1
|
Wohlmann J. Expanding the field of view - a simple approach for interactive visualisation of electron microscopy data. J Cell Sci 2024; 137:jcs262198. [PMID: 39324375 PMCID: PMC11529876 DOI: 10.1242/jcs.262198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
The unparalleled resolving power of electron microscopy is both a blessing and a curse. At 30,000× magnification, 1 µm corresponds to 3 cm in the image and the field of view is only a few micrometres or less, resulting in an inevitable reduction in the spatial data available in an image. Consequently, the gain in resolution is at the cost of loss of the contextual 'reference space', which is crucial for understanding the embedded structures of interest. This problem is particularly pronounced in immunoelectron microscopy, where the detection of a gold particle is crucial for the localisation of specific molecules. The common solution of presenting high-magnification and overview images side by side often insufficiently represents the cellular environment. To address these limitations, we propose here an interactive visualization strategy inspired by digital maps and GPS modules which enables seamless transitions between different magnifications by dynamically linking virtual low magnification overview images with primary high-resolution data. By enabling dynamic browsing, it offers the potential for a deeper understanding of cellular landscapes leading to more comprehensive analysis of the primary ultrastructural data.
Collapse
Affiliation(s)
- Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| |
Collapse
|
2
|
Garcia-Atutxa I, Mondragon-Teran P, Huerta-Saquero A, Villanueva-Flores F. Advancements in monkeypox vaccines development: a critical review of emerging technologies. Front Immunol 2024; 15:1456060. [PMID: 39464881 PMCID: PMC11502315 DOI: 10.3389/fimmu.2024.1456060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Monkeypox (mpox) is a zoonotic illness caused by the monkeypox virus (MPXV), with higher health concerns among people who are pregnant, children, and persons who are immunocompromised, including people with untreated and advanced HIV disease. Significant progress has been made in developing vaccines against mpox, yet critical challenges and limitations persist in ensuring their effectiveness, safety, and accessibility. The pertinence of this review is highlighted by the World Health Organization's declaration of a global health emergency on August 14, 2024, due to the recent mpox outbreak, underscoring the critical necessity for effective vaccine solutions in the face of a rapidly evolving virus. Here, we comprehensively analyze various vaccine platforms utilized in mpox prevention, including attenuated and non-replicating virus vaccines, viral vector-based vaccines, recombinant protein vaccines, and DNA and mRNA vaccines. We evaluate the advantages and limitations of each platform, highlighting the urgent need for ongoing research and innovation to enhance vaccine efficacy and safety. Recent advancements, such as incorporating immunostimulatory sequences, improved delivery systems, and developing polyvalent vaccines, are explored for their potential to offer broader protection against diverse orthopoxvirus strains. This work underscores the need to optimize currently available vaccines and investigate novel vaccination strategies to address future public health emergencies effectively. By focusing on these advanced methodologies, we aim to contribute to the development of robust and adaptable vaccine solutions for mpox and other related viral threats.
Collapse
Affiliation(s)
- Igor Garcia-Atutxa
- Computer Science Department, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Paul Mondragon-Teran
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Mexico
| | - Francisca Villanueva-Flores
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| |
Collapse
|
3
|
Escalante GM, Reidel IG, Mutsvunguma LZ, Cua S, Tello BA, Rodriguez E, Farelo MA, Zimmerman C, Muniraju M, Li H, Govindan AN, Axthelm MK, Wong SW, Ogembo JG. Multivalent MVA-vectored vaccine elicits EBV neutralizing antibodies in rhesus macaques that reduce EBV infection in humanized mice. Front Immunol 2024; 15:1445209. [PMID: 39346922 PMCID: PMC11427267 DOI: 10.3389/fimmu.2024.1445209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Epstein-Barr virus (EBV) is an oncogenic human herpesvirus associated with ~350,000 cases of lymphoid and epithelial malignancies every year, and is etiologically linked to infectious mononucleosis and multiple sclerosis. Despite four decades of research, no EBV vaccine candidate has yet reached licensure. Most previous vaccine attempts focused on a single viral entry glycoprotein, gp350, but recent data from clinical and pre-clinical studies, and the elucidation of viral entry mechanisms, support the inclusion of multiple entry glycoproteins in EBV vaccine design. Methods Here we generated a modified vaccinia Ankara (MVA)-vectored EBV vaccine, MVA-EBV5-2, that targets five EBV entry glycoproteins, gp350, gB, and the gp42gHgL complex. We characterized the genetic and translational stability of the vaccine, followed by immunogenicity assessment in BALB/c mice and rhesus lymphocryptovirus-negative rhesus macaques as compared to a gp350-based MVA vaccine. Finally, we assessed the efficacy of MVA-EBV5-2-immune rhesus serum at preventing EBV infection in human CD34+ hematopoietic stem cell-reconstituted NSG mice, under two EBV challenge doses. Results The MVA-EBV5-2 vaccine was genetically and translationally stable over 10 viral passages as shown by genetic and protein expression analysis, and when administered to female and male BALB/c mice, elicited serum EBV-specific IgG of both IgG1 and IgG2a subtypes with neutralizing activity in vitro. In Raji B cells, this neutralizing activity outperformed that of serum from mice immunized with a monovalent MVA-vectored gp350 vaccine. Similarly, MVA-EBV5-2 elicited EBV-specific IgG in rhesus macaques that were detected in both serum and saliva of immunized animals, with serum antibodies demonstrating neutralizing activity in vitro that outperformed serum from MVA-gp350-immunized macaques. Finally, pre-treatment with serum from MVA-EBV5-2-immunized macaques resulted in fewer EBV-infected mice in the two challenge experiments than pretreatment with serum from pre-immune macaques or macaques immunized with the monovalent gp350-based vaccine. Discussion These results support the inclusion of multiple entry glycoproteins in EBV vaccine design and position our vaccine as a strong candidate for clinical translation.
Collapse
Affiliation(s)
- Gabriela M. Escalante
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Ivana G. Reidel
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Lorraine Z. Mutsvunguma
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Simeon Cua
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Brenda A. Tello
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Esther Rodriguez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States
| | - Mafalda A. Farelo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Cloe Zimmerman
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States
| | - Murali Muniraju
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - He Li
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Aparna N. Govindan
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
4
|
Cao L, Huang S, Basant A, Mladenov M, Way M. CK-666 and CK-869 differentially inhibit Arp2/3 iso-complexes. EMBO Rep 2024; 25:3221-3239. [PMID: 39009834 PMCID: PMC11316031 DOI: 10.1038/s44319-024-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
The inhibitors, CK-666 and CK-869, are widely used to probe the function of Arp2/3 complex mediated actin nucleation in vitro and in cells. However, in mammals, the Arp2/3 complex consists of 8 iso-complexes, as three of its subunits (Arp3, ArpC1, ArpC5) are encoded by two different genes. Here, we used recombinant Arp2/3 with defined composition to assess the activity of CK-666 and CK-869 against iso-complexes. We demonstrate that both inhibitors prevent linear actin filament formation when ArpC1A- or ArpC1B-containing complexes are activated by SPIN90. In contrast, inhibition of actin branching depends on iso-complex composition. Both drugs prevent actin branch formation by complexes containing ArpC1A, but only CK-869 can inhibit ArpC1B-containing complexes. Consistent with this, in bone marrow-derived macrophages which express low levels of ArpC1A, CK-869 but not CK-666, impacted phagocytosis and cell migration. CK-869 also only inhibits Arp3- but not Arp3B-containing iso-complexes. Our findings have important implications for the interpretation of results using CK-666 and CK-869, given that the relative expression levels of ArpC1 and Arp3 isoforms in cells and tissues remains largely unknown.
Collapse
Affiliation(s)
- LuYan Cao
- The Francis Crick Institute, London, UK.
| | | | | | | | - Michael Way
- The Francis Crick Institute, London, UK.
- Department of Infectious Disease, Imperial College, London, UK.
| |
Collapse
|
5
|
Rani I, Joshi H, Sharma U, Kaur J, Sood S, Ramniwas S, Chauhan A, Abdulabbas HS, Tuli HS. Potential use of cidofovir, brincidofovir, and tecovirimat drugs in fighting monkeypox infection: recent trends and advancements. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2055-2065. [PMID: 37837475 DOI: 10.1007/s00210-023-02769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Recent years have witnessed the rise of more recent pandemic outbreaks including COVID-19 and monkeypox. A multinational monkeypox outbreak creates a complex situation that necessitates countermeasures to the existing quo. The first incidence of monkeypox was documented in the 1970s, and further outbreaks led to a public health emergency of international concern. Yet as of right now, neither vaccines nor medicines are certain to treat monkeypox. Even the inability of conducting human clinical trials has prevented thousands of patients from receiving effective disease management. The current state of the disease's understanding, the treatment options available, financial resources, and lastly international policies to control an epidemic state are the major obstacles to controlling epidemics. The current review focuses on the epidemiology of monkeypox, scientific ideas, and available treatments, including potential monkeypox therapeutic methods. As a result, a thorough understanding of monkeypox literature will facilitate in the development of new therapeutic medications for the prevention and treatment of monkeypox.
Collapse
Affiliation(s)
- Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala, 134007, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Shivani Sood
- GIOSTAR-USA, Global Institute of Stem Cell Therapy and Research, Mohali, 140308, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, 201303, India
| | - Hadi Sajid Abdulabbas
- Department of Biology, College of Science, University of Babylon, Babylon, 51002, Iraq
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
6
|
Yll-Pico M, Park Y, Martinez J, Iniguez A, Kha M, Kim T, Medrano L, Nguyen VH, Kaltcheva T, Dempsey S, Chiuppesi F, Wussow F, Diamond DJ. Highly stable and immunogenic CMV T cell vaccine candidate developed using a synthetic MVA platform. NPJ Vaccines 2024; 9:68. [PMID: 38555379 PMCID: PMC10981716 DOI: 10.1038/s41541-024-00859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Human cytomegalovirus (CMV) is the most common infectious cause of complications post-transplantation, while a CMV vaccine for transplant recipients has yet to be licensed. Triplex, a multiantigen Modified Vaccinia Ankara (MVA)-vectored CMV vaccine candidate based on the immunodominant antigens phosphoprotein 65 (pp65) and immediate-early 1 and 2 (IE1/2), is in an advanced stage of clinical development. However, its limited genetic and expression stability restricts its potential for large-scale production. Using a recently developed fully synthetic MVA (sMVA) platform, we developed a new generation Triplex vaccine candidate, T10-F10, with different sequence modifications for enhanced vaccine stability. T10-F10 demonstrated genetic and expression stability during extensive virus passaging. In addition, we show that T10-F10 confers comparable immunogenicity to the original Triplex vaccine to elicit antigen-specific T cell responses in HLA-transgenic mice. These results demonstrate improvements in translational vaccine properties of an sMVA-based CMV vaccine candidate designed as a therapeutic treatment for transplant recipients.
