1
|
Kılıç G, Demirkan E, Yücel F. Development of Anti-idiotypic Monoclonal Antibody Mimicking SARS-CoV-2 Receptor Binding Domain. Mol Biotechnol 2024:10.1007/s12033-024-01138-1. [PMID: 38662257 DOI: 10.1007/s12033-024-01138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Using the hybridoma technique, we developed a panel of anti-idiotypic monoclonal antibodies (aId-mAb) that mimic The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Receptor-Binding Domain (RBD) molecule against Fragment antigen-binding (Fab) of anti-SARS-CoV-2 (S1, RBD) antibodies. Investigated the in vivo and in vitro effects of these aId-mAbs we developed and examined their antigenic mimicry abilities. Among these 12 antibodies, 6 aId-mAbs (designated FY1B4, FY2A6, H9F3, E6G7, FY7E11, and FY8H3) were selected for further characterization in a series of experiments. First, competitive receptor binding assay results confirmed that six aId-mAbs could specifically bind to the ACE2 receptor in target cells and block the interaction between the RBD molecule and the ACE receptor. Moreover, we examined the immunological activities of these aId-mAbs in female BALB/c and showed that E6G7, H7E11, and H8H3 aId-mAbs induce an antibody response by mimicking RBD and stimulating the immune system. It is considered that these three aId-mAbs will be evaluated as SARS-CoV-2 vaccine candidate molecules in future studies.
Collapse
Affiliation(s)
- Gamze Kılıç
- Bursa Uludag University, Faculty of Arts and Sciences, Biology Department, Görükle Campus, Bursa, Turkey
- TUBITAK, Marmara Research Center, Life Sciences, Genetic Engineering and Biotechnology, Kocaeli, Turkey
| | - Elif Demirkan
- Bursa Uludag University, Faculty of Arts and Sciences, Biology Department, Görükle Campus, Bursa, Turkey
| | - Fatıma Yücel
- TUBITAK, Marmara Research Center, Life Sciences, Genetic Engineering and Biotechnology, Kocaeli, Turkey.
| |
Collapse
|
2
|
Ferreira P, Soares R, López-Fernández H, Vazquez N, Reboiro-Jato M, Vieira CP, Vieira J. Multiple Lines of Evidence Support 199 SARS-CoV-2 Positively Selected Amino Acid Sites. Int J Mol Sci 2024; 25:2428. [PMID: 38397104 PMCID: PMC10889775 DOI: 10.3390/ijms25042428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
SARS-CoV-2 amino acid variants that contribute to an increased transmissibility or to host immune system escape are likely to increase in frequency due to positive selection and may be identified using different methods, such as codeML, FEL, FUBAR, and MEME. Nevertheless, when using different methods, the results do not always agree. The sampling scheme used in different studies may partially explain the differences that are found, but there is also the possibility that some of the identified positively selected amino acid sites are false positives. This is especially important in the context of very large-scale projects where hundreds of analyses have been performed for the same protein-coding gene. To account for these issues, in this work, we have identified positively selected amino acid sites in SARS-CoV-2 and 15 other coronavirus species, using both codeML and FUBAR, and compared the location of such sites in the different species. Moreover, we also compared our results to those that are available in the COV2Var database and the frequency of the 10 most frequent variants and predicted protein location to identify those sites that are supported by multiple lines of evidence. Amino acid changes observed at these sites should always be of concern. The information reported for SARS-CoV-2 can also be used to identify variants of concern in other coronaviruses.
Collapse
Affiliation(s)
- Pedro Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ricardo Soares
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hugo López-Fernández
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Noé Vazquez
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Miguel Reboiro-Jato
- CINBIO, Department of Computer Science, ESEI—Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain; (H.L.-F.); (M.R.-J.)
- CINBIO, SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Cristina P. Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (P.F.); (R.S.); (C.P.V.)
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Park GN, Choe S, Song S, Kim KS, Shin J, An BH, Moon SH, Hyun BH, An DJ. Characterization and Spike Gene Analysis of a Candidate Attenuated Live Bovine Coronavirus Vaccine. Animals (Basel) 2024; 14:389. [PMID: 38338032 PMCID: PMC10854572 DOI: 10.3390/ani14030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The bovine coronavirus (BCoV) KBR-1 strain, obtained from calf diarrhea samples collected in 2017, belongs to group GIIa. To attenuate this strain, it was subcultured continuously (up to 79 times) in HRT-18 cells, followed by 80-120 passages in MDBK cells. The KBR-1-p120 strain harvested from MDBK cells at passage 120 harbored 13 amino acid mutations in the spike gene. Additionally, the KBR-1-p120 strain showed a high viral titer and cytopathogenic effects in MDBK cells. Seven-day-old calves (negative for BCoV antigen and antibodies) that did not consume colostrum were orally inoculated with the attenuated candidate strain (KBR-1-p120), or with KBR-1 passaged 10 times (KBR-1-p10) in HRT-18 cells. Calves inoculated with KBR-1-p10 had a low diarrhea score, and BCoV RNA was detected at 3-7 days post-inoculation (DPI). The virus was also present in the duodenum, jejunum, and ileum at autopsy; however, calves inoculated with KBR-1-p120 had low levels of BCoV RNA in feces at 4-6 DPI, and no diarrhea. In addition, an extremely small amount of BCoV RNA was present in the jejunum and ileum at autopsy. The small intestines of calves inoculated with KBR-1-p120 were emulsified and used to infect calves two more times, but pathogenicity was not recovered. Therefore, the KBR-1-p120 strain has potential as a live vaccine candidate.
Collapse
Affiliation(s)
- Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.C.); (S.S.); (K.-S.K.); (J.S.); (S.H.M.); (B.-H.H.)
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.C.); (S.S.); (K.-S.K.); (J.S.); (S.H.M.); (B.-H.H.)
| | - Sok Song
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.C.); (S.S.); (K.-S.K.); (J.S.); (S.H.M.); (B.-H.H.)
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.C.); (S.S.); (K.-S.K.); (J.S.); (S.H.M.); (B.-H.H.)
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.C.); (S.S.); (K.-S.K.); (J.S.); (S.H.M.); (B.-H.H.)
| | - Byung-Hyun An
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Soo Hyun Moon
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.C.); (S.S.); (K.-S.K.); (J.S.); (S.H.M.); (B.-H.H.)
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.C.); (S.S.); (K.-S.K.); (J.S.); (S.H.M.); (B.-H.H.)
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (S.C.); (S.S.); (K.-S.K.); (J.S.); (S.H.M.); (B.-H.H.)
| |
Collapse
|
4
|
Sives S, Keep S, Bickerton E, Vervelde L. Revealing Novel-Strain-Specific and Shared Epitopes of Infectious Bronchitis Virus Spike Glycoprotein Using Chemical Linkage of Peptides onto Scaffolds Precision Epitope Mapping. Viruses 2023; 15:2279. [PMID: 38005955 PMCID: PMC10675791 DOI: 10.3390/v15112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The avian coronavirus, infectious bronchitis virus (IBV), is an economically important infectious disease affecting chickens, with a diverse range of serotypes found globally. The major surface protein, spike (S), has high diversity between serotypes, and amino acid differences in the S1 sub-unit are thought to be responsible for poor cross-protection afforded by vaccination. Here, we attempt to address this, by using epitope mapping technology to identify shared and serotype-specific immunogenic epitopes of the S glycoprotein of three major circulating strains of IBV, M41, QX, and 4/91, via CLIPS peptide arrays based on peptides from the S1 sub-units. The arrays were screened with sera from chickens immunised with recombinant IBV, based on Beau-R backbone expressing heterologous S, generated in two independent vaccination/challenge trials. The screening of sera from rIBV vaccination experiments led to the identification of 52 immunogenic epitopes on the S1 of M41, QX, and 4/91. The epitopes were assigned into six overlapping epitope binding regions. Based on accessibility and location in the hypervariable regions of S, three sequences, 25YVYYYQSAFRPPNGWHLQGGAYAVVNSTN54, 67TVGVIKDVYNQSVASI82, and 83AMTVPPAGMSWSVS96, were selected for further investigation, and synthetic peptide mimics were recognised by polyclonal sera. These epitopes may have the potential to contribute towards a broader cross-protective IBV vaccine.
Collapse
Affiliation(s)
- Samantha Sives
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - Sarah Keep
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK (E.B.)
| | - Erica Bickerton
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK (E.B.)
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| |
Collapse
|
5
|
Abstract
Coronavirus disease (COVID-19) is an infectious airborne viral pneumonia caused by a novel virus belonging to the family coronaviridae. On February 11, 2019, the Internal Committee on Taxonomy of Virus (ICTV) announced the name of the novel virus as "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One of the proteins present on its membrane i.e. the Spike protein is responsible for the attachment of the virus to the host. It spreads through the salivary droplets released when an infected person sneezes or coughs. The best way to slow down the disease is by protecting self by washing hands and using the disinfectant. Most of the infected people experience mild to moderate breathing issues. Serious illness might develop in people with underlying cardiovascular problems, diabetes and other immuno-compromised diseases. To date, there is no effective medicine available in the market which is effective in COVID-19. However, healthcare professionals are using ritonavir, flavipiravir, lopinavir, hydroxychloroquine and remdesivir. Along with the medicines, some countries are using convalescent plasma and mesenchymal stem cells for treatment. Till date, it has claimed millions of death worldwide. In this detailed review, we have discussed the structure of SARS-CoV-2, essential proteins, its lifecycle, transmission, symptoms, pathology, clinical features, diagnosis, prevention, treatment and epidemiology of the disease.
Collapse
Affiliation(s)
- Heena Rehman
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Md Iftekhar Ahmad
- Department of Pharmaceutics, Shri Gopichand College of Pharmacy, Baghpat, India
| |
Collapse
|
6
|
Karamese M. All Microbiological Aspects of SARS-CoV-2 Virus. Eurasian J Med 2022; 54:106-114. [PMID: 36655453 PMCID: PMC11163349 DOI: 10.5152/eurasianjmed.2022.22315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 01/19/2023] Open
Abstract
The COVID-19 disease, caused by SARS-CoV-2 virus, which was first seen in Wuhan (China) on December 31, 2019, rapidly spread to cities, countries, and continents and was noted in history as the first pandemic caused by coronaviruses. According to the World Health Organization reports, more than 645 million confirmed SARS-CoV-2-positive cases and more than 6.5 million confirmed deaths were noted all over the world during the pandemic (between December 2020 and December 2022). Although SARS-CoV-2 is a virus belonging to the coronavirus family, our knowledge of the pathogenesis and immune response of SARS-CoV-2 is still limited. Approximately 10 years (2012) after the Middle East Respiratory Syndrome (MERS-CoV) (nearly 2200 confirmed cases and 791 confirmed deaths) and 20 years (2002-2004) after the SARS-CoV epidemic (29 different countries, nearly 8000 confirmed cases, and 774 confirmed deaths), the current COVID-19 pandemic is a reminder of how new pathogens can emerge and spread rapidly, eventually causing serious public health problems. Further research is needed to establish animal models for SARSCoV-2 to investigate replication, transmission dynamics, and pathogenesis in humans in order to develop effective antiviral treatments and vaccines.
