1
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
2
|
Gaur P, Rajak N, Tiwari A, Kumar P, Garg N. Role of microRNAs in oncogenic viral infection diagnosis and therapeutics. MICRORNA IN HUMAN INFECTIOUS DISEASES 2024:179-200. [DOI: 10.1016/b978-0-323-99661-7.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Li JW, Li KY, Chan BWA, McGrath CP, Zheng LW. Rate of Malignant Transformation Differs Based on Diagnostic Criteria for Oral Lichenoid Conditions: A Systematic Review and Meta-Analysis of 24,277 Patients. Cancers (Basel) 2023; 15:cancers15092537. [PMID: 37174004 PMCID: PMC10177058 DOI: 10.3390/cancers15092537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVES This systematic review and meta-analysis aims to evaluate the evidence on the malignant potential of oral lichenoid conditions (OLCs) including oral lichen planus (OLP), oral lichenoid lesions (OLL), and lichenoid mucositis dysplasia (LMD). In addition, it aims to compare the rate of malignant transformation (MT) in OLP patients diagnosed according to different diagnostic criteria, and to investigate the possible risk factors for OLP MT into OSCC. MATERIALS AND METHODS A standardized search strategy was applied across four databases (PubMed, Embase, Web of Science, and Scopus). Screening, identification and reporting followed the PRISMA framework. Data on MT were calculated as a pooled proportion (PP), subgroup analyses and possible risk factors for MT were pooled as odds ratios (ORs). RESULTS Among 54 studies with 24,277 patients, the PP for OLCs MT was 1.07% (95% CI [0.82, 1.32]). The estimated MT rate for OLP, OLL and LMD was 0.94%, 1.95% and 6.31%, respectively. The PP OLP MT rate using the 2003 modified WHO criteria group was lower than that using the non-2003 criteria (0.86%; 95% CI [0.51, 1.22] versus 1.01%; 95% CI [0.67, 1.35]). A higher odds ratio of MT was observed for red OLP lesions (OR = 3.52; 95% CI [2.20, 5.64]), smokers (OR = 1.79; 95% CI [1.02, 3.03]), alcohol consumers (OR = 3.27, 95% CI [1.11, 9.64]) and those infected with HCV (OR = 2.55, 95% CI [1.58, 4.13]), compared to those without these risk factors. CONCLUSIONS OLP and OLL carry a low risk of developing OSCC. MT rates differed based on diagnostic criteria. A higher odds ratio of MT was observed among red OLP lesions, smokers, alcohol consumers, and HCV-positive patients. These findings have implications for practice and policies.
Collapse
Affiliation(s)
- Jing-Wen Li
- Division of Oral & Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Kar Yan Li
- Clinical Research Centre, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Bik Wan Amy Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Colman Patrick McGrath
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Li-Wu Zheng
- Division of Oral & Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Honma Y, Shibata M, Morino K, Koya Y, Hayashi T, Ogino N, Kusanaga M, Oe S, Miyagawa K, Abe S, Tabaru A, Harada M. Impact of Interferon-Free Direct-Acting Antivirals on the Incidence of Extrahepatic Malignancies in Patients with Chronic Hepatitis C. Dig Dis Sci 2023; 68:685-698. [PMID: 36100828 DOI: 10.1007/s10620-022-07686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The incidence of extrahepatic malignancies (EHMs) after hepatitis C virus (HCV) eradication by interferon (IFN)-based and IFN-free direct-acting antivirals (DAAs) treatment remains unclear. AIMS The aim was to evaluate the cumulative incidence of EHMs diagnosed for the first time after the antiviral treatments. METHODS We analyzed a total 527 patients with chronic HCV infection and without prior history of any malignancies who achieved sustained virological response by antiviral treatments, including IFN-based (n = 242) or IFN-free DAAs (n = 285). The baseline predictors for EHM occurrence were analyzed using Cox regression analysis. RESULTS Thirty-two patients were diagnosed with EHMs, 14 in IFN-based and 18 in IFN-free DAAs, respectively. The total duration of follow-up was 1,796 person-years in IFN-based and 823 person-years in IFN-free DAAs. The incidence of EHMs in IFN-based and IFN-free DAAs was 7.8 and 21.9 per 1,000 person-years, respectively. The cumulative incidence of EHMs was significantly higher in IFN-free DAAs than IFN-based (p = 0.002). IFN-free DAAs was a single independent predictor for incidence of EHMs (p = 0.012). As for gender, the incidence of EHMs was significantly higher in IFN-free DAAs only in the female cohort (p = 0.002). After propensity score matching, IFN-free DAAs was a single independent predictor for incidence of EHMs in the female patients (p = 0.045). CONCLUSIONS The incidence of EHMs after HCV eradication is higher in IFN-free DAAs than IFN-based regimens, especially in female patients. We should carefully follow-up not only HCC but also EHMs after IFN-free DAAs regimens.