Collapse
Affiliation(s)
- Marcal Yll-Pico
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA.
| | - Yoonsuh Park
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Joy Martinez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Angelina Iniguez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Taehyun Kim
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Leonard Medrano
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Vu H Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Teodora Kaltcheva
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Shannon Dempsey
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Don J Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
7
|
Pokorny L, Burden JJ, Albrecht D, Bamford R, Leigh KE, Sridhar P, Knowles TJ, Modis Y, Mercer J. The vaccinia chondroitin sulfate binding protein drives host membrane curvature to facilitate fusion. EMBO Rep 2024; 25:1310-1325. [PMID: 38321165 PMCID: PMC10933376 DOI: 10.1038/s44319-023-00040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
Cellular attachment of viruses determines their cell tropism and species specificity. For entry, vaccinia, the prototypic poxvirus, relies on four binding proteins and an eleven-protein entry fusion complex. The contribution of the individual virus binding proteins to virion binding orientation and membrane fusion is unclear. Here, we show that virus binding proteins guide side-on virion binding and promote curvature of the host membrane towards the virus fusion machinery to facilitate fusion. Using a membrane-bleb model system together with super-resolution and electron microscopy we find that side-bound vaccinia virions induce membrane invagination in the presence of low pH. Repression or deletion of individual binding proteins reveals that three of four contribute to binding orientation, amongst which the chondroitin sulfate binding protein, D8, is required for host membrane bending. Consistent with low-pH dependent macropinocytic entry of vaccinia, loss of D8 prevents virion-associated macropinosome membrane bending, disrupts fusion pore formation and infection. Our results show that viral binding proteins are active participants in successful virus membrane fusion and illustrate the importance of virus protein architecture for successful infection.
Collapse
Affiliation(s)
- Laura Pokorny
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Jemima J Burden
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Albrecht
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Rebecca Bamford
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- MRC-LMCB, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Chakraborty P, Kumar R, Karn S, Raviya DD, Mondal P. Application of Oncolytic Poxviruses: An Emerging Paradigm in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:369-381. [PMID: 38801591 DOI: 10.1007/978-3-031-57165-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite the significant advancement of new tools and technology in the field of medical biology and molecular biology, the challenges in the treatment of most cancer types remain constant with the problem of developing resistance toward drugs and no substantial enhancement in the overall survival rate of cancer patients. Immunotherapy has shown the most promising results in different clinical and preclinical trials in the treatment of various cancer due to its higher efficacy and minimum collateral damage in many cancer patients as compared to conventional chemotherapy and radiotherapy. An oncolytic virus is a new class of immunotherapy that can selectively replicate in tumor cells and destroy them by the process of cell lysis while exerting minimum or no effect on a normal cell. Besides this, it can also activate the host's innate immune system, which generates an anti-tumor immune response to eliminate the tumor cells. Several wild types and genetically modified viruses have been investigated to show oncolytic behavior. Vaccinia virus has been studied extensively and tested for its promising oncolytic nature on various model systems and clinical trials. Recently, several engineered vaccinia viruses have been developed that express the desired genes encoded for selective penetration in tumor cells and enhanced activation of the immune system for generating anti-tumor immunity. However, further investigation is required to prove their potential and enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Prasenjit Chakraborty
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India.
| | - Randhir Kumar
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India
| | - Sanjay Karn
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India
| | - Dharmiben D Raviya
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India
| | - Priya Mondal
- Laboratory of Cell Biology, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, Yin L, Yang Y, Tan W, Shen L. Mpox (formerly monkeypox): pathogenesis, prevention, and treatment. Signal Transduct Target Ther 2023; 8:458. [PMID: 38148355 PMCID: PMC10751291 DOI: 10.1038/s41392-023-01675-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/28/2023] Open
Abstract
In 2022, a global outbreak of Mpox (formerly monkeypox) occurred in various countries across Europe and America and rapidly spread to more than 100 countries and regions. The World Health Organization declared the outbreak to be a public health emergency of international concern due to the rapid spread of the Mpox virus. Consequently, nations intensified their efforts to explore treatment strategies aimed at combating the infection and its dissemination. Nevertheless, the available therapeutic options for Mpox virus infection remain limited. So far, only a few numbers of antiviral compounds have been approved by regulatory authorities. Given the high mutability of the Mpox virus, certain mutant strains have shown resistance to existing pharmaceutical interventions. This highlights the urgent need to develop novel antiviral drugs that can combat both drug resistance and the potential threat of bioterrorism. Currently, there is a lack of comprehensive literature on the pathophysiology and treatment of Mpox. To address this issue, we conducted a review covering the physiological and pathological processes of Mpox infection, summarizing the latest progress of anti-Mpox drugs. Our analysis encompasses approved drugs currently employed in clinical settings, as well as newly identified small-molecule compounds and antibody drugs displaying potential antiviral efficacy against Mpox. Furthermore, we have gained valuable insights from the process of Mpox drug development, including strategies for repurposing drugs, the discovery of drug targets driven by artificial intelligence, and preclinical drug development. The purpose of this review is to provide readers with a comprehensive overview of the current knowledge on Mpox.
Collapse
Affiliation(s)
- Junjie Lu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Hui Xing
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Chunhua Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Mengjun Tang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Fan Ye
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Lijuan Yin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China.
| |
Collapse
|
10
|
Basant A, Way M. The amount of Nck rather than N-WASP correlates with the rate of actin-based motility of Vaccinia virus. Microbiol Spectr 2023; 11:e0152923. [PMID: 37855608 PMCID: PMC10883800 DOI: 10.1128/spectrum.01529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Vaccinia virus is a large double-stranded DNA virus and a close relative of Mpox and Variola virus, the causative agent of smallpox. During infection, Vaccinia hijacks its host's transport systems and promotes its spread into neighboring cells by recruiting a signaling network that stimulates actin polymerization. Over the years, Vaccinia has provided a powerful model to understand how signaling networks regulate actin polymerization. Nevertheless, we still lack important quantitative information about the system, including the precise number of viral and host molecules required to induce actin polymerization. Using quantitative fluorescence microscopy techniques, we have determined the number of viral and host signaling proteins accumulating on virions during their egress. Our analysis has uncovered two unexpected new aspects of this process: the number of viral proteins in the virion is not fixed and the velocity of virus movement depends on the level of a single adaptor within the signaling network.
Collapse
Affiliation(s)
- Angika Basant
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute , London, United Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute , London, United Kingdom
- Department of Infectious Disease, Imperial College , London, United Kingdom
| |
Collapse
|
11
|
Noy-Porat T, Tamir H, Alcalay R, Rosenfeld R, Epstein E, Cherry L, Achdout H, Erez N, Politi B, Yahalom-Ronen Y, Weiss S, Melamed S, Israely T, Mazor O, Paran N, Makdasi E. Generation of recombinant mAbs to vaccinia virus displaying high affinity and potent neutralization. Microbiol Spectr 2023; 11:e0159823. [PMID: 37737634 PMCID: PMC10581037 DOI: 10.1128/spectrum.01598-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/23/2023] [Indexed: 09/23/2023] Open
Abstract
Members of the Orthopoxvirus genus can cause severe infections in humans. Global vaccination against smallpox, caused by the variola virus, resulted in the eradication of the disease in 1980. Shortly thereafter, vaccination was discontinued, and as a result, a large proportion of the current population is not protected against orthopoxviruses. The concerns that the variola virus or other engineered forms of poxviruses may re-emerge as bioweapons and the sporadic outbreaks of zoonotic members of the family, such as Mpox, which are becoming more frequent and prevalent, also emphasize the need for an effective treatment against orthopoxviruses. To date, the most effective way to prevent or control an orthopoxvirus outbreak is through vaccination. However, the traditional vaccinia-based vaccine may cause severe side effects. Vaccinia immune globulin was approved by the U.S. Food and Drug Administration (FDA) for the treatment of vaccine adverse reactions and was also used occasionally for the treatment of severe orthopoxvirus infections. However, this treatment carries many disadvantages and is also in short supply. Thus, a recombinant alternative is highly needed. In this study, two non-human primates were immunized with live vaccinia virus, producing a robust and diverse antibody response. A phage-display library was constructed based on the animal's lymphatic organs, and a panel of neutralizing monoclonal antibodies (mAbs), recognizing diverse proteins of the vaccinia virus, was selected and characterized. These antibodies recognized both mature virion and enveloped virion forms of the virus and exhibited high affinity and potent in vitro neutralization capabilities. Furthermore, these monoclonal antibodies were able to neutralize Mpox 2018 and 2022 strains, suggesting a potential for cross-species protection. We suggest that a combination of these mAbs has the potential to serve as recombinant therapy both for vaccinia vaccine adverse reactions and for orthopoxvirus infections. IMPORTANCE In this manuscript, we report the isolation and characterization of several recombinant neutralizing monoclonal antibodies (mAbs) identified by screening a phage-display library constructed from lymphatic cells collected from immunized non-human primates. The antibodies target several different antigens of the vaccinia virus, covering both mature virion and extracellular enveloped virion forms of the virus. We document strong evidence indicating that they exhibit excellent affinity to their respective antigens and, most importantly, optimal in vitro neutralization of the virus, which exceeded that of vaccinia immune globulin. Furthermore, we present the ability of these novel isolated mAbs (as well as the sera collected from vaccinia-immunized animals) to neutralize two Mpox strains from the 2018 to 2022 outbreaks. We believe that these antibodies have the potential to be used for the treatment of vaccinia vaccine adverse reactions, for other orthopoxvirus infections, and in cases of unexpected bioterror scenarios.