Collapse
Affiliation(s)
- Murat Karamese
- Faculty of Medicine, Department of Medical Microbiology, Kafkas University, Kars, Turkey
| |
Collapse
|
7
|
Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022; 14:2434. [PMID: 36366532 PMCID: PMC9695474 DOI: 10.3390/v14112434] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
8
|
Wang C, Hesketh EL, Shamorkina TM, Li W, Franken PJ, Drabek D, van Haperen R, Townend S, van Kuppeveld FJM, Grosveld F, Ranson NA, Snijder J, de Groot RJ, Hurdiss DL, Bosch BJ. Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nat Commun 2022; 13:2921. [PMID: 35614127 PMCID: PMC9132891 DOI: 10.1038/s41467-022-30658-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
Human coronavirus OC43 is a globally circulating common cold virus sustained by recurrent reinfections. How it persists in the population and defies existing herd immunity is unknown. Here we focus on viral glycoprotein S, the target for neutralizing antibodies, and provide an in-depth analysis of its antigenic structure. Neutralizing antibodies are directed to the sialoglycan-receptor binding site in S1A domain, but, remarkably, also to S1B. The latter block infection yet do not prevent sialoglycan binding. While two distinct neutralizing S1B epitopes are readily accessible in the prefusion S trimer, other sites are occluded such that their accessibility must be subject to conformational changes in S during cell-entry. While non-neutralizing antibodies were broadly reactive against a collection of natural OC43 variants, neutralizing antibodies generally displayed restricted binding breadth. Our data provide a structure-based understanding of protective immunity and adaptive evolution for this endemic coronavirus which emerged in humans long before SARS-CoV-2. Human coronavirus OC43 causes respiratory disease and is maintained in the human population through recurring infections. Here, by extensive structural analyses, the authors provide insights into the binding sites and breadth of neutralizing antibodies against this endemic coronavirus.
Collapse
Affiliation(s)
- Chunyan Wang
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Emma L Hesketh
- Astbury Centre Structural Molecular Biology, School Molecular and Cellular Biology, Faculty Biological Sciences, University of Leeds, Leeds, UK
| | - Tatiana M Shamorkina
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Wentao Li
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
| | - Peter J Franken
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands.,Harbour BioMed, Rotterdam, The Netherlands
| | - Rien van Haperen
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands.,Harbour BioMed, Rotterdam, The Netherlands
| | - Sarah Townend
- Astbury Centre Structural Molecular Biology, School Molecular and Cellular Biology, Faculty Biological Sciences, University of Leeds, Leeds, UK
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands.,Harbour BioMed, Rotterdam, The Netherlands
| | - Neil A Ranson
- Astbury Centre Structural Molecular Biology, School Molecular and Cellular Biology, Faculty Biological Sciences, University of Leeds, Leeds, UK
| | - Joost Snijder
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Raoul J de Groot
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Daniel L Hurdiss
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Abusalah MAH, Khalifa M, Al-Hatamleh MAI, Jarrar M, Mohamud R, Chan YY. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. J Pers Med 2022; 12:386. [PMID: 35330388 PMCID: PMC8948998 DOI: 10.3390/jpm12030386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has shaken the world and triggered drastic changes in our lifestyle to control it. Despite the non-typical efforts, COVID-19 still thrives and plagues humanity worldwide. The unparalleled degree of infection has been met with an exceptional degree of research to counteract it. Many drugs and therapeutic technologies have been repurposed and discovered, but no groundbreaking antiviral agent has been introduced yet to eradicate COVID-19 and restore normalcy. As lethality is directly correlated with the severity of disease, hospitalized severe cases are of the greatest importance to reduce, especially the cytokine storm phenomenon. This severe inflammatory phenomenon characterized by elevated levels of inflammatory mediators can be targeted to relieve symptoms and save the infected patients. One of the promising therapeutic strategies to combat COVID-19 is nucleic acid-based therapeutic approaches, including microRNAs (miRNAs). This work is an up-to-date review aimed to comprehensively discuss the current nucleic acid-based therapeutics against COVID-19 and their mechanisms of action, taking into consideration the emerging SARS-CoV-2 variants of concern, as well as providing potential future directions. miRNAs can be used to run interference with the expression of viral proteins, while endogenous miRNAs can be targeted as well, offering a versatile platform to control SARS-CoV-2 infection. By targeting these miRNAs, the COVID-19-induced cytokine storm can be suppressed. Therefore, nucleic acid-based therapeutics (miRNAs included) have a latent ability to break the COVID-19 infection in general and quell the cytokine storm in particular.
Collapse
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Mu’taman Jarrar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Medical Education Department, King Fahd Hospital of the University, Al-Khobar 34445, Saudi Arabia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
10
|
Grishin AM, Dolgova NV, Landreth S, Fisette O, Pickering IJ, George GN, Falzarano D, Cygler M. Disulfide Bonds Play a Critical Role in the Structure and Function of the Receptor-binding Domain of the SARS-CoV-2 Spike Antigen. J Mol Biol 2022; 434:167357. [PMID: 34780781 PMCID: PMC8588607 DOI: 10.1016/j.jmb.2021.167357] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
The current coronavirus pandemic is exerting a tremendously detrimental impact on global health. The Spike proteins of coronaviruses, responsible for cell receptor binding and viral internalization, possess multiple and frequently conserved disulfide bonds raising the question about their role in these proteins. Here, we present a detailed structural and functional investigation of the disulfide bonds of the SARS-CoV-2 Spike receptor-binding domain (RBD). Molecular dynamics simulations of the RBD predict increased flexibility of the surface loops when the four disulfide bonds of the domain are reduced. This flexibility is particularly prominent for the disulfide bond-containing surface loop (residues 456-490) that participates in the formation of the interaction surface with the Spike cell receptor ACE2. In vitro, disulfide bond reducing agents affect the RBD secondary structure, lower its melting temperature from 52 °C to 36-39 °C and decrease its binding affinity to ACE2 by two orders of magnitude at 37 °C. Consistent with these in vitro findings, the reducing agents tris(2-carboxyethyl)phosphine (TCEP) and dithiothreitol (DTT) were able to inhibit viral replication at low millimolar levels in cell-based assays. Our research demonstrates the mechanism by which the disulfide bonds contribute to the molecular structure of the RBD of the Spike protein, allowing the RBD to execute its viral function.
Collapse
Affiliation(s)
- Andrey M. Grishin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada,Corresponding author
| | - Nataliya V. Dolgova
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada,Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Shelby Landreth
- Vaccine and Infectious Disease Organization and Department of Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Olivier Fisette
- Research Computing, Information and Communications Technology, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada,Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada,Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization and Department of Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N 5E3, Canada,Corresponding author
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
11
|
Suresh P, Gupta S, Anmol, Sharma U. Insight into coronaviruses and natural products-based approach for COVID-19 treatment. BIOACTIVE NATURAL PRODUCTS 2022. [PMCID: PMC9294970 DOI: 10.1016/b978-0-323-91099-6.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
There is a deep-rooted belief in mankind that for every illness, somewhere in the world, there exists a botanical-based healing agent in nature in the form of a natural product. Natural products are better equipped to become successful drugs because of their million years of coevolution in a biological milieu. Generally, most herbal formulations and natural products obtained from traditionally used medicinal plants are nontoxic and have rarely shown any adverse side effects on humans. Plants synthesize secondary metabolites primarily for their defense against microbes and herbivores, and because of this, these metabolites have good specificity and potency against harmful pathogens. Nowadays, mankind is facing the contagion effect of SARS-CoV-2 that has caused the ongoing pandemic of COVID-19, which has no specific and effective treatment. Hence this is the time to explore nature for effective, safe, and affordable remedies against this disease. This chapter includes an overview of coronaviruses, their therapeutic targets, and the progress made in identifying lead natural products against the coronaviruses. Additionally, molecular docking and pharmacokinetics analysis of anticoronaviral natural products have been performed to narrow down the possible lead molecules.
Collapse
|
12
|
Marine Brominated Tyrosine Alkaloids as Promising Inhibitors of SARS-CoV-2. Molecules 2021; 26:molecules26206171. [PMID: 34684755 PMCID: PMC8537272 DOI: 10.3390/molecules26206171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
There have been more than 150 million confirmed cases of SARS-CoV-2 since the beginning of the pandemic in 2019. By June 2021, the mortality from such infections approached 3.9 million people. Despite the availability of a number of vaccines which provide protection against this virus, the evolution of new viral variants, inconsistent availability of the vaccine around the world, and vaccine hesitancy, in some countries, makes it unreasonable to rely on mass vaccination alone to combat this pandemic. Consequently, much effort is directed to identifying potential antiviral treatments. Marine brominated tyrosine alkaloids are recognized to have antiviral potential. We test here the antiviral capacity of fourteen marine brominated tyrosine alkaloids against five different target proteins from SARS-CoV-2, including main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H). These marine alkaloids, particularly the hexabrominated compound, fistularin-3, shows promising docking interactions with predicted binding affinities (S-score = −7.78, −7.65, −6.39, −6.28, −8.84 Kcal/mol) for the main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and non-structural protein 10 (nsp10) (PDB ID: 6W4H), respectively, where it forms better interactions with the protein pockets than the native interaction. It also shows promising molecular dynamics, pharmacokinetics, and toxicity profiles. As such, further exploration of the antiviral properties of fistularin-3 against SARS-CoV-2 is merited.