Collapse
Affiliation(s)
- Yuichi Honma
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Michihiko Shibata
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kahori Morino
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yudai Koya
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- Department of Gastroenterology, Moji Medical Center, 3-1 Higashiminato-machi, Moji-ku, Kitakyushu, 801-8502, Japan
| | - Tsuguru Hayashi
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Noriyoshi Ogino
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Masashi Kusanaga
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Shinji Oe
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Koichiro Miyagawa
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Shintaro Abe
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Akinari Tabaru
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- Department of Gastroenterology, Wakamatsu Hospital of the University of Occupational and Environmental Health, 1-17-1 Hama-machi, Wakamatsu-ku, Kitakyushu, 800-0024, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
5
|
Induction of HOX Genes by Hepatitis C Virus Infection via Impairment of Histone H2A Monoubiquitination. J Virol 2021; 95:JVI.01784-20. [PMID: 33328315 DOI: 10.1128/jvi.01784-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes liver pathologies, including hepatocellular carcinoma (HCC). Homeobox (HOX) gene products regulate embryonic development and are associated with tumorigenesis, although the regulation of HOX genes by HCV infection has not been clarified in detail. We examined the effect of HCV infection on HOX gene expression. In this study, HCV infection induced more than half of the HOX genes and reduced the level of histone H2A monoubiquitination on lysine 119 (K119) (H2Aub), which represses HOX gene promoter activity. HCV infection also promoted proteasome-dependent degradation of RNF2, which is an E3 ligase mediating H2A monoubiquitination as a component of polycomb repressive complex 1. Since full-genomic replicon cells but not subgenomic replicon cells exhibited reduced RNF2 and H2Aub levels and induction of HOX genes, we focused on the core protein. Expression of the core protein reduced the amounts of RNF2 and H2Aub and induced HOX genes. Treatment with LY-411575, which can reduce HCV core protein expression via signal peptide peptidase (SPP) inhibition without affecting other viral proteins, dose-dependently restored the amounts of RNF2 and H2Aub in HCV-infected cells and impaired the induction of HOX genes and production of viral particles but not viral replication. The chromatin immunoprecipitation assay results also indicated infection- and proteasome-dependent reductions in H2Aub located in HOX gene promoters. These results suggest that HCV infection or core protein induces HOX genes by impairing histone H2A monoubiquitination via a reduction in the RNF2 level.IMPORTANCE Recently sustained virologic response can be achieved by direct-acting antiviral (DAA) therapy in most hepatitis C patients. Unfortunately, DAA therapy does not completely eliminate a risk of hepatocellular carcinoma (HCC). Several epigenetic factors, including histone modifications, are well known to contribute to hepatitis C virus (HCV)-associated HCC. However, the regulation of histone modifications by HCV infection has not been clarified in detail. In this study, our data suggest that HCV infection or HCV core protein expression impairs monoubiquitination of histone H2A K119 in the homeobox (HOX) gene promoter via destabilization of RNF2 and then induces HOX genes. Several lines of evidence suggest that the expression of several HOX genes is dysregulated in certain types of tumors. These findings reveal a novel mechanism of HCV-related histone modification and may provide information about new targets for diagnosis and prevention of HCC occurrence.