Collapse
Affiliation(s)
- Tal Noy-Porat
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hadas Tamir
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ron Alcalay
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ronit Rosenfeld
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eyal Epstein
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Lilach Cherry
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hagit Achdout
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noam Erez
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Boaz Politi
- Israel Institute for Biological Research, Ness Ziona, Israel
| | | | - Shay Weiss
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Sharon Melamed
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ohad Mazor
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Nir Paran
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Efi Makdasi
- Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
12
|
Bécares M, Albert M, Tárrega C, Coloma R, Falqui M, Luhmann EK, Radoshevich L, Guerra S. ISG15 Is Required for the Dissemination of Vaccinia Virus Extracellular Virions. Microbiol Spectr 2023; 11:e0450822. [PMID: 37036376 PMCID: PMC10269806 DOI: 10.1128/spectrum.04508-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Viruses have developed many different strategies to counteract immune responses, and Vaccinia virus (VACV) is one of a kind in this aspect. To ensure an efficient infection, VACV undergoes a complex morphogenetic process resulting in the production of two types of infective virions: intracellular mature virus (MV) and extracellular enveloped virus (EV), whose spread depends on different dissemination mechanisms. MVs disseminate after cell lysis, whereas EVs are released or propelled in actin tails from living cells. Here, we show that ISG15 participates in the control of VACV dissemination. Infection of Isg15-/- mouse embryonic fibroblasts with VACV International Health Department-J (IHD-J) strain resulted in decreased EV production, concomitant with reduced induction of actin tails and the abolition of comet-shaped plaque formation, compared to Isg15+/+ cells. Transmission electron microscopy revealed the accumulation of intracellular virus particles and a decrease in extracellular virus particles in the absence of interferon-stimulated gene 15 (ISG15), a finding consistent with altered virus egress. Immunoblot and quantitative proteomic analysis of sucrose gradient-purified virions from both genotypes reported differences in protein levels and composition of viral proteins present on virions, suggesting an ISG15-mediated control of viral proteome. Lastly, the generation of a recombinant IHD-J expressing V5-tagged ISG15 (IHD-J-ISG15) allowed us to identify several viral proteins as potential ISG15 targets, highlighting the proteins A34 and A36, which are essential for EV formation. Altogether, our results indicate that ISG15 is an important host factor in the regulation of VACV dissemination. IMPORTANCE Viral infections are a constant battle between the virus and the host. While the host's only goal is victory, the main purpose of the virus is to spread and conquer new territories at the expense of the host's resources. Along millions of years of incessant encounters, poxviruses have developed a unique strategy consisting in the production two specialized "troops": intracellular mature virions (MVs) and extracellular virions (EVs). MVs mediate transmission between hosts, and EVs ensure advance on the battlefield mediating the long-range dissemination. The mechanism by which the virus "decides" to shed from the primary site of infection and its significant impact in viral transmission is not yet fully established. Here, we demonstrate that this process is finely regulated by ISG15/ISGylation, an interferon-induced ubiquitin-like protein with broad antiviral activity. Studying the mechanism that viruses use during infection could result in new ways of understanding our perpetual war against disease and how we might win the next great battle.
Collapse
Affiliation(s)
- Martina Bécares
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Céline Tárrega
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rocío Coloma
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Michela Falqui
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Emma K. Luhmann
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Paniz-Mondolfi A, Reidy J, Pagani N, Lednicky JA, McGrail JP, Kasminskaya Y, Patino LH, Garcia-Sastre A, Palacios G, Gonzalez-Reiche AS, van Bakel H, Firpo Betancourt A, Hernandez MM, Cordon-Cardo C, Simon V, Sordillo EM, Ramírez JD, Guerra S. Genomic and ultrastructural analysis of monkeypox virus in skin lesions and in human/animal infected cells reveals further morphofunctional insights into viral pathogenicity. J Med Virol 2023; 95:e28878. [PMID: 37322614 DOI: 10.1002/jmv.28878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Monkeypox (MPOX) is a zoonotic disease that affects humans and other primates, resulting in a smallpox-like illness. It is caused by monkeypox virus (MPXV), which belongs to the Poxviridae family. Clinically manifested by a range of cutaneous and systemic findings, as well as variable disease severity phenotypes based on the genetic makeup of the virus, the cutaneous niche and respiratory mucosa are the epicenters of MPXV pathogenicity. Herein, we describe the ultrastructural features of MPXV infection in both human cultured cells and cutaneous clinical specimens collected during the 2022-2023 MPOX outbreak in New York City that were revealed through electron microscopy. We observed typical enveloped virions with brick-shaped morphologies that contained surface protrusions, consistent with the classic ultrastructural features of MPXV. In addition, we describe morpho-functional evidence that point to roles of distinct cellular organelles in viral assembly during clinical MPXV infection. Interestingly, in skin lesions, we found abundant melanosomes near viral assembly sites, particularly in the vicinity of mature virions, which provides further insight into virus-host interactions at the subcellular level that contribute to MPXV pathogenesis. These findings not only highlight the importance of electron microscopic studies for further investigation of this emerging pathogen but also in characterizing MPXV pathogenesis during human infection.
Collapse
Affiliation(s)
- Alberto Paniz-Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jason Reidy
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nina Pagani
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Biotechnology Laboratory Sciences, Valencia College, Orlando, Florida, USA
- Infectious Diseases Research Department, Division of Virology, Venezuelan Science Incubator and The Zoonosis and Emerging Pathogens Regional Collaborative Network, Cabudare, Lara, Venezuela
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Joseph Patrick McGrail
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yana Kasminskaya
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Luz H Patino
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Adolfo Garcia-Sastre
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gustavo Palacios
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Harm van Bakel
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Adolfo Firpo Betancourt
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matthew M Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Viviana Simon
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emilia M Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Juan David Ramírez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Niu L, Liang D, Ling Q, Zhang J, Li Z, Zhang D, Xia P, Zhu Z, Lin J, Shi A, Ma J, Yu P, Liu X. Insights into monkeypox pathophysiology, global prevalence, clinical manifestation and treatments. Front Immunol 2023; 14:1132250. [PMID: 37026012 PMCID: PMC10070694 DOI: 10.3389/fimmu.2023.1132250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
On 23rd July 2022, the World Health Organization (WHO) recognized the ongoing monkeypox outbreak as a public medical crisis. Monkeypox virus (MPV), the etiological agent of monkeypox, is a zoonotic, linear, double-stranded DNA virus. In 1970, the Democratic Republic of the Congo reported the first case of MPV infection. Human-to-human transmission can happen through sexual contact, inhaled droplets, or skin-to-skin contact. Once inoculated, the viruses multiply rapidly and spread into the bloodstream to cause viremia, which then affect multiple organs, including the skin, gastrointestinal tract, genitals, lungs, and liver. By September 9, 2022, more than 57,000 cases had been reported in 103 locations, especially in Europe and the United States. Infected patients are characterized by physical symptoms such as red rash, fatigue, backache, muscle aches, headache, and fever. A variety of medical strategies are available for orthopoxviruses, including monkeypox. Monkeypox prevention following the smallpox vaccine has shown up to 85% efficacy, and several antiviral drugs, such as Cidofovir and Brincidofovir, may slow the viral spread. In this article, we review the origin, pathophysiology, global epidemiology, clinical manifestation, and possible treatments of MPV to prevent the propagation of the virus and provide cues to generate specific drugs.
Collapse
Affiliation(s)
- Liyan Niu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Huan Kui College of Nanchang University, Nanchang, China
| | - Dingfa Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Queen Mary College of Nanchang University, Nanchang, China
| | - Qin Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Ziwen Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Third Department of Internal Medicine, Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi, China
| | - Panpan Xia
- Third Department of Internal Medicine, Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi, China
| | - Zicheng Zhu
- Third Department of Internal Medicine, Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi, China
| | - Jitao Lin
- Third Department of Internal Medicine, Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi, China
| | - Ao Shi
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- School of Medicine, St. George University of London, London, United Kingdom
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Peng Yu
- Third Department of Internal Medicine, Dexing Hospital of Traditional Chinese Medicine, Dexing, Jiangxi, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Tang H, Zhang A. Human mpox: Biology, epidemiology, therapeutic options, and development of small molecule inhibitors. Med Res Rev 2023. [PMID: 36891882 DOI: 10.1002/med.21943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/22/2023] [Accepted: 02/26/2023] [Indexed: 03/10/2023]
Abstract
Although monkeypox (mpox) has been endemic in Western and Central Africa for 50 years, it has not received sufficient prophylactic and therapeutical attention to avoid evolving into an epidemic. From January 2022 to January 2023, more than 84,000 of mpox cases were reported from 110 countries worldwide. Case numbers appear to be rising every day, making mpox an increasing global public health threat for the foreseeable future. In this perspective, we review the known biology and epidemiology of mpox virus, together with the latest therapeutic options available for mpox treatment. Further, small molecule inhibitors against mpox virus and the future directions in this field are discussed as well.
Collapse
Affiliation(s)
- Hairong Tang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Lingang Laboratory, Shanghai, China
| |
Collapse
|
16
|
Xu A, Basant A, Schleich S, Newsome TP, Way M. Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection. J Cell Sci 2023; 136:jcs260175. [PMID: 36093836 PMCID: PMC9659004 DOI: 10.1242/jcs.260175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.
Collapse
Affiliation(s)
- Amadeus Xu
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Angika Basant
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sibylle Schleich
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Timothy P. Newsome
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
17
|
Hernandez-Gonzalez M, Calcraft T, Nans A, Rosenthal PB, Way M. A succession of two viral lattices drives vaccinia virus assembly. PLoS Biol 2023; 21:e3002005. [PMID: 36862727 PMCID: PMC10013923 DOI: 10.1371/journal.pbio.3002005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/14/2023] [Accepted: 01/19/2023] [Indexed: 03/03/2023] Open
Abstract
During its cytoplasmic replication, vaccinia virus assembles non-infectious spherical immature virions (IV) coated by a viral D13 lattice. Subsequently, IV mature into infectious brick-shaped intracellular mature virions (IMV) that lack D13. Here, we performed cryo-electron tomography (cryo-ET) of frozen-hydrated vaccinia-infected cells to structurally characterise the maturation process in situ. During IMV formation, a new viral core forms inside IV with a wall consisting of trimeric pillars arranged in a new pseudohexagonal lattice. This lattice appears as a palisade in cross-section. As maturation occurs, which involves a 50% reduction in particle volume, the viral membrane becomes corrugated as it adapts to the newly formed viral core in a process that does not appear to require membrane removal. Our study suggests that the length of this core is determined by the D13 lattice and that the consecutive D13 and palisade lattices control virion shape and dimensions during vaccinia assembly and maturation.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, London, United Kingdom
| | - Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Khattak S, Rauf MA, Ali Y, Yousaf MT, Liu Z, Wu DD, Ji XY. The monkeypox diagnosis, treatments and prevention: A review. Front Cell Infect Microbiol 2023; 12:1088471. [PMID: 36814644 PMCID: PMC9939471 DOI: 10.3389/fcimb.2022.1088471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023] Open
Abstract
The world is currently dealing with a second viral outbreak, monkeypox, which has the potential to become an epidemic after the COVID-19 pandemic. People who reside in or close to forest might be exposed indirectly or at a low level, resulting in subclinical disease. However, the disease has lately emerged in shipped African wild mice in the United States. Smallpox can cause similar signs and symptoms to monkeypox, such as malaise, fever, flu-like signs, headache, distinctive rash, and back pain. Because Smallpox has been eliminated, similar symptoms in a monkeypox endemic zone should be treated cautiously. Monkeypox is transmitted to humans primarily via interaction with diseased animals. Infection through inoculation via interaction with skin or scratches and mucosal lesions on the animals is conceivable significantly once the skin barrier is disrupted by scratches, bites, or other disturbances or trauma. Even though it is clinically unclear from other pox-like infections, laboratory diagnosis is essential. There is no approved treatment for human monkeypox virus infection, however, smallpox vaccination can defend counter to the disease. Human sensitivity to monkeypox virus infection has grown after mass vaccination was discontinued in the 1980s. Infection may be prevented by reducing interaction with sick patients or animals and reducing respiratory exposure among people who are infected.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Mohd Ahmar Rauf
- School of Pharmaceutical Sciences, Wayne State University, Detroit, MI, United States
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Muhammad Tufail Yousaf
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Zhihui Liu
- Department of General Practice, Henan Provincial Peoples Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China,School of Stomatology, Henan University, Kaifeng, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China,*Correspondence: Zhihui Liu, ; Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
19
|
Basant A, Way M. The relative binding position of Nck and Grb2 adaptors impacts actin-based motility of Vaccinia virus. eLife 2022; 11:e74655. [PMID: 35796545 PMCID: PMC9333988 DOI: 10.7554/elife.74655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Phosphotyrosine (pTyr) motifs in unstructured polypeptides orchestrate important cellular processes by engaging SH2-containing adaptors to assemble complex signalling networks. The concept of phase separation has recently changed our appreciation of multivalent networks, however, the role of pTyr motif positioning in their function remains to be explored. We have now investigated this parameter in the operation of the signalling cascade driving actin-based motility and spread of Vaccinia virus. This network involves two pTyr motifs in the viral protein A36 that recruit the adaptors Nck and Grb2 upstream of N-WASP and Arp2/3 complex-mediated actin polymerisation. Manipulating the position of pTyr motifs in A36 and the unrelated p14 from Orthoreovirus, we find that only specific spatial arrangements of Nck and Grb2 binding sites result in robust N-WASP recruitment, Arp2/3 complex driven actin polymerisation and viral spread. This suggests that the relative position of pTyr adaptor binding sites is optimised for signal output. This finding may explain why the relative positions of pTyr motifs are frequently conserved in proteins from widely different species. It also has important implications for regulation of physiological networks, including those undergoing phase transitions.
