes and suggest a new role and novel mechanism for Tat in HIV latency.
Collapse
Affiliation(s)
- Ying Liu
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Yinghua Niu
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Lu Li
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Khalid A Timani
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Victor L He
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Chris Sanburns
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Jiafeng Xie
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | | |
Collapse
|
50
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|