Collapse
|
6
|
Liu B, Ma X, Wang Q, Luo S, Zhang L, Wang W, Fu Y, Allain JP, Li C, Li T. Marmoset Viral Hepatic Inflammation Induced by Hepatitis C Virus Core Protein via IL-32. Front Cell Infect Microbiol 2020; 10:135. [PMID: 32373543 PMCID: PMC7186372 DOI: 10.3389/fcimb.2020.00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/13/2020] [Indexed: 01/04/2023] Open
Abstract
Common marmosets infected with GB virus-B (GBV-B) chimeras containing hepatitis C virus (HCV) core and envelope proteins (CE1E2p7) developed more severe hepatitis than those infected with HCV envelope proteins (E1E2p7), suggesting that HCV core protein might be involved in the pathogenesis of viral hepatitis. The potential role of HCV core in hepatic inflammation was investigated. Six individual cDNA libraries of liver tissues from HCV CE1E2p7 or E1E2p7 chimera-infected marmosets (three animals per group) were constructed and sequenced. By differential expression gene analysis, 30 of 632 mRNA transcripts were correlated with the immune system process, which might be associated with hepatitis. A protein–protein interaction network was constituted by STRING database based on these 30 differentially expressed genes (DEGs), showing that IL-32 might play a central regulatory role in HCV core-related hepatitis. To investigate the effect of HCV core protein on IL-32 production, HCV core expressing and mock constructs were transfected into Huh7 cells. IL-32 mRNA and secretion protein were detected at significantly higher levels in cells expressing HCV core protein than in those without HCV core expression (P < 0.01 and P < 0.001, respectively). By KEGG enrichment analysis and using the specific signaling pathway inhibitor LY294002 for inhibition of PI3K, IL-32 expression was significantly reduced (P < 0.001). In conclusion, HCV core protein induces an increase of IL-32 expression via the PI3K pathway in hepatic cells, which played a major role in development of HCV-related severe hepatitis.
Collapse
Affiliation(s)
- Bochao Liu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaorui Ma
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shengxue Luo
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | | | - Jean-Pierre Allain
- Emeritus Professor of Transfusion Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Ferreira AR, Ramos B, Nunes A, Ribeiro D. Hepatitis C Virus: Evading the Intracellular Innate Immunity. J Clin Med 2020; 9:jcm9030790. [PMID: 32183176 PMCID: PMC7141330 DOI: 10.3390/jcm9030790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) infections constitute a major public health problem and are the main cause of chronic hepatitis and liver disease worldwide. The existing drugs, while effective, are expensive and associated with undesirable secondary effects. There is, hence, an urgent need to develop novel therapeutics, as well as an effective vaccine to prevent HCV infection. Understanding the interplay between HCV and the host cells will certainly contribute to better comprehend disease progression and may unravel possible new cellular targets for the development of novel antiviral therapeutics. Here, we review and discuss the interplay between HCV and the host cell innate immunity. We focus on the different cellular pathways that respond to, and counteract, HCV infection and highlight the evasion strategies developed by the virus to escape this intracellular response.