Collapse
Affiliation(s)
- Angika Basant
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
20
|
Ahsendorf HP, Diesterbeck US, Hotop SK, Winkler M, Brönstrup M, Czerny CP. Characterisation of an Anti-Vaccinia Virus F13 Single Chain Fragment Variable from a Human Anti-Vaccinia Virus-Specific Recombinant Immunoglobulin Library. Viruses 2022; 14:v14020197. [PMID: 35215792 PMCID: PMC8879190 DOI: 10.3390/v14020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
Vaccinia virus (VACV) belongs to the genus Orthopoxvirus of the family Poxviridae. There are four different forms of infectious virus particles: intracellular mature virus (IMV), intracellular en-veloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). The F13 protein occupies the inner side of the CEV- and EEV-membranes and the outer side of the IEV-membranes. It plays an important role in wrapping progress and EEV production. We constructed a human single-chain fragment variable (scFv) library with a diversity of ≥4 × 108 independent colonies using peripheral blood from four vaccinated donors. One anti-F13 scFv was isolated and characterised after three rounds of panning. In Western blotting assays, the scFv 3E2 reacted with the recombinant F13VACV protein with a reduction of binding under denatured and reduced conditions. Two antigenic binding sites (139-GSIHTIKTLGVYSDY-153 and 169-AFNSAKNSWLNL-188) of scFv 3E2 were mapped using a cellulose membrane encompassing 372 15-mere peptides with 12 overlaps covering the whole F13 protein. No neutralisation capa-bilities were observed either in the presence or absence of complement. In conclusion, the con-struction of recombinant immunoglobulin libraries is a promising strategy to isolate specific scFvs to enable the study of the host-pathogen interaction.
Collapse
Affiliation(s)
- Henrike P. Ahsendorf
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany; (H.P.A.); (C.-P.C.)
| | - Ulrike S. Diesterbeck
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany; (H.P.A.); (C.-P.C.)
- Correspondence:
| | - Sven-Kevin Hotop
- Helmholtz Centre for Infection Research, Inhoffenstraβe 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.B.)
| | - Michael Winkler
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany;
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Inhoffenstraβe 7, 38124 Braunschweig, Germany; (S.-K.H.); (M.B.)
| | - Claus-Peter Czerny
- Division of Microbiology and Animal Hygiene, Department of Animal Sciences, University of Göttingen, Burckhardtweg 2, 37077 Göttingen, Germany; (H.P.A.); (C.-P.C.)
| |
Collapse
|
21
|
Monticelli SR, Bryk P, Brewer MG, Aguilar HC, Norbury CC, Ward BM. An increase in glycoprotein concentration on extracellular virions dramatically alters vaccinia virus infectivity and pathogenesis without impacting immunogenicity. PLoS Pathog 2021; 17:e1010177. [PMID: 34962975 PMCID: PMC8746760 DOI: 10.1371/journal.ppat.1010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/10/2022] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
The extracellular virion (EV) form of Orthopoxviruses is required for cell-to-cell spread and pathogenesis, and is the target of neutralizing antibodies in the protective immune response. EV have a double envelope that contains several unique proteins that are involved in its intracellular envelopment and/or subsequent infectivity. One of these, F13, is involved in both EV formation and infectivity. Here, we report that replacement of vaccinia virus F13L with the molluscum contagiosum virus homolog, MC021L, results in the production of EV particles with significantly increased levels of EV glycoproteins, which correlate with a small plaque phenotype. Using a novel fluorescence-activated virion sorting assay to isolate EV populations based on glycoprotein content we determine that EV containing either higher or lower levels of glycoproteins are less infectious, suggesting that there is an optimal concentration of glycoproteins in the outer envelope that is required for maximal infectivity of EV. This optimal glycoprotein concentration was required for lethality and induction of pathology in a cutaneous model of animal infection, but was not required for induction of a protective immune response. Therefore, our results demonstrate that there is a sensitive balance between glycoprotein incorporation, infectivity, and pathogenesis, and that manipulation of EV glycoprotein levels can produce vaccine vectors in which pathologic side effects are attenuated without a marked diminution in induction of protective immunity.
Collapse
Affiliation(s)
- Stephanie R. Monticelli
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Peter Bryk
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Matthew G. Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
22
|
Huttunen M, Samolej J, Evans RJ, Yakimovich A, White IJ, Kriston-Vizi J, Martin-Serrano J, Sundquist WI, Frickel EM, Mercer J. Vaccinia virus hijacks ESCRT-mediated multivesicular body formation for virus egress. Life Sci Alliance 2021; 4:4/8/e202000910. [PMID: 34145027 PMCID: PMC8321658 DOI: 10.26508/lsa.202000910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
Poxvirus extracellular virions are critical for virus virulence. This study shows that multivesicular bodies serve as a major cellular source of membrane for their formation and spread. Poxvirus egress is a complex process whereby cytoplasmic single membrane–bound virions are wrapped in a cell-derived double membrane. These triple-membrane particles, termed intracellular enveloped virions (IEVs), are released from infected cells by fusion. Whereas the wrapping double membrane is thought to be derived from virus-modified trans-Golgi or early endosomal cisternae, the cellular factors that regulate virus wrapping remain largely undefined. To identify cell factors required for this process the prototypic poxvirus, vaccinia virus (VACV), was subjected to an RNAi screen directed against cellular membrane-trafficking proteins. Focusing on the endosomal sorting complexes required for transport (ESCRT), we demonstrate that ESCRT-III and VPS4 are required for packaging of virus into multivesicular bodies (MVBs). EM-based characterization of MVB-IEVs showed that they account for half of IEV production indicating that MVBs are a second major source of VACV wrapping membrane. These data support a model whereby, in addition to cisternae-based wrapping, VACV hijacks ESCRT-mediated MVB formation to facilitate virus egress and spread.
Collapse
Affiliation(s)
- Moona Huttunen
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, London, UK .,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Jerzy Samolej
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Robert J Evans
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.,Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Artur Yakimovich
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ian J White
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Janos Kriston-Vizi
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | | | - Eva-Maria Frickel
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Jason Mercer
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, London, UK .,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
24
|
Chiuppesi F, Salazar MD, Contreras H, Nguyen VH, Martinez J, Park Y, Nguyen J, Kha M, Iniguez A, Zhou Q, Kaltcheva T, Levytskyy R, Ebelt ND, Kang TH, Wu X, Rogers TF, Manuel ER, Shostak Y, Diamond DJ, Wussow F. Development of a multi-antigenic SARS-CoV-2 vaccine candidate using a synthetic poxvirus platform. Nat Commun 2020; 11:6121. [PMID: 33257686 PMCID: PMC7705736 DOI: 10.1038/s41467-020-19819-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We demonstrate the construction of a vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we use this vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. We show that mice immunized with these sMVA vectors develop robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Marcela d'Alincourt Salazar
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Heidi Contreras
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Vu H Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Joy Martinez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yoonsuh Park
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jenny Nguyen
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Angelina Iniguez
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Qiao Zhou
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Teodora Kaltcheva
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Roman Levytskyy
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Nancy D Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Tae Hyuk Kang
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Thomas F Rogers
- Division of Infectious Diseases and Global Public Health, University of California San Diego, School of Medicine, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Scripps Research, Department of Immunology and Microbiology, 10550N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Edwin R Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Yuriy Shostak
- Research Business Development, City of Hope, Duarte, CA, 91010, USA
| | - Don J Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
25
|
Song K, Viskovska M. Design and Engineering of Deimmunized Vaccinia Viral Vectors. Biomedicines 2020; 8:E491. [PMID: 33187060 PMCID: PMC7697509 DOI: 10.3390/biomedicines8110491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Vaccinia viral (VV) vectors are increasingly used in oncolytic virus therapy and vaccine development for cancer and infectious diseases. However, their effectiveness is hindered by the strong anti-viral immune response induced by the viral vector. In this review, we discuss the strategies to deimmunize vaccinia viral vector. One approach is to mask the virus from the neutralization antibody responses by mapping and eliminating of B-cell epitopes on the viral membrane proteins. The recombinant VVs contain one or more viral glycoproteins with mutations in the neutralizing antibody epitopes, resulting in viral escape from neutralization. In addition, a regulator of complement activation (e.g., CD55) can be expressed on the surface of the virus particle, leading to increased resistance to complement-mediated neutralization.