Collapse
|
13
|
Cell Entry of Animal Coronaviruses. Viruses 2021; 13:v13101977. [PMID: 34696406 PMCID: PMC8540712 DOI: 10.3390/v13101977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses (CoVs) are a group of enveloped positive-sense RNA viruses and can cause deadly diseases in animals and humans. Cell entry is the first and essential step of successful virus infection and can be divided into two ongoing steps: cell binding and membrane fusion. Over the past two decades, stimulated by the global outbreak of SARS-CoV and pandemic of SARS-CoV-2, numerous efforts have been made in the CoV research. As a result, significant progress has been achieved in our understanding of the cell entry process. Here, we review the current knowledge of this essential process, including the viral and host components involved in cell binding and membrane fusion, molecular mechanisms of their interactions, and the sites of virus entry. We highlight the recent findings of host restriction factors that inhibit CoVs entry. This knowledge not only enhances our understanding of the cell entry process, pathogenesis, tissue tropism, host range, and interspecies-transmission of CoVs but also provides a theoretical basis to design effective preventive and therapeutic strategies to control CoVs infection.
Collapse
|
14
|
Abstract
Selective pressures drive adaptive changes in the coronavirus spike proteins directing virus-cell entry. These changes are concentrated in the amino-terminal domains (NTDs) and the receptor-binding domains (RBDs) of complex modular spike protein trimers. The impact of this hypervariability on virus entry is often unclear, particularly with respect to sarbecovirus NTD variations. Therefore, we constructed indels and substitutions within hypervariable NTD regions and used severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus-like particles and quantitative virus-cell entry assays to elucidate spike structures controlling this initial infection stage. We identified NTD variations that increased SARS-CoV-2 spike protein-mediated membrane fusion and cell entry. Increased cell entry correlated with greater presentation of RBDs to ACE2 receptors. This revealed a significant allosteric effect, in that changes within the NTDs can orient RBDs for effective virus-cell binding. Yet, those NTD changes elevating receptor binding and membrane fusion also reduced interdomain associations, leaving spikes on virus-like particles susceptible to irreversible inactivation. These findings parallel those obtained decades ago, in which comparisons of murine coronavirus spike protein variants established inverse relationships between membrane fusion potential and virus stability. Considerable hypervariability in the SARS-CoV-2 spike protein NTDs also appear to be driven by counterbalancing pressures for effective virus-cell entry and durable extracellular virus infectivity. These forces may selectively amplify SARS-CoV-2 variants of concern.
Collapse
|
15
|
Welcome MO, Mastorakis NE. Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology 2021; 29:939-963. [PMID: 33822324 PMCID: PMC8021940 DOI: 10.1007/s10787-021-00806-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) first discovered in Wuhan, Hubei province, China in December 2019. SARS-CoV-2 has infected several millions of people, resulting in a huge socioeconomic cost and over 2.5 million deaths worldwide. Though the pathogenesis of COVID-19 is not fully understood, data have consistently shown that SARS-CoV-2 mainly affects the respiratory and gastrointestinal tracts. Nevertheless, accumulating evidence has implicated the central nervous system in the pathogenesis of SARS-CoV-2 infection. Unfortunately, however, the mechanisms of SARS-CoV-2 induced impairment of the central nervous system are not completely known. Here, we review the literature on possible neuropathogenic mechanisms of SARS-CoV-2 induced cerebral damage. The results suggest that downregulation of angiotensin converting enzyme 2 (ACE2) with increased activity of the transmembrane protease serine 2 (TMPRSS2) and cathepsin L in SARS-CoV-2 neuroinvasion may result in upregulation of proinflammatory mediators and reactive species that trigger neuroinflammatory response and blood brain barrier disruption. Furthermore, dysregulation of hormone and neurotransmitter signalling may constitute a fundamental mechanism involved in the neuropathogenic sequelae of SARS-CoV-2 infection. The viral RNA or antigenic peptides also activate or interact with molecular signalling pathways mediated by pattern recognition receptors (e.g., toll-like receptors), nuclear factor kappa B, Janus kinase/signal transducer and activator of transcription, complement cascades, and cell suicide molecules. Potential molecular targets and therapeutics of SARS-CoV-2 induced neurologic damage are also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, 1000, Sofia, Bulgaria
| |
Collapse
|
16
|
Khursheed A, Jain V, Rasool A, Rather MA, Malik NA, Shalla AH. Molecular scaffolds from mother nature as possible lead compounds in drug design and discovery against coronaviruses: A landscape analysis of published literature and molecular docking studies. Microb Pathog 2021; 157:104933. [PMID: 33984466 PMCID: PMC8110334 DOI: 10.1016/j.micpath.2021.104933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022]
Abstract
The recent outbreak of viral infection and its transmission has highlighted the importance of its slowdown for the safeguard of public health, globally. The identification of novel drugs and efficient therapies against these infectious viruses is need of the hour. The eruption of COVID-19 is caused by a novel acute respiratory syndrome virus SARS-CoV-2 which has taken the whole world by storm as it has transformed into a global pandemic. This lethal syndrome is a global health threat to general public which has already affected millions of people. Despite the development of some potential vaccines and repurposed drugs by some Pharma companies, this health emergency needs more attention due to the less efficacy of these vaccines coupled with the emergence of novel and resistant strains of SARS-CoV-2. Due to enormous structural diversity and biological applications, natural products are considered as a wonderful source of drugs for such diseases. Natural product based drugs constitute a substantial proportion of the pharmaceutical market particularly in the therapeutic areas of infectious diseases and oncology. The naturally occurring bioactive antiviral phytochemicals including alkaloids, flavonoids and peptides have been subjected to virtual screening against COVID-19. Since there is no specific medicine available for the treatment of Covid-19, designing new drugs using in silico methods plays an all important role to find that magic bullet which can target this lethal virus. The in silico method is not only quick but economical also when compared to the other conventional methods which are hit and trial methods. Based on this in silico approach, various natural products have been recently identified which might have a potential to inhibit COVID-19 outbreak. These natural products have been shown by these docking studies to interact with the spike protein of the novel coronavirus. This spike protein has been shown to bind to a transmembrane protein called Angiotensin converting enzyme 2 (ACE2), this protein acts as a receptor for the viral spike protein. This comprehensive review article anticipates providing a summary of the authentic and peer reviewed published literature about the potential of natural metabolites that can be developed into possible lead compounds against this new threat of Covid-19. Main focus of the article will be to highlight natural sources of potential anti-coronavirus molecules, mechanism of action, docking studies and the target proteins as well as their toxicity profiles. This review article intends to provide a starting point for the research endeavors that are needed for the design and development of drugs based on pure natural products, their synthetic or semi-synthetic derivatives and standardized plant extracts. This review article will be highly helpful for scientists who are working or intend to work on antiviral drugs from natural sources.
Collapse
Affiliation(s)
- Aadil Khursheed
- Department of Chemistry, Madhyanchal Professional University, Ratibad, Bhopal, 462044, Madhya Pradesh, India
| | - Vikrant Jain
- Department of Chemistry, Madhyanchal Professional University, Ratibad, Bhopal, 462044, Madhya Pradesh, India
| | - Ajaz Rasool
- Department of Zoology, University of Kashmir, Srinagar, 190006, India
| | - Manzoor A Rather
- Department of Chemistry, Islamic University of Science and Technology, Awanti Pora, 192122, Jammu and Kashmir, India.
| | - Nisar Ahmad Malik
- Department of Chemistry, Islamic University of Science and Technology, Awanti Pora, 192122, Jammu and Kashmir, India
| | - Aabid Hussain Shalla
- Department of Chemistry, Islamic University of Science and Technology, Awanti Pora, 192122, Jammu and Kashmir, India
| |
Collapse
|
17
|
Bovine coronavirus infections in Turkey: molecular analysis of the full-length spike gene sequences of viruses from digestive and respiratory infections. Arch Virol 2021; 166:2461-2468. [PMID: 34212242 PMCID: PMC8247624 DOI: 10.1007/s00705-021-05147-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
Abstract
Bovine coronavirus (BCoV) can be spread by animal activity. Although cattle farming is widespread in Turkey, there are few studies of BCoV. The aim of this study was to evaluate the current situation regarding BCoV in Turkey. This is the first study reporting the full-length nucleotide sequences of BCoV spike (S) genes in Turkey. Samples were collected from 119 cattle with clinical signs of respiratory (n = 78) or digestive tract (n = 41) infection on different farms located across widely separated provinces in Turkey. The samples were screened for BCoV using RT-nested PCR targeting the N gene, which identified BCoV in 35 samples (9 faeces and 26 nasal discharge). RT-PCR analysis of the S gene produced partial/full-length S gene sequences from 11 samples (8 faeces and 3 nasal discharge samples). A phylogenetic tree of the S gene sequences was made to analyze the genetic relationships among BCoVs from Turkey and other countries. The results showed that the local strains present in faeces and nasal discharge samples had many different amino acid changes. Some of these changes were shown in previous studies to be critical for tropism. This study provides new data on BCoV in Turkey that will be valuable in designing effective vaccine approaches and control strategies.
Collapse
|
18
|
Ayatollahi SA, Sharifi-Rad J, Tsouh Fokou PV, Mahady GB, Ansar Rasul Suleria H, Krishna Kapuganti S, Gadhave K, Giri R, Garg N, Sharma R, Ribeiro D, Rodrigues CF, Reiner Ž, Taheri Y, Cruz-Martins N. Naturally Occurring Bioactives as Antivirals: Emphasis on Coronavirus Infection. Front Pharmacol 2021; 12:575877. [PMID: 34267652 PMCID: PMC8277242 DOI: 10.3389/fphar.2021.575877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
The current coronavirus disease (COVID-19) outbreak is a significant threat to human health and the worldwide economy. Coronaviruses cause a variety of diseases, such as pneumonia-like upper respiratory tract illnesses, gastroenteritis, encephalitis, multiple organ failure involving lungs and kidneys which might cause death. Since the pandemic started there have been more than 107 million COVID-19 infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and ∼2.4 million deaths globally. SARS-CoV-2 is easily transmitted from person-to-person and has spread quickly across all continents. With the continued increase in morbidity and mortality caused by COVID-19, and the damage to the global economy, there is an urgent need for effective prevention and treatment strategies. The advent of safe and effective vaccines has been a significant step forward in the battle against COVID-19, however treatment of the symptoms associated with the disease still requires new anti-viral and anti-inflammatory drug therapies. To this end, scientists have been investigating available natural products that may be effective against SARS-CoV-2, with some products showing promise in fighting several viral infections. Since many natural products are dietary components or are prepared as dietary supplements people tend to consider them safer than synthetic drugs. For example, Traditional Chinese Medicines have been effectively utilized to treat SARS-CoV-2 infected patients with promising results. In this review, we summarize the current knowledge of COVID-19 therapies and the therapeutic potential of medicinal plant extracts and natural compounds for the treatment of several viral infections, with special emphasis on SARS-CoV-2 infection. Realistic strategies that can be employed for the effective use of bioactive compounds for anti-SARS-CoV-2 research are also provided.