Collapse
Affiliation(s)
| | | | | | - Daniela Ribeiro
- Correspondence: ; Tel.: +351-234-247-014; Fax: +351-234-372-587
| |
Collapse
|
8
|
Cho K, Ro SW, Seo SH, Jeon Y, Moon H, Kim DY, Kim SU. Genetically Engineered Mouse Models for Liver Cancer. Cancers (Basel) 2019; 12:14. [PMID: 31861541 PMCID: PMC7016809 DOI: 10.3390/cancers12010014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related death globally, accounting for approximately 800,000 deaths annually. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, comprising approximately 80% of cases. Murine models of HCC, such as chemically-induced models, xenograft models, and genetically engineered mouse (GEM) models, are valuable tools to reproduce human HCC biopathology and biochemistry. These models can be used to identify potential biomarkers, evaluate potential novel therapeutic drugs in pre-clinical trials, and develop molecular target therapies. Considering molecular target therapies, a novel approach has been developed to create genetically engineered murine models for HCC, employing hydrodynamics-based transfection (HT). The HT method, coupled with the Sleeping Beauty transposon system or the CRISPR/Cas9 genome editing tool, has been used to rapidly and cost-effectively produce a variety of HCC models containing diverse oncogenes or inactivated tumor suppressor genes. The versatility of these models is expected to broaden our knowledge of the genetic mechanisms underlying human hepatocarcinogenesis, allowing the study of premalignant and malignant liver lesions and the evaluation of new therapeutic strategies. Here, we review recent advances in GEM models of HCC with an emphasis on new technologies.
Collapse
Affiliation(s)
- Kyungjoo Cho
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Brain Korea 21 PLUS Project for Medical Science College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Simon Weonsang Ro
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sang Hyun Seo
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
| | - Youjin Jeon
- Department of Life Science, Sahmyook University, Seoul 03722, Korea;
| | - Hyuk Moon
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Brain Korea 21 PLUS Project for Medical Science College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Do Young Kim
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seung Up Kim
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
9
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019. [PMID: 30889843 DOI: 10.3390/ijms] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
10
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019; 20:ijms20061358. [PMID: 30889843 PMCID: PMC6470669 DOI: 10.3390/ijms20061358] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/23/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
11
|
Zheng Y, Shimamoto S, Maruno T, Kobayashi Y, Matsuura Y, Kawahara K, Yoshida T, Ohkubo T. N-terminal HCV core protein fragment decreases 20S proteasome activity in the presence of PA28γ. Biochem Biophys Res Commun 2018; 509:590-595. [PMID: 30602418 DOI: 10.1016/j.bbrc.2018.12.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022]
Abstract
The Hepatitis C virus (HCV) core protein plays a crucial role in the development of chronic liver diseases such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Its involvement in these diseases is reportedly abolished by a knockout of the proteasome activator PA28γ gene in transgenic mice, suggesting an interaction between the core protein and the PA28γ-proteasome system. This study found a direct interaction between the N-terminal 1-71 fragment of HCV core protein (Core71) and PA28γ in vitro, and that this interaction was found to enhance PA28γ-20S proteasome complex formation. While 20S proteasome activity was increased by PA28γ, it was significantly reduced by Core71 attachment in a dose-dependent manner. These results suggest that the Core-PA28γ interaction has an important role in regulating 20S proteasome activity and furthers our understanding of the pathogenesis of HCV.
Collapse
Affiliation(s)
- Yang Zheng
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Shimamoto
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiharu Matsuura
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Charostad J, Astani A, Goudarzi H, Faghihloo E. DNA methyltransferases in virus-associated cancers. Rev Med Virol 2018; 29:e2022. [PMID: 30511446 DOI: 10.1002/rmv.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