Collapse
Affiliation(s)
| | - Mariya Viskovska
- Icell Kealex Therapeutics, 2450 Holcombe Blvd Suite J, JALBS@TMC, Houston, TX 77021, USA;
| |
Collapse
|
26
|
Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses 2020; 12:E1257. [PMID: 33167496 PMCID: PMC7694534 DOI: 10.3390/v12111257] [Citation(s) in RCA: 388] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is a member of orthopoxvirus genus. The reemergence of MPXV in 2017 (at Bayelsa state) after 39 years of no reported case in Nigeria, and the export of travelers' monkeypox (MPX) from Nigeria to other parts of the world, in 2018 and 2019, respectively, have raised concern that MPXV may have emerged to occupy the ecological and immunological niche vacated by smallpox virus. This review X-rays the current state of knowledge pertaining the infection biology, epidemiology, and evolution of MPXV in Nigeria and worldwide, especially with regard to the human, cellular, and viral factors that modulate the virus transmission dynamics, infection, and its maintenance in nature. This paper also elucidates the role of recombination, gene loss and gene gain in MPXV evolution, chronicles the role of signaling in MPXV infection, and reviews the current therapeutic options available for the treatment and prevention of MPX. Additionally, genome-wide phylogenetic analysis was undertaken, and we show that MPXV isolates from recent 2017 outbreak in Nigeria were monophyletic with the isolate exported to Israel from Nigeria but do not share the most recent common ancestor with isolates obtained from earlier outbreaks, in 1971 and 1978, respectively. Finally, the review highlighted gaps in knowledge particularly the non-identification of a definitive reservoir host animal for MPXV and proposed future research endeavors to address the unresolved questions.
Collapse
Affiliation(s)
- Emmanuel Alakunle
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250 Yola, Nigeria;
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UIT)—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Godwin Nchinda
- Laboratory of Vaccinology and Immunology, The Chantal Biya International Reference Center for Research on the Prevention and Management HIV/AIDS (CIRCB), P.O Box 3077 Yaoundé-Messa, Cameroon;
- Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, P.O Box 420110 Awka, Nigeria
| | - Malachy Ifeanyi Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, PMB 2250 Yola, Nigeria;
| |
Collapse
|
27
|
Monticelli SR, Bryk P, Ward BM. The Molluscum Contagiosum Gene MC021L Partially Compensates for the Loss of Its Vaccinia Virus Homolog, F13L. J Virol 2020; 94:e01496-20. [PMID: 32727873 PMCID: PMC7527044 DOI: 10.1128/jvi.01496-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Orthopoxviruses produce two antigenically distinct infectious enveloped virions termed intracellular mature virions and extracellular virions (EV). EV have an additional membrane compared to intracellular mature virions due to a wrapping process at the trans-Golgi network and are required for cell-to-cell spread and pathogenesis. Specific to the EV membrane are a number of proteins highly conserved among orthopoxviruses, including F13, which is required for the efficient wrapping of intracellular mature virions to produce EV and which plays a role in EV entry. The distantly related molluscipoxvirus, molluscum contagiosum virus, is predicted to encode several vaccinia virus homologs of EV-specific proteins, including the homolog of F13L, MC021L. To study the function of MC021, we replaced the F13L open reading frame in vaccinia virus with an epitope-tagged version of MC021L. The resulting virus (vMC021L-HA) had a small-plaque phenotype compared to vF13L-HA but larger than vΔF13L. The localization of MC021-HA was markedly different from that of F13-HA in infected cells, but MC021-HA was still incorporated in the EV membrane. Similar to F13-HA, MC021-HA was capable of interacting with both A33 and B5. Although MC021-HA expression did not fully restore plaque size, vMC021L-HA produced amounts of EV similar to those produced by vF13L-HA, suggesting that MC021 retained some of the functionality of F13. Further analysis revealed that EV produced from vMC021L-HA exhibit a marked reduction in target cell binding and an increase in dissolution, both of which correlated with a small-plaque phenotype.IMPORTANCE The vaccinia virus extracellular virion protein F13 is required for the production and release of infectious extracellular virus, which in turn is essential for the subsequent spread and pathogenesis of orthopoxviruses. Molluscum contagiosum virus infects millions of people worldwide each year, but it is unknown whether EV are produced during infection for spread. Molluscum contagiosum virus contains a homolog of F13L termed MC021L. To study the potential function of this homolog during infection, we utilized vaccinia virus as a surrogate and showed that a vaccinia virus expressing MC021L-HA in place of F13L-HA exhibits a small-plaque phenotype but produces similar levels of EV. These results suggest that MC021-HA can compensate for the loss of F13-HA by facilitating wrapping to produce EV and further delineates the dual role of F13 during infection.
Collapse
Affiliation(s)
- Stephanie R Monticelli
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Peter Bryk
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian M Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
28
|
Realegeno S, Priyamvada L, Kumar A, Blackburn JB, Hartloge C, Puschnik AS, Sambhara S, Olson VA, Carette JE, Lupashin V, Satheshkumar PS. Conserved Oligomeric Golgi (COG) Complex Proteins Facilitate Orthopoxvirus Entry, Fusion and Spread. Viruses 2020; 12:v12070707. [PMID: 32629851 PMCID: PMC7411930 DOI: 10.3390/v12070707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Although orthopoxviruses (OPXV) are known to encode a majority of the genes required for replication in host cells, genome-wide genetic screens have revealed that several host pathways are indispensable for OPXV infection. Through a haploid genetic screen, we previously identified several host genes required for monkeypox virus (MPXV) infection, including the individual genes that form the conserved oligomeric Golgi (COG) complex. The COG complex is an eight-protein (COG1-COG8) vesicle tethering complex important for regulating membrane trafficking, glycosylation enzymes, and maintaining Golgi structure. In this study, we investigated the role of the COG complex in OPXV infection using cell lines with individual COG gene knockout (KO) mutations. COG KO cells infected with MPXV and vaccinia virus (VACV) produced small plaques and a lower virus yield compared to wild type (WT) cells. In cells where the KO phenotype was reversed using a rescue plasmid, the size of virus plaques increased demonstrating a direct link between the decrease in viral spread and the KO of COG genes. KO cells infected with VACV displayed lower levels of viral fusion and entry compared to WT suggesting that the COG complex is important for early events in OPXV infection. Additionally, fewer actin tails were observed in VACV-infected KO cells compared to WT. Since COG complex proteins are required for cellular trafficking of glycosylated membrane proteins, the disruption of this process due to lack of individual COG complex proteins may potentially impair the virus-cell interactions required for viral entry and egress. These data validate that the COG complex previously identified in our genetic screens plays a role in OPXV infection.
Collapse
Affiliation(s)
- Susan Realegeno
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (S.R.); (L.P.); (C.H.); (V.A.O.)
| | - Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (S.R.); (L.P.); (C.H.); (V.A.O.)
| | - Amrita Kumar
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (A.K.); (S.S.)
| | - Jessica B. Blackburn
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (J.B.B.); (V.L.)
| | - Claire Hartloge
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (S.R.); (L.P.); (C.H.); (V.A.O.)
| | - Andreas S. Puschnik
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94035, USA; (A.S.P.); (J.E.C.)
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (A.K.); (S.S.)
| | - Victoria A. Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (S.R.); (L.P.); (C.H.); (V.A.O.)
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94035, USA; (A.S.P.); (J.E.C.)
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (J.B.B.); (V.L.)
| | - Panayampalli Subbian Satheshkumar
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 3033, USA; (S.R.); (L.P.); (C.H.); (V.A.O.)
- Correspondence:
| |
Collapse
|
29
|
Vaccinia Virus Glycoproteins A33, A34, and B5 Form a Complex for Efficient Endoplasmic Reticulum to trans-Golgi Network Transport. J Virol 2020; 94:JVI.02155-19. [PMID: 31941777 DOI: 10.1128/jvi.02155-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023] Open
Abstract
Orthopoxviruses produce two, antigenically distinct, infectious enveloped virions termed intracellular mature virions and extracellular virions. Extracellular virions are required for cell-to-cell spread and pathogenesis. Specific to the extracellular virion membrane, glycoproteins A33, A34, and B5 are highly conserved among orthopoxviruses and have roles during extracellular virion formation and subsequent infection. B5 is dependent on an interaction with either A33 or A34 for localization to the site of intracellular envelopment and incorporation into the envelope of released extracellular virions. In this report we show that an interaction between A33 and A34 can be detected in infected cells. Furthermore, we show that a three-protein complex between A33, A34, and B5 forms in the endoplasmic reticulum (ER) that disassociates post ER export. Finally, immunofluorescence reveals that coexpression of all three glycoproteins results in their localization to a juxtanuclear region that is presumably the site of intracellular envelopment. These results demonstrate the existence of two previously unidentified interactions: one between A33 and A34 and another simultaneous interaction between all three of the glycoproteins. Furthermore, these results indicate that interactions among A33, A34, and B5 are vital for proper intracellular trafficking and subcellular localization.IMPORTANCE The secondary intracellular envelopment of poxviruses at the trans-Golgi network to release infectious extracellular virus (EV) is essential for their spread and pathogenesis. Viral glycoproteins A33, A34, and B5 are critical for the efficient production of infectious EV and interactions among these proteins are important for their localization and incorporation into the outer extracellular virion membrane. We have uncovered a novel interaction between glycoproteins A33 and A34. Furthermore, we show that B5 can interact with the A33-A34 complex. Our analysis indicates that the three-protein complex has a role in ER exit and proper localization of the three glycoproteins to the intracellular site of wrapping. These results show that a complex set of interactions occur in the secretory pathway of infected cells to ensure proper glycoprotein trafficking and envelope content, which is important for the release of infectious poxvirus virions.
Collapse
|
30
|
MVA-Vectored Pentameric Complex (PC) and gB Vaccines Improve Pregnancy Outcome after Guinea Pig CMV Challenge, but Only gB Vaccine Reduces Vertical Transmission. Vaccines (Basel) 2019; 7:vaccines7040182. [PMID: 31739399 PMCID: PMC6963609 DOI: 10.3390/vaccines7040182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/04/2023] Open
Abstract
(1) Background: A congenital cytomegalovirus (cCMV) vaccine is a major research priority, but the essential glycoprotein target(s) remain unclear. We compared CMV gB (gpgB), gH/gL (gp75/gL), and pentameric complex (gpPC, composed of gH/gL/GP129/GP131/GP133) vaccines in a guinea pig CMV (GPCMV) congenital infection model. (2) Methods: Modified vaccinia virus Ankara (MVA) vaccines expressing GPCMV glycoproteins were used to immunize GPCMV-seronegative, female Hartley guinea pigs (three-dose series, 3 × 107 pfu/dose). After pregnancy was established, the dams underwent an early third-trimester challenge with salivary gland (SG)-adapted GPCMV. (3) Results: All vaccines elicited GPCMV-specific binding and neutralizing antibodies. Preconception immunization resulted in 19.5-, 4.9-, and 698-fold reductions in maternal DNAemia in MVA-gp75/gL, MVA-gpPC and MVA-gpgB groups, respectively, at day 14, post-SG challenge. Vaccination improved pups’ birth weight and reduced mortality and congenital CMV transmission. In controls, cCMV infection was observed in 100% of pups (mean viral load in all visceral organs, 2.4 × 104 genomes/mg), versus 50% in the gB group (visceral viral load, 9.4 × 102 genomes/mg; p < 0.05). No significant reductions in congenital transmission were noted in the MVA-gp75/gL and MVA-gpPC groups. (4) Conclusions: MVA-vectored gB, gH/gL, and PC vaccines were immunogenic, and protected against maternal DNAemia and pup mortality. These results support the inclusion of multiple glycoprotein complexes in a cCMV vaccine.