Collapse
Affiliation(s)
- Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gail B. Mahady
- Department of Pharmacy Practice, PAHO/WHO Collaborating Centre for Traditional Medicine, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | | | | | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Daniel Ribeiro
- Northern Superior Health School of the Portuguese Red Cross, Oliveira de Azeméis, Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, Gandra, Portugal
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
- Department of Biomedicine/Medicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Jia L, Liu YP, Tian LF, Xiong C, Xu X, Qu H, Xiong W, Zhou D, Wang F, Liu Z, Yan XX, Xu W, Tang L. Potent neutralizing RBD-specific antibody cocktail against SARS-CoV-2 and its mutant. MedComm (Beijing) 2021; 2:442-452. [PMID: 34541573 PMCID: PMC8441738 DOI: 10.1002/mco2.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and its variants has posed a serious global public health emergency. Therapeutic interventions or vaccines are urgently needed to treat and prevent the further dissemination of this contagious virus. This study described the identification of neutralizing receptor‐binding domain (RBD)‐specific antibodies from mice through vaccination with a recombinant SARS‐CoV‐2 RBD. RBD‐targeted monoclonal antibodies (mAbs) with distinct function and epitope recognition were selected to understand SARS‐CoV‐2 neutralization. High‐affinity RBD‐specific antibodies exhibited high potency in neutralizing both live and pseudotype SARS‐CoV‐2 viruses and the SARS‐CoV‐2 pseudovirus particle containing the spike protein S‐RBDV367F mutant (SARS‐CoV‐2(V367F)). These results demonstrated that these antibodies recognize four distinct groups (I–IV) of epitopes on the RBD and that mAbs targeting group I epitope can be used in combination with mAbs recognizing groups II and/or IV epitope to make mAb cocktails against SARS‐CoV‐2 and its mutants. Moreover, structural characterization reveals that groups I, III, and IV epitopes are closely located to an RBD hotspot. The identification of RBD‐specific antibodies and cocktails may provide an effective therapeutic and prophylactic intervention against SARS‐CoV‐2 and its isolates.
Collapse
Affiliation(s)
- Lina Jia
- Department of Neurology State Key Lab of Biotherapy and Cancer center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan China
| | - Yan-Ping Liu
- National Laboratory of Biomacromolecules Chinese Academy of Sciences (CAS) Center for Excellence in Biomacromolecules Institute of Biophysics, Chinese Academy of Sciences Beijing China
| | - Li-Fei Tian
- National Laboratory of Biomacromolecules Chinese Academy of Sciences (CAS) Center for Excellence in Biomacromolecules Institute of Biophysics, Chinese Academy of Sciences Beijing China
| | - Chao Xiong
- Department of Neurology State Key Lab of Biotherapy and Cancer center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan China
| | - Xin Xu
- Department of Neurology State Key Lab of Biotherapy and Cancer center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan China
| | - Honge Qu
- Department of Neurology State Key Lab of Biotherapy and Cancer center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan China
| | - Weixi Xiong
- Department of Neurology State Key Lab of Biotherapy and Cancer center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan China
| | - Dong Zhou
- Department of Neurology State Key Lab of Biotherapy and Cancer center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan China
| | - Feng Wang
- Wuxi Biortus Biosciences Co. Ltd. Jiangyin China
| | - Zheng Liu
- School of life and health Kobilka Institute of Innovative Drug Discovery the Chinese University of Hong Kong Shenzhen China
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules Chinese Academy of Sciences (CAS) Center for Excellence in Biomacromolecules Institute of Biophysics, Chinese Academy of Sciences Beijing China
| | - Wenqing Xu
- National Laboratory of Biomacromolecules Chinese Academy of Sciences (CAS) Center for Excellence in Biomacromolecules Institute of Biophysics, Chinese Academy of Sciences Beijing China.,Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Lin Tang
- Department of Neurology State Key Lab of Biotherapy and Cancer center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu Sichuan China
| |
Collapse
|
20
|
Barrantes FJ. The Contribution of Biophysics and Structural Biology to Current Advances in COVID-19. Annu Rev Biophys 2021; 50:493-523. [PMID: 33957057 DOI: 10.1146/annurev-biophys-102620-080956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Critical to viral infection are the multiple interactions between viral proteins and host-cell counterparts. The first such interaction is the recognition of viral envelope proteins by surface receptors that normally fulfil other physiological roles, a hijacking mechanism perfected over the course of evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has successfully adopted this strategy using its spike glycoprotein to dock on the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2). The crystal structures of several SARS-CoV-2 proteins alone or in complex with their receptors or other ligands were recently solved at an unprecedented pace. This accomplishment is partly due to the increasing availability of data on other coronaviruses and ACE2 over the past 18 years. Likewise, other key intervening actors and mechanisms of viral infection were elucidated with the aid of biophysical approaches. An understanding of the various structurally important motifs of the interacting partners provides key mechanistic information for the development of structure-based designer drugs able to inhibit various steps of the infective cycle, including neutralizing antibodies, small organic drugs, and vaccines. This review analyzes current progress and the outlook for future structural studies.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)-National Scientific and Technical Research Council, Argentina (CONICET), C1107AFF Buenos Aires, Argentina;
| |
Collapse
|
21
|
Fatima N, Kaushik V, Ayoub A. A Narrative Review of a Pulmonary Aerosolized Formulation or a Nasal Drop Using Sera Containing Neutralizing Antibodies Collected from COVID-19-Recovered Patients as a Probable Therapy for COVID-19. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:151-168. [PMID: 34083848 PMCID: PMC8163704 DOI: 10.30476/ijms.2020.86417.1624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) emerged as a new contagion during December 2019, since which time it has triggered a rampant spike in fatality rates worldwide due to insufficient medical treatments and a lack of counteragents and prompted the World Health Organization to declare COVID-19 a public health emergency. It is, therefore, vital to accelerate the screening of new molecules or vaccines to win the battle against this pandemic. Experiences from previous epidemiological data on coronaviruses guide investigators in designing and exploring new compounds for a safe and cost-effective treatment. Several reports on the severe acute respiratory syndrome (SARS) epidemic indicate that severe acute respiratory syndrome coronavirus (SARS-CoV) and the novel COVID-19 use angiotensin-converting enzyme 2 (ACE2) as a receptor for binding to the host cell in the lung epithelia through the spike protein on their virion surface. ACE2 is a mono-carboxypeptidase best known for cleaving major peptides and substrates. Its degree in human airway epithelia positively correlates with coronavirus infection. The treatment approach can be the neutralization of the virus entering lung epithelial cells by using sera containing antibodies collected from COVID-19-recovered patients. Hence, we herein propose a pulmonary aerosolized formulation or a nasal drop using sera, which contain antibodies to prevent, treat, or immunize against COVID-19 infection.
Collapse
Affiliation(s)
- Nishat Fatima
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| | | | - Amjad Ayoub
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| |
Collapse
|
22
|
Verma J, Subbarao N. A comparative study of human betacoronavirus spike proteins: structure, function and therapeutics. Arch Virol 2021; 166:697-714. [PMID: 33483791 PMCID: PMC7821988 DOI: 10.1007/s00705-021-04961-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 01/24/2023]
Abstract
Coronaviruses are the paradigm of emerging 21st century zoonotic viruses, triggering numerous outbreaks and a severe global health crisis. The current COVID-19 pandemic caused by SARS-CoV-2 has affected more than 51 million people across the globe as of 12 November 2020. The crown-like spikes on the surface of the virion are the unique structural feature of viruses in the family Coronaviridae. The spike (S) protein adopts distinct conformations while mediating entry of the virus into the host. This multifunctional protein mediates the entry process by recognizing its receptor on the host cell, followed by the fusion of the viral membrane with the host cell membrane. This review article focuses on the structural and functional comparison of S proteins of the human betacoronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we review the current state of knowledge about receptor recognition, the membrane fusion mechanism, structural epitopes, and glycosylation sites of the S proteins of these viruses. We further discuss various vaccines and other therapeutics such as monoclonal antibodies, peptides, and small molecules based on the S protein of these three viruses.
Collapse
Affiliation(s)
- Jyoti Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
23
|
Libbey JE, Fujinami RS. Viral mouse models used to study multiple sclerosis: past and present. Arch Virol 2021; 166:1015-1033. [PMID: 33582855 PMCID: PMC7882042 DOI: 10.1007/s00705-021-04968-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory demyelinating disease of the central nervous system. Although the etiology of MS is unknown, genetics and environmental factors, such as infections, play a role. Viral infections of mice have been used as model systems to study this demyelinating disease of humans. Three viruses that have long been studied in this capacity are Theiler’s murine encephalomyelitis virus, mouse hepatitis virus, and Semliki Forest virus. This review describes the viruses themselves, the infection process, the disease caused by infection and its accompanying pathology, and the model systems and their usefulness in studying MS.
Collapse
Affiliation(s)
- J E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA
| | - R S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
24
|
Yu M, Zhang T, Zhang W, Sun Q, Li H, Li JP. Elucidating the Interactions Between Heparin/Heparan Sulfate and SARS-CoV-2-Related Proteins-An Important Strategy for Developing Novel Therapeutics for the COVID-19 Pandemic. Front Mol Biosci 2021; 7:628551. [PMID: 33569392 PMCID: PMC7868326 DOI: 10.3389/fmolb.2020.628551] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to the high mortality and the spread rate, the infectious disease caused by SARS-CoV-2 has become a major threat to public health and social economy, leading to over 70 million infections and 1. 6 million deaths to date. Since there are currently no effective therapeutic or widely available vaccines, it is of urgent need to look for new strategies for the treatment of SARS-CoV-2 infection diseases. Binding of a viral protein onto cell surface heparan sulfate (HS) is generally the first step in a cascade of interaction that is required for viral entry and the initiation of infection. Meanwhile, interactions of selectins and cytokines (e.g., IL-6 and TNF-α) with HS expressed on endothelial cells are crucial in controlling the recruitment of immune cells during inflammation. Thus, structurally defined heparin/HS and their mimetics might serve as potential drugs by competing with cell surface HS for the prevention of viral adhesion and modulation of inflammatory reaction. In this review, we will elaborate coronavirus invasion mechanisms and summarize the latest advances in HS-protein interactions, especially proteins relevant to the process of coronavirus infection and subsequent inflammation. Experimental and computational techniques involved will be emphasized.