Collapse
|
31
|
The Ectodomain of the Vaccinia Virus Glycoprotein A34 Is Required for Cell Binding by Extracellular Virions and Contains a Large Region Capable of Interaction with Glycoprotein B5. J Virol 2019; 93:JVI.01343-18. [PMID: 30463966 DOI: 10.1128/jvi.01343-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
An interaction between the orthopoxvirus glycoproteins A34 and B5 has been reported. The transmembrane and ectodomain of A34 are sufficient for interaction with B5, localization of B5 to the site of intracellular wrapping, and subsequent incorporation into the envelope of released extracellular virions. Several mutagenic approaches were undertaken to better define the B5 interaction domain on A34. A set of C-terminal truncations in A34 identified residues 1 to 80 as sufficient for interaction with B5. Additional truncations identified residues 80 to 130 of A34 as sufficient for interaction with B5. To better understand the function of this region, a set of recombinant viruses expressing A34 with the full, partial, or no B5 interaction site (residues 1 to 130, 1 to 100, and 1 to 70, respectively) was constructed. All the recombinants expressing truncations of A34 incorporated B5 into extracellular virions but had a small-plaque phenotype similar to that of a virus with the A34R gene deleted (vΔA34R). Further characterization indicated that the small-plaque phenotype exhibited by these viruses is due to a combination of abrogated actin tail formation, reduced cell binding, and a defect in polyanion-induced nonfusogenic dissolution. Taken together, these results suggest that residues 80 to 130 of A34 are not necessary for the proper localization and incorporation of B5 into extracellular virions and, furthermore, that the C-terminal residues of A34 are involved in cell binding and dissolution.IMPORTANCE Previous studies have shown that the vaccinia virus glycoproteins A34 and B5 interact, and in the absence of A34, B5 is mislocalized and not incorporated into extracellular virions. Here, using a transient-transfection assay, residues 80 to 130 of the ectodomain of A34 were determined to be sufficient for interaction with B5. Recombinant viruses expressing A34 with a full, partial, or no B5 interaction site were constructed and characterized. All of the A34 truncations interacted with B5 as predicted by the transient-transfection studies but had a small-plaque phenotype. Further analysis revealed that all of the recombinants incorporated detectable levels of B5 into released virions but were defective in cell binding and extracellular virion (EV) dissolution. This study is the first to directly demonstrate that A34 is involved in cell binding and implicate the ectodomain in this role.
Collapse
|
32
|
Multiantigenic Modified Vaccinia Virus Ankara Vaccine Vectors To Elicit Potent Humoral and Cellular Immune Reponses against Human Cytomegalovirus in Mice. J Virol 2018; 92:JVI.01012-18. [PMID: 30045984 DOI: 10.1128/jvi.01012-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
As human cytomegalovirus (HCMV) is a common cause of disease in newborns and transplant recipients, developing an HCMV vaccine is considered a major public health priority. Yet an HCMV vaccine candidate remains elusive. Although the precise HCMV immune correlates of protection are unclear, both humoral and cellular immune responses have been implicated in protection against HCMV infection and disease. Here we describe a vaccine approach based on the well-characterized modified vaccinia virus Ankara (MVA) vector to stimulate robust HCMV humoral and cellular immune responses by an antigen combination composed of the envelope pentamer complex (PC), glycoprotein B (gB), and phosphoprotein 65 (pp65). We show that in mice, multiantigenic MVA vaccine vectors simultaneously expressing all five PC subunits, gB, and pp65 elicit potent complement-independent and complement-dependent HCMV neutralizing antibodies as well as mouse and human MHC-restricted, polyfunctional T cell responses by the individual antigens. In addition, we demonstrate that the PC/gB antigen combination of these multiantigenic MVA vectors can enhance the stimulation of humoral immune responses that mediate in vitro neutralization of different HCMV strains and antibody-dependent cellular cytotoxicity. These results support the use of MVA to develop a multiantigenic vaccine candidate for controlling HCMV infection and disease in different target populations, such as pregnant women and transplant recipients.IMPORTANCE The development of a human cytomegalovirus (HCMV) vaccine to prevent congenital disease and transplantation-related complications is an unmet medical need. While many HCMV vaccine candidates have been developed, partial success in preventing or controlling HCMV infection in women of childbearing age and transplant recipients has been observed with an approach based on envelope glycoprotein B (gB). We introduce a novel vaccine strategy based on the clinically deployable modified vaccinia virus Ankara (MVA) vaccine vector to elicit potent humoral and cellular immune responses by multiple immunodominant HCMV antigens, including gB, phosphoprotein 65, and all five subunits of the pentamer complex. These findings could contribute to development of a multiantigenic vaccine strategy that may afford more protection against HCMV infection and disease than a vaccine approach employing solely gB.
Collapse
|
33
|
Glingston RS, Deb R, Kumar S, Nagotu S. Organelle dynamics and viral infections: at cross roads. Microbes Infect 2018; 21:20-32. [PMID: 29953921 PMCID: PMC7110583 DOI: 10.1016/j.micinf.2018.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/12/2023]
Abstract
Viruses are obligate intracellular parasites of the host cells. A commonly accepted view is the requirement of internal membranous structures for various aspects of viral life cycle. Organelles enable favourable intracellular environment for several viruses. However, studies reporting organelle dynamics upon viral infections are scant. In this review, we aim to summarize and highlight modulations caused to various organelles upon viral infection or expression of its proteins.
Collapse
Affiliation(s)
- R Sahaya Glingston
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
34
|
Abstract
The vaccinia virus protein F13, encoded by the F13L gene, is conserved across the subfamily Chordopoxvirinae and is critical among orthopoxviruses to produce the wrapped form of virus that is required for cell-to-cell spread. F13 is the major envelope protein on the membrane of extracellular forms of virus; however, it is not known if F13 is required in steps postwrapping. In this report, we utilize two temperature-sensitive vaccinia virus mutants from the Condit collection of temperature-sensitive viruses whose small plaque phenotypes have been mapped to the F13L gene. Despite the drastic reduction in plaque size, the temperature-sensitive viruses were found to produce levels of extracellular virions similar to those of the parental strain, Western Reserve (WR), at the permissive and nonpermissive temperatures, suggesting that they are not defective in extracellular virion formation. Analyses of extracellular virions produced by one temperature-sensitive mutant found that those produced at the nonpermissive temperature had undetectable levels of F13 and bound cells with efficiency similar to that of WR but displayed delayed cell entry kinetics. Additionally, low-pH treatment of cells bound by extracellular virions produced at the nonpermissive temperature by the temperature-sensitive reporter virus was unable to overcome a block in infection by bafilomycin A1, suggesting that these virions display increased resistance to dissolution of the extracellular virion envelope. Taken together, our results suggest that F13 plays a role both in the formation of extracellular virions and in the promotion of their rapid entry into cells by enhancing the sensitivity of the membrane to acid-induced dissolution.IMPORTANCE Vaccinia virus (VACV) is an orthopoxvirus and produces two infectious forms, mature virions (MV) and extracellular virions (EV). EV are derived from MV and contain an additional membrane that must first be removed prior to cell entry. F13 is critical for the formation of EV, but a postenvelopment role has not been described. Here, two temperature-sensitive VACV mutants whose deficiencies were previously mapped to the F13L locus are characterized. Both viruses produced EV at the nonpermissive temperature at levels similar to those of a virus that has F13L, yet they had a small plaque phenotype and rate of spread similar to that of an F13L deletion virus. F13 was undetectable on the EV membrane at the nonpermissive temperature, and these EV exhibited delayed cell entry kinetics compared to EV containing F13. This study is the first to conclusively demonstrate a novel role for F13 in cell entry of the EV form of the virus.
Collapse
|
35
|
Raza S, Alvisi G, Shahin F, Husain U, Rabbani M, Yaqub T, Anjum AA, Sheikh AA, Nawaz M, Ali MA. Role of Rab GTPases in HSV-1 infection: Molecular understanding of viral maturation and egress. Microb Pathog 2018; 118:146-153. [PMID: 29551438 DOI: 10.1016/j.micpath.2018.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Most enveloped viruses exploit complex cellular pathways for assembly and egress from the host cell, and the large DNA virus Herpes simplex virus 1 (HSV-1) makes no exception, hijacking several cellular transport pathways for its glycoprotein trafficking and maturation, as well as for viral morphogenesis and egress according to the envelopment, de-envelopment and re-envelopment model. Importantly Rab GTPases, widely distributed master regulators of intracellular membrane trafficking pathways, have recently being tightly implicated in such process. Indeed, siRNA-mediated genetic ablation of specific Rab proteins differently affected HSV-1 production, suggesting a complex role of different Rab proteins in HSV-1 life cycle. In this review, we discuss how different Rabs can regulate HSV-1 assembly/egress and the potential therapeutic applications of such findings for the management of HSV-1 infections.
Collapse
Affiliation(s)
- Sohail Raza
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan.
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35121, Italy
| | - Farzana Shahin
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Urooj Husain
- Postgraduate Medical Institute Lahore 54000, Pakistan
| | - Masood Rabbani
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Tahir Yaqub
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Aftab Ahmad Anjum
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Ali Ahmad Sheikh
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Muhammad Nawaz
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Muhammad Asad Ali
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| |
Collapse
|
36
|
Loss of Actin-Based Motility Impairs Ectromelia Virus Release In Vitro but Is Not Critical to Spread In Vivo. Viruses 2018; 10:v10030111. [PMID: 29510577 PMCID: PMC5869504 DOI: 10.3390/v10030111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022] Open
Abstract
Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted.
Collapse
|
37
|
Abstract
Interferons (IFNs) are secreted glycoproteins that are produced by cells in response to virus infection and other stimuli and induce an antiviral state in cells bearing IFN receptors. In this way, IFNs restrict virus replication and spread before an adaptive immune response is developed. Viruses are very sensitive to the effects of IFNs and consequently have evolved many strategies to interfere with interferon. This is particularly well illustrated by poxviruses, which have large dsDNA genomes and encode hundreds of proteins. Vaccinia virus is the prototypic poxvirus and expresses many proteins that interfere with IFN and are considered in this review. These proteins act either inside or outside the cell and within the cytoplasm or nucleus. They function by restricting the production of IFN by blocking the signaling pathways leading to transcription of IFN genes, stopping IFNs binding to their receptors, blocking IFN-induced signal transduction leading to expression of interferon-stimulated genes (ISGs), or inhibiting the antiviral activity of ISG products.
Collapse
Affiliation(s)
| | | | - Yongxu Lu
- University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
38
|
Exploiting 2A peptides to elicit potent neutralizing antibodies by a multi-subunit herpesvirus glycoprotein complex. J Virol Methods 2017; 251:30-37. [PMID: 28989096 DOI: 10.1016/j.jviromet.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Neutralizing antibodies (NAb) interfering with glycoprotein complex-mediated virus entry into host cells are thought to contribute to the protection against herpesvirus infection. However, using herpesvirus glycoprotein complexes as vaccine antigens can be complicated by the necessity of expressing multiple subunits simultaneously to allow efficient complex assembly and formation of conformational NAb epitopes. By using a novel bacterial artificial chromosome (BAC) clone of the clinically deployable Modified Vaccinia Ankara (MVA) vector and exploiting ribosomal skipping mediated by 2A peptides, MVA vectors were generated that expressed self-processing subunits of the human cytomegalovirus (HCMV) pentamer complex (PC) composed of gH, gL, UL128, UL130, and UL131A. These MVA vectors expressed 2A-linked HCMV PC subunits that were efficiently cleaved and transported to the cell surface as protein complexes forming conformational neutralizing epitopes. In addition, vaccination of mice by only two immunizations with these MVA vectors resulted in potent HCMV NAb responses that remained stable over a period of at least six months. This method of eliciting NAb by 2A-linked, self-processing HCMV PC subunits could contribute to develop a HCMV vaccine candidate and may serve as a template to facilitate the development of subunit vaccine strategies against other herpesviruses.
Collapse
|
39
|
Carpentier DCJ, Hollinshead MS, Ewles HA, Lee SA, Smith GL. Tagging of the vaccinia virus protein F13 with mCherry causes aberrant virion morphogenesis. J Gen Virol 2017; 98:2543-2555. [PMID: 28933687 PMCID: PMC5725974 DOI: 10.1099/jgv.0.000917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Vaccinia virus produces two distinct infectious virions; the single-enveloped intracellular mature virus (IMV), which remains in the cell until cell lysis, and the double-enveloped extracellular enveloped virus (EEV), which mediates virus spread. The latter is derived from a triple-enveloped intracellular enveloped virus (IEV) precursor, which is transported to the cell periphery by the kinesin-1 motor complex. This transport involves the viral protein A36 as well as F12 and E2. A36 is an integral membrane protein associated with the outer virus envelope and is the only known direct link between virion and kinesin-1 complex. Yet in the absence of A36 virion egress still occurs on microtubules, albeit at reduced efficiency. In this paper double-fluorescent labelling of the capsid protein A5 and outer-envelope protein F13 was exploited to visualize IEV transport by live-cell imaging in the absence of either A36 or F12. During the generation of recombinant viruses expressing both A5-GFP and F13-mCherry a plaque size defect was identified that was particularly severe in viruses lacking A36. Electron microscopy showed that this phenotype was caused by abnormal wrapping of IMV to form IEV, and this resulted in reduced virus egress to the cell surface. The aberrant wrapping phenotype suggests that the fluorescent fusion protein interferes with an interaction of F13 with the IMV surface that is required for tight association between IMVs and wrapping membranes. The severity of this defect suggests that these viruses are imperfect tools for characterizing virus egress.
Collapse
Affiliation(s)
- David C J Carpentier
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Michael S Hollinshead
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Helen A Ewles
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Stacey-Ann Lee
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.,Present address: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
40
|
Futami M, Sato K, Miyazaki K, Suzuki K, Nakamura T, Tojo A. Efficacy and Safety of Doubly-Regulated Vaccinia Virus in a Mouse Xenograft Model of Multiple Myeloma. MOLECULAR THERAPY-ONCOLYTICS 2017; 6:57-68. [PMID: 28808676 PMCID: PMC5545772 DOI: 10.1016/j.omto.2017.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Multiple myeloma is a malignancy of plasma cells of the bone marrow. Although the prognosis is variable, no curative therapy has been defined. Vaccinia virus infects cancer cells and kills such cells in a variety of ways. These include direct infection, triggering of immunomediated cell death, and vascular collapse. The potential of the vaccinia virus as an anti-tumor therapy has attracted the attention of oncologists. Interestingly, our preliminary experiments revealed that myeloma cells were particularly susceptible to vaccinia virus. To exploit this susceptibility and to render vaccinia more myeloma specific, we generated thymidine-kinase-deleted microRNA (miRNA)-regulated vaccinia viruses in which the essential viral gene B5R was regulated by miRNAs of normal human cells. Of the miRNAs examined, let-7a was found to be the most reliable in terms of regulating viral transmission. Exposure to unregulated vaccinia virus killed myeloma-transplanted severe combined immunodeficiency (SCID) mice; the animals succumbed to viral toxicity. In contrast, the thymidine-kinase-deleted let-7a-regulated virus remained localized within myeloma cells, triggering tumor regression and improving overall survival. In conclusion, a thymidine-kinase-deleted let-7a-regulated vaccinia virus was safe and effective for mice, warranting clinical trials in humans.
Collapse
Affiliation(s)
- Muneyoshi Futami
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Corresponding author: Muneyoshi Futami, Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Kota Sato
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Hematology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo 150-8935, Japan
| | - Kanji Miyazaki
- Department of Hematology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo 150-8935, Japan
| | - Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo 150-8935, Japan
| | - Takafumi Nakamura
- Division of Integrative Bioscience, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
41
|
Carpentier DCJ, Van Loggerenberg A, Dieckmann NMG, Smith GL. Vaccinia virus egress mediated by virus protein A36 is reliant on the F12 protein. J Gen Virol 2017. [PMID: 28631604 PMCID: PMC5656793 DOI: 10.1099/jgv.0.000816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Egress of vaccinia virus from its host cell is mediated by the microtubule-associated motor kinesin-1, and three viral proteins, A36 and the F12/E2 complex, have been implicated in this process. Deletion of F12 expression causes a more severe reduction in egress than deletion of A36 but whether these proteins are involved in the same or different mechanisms of kinesin-1 recruitment is unknown. Here it is shown that a virus lacking both proteins forms a smaller plaque than mutants lacking either gene alone, indicating non-redundant functions. A36 not only links virions directly to kinesin-1 but also nucleates actin polymerization to propel surface virions away from the host cell. To address the relative importance of these functions for virus spread, a panel of recombinant viruses was constructed in which the ability of A36 to bind kinesin-1 or to nucleate actin polymerization was abrogated individually or together, in the presence or absence of F12 expression. Analysis of these viruses revealed that in the presence of the F12 protein, loss of kinesin-1 interaction made a greater contribution to plaque size than did the formation of actin tails. However in the absence of F12, the ability of A36 to promote egress was abrogated. Therefore, the ability of A36 to promote egress by kinesin-1 is reliant on the F12 protein.
Collapse
Affiliation(s)
- David C J Carpentier
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | - Nele M G Dieckmann
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.,Present address: Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
42
|
Gao WND, Carpentier DCJ, Ewles HA, Lee SA, Smith GL. Vaccinia virus proteins A36 and F12/E2 show strong preferences for different kinesin light chain isoforms. Traffic 2017; 18:505-518. [PMID: 28485852 PMCID: PMC5519951 DOI: 10.1111/tra.12494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022]
Abstract
Vaccinia virus (VACV) utilizes microtubule‐mediated trafficking at several stages of its life cycle, of which virus egress is the most intensely studied. During egress VACV proteins A36, F12 and E2 are involved in kinesin‐1 interactions; however, the roles of these proteins remain poorly understood. A36 forms a direct link between virions and kinesin‐1, yet in its absence VACV egress still occurs on microtubules. During a co‐immunoprecipitation screen to seek an alternative link between virions and kinesin, A36 was found to bind isoform KLC1 rather than KLC2. The F12/E2 complex associates preferentially with the C‐terminal tail of KLC2, to a region that overlaps the binding site of cellular 14‐3‐3 proteins. F12/E2 displaces 14‐3‐3 from KLC and, unlike 14‐3‐3, does not require phosphorylation of KLC for its binding. The region determining the KLC1 specificity of A36 was mapped to the KLC N‐terminal heptad repeat region that is responsible for its association with kinesin heavy chain. Despite these differing binding properties F12/E2 can co‐operatively enhance A36 association with KLC, particularly when using a KLC1‐KLC2 chimaera that resembles several KLC1 spliceforms and can bind A36 and F12/E2 efficiently. This is the first example of a pathogen encoding multiple proteins that co‐operatively associate with kinesin‐1.
Collapse
Affiliation(s)
- William N D Gao
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Helen A Ewles
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stacey-Ann Lee
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
43
|
Vaccinia Virus Uses Retromer-Independent Cellular Retrograde Transport Pathways To Facilitate the Wrapping of Intracellular Mature Virions during Virus Morphogenesis. J Virol 2016; 90:10120-10132. [PMID: 27581988 PMCID: PMC5105650 DOI: 10.1128/jvi.01464-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/22/2016] [Indexed: 01/09/2023] Open
Abstract
Poxviruses, such as vaccinia virus (VACV), undertake a complex cytoplasmic replication cycle which involves morphogenesis through four distinct virion forms and includes a crucial wrapping step whereby intracellular mature virions (IMVs) are wrapped in two additional membranes to form intracellular enveloped virions (IEVs). To determine if cellular retrograde transport pathways are required for this wrapping step, we examined VACV morphogenesis in cells with reduced expression of the tetrameric tethering factor known as the GARP (Golgi-associated retrograde pathway), a central component of retrograde transport. VACV multistep replication was significantly impaired in cells transfected with small interfering RNA targeting the GARP complex and in cells with a mutated GARP complex. Detailed analysis revealed that depletion of the GARP complex resulted in a reduction in the number of IEVs, thereby linking retrograde transport with the wrapping of IMVs. In addition, foci of viral wrapping membrane proteins without an associated internal core accumulated in cells with a mutated GARP complex, suggesting that impaired retrograde transport uncouples nascent IMVs from the IEV membranes at the site of wrapping. Finally, small-molecule inhibitors of retrograde transport strongly suppressed VACV multistep growth in vitro and reduced weight loss and clinical signs in an in vivo murine model of systemic poxviral disease. This work links cellular retrograde transport pathways with the morphogenesis of poxviruses and identifies a panel of novel inhibitors of poxvirus replication. IMPORTANCE Cellular retrograde transport pathways traffic cargo from endosomes to the trans-Golgi network and are a key part of the intracellular membrane network. This work reveals that the prototypic poxvirus vaccinia virus (VACV) exploits cellular retrograde transport pathways to facilitate the wrapping of intracellular mature virions and therefore promote the production of extracellular virus. Inhibition of retrograde transport by small-molecule inhibitors reduced the replication of VACV in cell culture and alleviated disease in mice experimentally infected with VACV. This research provides fundamental new knowledge about the wrapping step of poxvirus morphogenesis, furthers our knowledge of the complex cellular retrograde pathways, and identifies a new group of antipoxvirus drugs.