Collapse
Affiliation(s)
- Mingjia Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Wei Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Qianyun Sun
- Division of Chemistry, Shandong Institute of Metrology, Jinan, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Jin-ping Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
25
|
Fouladirad S, Bach H. Development of Coronavirus Treatments Using Neutralizing Antibodies. Microorganisms 2021; 9:microorganisms9010165. [PMID: 33451069 PMCID: PMC7828509 DOI: 10.3390/microorganisms9010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2, was first reported in December 2019 in Wuhan, Hubei province, China. This virus has led to 61.8 million cases worldwide being reported as of December 1st, 2020. Currently, there are no definite approved therapies endorsed by the World Health Organization for COVID-19, focusing only on supportive care. Treatment centers around symptom management, including oxygen therapy or invasive mechanical ventilation. Immunotherapy has the potential to play a role in the treatment of SARS-CoV-2. Monoclonal antibodies (mAbs), in particular, is a relatively new approach in the world of infectious diseases and has the benefit of overcoming challenges with serum therapy and intravenous immunoglobulins preparations. Here, we reviewed the articles published in PubMed with the purpose of summarizing the currently available evidence for the use of neutralizing antibodies as a potential treatment for coronaviruses. Studies reporting in vivo results were summarized and analyzed. Despite promising data from some studies, none of them progressed to clinical trials. It is expected that neutralizing antibodies might offer an alternative for COVID-19 treatment. Thus, there is a need for randomized trials to understand the potential use of this treatment.
Collapse
Affiliation(s)
- Saman Fouladirad
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
| | - Horacio Bach
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
- Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6T 1Z, Canada
- Correspondence: ; Tel.: +1-604-727-9719; Fax: +1-604-875-4013
| |
Collapse
|
26
|
Haghani M, Varamini P. Temporal evolution, most influential studies and sleeping beauties of the coronavirus literature. Scientometrics 2021; 126:7005-7050. [PMID: 34188334 PMCID: PMC8221746 DOI: 10.1007/s11192-021-04036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Following the outbreak of SARS-CoV-2 disease, within less than 8 months, the 50 years-old scholarly literature of coronaviruses grew to nearly three times larger than its size prior to 2020. Here, temporal evolution of the coronavirus literature over the last 30 years (N = 43,769) is analysed along with its subdomain of SARS-CoV-2 articles (N = 27,460) and the subdomain of reviews and meta-analytic studies (N = 1027). The analyses are conducted through the lenses of co-citation and bibliographic coupling of documents. (1) Of the N = 1204 review and meta-analytical articles of the coronavirus literature, nearly 88% have been published and indexed during the first 8 months of 2020, marking an unprecedented attention to reviews and meta-analyses in this domain, prompted by the SARS-CoV-2 pandemic. (2) The subset of 2020 SARS-CoV-2 articles is bibliographically distant from the rest of this literature published prior to 2020. Individual articles of the SARS-CoV-2 segment with a bridging role between the two bodies of articles (i.e., before and after 2020) are identifiable. (3) Furthermore, the degree of bibliographic coupling within the 2020 SARS-CoV-2 cluster is much poorer compared to the cluster of articles published prior to 2020. This could, in part, be explained by the higher diversity of topics that are studied in relation to SARS-CoV-2 compared to the literature of coronaviruses published prior to the SARS-CoV-2 disease. (4) The analyses on the subset of SARS-CoV-2 literature identified studies published prior to 2020 that have now proven highly instrumental in the development of various clusters of publications linked to SARS-CoV-2. In particular, the so-called "sleeping beauties" of the coronavirus literature with an awakening in 2020 were identified, i.e., previously published studies of this literature that had remained relatively unnoticed for several years but gained sudden traction in 2020 in the wake of the SARS-CoV-2 outbreak. This work documents the historical development of the literature on coronaviruses as an event-driven literature and as a domain that exhibited, arguably, the most exceptional case of publication burst in the history of science. It also demonstrates how scholarly efforts undertaken during peace time or prior to a disease outbreak could suddenly play a critical role in prevention and mitigation of health disasters caused by new diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s11192-021-04036-4.
Collapse
Affiliation(s)
- Milad Haghani
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
- Institute of Transport and Logistics Studies, The University of Sydney, Sydney, Australia
| | - Pegah Varamini
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
27
|
Rehman MFU, Fariha C, Anwar A, Shahzad N, Ahmad M, Mukhtar S, Farhan Ul Haque M. Novel coronavirus disease (COVID-19) pandemic: A recent mini review. Comput Struct Biotechnol J 2020; 19:612-623. [PMID: 33398233 PMCID: PMC7773542 DOI: 10.1016/j.csbj.2020.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
The COVID-19, caused by a novel coronavirus, was declared as a global pandemic by WHO more than five months ago, and we are still experiencing a state of global emergency. More than 74.30 million confirmed cases of the COVID-19 have been reported globally so far, with an average fatality rate of almost 3.0%. Seven different types of coronaviruses had been detected from humans; three of them have resulted in severe outbreaks, i.e., MERS-CoV, SARS-CoV, and SARS-CoV-2. Phylogenetic analysis of the genomes suggests that the possible occurrence of recombination between SARS-like-CoVs from pangolin and bat might have led to the origin of SARS-CoV-2 and the COVID-19 outbreak. Coronaviruses are positive-sense, single-stranded RNA viruses and harbour a genome (30 kb) consisting of two terminal untranslated regions and twelve putative functional open reading frames (ORFs), encoding for non-structural and structural proteins. There are sixteen putative non-structural proteins, including proteases, RNA-dependent RNA polymerase, helicase, other proteins involved in the transcription and replication of SARS-CoV-2, and four structural proteins, including spike protein (S), envelope (E), membrane (M), and nucleocapsid (N). SARS-CoV-2 infection, with a heavy viral load in the body, destroys the human lungs through cytokine storm, especially in elderly persons and people with immunosuppressed disorders. A number of drugs have been repurposed and employed, but still, no specific antiviral medicine has been approved by the FDA to treat this disease. This review provides a current status of the COVID-19, epidemiology, an overview of phylogeny, mode of action, diagnosis, and possible treatment methods and vaccines.
Collapse
Affiliation(s)
| | - Chaudhary Fariha
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Aqsa Anwar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Munir Ahmad
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Salma Mukhtar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | | |
Collapse
|
28
|
Panoutsopoulos AA. Known drugs and small molecules in the battle for COVID-19 treatment. Genes Dis 2020; 7:528-534. [PMID: 32837982 PMCID: PMC7305491 DOI: 10.1016/j.gendis.2020.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has been declared a pandemic by the World Health Organization on March 11th and since then more than 3 million cases and a quarter million deaths have occurred due to it. The urge to find a resultful treatment or cure is now pressing more than any other time since the outbreak of the pandemic. Researchers all over the world from different fields of expertise are trying to find the most suitable drugs, that are already known to treat other diseases, and could tackle the process of SARS-CoV2 through which it invades and replicates in human cells. Here, we discuss five of the most promising drugs that can potentially play a major role in the treatment of COVID-19. While nicotine and ivermectin may be blocking transport abilities of the virus or its components, famotidine, remdesivir and chloroquine in combination with zinc ions can deactivate important enzymes needed for the replication of the virus. While clinical trials for some of these drugs have already started, it is common knowledge that lack of organization between countries, institutes and hospitals might slow down the whole process for an official treatment based in wide, randomized, placebo controlled trials.
Collapse
Affiliation(s)
- Alexios A. Panoutsopoulos
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA
| |
Collapse
|
29
|
Sohag AAM, Hannan MA, Rahman S, Hossain M, Hasan M, Khan MK, Khatun A, Dash R, Uddin MJ. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug Dev Res 2020; 81:919-941. [PMID: 32632960 PMCID: PMC7361641 DOI: 10.1002/ddr.21709] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022]
Abstract
Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the most contagious diseases in human history that has already affected millions of lives worldwide. To date, no vaccines or effective therapeutics have been discovered yet that may successfully treat COVID-19 patients or contain the transmission of the virus. Scientific communities across the globe responded rapidly and have been working relentlessly to develop drugs and vaccines, which may require considerable time. In this uncertainty, repurposing the existing antiviral drugs could be the best strategy to speed up the discovery of effective therapeutics against SARS-CoV-2. Moreover, drug repurposing may leave some vital information on druggable targets that could be capitalized in target-based drug discovery. Information on possible drug targets and the progress on therapeutic and vaccine development also needs to be updated. In this review, we revisited the druggable targets that may hold promise in the development of the anti-SARS-CoV-2 agent. Progresses on the development of potential therapeutics and vaccines that are under the preclinical studies and clinical trials have been highlighted. We anticipate that this review will provide valuable information that would help to accelerate the development of therapeutics and vaccines against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural UniversityMymensingh2202Bangladesh
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural UniversityMymensingh2202Bangladesh
- Department of AnatomyDongguk University College of MedicineGyeongju38066South Korea
- ABEx Bio‐Research CenterEast Azampur, DhakaBangladesh
| | - Sadaqur Rahman
- Department of Biochemistry and Molecular BiologyShahjalal University of Science and TechnologySylhetBangladesh
| | - Motaher Hossain
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial BiotechnologySylhet Agricultural UniversitySylhetBangladesh
| | - Md Kawsar Khan
- Department of Biochemistry and Molecular BiologyShahjalal University of Science and TechnologySylhetBangladesh
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Amena Khatun
- Northern International Medical College HospitalDhakaBangladesh
| | - Raju Dash
- Department of AnatomyDongguk University College of MedicineGyeongju38066South Korea
| | - Md Jamal Uddin
- ABEx Bio‐Research CenterEast Azampur, DhakaBangladesh
- Graduate School of Pharmaceutical Sciences, College of PharmacyEwha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
30
|
Sofi MS, Hamid A, Bhat SU. SARS-CoV-2: A critical review of its history, pathogenesis, transmission, diagnosis and treatment. BIOSAFETY AND HEALTH 2020; 2:217-225. [PMID: 33196035 PMCID: PMC7648888 DOI: 10.1016/j.bsheal.2020.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the deadly virus (novel coronavirus or Severe Acute Respiratory Syndrome Coronavirus-2) that emerged in December 2019, remained a controversial subject of intense speculations regarding its origin, became a worldwide health problem resulting in serious coronavirus disease 2019 (acronym COVID-19). The concern regarding this new viral strain "Severe Acute Respiratory Syndrome Coronavirus-2" (acronym SARS-CoV-2) and diseases it causes (COVID-19) is well deserved at all levels. The incidence of COVID-19 infection and infectious patients are increasing at a high rate. Coronaviruses (CoVs), enclosed positive-sense RNA viruses, are distinguished by club-like spikes extending from their surface, an exceptionally large genome of RNA, and a special mechanism for replication. Coronaviruses are associated with a broad variety of human and other animal diseases spanning from enteritis in cattle and pigs and upper chicken respiratory disease to extremely lethal human respiratory infections. With World Health Organization (WHO) declaring COVID-19 as pandemic, we deemed it necessary to provide a detailed review of coronaviruses discussing their history, current situation, coronavirus classification, pathogenesis, structure, mode of action, diagnosis and treatment, the effect of environmental factors, risk reduction and guidelines to understand the virus and develop ways to control it.