Collapse
|
44
|
Hine PM, Wakefield SJ, Mackereth G, Morrison R. Ultrastructural morphogenesis of a virus associated with lymphocystis-like lesions in parore Girella tricuspidata (Kyphosidae: Perciformes). DISEASES OF AQUATIC ORGANISMS 2016; 121:129-139. [PMID: 27667810 DOI: 10.3354/dao03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The morphogenesis of large icosahedral viruses associated with lymphocystis-like lesions in the skin of parore Girella tricuspidata is described. The electron-lucent perinuclear viromatrix comprised putative DNA with open capsids at the periphery, very large arrays of smooth endoplasmic reticulum (sER), much of it with a reticulated appearance (rsER) or occurring as rows of vesicles. Lysosomes, degenerating mitochondria and virions in various stages of assembly, and paracrystalline arrays were also present. Long electron-dense inclusions (EDIs) with 15 nm repeating units split terminally and curled to form tubular structures internalising the 15 nm repeating structures. These tubular structures appeared to form the virion capsids. Large parallel arrays of sER sometimes alternated with aligned arrays of crinkled cisternae along which passed a uniformly wide (20 nm) thread-like structure. Strings of small vesicles near open capsids may also have been involved in formation of an inner lipid layer. Granules with a fine fibrillar appearance also occurred in the viromatrix, and from the presence of a halo around mature virions it appeared that the fibrils may form a layer around the capsid. The general features of virogenesis of large icosahedral dsDNA viruses, the large amount of ER, particularly rsER and the EDIs, are features of nucleo-cytoplasmic large DNA viruses, rather than features of 1 genus or family.
Collapse
Affiliation(s)
- P M Hine
- National Centre for Disease Investigation, MAF Operations, Ministry of Agriculture and Forestry, PO Box 40-742, Upper Hutt, New Zealand
| | | | | | | |
Collapse
|
45
|
Retrograde Transport from Early Endosomes to the trans-Golgi Network Enables Membrane Wrapping and Egress of Vaccinia Virus Virions. J Virol 2016; 90:8891-905. [PMID: 27466413 DOI: 10.1128/jvi.01114-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/18/2016] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED The anterograde pathway, from the endoplasmic reticulum through the trans-Golgi network to the cell surface, is utilized by trans-membrane and secretory proteins. The retrograde pathway, which directs traffic in the opposite direction, is used following endocytosis of exogenous molecules and recycling of membrane proteins. Microbes exploit both routes: viruses typically use the anterograde pathway for envelope formation prior to exiting the cell, whereas ricin and Shiga-like toxins and some nonenveloped viruses use the retrograde pathway for cell entry. Mining a human genome-wide RNA interference (RNAi) screen revealed a need for multiple retrograde pathway components for cell-to-cell spread of vaccinia virus. We confirmed and extended these results while discovering that retrograde trafficking was required for virus egress rather than entry. Retro-2, a specific retrograde trafficking inhibitor of protein toxins, potently prevented spread of vaccinia virus as well as monkeypox virus, a human pathogen. Electron and confocal microscopy studies revealed that Retro-2 prevented wrapping of virions with an additional double-membrane envelope that enables microtubular transport, exocytosis, and actin polymerization. The viral B5 and F13 protein components of this membrane, which are required for wrapping, normally colocalize in the trans-Golgi network. However, only B5 traffics through the secretory pathway, suggesting that F13 uses another route to the trans-Golgi network. The retrograde route was demonstrated by finding that F13 was largely confined to early endosomes and failed to colocalize with B5 in the presence of Retro-2. Thus, vaccinia virus makes novel use of the retrograde transport system for formation of the viral wrapping membrane. IMPORTANCE Efficient cell-to-cell spread of vaccinia virus and other orthopoxviruses depends on the wrapping of infectious particles with a double membrane that enables microtubular transport, exocytosis, and actin polymerization. Interference with wrapping or subsequent steps results in severe attenuation of the virus. Some previous studies had suggested that the wrapping membrane arises from the trans-Golgi network, whereas others suggested an origin from early endosomes. Some nonenveloped viruses use retrograde trafficking for entry into the cell. In contrast, we provided evidence that retrograde transport from early endosomes to the trans-Golgi network is required for the membrane-wrapping step in morphogenesis of vaccinia virus and egress from the cell. The potent in vitro inhibition of this step by the drug Retro-2 suggests that derivatives with enhanced pharmacological properties might serve as useful antipoxviral agents.
Collapse
|
46
|
Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol 2016; 60:89-96. [PMID: 27423915 DOI: 10.1016/j.semcdb.2016.07.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022]
Abstract
Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Bidgood SR, Mercer J. Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses. Viruses 2015; 7:4800-25. [PMID: 26308043 PMCID: PMC4576205 DOI: 10.3390/v7082844] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
As all viruses rely on cellular factors throughout their replication cycle, to be successful they must evolve strategies to evade and/or manipulate the defence mechanisms employed by the host cell. In addition to their expression of a wide array of host modulatory factors, several recent studies have suggested that poxviruses may have evolved unique mechanisms to shunt or evade host detection. These potential mechanisms include mimicry of apoptotic bodies by mature virions (MVs), the use of viral sub-structures termed lateral bodies for the packaging and delivery of host modulators, and the formation of a second, “cloaked” form of infectious extracellular virus (EVs). Here we discuss these various strategies and how they may facilitate poxvirus immune evasion. Finally we propose a model for the exploitation of the cellular exosome pathway for the formation of EVs.
Collapse
Affiliation(s)
- Susanna R Bidgood
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Jason Mercer
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
48
|
Reynolds SE, Moss B. Characterization of a large, proteolytically processed cowpox virus membrane glycoprotein conserved in most chordopoxviruses. Virology 2015; 483:209-17. [PMID: 25980741 DOI: 10.1016/j.virol.2015.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 11/17/2022]
Abstract
Most poxvirus proteins are either highly conserved and essential for basic steps in replication or less conserved and involved in host interactions. Homologs of the CPXV219 protein, encoded by cowpox virus, are present in nearly all chordopoxvirus genera and some species have multiple copies. The CPXV219 homologs have estimated masses of greater than 200 kDa, making them the largest known poxvirus proteins. We showed that CPXV219 was expressed early in infection and cleaved into N- and C-terminal fragments that remained associated. The protein has a signal peptide and transited the secretory pathway where extensive glycosylation and proteolytic cleavage occurred. CPXV219 was located by immunofluorescence microscopy in association with the endoplasmic reticulum, Golgi apparatus and plasma membrane. In non-permeabilized cells, CPXV219 was accessible to external antibody and biotinylation. Mutants that did not express CPXV219 replicated normally in cell culture and retained virulence in a mouse respiratory infection model.
Collapse
Affiliation(s)
- Sara E Reynolds
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Fleming SB, Wise LM, Mercer AA. Molecular genetic analysis of orf virus: a poxvirus that has adapted to skin. Viruses 2015; 7:1505-39. [PMID: 25807056 PMCID: PMC4379583 DOI: 10.3390/v7031505] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been "captured" from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis.
Collapse
Affiliation(s)
- Stephen B Fleming
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| | - Lyn M Wise
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| | - Andrew A Mercer
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
50
|
Carpentier DCJ, Gao WND, Ewles H, Morgan GW, Smith GL. Vaccinia virus protein complex F12/E2 interacts with kinesin light chain isoform 2 to engage the kinesin-1 motor complex. PLoS Pathog 2015; 11:e1004723. [PMID: 25760349 PMCID: PMC4356562 DOI: 10.1371/journal.ppat.1004723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/01/2015] [Indexed: 11/18/2022] Open
Abstract
During vaccinia virus morphogenesis, intracellular mature virus (IMV) particles are wrapped by a double lipid bilayer to form triple enveloped virions called intracellular enveloped virus (IEV). IEV are then transported to the cell surface where the outer IEV membrane fuses with the cell membrane to expose a double enveloped virion outside the cell. The F12, E2 and A36 proteins are involved in transport of IEVs to the cell surface. Deletion of the F12L or E2L genes causes a severe inhibition of IEV transport and a tiny plaque size. Deletion of the A36R gene leads to a smaller reduction in plaque size and less severe inhibition of IEV egress. The A36 protein is present in the outer membrane of IEVs, and over-expressed fragments of this protein interact with kinesin light chain (KLC). However, no interaction of F12 or E2 with the kinesin complex has been reported hitherto. Here the F12/E2 complex is shown to associate with kinesin-1 through an interaction of E2 with the C-terminal tail of KLC isoform 2, which varies considerably between different KLC isoforms. siRNA-mediated knockdown of KLC isoform 1 increased IEV transport to the cell surface and virus plaque size, suggesting interaction with KLC isoform 1 is somehow inhibitory of IEV transport. In contrast, knockdown of KLC isoform 2 did not affect IEV egress or plaque formation, indicating redundancy in virion egress pathways. Lastly, the enhancement of plaque size resulting from loss of KLC isoform 1 was abrogated by removal of KLC isoforms 1 and 2 simultaneously. These observations suggest redundancy in the mechanisms used for IEV egress, with involvement of KLC isoforms 1 and 2, and provide evidence of interaction of F12/E2 complex with the kinesin-1 complex. Viruses often hijack the cellular transport systems to facilitate their movement within and between cells. Vaccinia virus (VACV), the smallpox vaccine, is very adept at this and exploits cellular transport machinery at several stages during its life cycle. For instance, during transport of new virus particles to the cell surface VACV interacts with a protein motor complex called kinesin-1 that moves cargo on microtubules. However, details of the cellular and viral components needed and the molecular mechanisms involved remain poorly understood. Hitherto, only the VACV protein A36 has been shown to interact with kinesin-1, however viruses lacking A36 still reach the cell surface, albeit at reduced efficiency, indicating other factors are involved. Here we describe an interaction between kinesin-1 and a complex of VACV proteins F12 and E2, which are both needed for virus transport. The F12/E2 complex associates with a subset of kinesin-1 molecules (kinesin light chain isoform 2) with a region thought to be involved in modulation of cargo binding and kinesin-1 motor activity. Further study of this interaction will enhance understanding of the VACV life cycle and of the roles of different kinesin-1 subtypes in cellular processes and the mechanisms that regulate them.
Collapse
Affiliation(s)
| | - William N. D. Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Helen Ewles
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gareth W. Morgan
- Department of Virology, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|