Collapse
Affiliation(s)
| | | | - Sami Ullah Bhat
- Corresponding author: Department of Environmental Science, School of Earth and Environmental Science, University of Kashmir, 190006, India
| |
Collapse
|
31
|
Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020; 1:270-301. [PMID: 33173860 PMCID: PMC7646666 DOI: 10.1002/mco2.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Coronaviruses (CoVs), a subfamily of coronavirinae, are a panel of single-stranded RNA virus. Human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63) usually cause mild upper respiratory diseases and are believed to be harmless. However, other HCoVs, associated with severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19, have been identified as important pathogens due to their potent infectivity and lethality worldwide. Moreover, currently, no effective antiviral drugs treatments are available so far. In this review, we summarize the biological characters of HCoVs, their association with human diseases, and current therapeutic options for the three severe HCoVs. We also highlight the discussion about novel treatment strategies for HCoVs infections.
Collapse
Affiliation(s)
- Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Taewan Kim
- Wexner Medical Center The Ohio State University Columbus Ohio 43210 USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| |
Collapse
|
32
|
Barrantes FJ. Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses. ACS Chem Neurosci 2020; 11:2793-2803. [PMID: 32845609 PMCID: PMC7460807 DOI: 10.1021/acschemneuro.0c00434] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic unfolds, neurological signs and symptoms reflect the involvement of targets beyond the primary lung effects. The etiological agent of COVID-19, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits neurotropism for central and peripheral nervous systems. Various infective mechanisms and paths can be exploited by the virus to reach the central nervous system, some of which bypass the blood-brain barrier; others alter its integrity. Numerous studies have established beyond doubt that the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2) performs the role of SARS-CoV-2 host-cell receptor. Histochemical studies and more recently transcriptomics of mRNA have dissected the cellular localization of the ACE2 enzyme in various tissues, including the central nervous system. Epithelial cells lining the nasal mucosae, the upper respiratory tract, and the oral cavity, bronchoalveolar cells type II in the pulmonary parenchyma, and intestinal enterocytes display ACE2 binding sites at their cell surfaces, making these epithelial mucosae the most likely viral entry points. Neuronal and glial cells and endothelial cells in the central nervous system also express ACE2. This short review analyzes the known entry points and routes followed by the SARS-CoV-2 to reach the central nervous system and postulates new hypothetical pathways stemming from the enterocytes lining the intestinal lumen.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Institute of Biomedical Research (BIOMED),
UCA-CONICET, Av. Alicia Moreau de
Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
33
|
Wang Y, Grunewald M, Perlman S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods Mol Biol 2020; 2203:1-29. [PMID: 32833200 DOI: 10.1007/978-1-0716-0900-2_1] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. CoVs cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs, and upper respiratory tract and kidney disease in chickens to lethal human respiratory infections. Most recently, the novel coronavirus, SARS-CoV-2, which was first identified in Wuhan, China in December 2019, is the cause of a catastrophic pandemic, COVID-19, with more than 8 million infections diagnosed worldwide by mid-June 2020. Here we provide a brief introduction to CoVs discussing their replication, pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), which are relevant for understanding COVID-19.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Matthew Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
34
|
Lahiri D, Mondal R, Deb S, Bandyopadhyay D, Shome G, Sarkar S, Biswas SC. Neuroinvasive potential of a primary respiratory pathogen SARS- CoV2: Summarizing the evidences. Diabetes Metab Syndr 2020; 14:1053-1060. [PMID: 32640417 PMCID: PMC7331527 DOI: 10.1016/j.dsx.2020.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 12/29/2022]
Abstract
BACKROUND AND AIMS After the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the last two decades, the world is facing its new challenge in SARS-CoV-2 pandemic with unfathomable global responses. The characteristic clinical symptoms for Coronavirus (COVID-19) affected patients are high fever, dry-cough, dyspnoea, lethal pneumonia whereas some patients also show additional neurological signs such as headache, nausea, vomiting etc. The accumulative evidences suggest that SARS-CoV-2 is not only confined within the respiratory tract but may also invade the central nervous system (CNS) and peripheral nervous system (PNS) inducing some fatal neurological diseases. Here, we analyze the phylogenetic perspective of SARS-CoV-2 with other strains of β-Coronaviridae from a standpoint of neurological spectrum disorders. METHODOLOGY A Pubmed/Medline, NIH Lit Covid, Cochrane library and some open data bases (BioRxiv, MedRxiv,preprint.org and others) search were carried out by using keywords relevant to our topic of discussion. The extracted literatures are scrutinized by the authors. RESULTS 58 literatures including original articles, case reports and case series were selected by the authors to analyze the differential distribution of neurological impairments in COVID-19 positive patients along with angiotensin-converting enzyme-2 (ACE2) expression dynamics in neuronal and non-neuronal tissue in CNS and PNS with neuroinvasive potential of SARS-CoV2. CONCLUSION We discuss the need for modulations in clinical approach from a neurological point of view, as a measure towards reducing disease transmission, morbidity and mortality in SARS-CoV2 positive patients.
Collapse
Affiliation(s)
- Durjoy Lahiri
- Institute of Post Graduate Medical Education and Research, SSKM Hospital, Kolkata, India.
| | - Ritwick Mondal
- Institute of Post Graduate Medical Education and Research, SSKM Hospital, Kolkata, India
| | - Shramana Deb
- S. N. Pradhan Centre for Neuroscience, University of Calcutta, India
| | - Deebya Bandyopadhyay
- Institute of Post Graduate Medical Education and Research, SSKM Hospital, Kolkata, India
| | - Gourav Shome
- Department of Microbiology, University of Calcutta, India
| | - Sukanya Sarkar
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhas C Biswas
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
35
|
Hoque MN, Chaudhury A, Akanda MAM, Hossain MA, Islam MT. Genomic diversity and evolution, diagnosis, prevention, and therapeutics of the pandemic COVID-19 disease. PeerJ 2020; 8:e9689. [PMID: 33005486 PMCID: PMC7510477 DOI: 10.7717/peerj.9689] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection caused by a novel evolutionarily divergent RNA virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus first emerged in Wuhan, China in December 2019, and subsequently spreaded around the world. Genomic analyses revealed that this zoonotic virus may be evolved naturally but not a purposefully manipulated laboratory construct. However, currently available data are not sufficient to precisely conclude the origin of this fearsome virus. Comprehensive annotations of the whole-genomes revealed hundreds of nucleotides, and amino acids mutations, substitutions and/or deletions at different positions of the ever changing SARS-CoV-2 genome. The spike (S) glycoprotein of SARS-CoV-2 possesses a functional polybasic (furin) cleavage site at the S1-S2 boundary through the insertion of 12 nucleotides. It leads to the predicted acquisition of 3-O-linked glycan around the cleavage site. Although real-time RT-PCR methods targeting specific gene(s) have widely been used to diagnose the COVID-19 patients, however, recently developed more convenient, cheap, rapid, and specific diagnostic tools targeting antigens or CRISPR-Cas-mediated method or a newly developed plug and play method should be available for the resource-poor developing countries. A large number of candidate drugs, vaccines and therapies have shown great promise in early trials, however, these candidates of preventive or therapeutic agents have to pass a long path of trials before being released for the practical application against COVID-19. This review updates current knowledge on origin, genomic evolution, development of the diagnostic tools, and the preventive or therapeutic remedies of the COVID-19. We also discussed the future scopes for research, effective management, and surveillance of the newly emerged COVID-19 disease.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md Abdul Mannan Akanda
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| |
Collapse
|
36
|
Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Front Pharmacol 2020; 11:1258. [PMID: 32973505 PMCID: PMC7466451 DOI: 10.3389/fphar.2020.01258] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
As the COVID-19 is still growing throughout the globe, a thorough investigation into the specific immunopathology of SARS-CoV-2, its interaction with the host immune system and pathogen evasion mechanism may provide a clear picture of how the pathogen can breach the host immune defenses in elderly patients and patients with comorbid conditions. Such studies will also reveal the underlying mechanism of how children and young patients can withstand the disease better. The study of the immune defense mechanisms and the prolonged immune memory from patients population with convalescent plasma may help in designing a suitable vaccine candidate not only for the current outbreak but also for similar outbreaks in the future. The vital drug candidates, which are being tested as potential vaccines or therapeutics against COVID-19, include live attenuated vaccine, inactivated or killed vaccine, subunit vaccine, antibodies, interferon treatment, repurposing existing drugs, and nucleic acid-based vaccines. Several organizations around the world have fast-tracked the development of a COVID-19 vaccine, and some drugs already went to phase III of clinical trials. Hence, here, we have tried to take a quick glimpse of the development stages of vaccines or therapeutic approaches to treat this deadly disease.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Manoj K. Singh
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Snehasish Mandal
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
37
|
Manhas S, Anjali A, Mansoor S, Sharma V, Ahmad A, Rehman MU, Ahmad P. Covid-19 Pandemic and Current Medical Interventions. Arch Med Res 2020; 51:473-481. [PMID: 32499154 PMCID: PMC7237921 DOI: 10.1016/j.arcmed.2020.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
First humanoid coronavirus was discovered in the middle of 1960s, the class of viruses are considered to be a huge threat. The first onset of human coronavirus, SARS (SARS-CoV) appeared in 2003 which spanned five continents having lethal effects on human population accompanied by The Middle East Respiratory Syndrome Coronavirus in 2012 with a death rate of 35%. The viruses remain a threat till date and are of serious concern since no vaccine or specified drug therapy has been approbated for treating human coronaviruses. The viruses became a pandemic worldwide with the emergence of Wuhan coronavirus (2019-nCoV). SARS-CoV2 viral manifestation poses a serious human life risk by causing acute lung injury and various respiratory outcomes and has become a global concern. High pathogenicity and transmission rate of the viral strain has become the spotlight of research community throughout the world. With the ongoing studies on viral structure and host interactions, the intricacy of the viral proteome structure and replication cycle proposes a need to explore our understanding of host factors playing role in viral multiplication cycle. This review provides insight into our prevalent perception of coronavirus-host interactions, structure of SARS-CoV2, receptor mediated entry of virus inside the human cells, ongoing clinical trials, drug therapies and treatments that are being used to combat COVID-19 targeting viral fusion, replication and its multiplication.
Collapse
Affiliation(s)
- Sweeta Manhas
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu, J and K, India
| | - Anjali Anjali
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu, J and K, India
| | - Sheikh Mansoor
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu, J and K, India
| | - Vikas Sharma
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu, J and K, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Sood S, Aggarwal V, Aggarwal D, Upadhyay SK, Sak K, Tuli HS, Kumar M, Kumar J, Talwar S. COVID-19 Pandemic: from Molecular Biology, Pathogenesis, Detection, and Treatment to Global Societal Impact. CURRENT PHARMACOLOGY REPORTS 2020; 6:212-227. [PMID: 32837855 PMCID: PMC7382994 DOI: 10.1007/s40495-020-00229-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW In December 2019, there was an outbreak of viral disease in Wuhan, China which raised the concern across the whole world. The viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or novel coronavirus or COVID-19 (CoV-19) is known as a pandemic. After SARS-CoV and Middle East respiratory syndrome (MERS)-related CoV, COVID-19 is the third most pathogenic virus, hazardous to humans which have raised worries concerning the capacity of current security measures and the human services framework to deal with such danger. RECENT FINDINGS According to WHO, the mortality rate of COVID-19 exceeded that of SARS and MERS in view of which COVID-19 was declared as public health emergency of international concern. Coronaviruses are positive-sense RNA viruses with single stranded RNA and non-segmented envelopes. Recently, genome sequencing confirmed that COVID-19 is similar to SARS-CoV and bat coronavirus, but the major source of this pandemic outbreak, its transmission, and mechanisms related to its pathogenicity to humans are not yet known. SUMMARY In order to prevent the further pandemic and loss to humanity, scientists are studying the development of therapeutic drugs, vaccines, and strategies to cure the infections. In this review, we present a brief introduction to emerging and re-emerging pathogens, i.e., coronavirus in humans and animals, its taxonomic classification, genome organization, its replication, pathogenicity, impact on socioeconomic growth, and drugs associated with COVID-19.
Collapse
Affiliation(s)
- Shivani Sood
- Department of Biotechnology, Mukand Lal National College, Yamuna Nagar, India
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | | | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, 134007 India
| | - Jayant Kumar
- Department of Biotechnology, Mukand Lal National College, Yamuna Nagar, India
| | - Shivangi Talwar
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
39
|
Barrantes FJ. While We Wait for a Vaccine Against SARS-CoV-2, Why Not Think About Available Drugs? Front Physiol 2020; 11:820. [PMID: 32719619 PMCID: PMC7350707 DOI: 10.3389/fphys.2020.00820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 01/18/2023] Open
Abstract
At the time of reception of this article (April 2, 2020), efforts to develop a specific vaccine against SARS-Cov-2, the causative agent of the coronavirus disease 2019 (COVID-19), had just begun trial phase 1, but full validation of this and other current developments is likely to take many more months to reach completion. The ongoing pandemic constitutes a major health burden of world proportions that is also having a devastating impact on whole economies worldwide, the knock-on effects of which could be catastrophic especially in poorer countries. Alternative measures to ameliorate the impact and hamper or minimally slow down disease progression are urgently called for. This review discusses past and currently evolving data on the etiological agent of the current pandemic, SARS-CoV-2, and its host cell receptors with a view to disclosing alternative drugs for palliative or therapeutic approaches. Firstly, SARS-CoV-2 exhibits marked tropism for cells that harbor the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2) at their plasmalemma, predominantly in cells lining the oral cavity, upper respiratory tract, and bronchoalveolar cells, making these epithelial mucosae the most likely viral receptor cell targets and entry routes. Secondly, the crystal structures of several coronavirus spike proteins in complex with their cell host target receptors, and of SARS-Cov-2 in complex with an inhibitor, are now available at atomic resolution through X-ray diffraction and cryo-electron microscopy studies. Thirdly, viral entry of other viruses has been successfully blocked by inhibiting viral endogenous proteases or clathrin/dynamin-dependent endocytosis, the same internalization pathway followed by ACE2 and some viruses. Fourthly, the target cell-surface receptor molecules and SARS-CoV-2 possess other putative sites for drugs potentially modulating receptor activity or virus processing. A multi-pronged pharmacological approach attacking more than one flank of the viral-receptor interactions is worth considering as a front-line strategy.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Argentina Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
40
|
SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Int J Mol Sci 2020; 21:ijms21124549. [PMID: 32604730 PMCID: PMC7352545 DOI: 10.3390/ijms21124549] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein–carbohydrate interaction (PCI) or lectin–carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA–specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA–ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein–glycan interaction and PCI stereochemistry potentiate the SA–ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.
Collapse
|
41
|
Panoutsopoulos AA. Conjunctivitis as a Sentinel of SARS-CoV-2 Infection: a Need of Revision for Mild Symptoms. ACTA ACUST UNITED AC 2020; 2:859-864. [PMID: 32838145 PMCID: PMC7303432 DOI: 10.1007/s42399-020-00360-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 has been declared a pandemic by the World Health Organization on March 11, and since then, more than 3 million cases and a quarter million deaths have occurred due to it. Lately, there is a growing evidence for an ophthalmologic symptom (conjunctivitis) to be connected with the disease. This seems to happen in early stages of the infection by SARS-CoV-2, and thus, it is of major importance to understand the mechanism through which the virus can facilitate such a symptom. Here, we are proposing a molecular mechanism through which the novel coronavirus could act in order to affect the eye and use it as another, secondary but alternative, point of entry to the host organism.
Collapse
Affiliation(s)
- Alexios A Panoutsopoulos
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817 USA
| |
Collapse
|
42
|
A Novel Synonymous Mutation of SARS-CoV-2: Is This Possible to Affect Their Antigenicity and Immunogenicity? Vaccines (Basel) 2020; 8:vaccines8020220. [PMID: 32422894 PMCID: PMC7349911 DOI: 10.3390/vaccines8020220] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The S glycoprotein of coronaviruses is important for viral entry and pathogenesis with most variable sequences. Therefore, we analyzed the S gene sequences of SARS-CoV-2 to better understand the antigenicity and immunogenicity of this virus in this study. In phylogenetic analysis, two subtypes (SARS-CoV-2a and -b) were confirmed within SARS-CoV-2 strains. These two subtypes were divided by a novel synonymous mutation of D614G. This may play a crucial role in the evolution of SARS-CoV-2 to evade the host immune system. The region containing this mutation point was confirmed as a B-cell epitope located in the S1 domain, and SARS-CoV-2b strains exhibited severe reduced antigenic indexes compared to SARS-CoV-2a in this area. This may allow these two subtypes to have different antigenicity. If the two subtypes have different serological characteristics, a vaccine for both subtypes will be more effective to prevent COVID-19. Thus, further study is urgently required to confirm the antigenicity of these two subtypes.
Collapse
|
43
|
Lundstrom K. Coronavirus Pandemic-Therapy and Vaccines. Biomedicines 2020; 8:E109. [PMID: 32375268 PMCID: PMC7277397 DOI: 10.3390/biomedicines8050109] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The current coronavirus COVID-19 pandemic, which originated in Wuhan, China, has raised significant social, psychological and economic concerns in addition to direct medical issues. The rapid spread of severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 to almost every country on the globe and the failure to contain the infections have contributed to fear and panic worldwide. The lack of available and efficient antiviral drugs or vaccines has further worsened the situation. For these reasons, it cannot be overstated that an accelerated effort for the development of novel drugs and vaccines is needed. In this context, novel approaches in both gene therapy and vaccine development are essential. Previous experience from SARS- and MERS-coronavirus vaccine and drug development projects have targeted glycoprotein epitopes, monoclonal antibodies, angiotensin receptor blockers and gene silencing technologies, which may be useful for COVID-19 too. Moreover, existing antivirals used for other types of viral infections have been considered as urgent action is necessary. This review aims at providing a background of coronavirus genetics and biology, examples of therapeutic and vaccine strategies taken and potential innovative novel approaches in progress.
Collapse
|
44
|
Lotfollahzadeh S, Madadgar O, Reza Mohebbi M, Reza Mokhber Dezfouli M, George Watson D. Bovine coronavirus in neonatal calf diarrhoea in Iran. Vet Med Sci 2020; 6:686-694. [PMID: 32349194 PMCID: PMC7267123 DOI: 10.1002/vms3.277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 11/22/2022] Open
Abstract
Partial gene sequencing for the bovine coronavirus at the World Genebank is available for many countries, which are distributed unevenly in five continents, but so far, no sequencing of strains has been recorded in Iran. One hundred ninety‐four stool samples from calves with diarrhoea less than one‐month old were collected from five different geographical regions of country in order to detect coronavirus and characterize it if coronavirus was found. Samples were screened for the presence of BCoV by using a commercially available ELISA kit. Furthermore, RT‐PCR was carried out on positive samples for confirmation of the presence of N and S specific genes. Sequencing and phylogenetic analysis was carried out following RT‐PCR tests. 7.2% of samples, were positive for BCoV and all stool samples from the South‐West, Northeast and West regions of Iran were negative. The results showed that all the strains of coronavirus identified in Iran were completely in independent clusters and that they did not stand in the same cluster as any of the strains identified in other parts of the world. The strains from Iran were quite different from strains in other parts of the world but from the point of similarity these viruses showed some similarities to the European strains, such as those found in France, Croatia, Denmark and Sweden.
Collapse
Affiliation(s)
- Samad Lotfollahzadeh
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Omid Madadgar
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Mohammad Reza Mohebbi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - David George Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| |
Collapse
|
45
|
Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, Mubarak MS. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother Res 2020; 34:2471-2492. [PMID: 32248575 DOI: 10.1002/ptr.6700] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 01/08/2023]
Abstract
Several corona viral infections have created serious threats in the last couple of decades claiming the death of thousands of human beings. Recently, corona viral epidemic raised the issue of developing effective antiviral agents at the earliest to prevent further losses. Natural products have always played a crucial role in drug development process against various diseases, which resulted in screening of such agents to combat emergent mutants of corona virus. This review focuses on those natural compounds that showed promising results against corona viruses. Although inhibition of viral replication is often considered as a general mechanism for antiviral activity of most of the natural products, studies have shown that some natural products can interact with key viral proteins that are associated with virulence. In this context, some of the natural products have antiviral activity in the nanomolar concentration (e.g., lycorine, homoharringtonine, silvestrol, ouabain, tylophorine, and 7-methoxycryptopleurine) and could be leads for further drug development on their own or as a template for drug design. In addition, a good number of natural products with anti-corona virus activity are the major constituents of some common dietary supplements, which can be exploited to improve the immunity of the general population in certain epidemics.
Collapse
Affiliation(s)
- Muhammad T Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh, Gopalganj, Bangladesh
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo Governorate, Egypt
| | - Sarmin Jamaddar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh, Gopalganj, Bangladesh
| | - Shaikh J Uddin
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| | - Jamil A Shilpi
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| | | |
Collapse
|
46
|
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11:1620. [PMID: 32221306 PMCID: PMC7100515 DOI: 10.1038/s41467-020-15562-9] [Citation(s) in RCA: 2216] [Impact Index Per Article: 554.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/16/2020] [Indexed: 11/09/2022] Open
Abstract
Since 2002, beta coronaviruses (CoV) have caused three zoonotic outbreaks, SARS-CoV in 2002-2003, MERS-CoV in 2012, and the newly emerged SARS-CoV-2 in late 2019. However, little is currently known about the biology of SARS-CoV-2. Here, using SARS-CoV-2 S protein pseudovirus system, we confirm that human angiotensin converting enzyme 2 (hACE2) is the receptor for SARS-CoV-2, find that SARS-CoV-2 enters 293/hACE2 cells mainly through endocytosis, that PIKfyve, TPC2, and cathepsin L are critical for entry, and that SARS-CoV-2 S protein is less stable than SARS-CoV S. Polyclonal anti-SARS S1 antibodies T62 inhibit entry of SARS-CoV S but not SARS-CoV-2 S pseudovirions. Further studies using recovered SARS and COVID-19 patients' sera show limited cross-neutralization, suggesting that recovery from one infection might not protect against the other. Our results present potential targets for development of drugs and vaccines for SARS-CoV-2.
Collapse
Affiliation(s)
- Xiuyuan Ou
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Yan Liu
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Xiaobo Lei
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Pei Li
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Dan Mi
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Lili Ren
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Li Guo
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Ruixuan Guo
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Ting Chen
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Jiaxin Hu
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Zichun Xiang
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Zhixia Mu
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China
| | - Xing Chen
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical Collage (PUMC), 151 Malianwa Road North, Haidian District, 100193, Beijing, China
| | | | - Keping Hu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical Collage (PUMC), 151 Malianwa Road North, Haidian District, 100193, Beijing, China
| | - Qi Jin
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China.
| | - Jianwei Wang
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China.
| | - Zhaohui Qian
- NHC Key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100176, Beijing, China.
| |
Collapse
|
47
|
Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens 2020; 9:E186. [PMID: 32143502 PMCID: PMC7157630 DOI: 10.3390/pathogens9030186] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/23/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses (CoVs) are RNA viruses that have become a major public health concern since the Severe Acute Respiratory Syndrome-CoV (SARS-CoV) outbreak in 2002. The continuous evolution of coronaviruses was further highlighted with the emergence of the Middle East Respiratory Syndrome-CoV (MERS-CoV) outbreak in 2012. Currently, the world is concerned about the 2019 novel CoV (SARS-CoV-2) that was initially identified in the city of Wuhan, China in December 2019. Patients presented with severe viral pneumonia and respiratory illness. The number of cases has been mounting since then. As of late February 2020, tens of thousands of cases and several thousand deaths have been reported in China alone, in addition to thousands of cases in other countries. Although the fatality rate of SARS-CoV-2 is currently lower than SARS-CoV, the virus seems to be highly contagious based on the number of infected cases to date. In this review, we discuss structure, genome organization, entry of CoVs into target cells, and provide insights into past and present outbreaks. The future of human CoV outbreaks will not only depend on how the viruses will evolve, but will also depend on how we develop efficient prevention and treatment strategies to deal with this continuous threat.
Collapse
Affiliation(s)
- Hossam M. Ashour
- Department of Biological Sciences, College of Arts and Sciences, University of South Florida St. Petersburg, St. Petersburg, FL 33701, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Walid F. Elkhatib
- Department of Microbiology and Immunology, School of Pharmacy & Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo 11829, Egypt;
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo 11566, Egypt
| | - Md. Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| |
Collapse
|
48
|
Suzuki T, Otake Y, Uchimoto S, Hasebe A, Goto Y. Genomic Characterization and Phylogenetic Classification of Bovine Coronaviruses Through Whole Genome Sequence Analysis. Viruses 2020; 12:v12020183. [PMID: 32041103 PMCID: PMC7077292 DOI: 10.3390/v12020183] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 01/18/2023] Open
Abstract
Bovine coronavirus (BCoV) is zoonotically transmissible among species, since BCoV-like viruses have been detected in wild ruminants and humans. BCoV causing enteric and respiratory disease is widespread in cattle farms worldwide; however, limited information is available regarding the molecular characterization of BCoV because of its large genome size, despite its significant economic impact. This study aimed to better understand the genomic characterization and evolutionary dynamics of BCoV via comparative sequence and phylogenetic analyses through whole genome sequence analysis using 67 BCoV isolates collected throughout Japan from 2006 to 2017. On comparing the genomic sequences of the 67 BCoVs, genetic variations were detected in 5 of 10 open reading frames (ORFs) in the BCoV genome. Phylogenetic analysis using whole genomes from the 67 Japanese BCoV isolates in addition to those from 16 reference BCoV strains, revealed the existence of two major genotypes (classical and US wild ruminant genotypes). All Japanese BCoV isolates originated from the US wild ruminant genotype, and they tended to form the same clusters based on the year and farm of collection, not the disease type. Phylogenetic trees on hemagglutinin-esterase protein (HE), spike glycoprotein (S), nucleocapsid protein (N) genes and ORF1 revealed clusters similar to that on whole genome, suggesting that the evolution of BCoVs may be closely associated with variations in these genes. Furthermore, phylogenetic analysis of BCoV S genes including those of European and Asian BCoVs and human enteric coronavirus along with the Japanese BCoVs revealed that BCoVs differentiated into two major types (European and American types). Moreover, the European and American types were divided into eleven and three genotypes, respectively. Our analysis also demonstrated that BCoVs with different genotypes periodically emerged and predominantly circulated within the country. These findings provide useful information to elucidate the detailed molecular characterization of BCoVs, which have spread worldwide. Further genomic analyses of BCoV are essential to deepen the understanding of the evolution of this virus.
Collapse
Affiliation(s)
- Tohru Suzuki
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 3050856, Japan
- Correspondence: ; Tel.: +81-29-838-7914
| | - Yoshihiro Otake
- Central Tochigi Prefectural Livestock Health and Hygiene Center, Utsunomiya, Tochigi 3210905, Japan;
| | - Satoko Uchimoto
- Shiga Prefectural Livestock Health and Hygiene Center, Omihachiman, Shiga 5230813, Japan;
| | - Ayako Hasebe
- Central Gifu Prefectural Livestock Health and Hygiene Center, Gifu 5011112, Japan;
| | - Yusuke Goto
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 0200605, Japan;
| |
Collapse
|
49
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
50
|
Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by either Receptor Binding or High pH. J Virol 2019; 93:JVI.01046-19. [PMID: 31375571 PMCID: PMC6798120 DOI: 10.1128/jvi.01046-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Mouse hepatitis virus (MHV) uses its N-terminal domain (NTD) of the viral spike (S) protein to bind the host receptor mouse carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a) and mediate virus entry. Our previous crystal structure study of the MHV NTD/mCEACAM1a complex (G. Peng, D. Sun, K. R. Rajashankar, Z. Qian, et al., Proc Natl Acad Sci U S A 108:10696-10701, 2011, https://doi.org/10.1073/pnas.1104306108) reveals that there are 14 residues in the NTD interacting with the receptor. However, their contribution to receptor binding and virus entry has not been fully investigated. Here we analyzed 13 out of 14 contact residues by mutagenesis and identified I22 as being essential for receptor binding and virus entry. Unexpectedly, we found that G29 was critical for the conformational changes of the S protein triggered by either receptor binding or high pH. Replacement of G29 with A, D, F, K, M, and T, to different extents, caused spontaneous dissociation of S1 from the S protein, resulting in an enhancement of high-pH-triggered receptor-independent syncytium (RIS) formation in HEK293T cells, compared to the wild type (WT). In contrast, replacement of G29 with P, a turn-prone residue with a strict conformation, hindered virus entry and conformational changes of the S protein triggered by either receptor binding or pH 8.0, suggesting that the structural turn around G29 and its flexibility are critical. Finally, stabilization of the NTD by G29P had almost no effect on pH-independent RIS induced by the Y320A mutation in the C-terminal domain (CTD) of the S1 subunit, indicating that there might be an absence of cross talk between the NTD and CTD during conformational changes of the S protein. Our study will aid in better understanding the mechanism of how conformational changes of the S protein are triggered.IMPORTANCE Binding of the MHV S protein to the receptor mCEACAM1a triggers conformational changes of S proteins, leading to the formation of a six-helix bundle and viral and cellular membrane fusion. However, the mechanism by which the conformational change of the S protein is initiated after receptor binding has not been determined. In this study, we showed that while replacement of G29, a residue at the edge of the receptor binding interface and the center of the structural turn after the β1-sheet of the S protein, with D or T triggered spontaneous conformational changes of the S protein and pH-independent RIS, the G29P mutation significantly impeded the conformational changes of S proteins triggered by either receptor binding or pH 8.0. We reason that this structural turn might be critical for conformational changes of the S protein and that altering this structural turn could initiate conformational changes of the S protein, leading to membrane fusion.
Collapse
|