Human tumor viruses are either casually linked or contribute in the development of human cancers. Viruses can stimulate oncogenesis through affecting diverse biological pathways in human cells. Growing data have demonstrated frequent involvement of one of the most characteristic parts of cellular epigenetic machinery, DNA methylation, in the oncogenesis. DNA methylation of cellular genes is catalyzed by DNA methyltransferases (DNMTs) as a key effector enzyme in this process. Dysregulation of DNMTs can cause aberrant gene methylation in promoter of cancer-related genes including tumor suppressor genes, resulting in gene silencing. In this regard, the role of tumor viruses is remarkable. Here, in this review, we used published information to elucidate whether tumor viruses are able to manipulate DNMT regulation, and if so, what are its consequences in the process of oncogenesis. This essay also aims to shed light on which cellular pathways have been engaged by viruses to induce DNMTs.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Sahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Microbiology, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sedeno-Monge V, Vallejo-Ruiz V, Sosa-Jurado F, Santos-Lopez G. Polymorphisms in the hepatitis C virus core and its association with development of hepatocellular carcinoma. J Biosci 2018; 42:509-521. [PMID: 29358564 DOI: 10.1007/s12038-017-9695-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Little is known about the mechanisms underlying hepatocellular carcinoma (HCC). Some studies have focused on the role of HCV viral proteins in hepatocyte transformation. In this work we have compiled and analysed current articles regarding the impact of polymorphisms in the HCV core gene and protein on the development of HCC. An exhaustive search for fulltext articles until November 2016 in PubMed database was performed using the MeSH keywords: 'hepatitis C', 'polymorphisms', 'core', 'hepatocellular cancer' and 'hepatocarcinogenesis'. Nineteen full-text articles published between 2000 and 2016 were considered. Different articles associate not only the HCC development with polymorphisms at residues 70 and 91 in the core protein, but more with mortality and treatment response. Also, different polymorphisms were found in core and other viral proteins related to HCC development. Eleven articles reported that HCC development is significantly associated with Gln/His70, four associated it with Leu91 and two more associated it with both markers together. Additional studies are necessary, including those in different types of populations worldwide, to validate the possibility of the usability and influence in chronically HCV-infected patients as well as to observe their interaction with other risk factors or prognosis and genetic markers of the host.
Collapse
Affiliation(s)
- Virginia Sedeno-Monge
- Departamento de Ciencias de la Salud, Universidad Popular Autonoma del Estado de Puebla, Puebla, Mexico
| | | | | | | |
Collapse
|
14
|
Maryam M, Idrees M. Study of promoter hypomethylation profiles ofRASoncogenes in hepatocellular carcinoma derived from hepatitis C virus genotype 3a in Pakistani population. J Med Virol 2018; 90:1516-1523. [DOI: 10.1002/jmv.25221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Maryam
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| | - Muhammad Idrees
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
- Vice Chancellor Office, Hazara University; Mansehra Pakistan
| |
Collapse
|
15
|
Petruzziello A. Epidemiology of Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) Related Hepatocellular Carcinoma. Open Virol J 2018. [PMID: 29541276 PMCID: PMC5842386 DOI: 10.2174/1874357901812010026] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the most prevalent primary malignant tumors and accounts for about 90% of all primary liver cancers. Its distribution varies greatly according to geographic location and it is more common in middle and low- income countries than in developed ones especially in Eastern Asia and Sub Saharan Africa (70% of all new HCCs worldwide), with incidence rates of over 20 per 100,000 individuals. Explanation The most important risk factors for HCC are Hepatitis B Virus (HBV) infection, Hepatitis C Virus (HCV) infection, excessive consumption of alcohol and exposition to aflatoxin B1. Its geographic variability and heterogeneity have been widely associated with the different distribution of HBV and HCV infections worldwide.Chronic HBV infection is one of the leading risk factors for HCC globally accounting for at least 50% cases of primary liver tumors worldwide. Generally, while HBV is the main causative agent in the high incidence HCC areas, HCV is the major etiological factor in low incidence HCC areas, like Western Europe and North America. Conclusion HBV-induced HCC is a complex, stepwise process that includes integration of HBV DNA into host DNA at multiple or single sites. On the contrary, the cancerogenesis mechanism of HCV is not completely known and it still remains controversial as to whether HCV itself plays a direct role in the development of tumorigenic progression.
Collapse
Affiliation(s)
- Arnolfo Petruzziello
- Department of Pathology, Virology and Molecular Biology Unit, Istituto Nazionale Tumori- IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
16
|
Hirano J, Okamoto T, Sugiyama Y, Suzuki T, Kusakabe S, Tokunaga M, Fukuhara T, Sasai M, Tougan T, Matsunaga Y, Yamashita K, Sakai Y, Yamamoto M, Horii T, Standley DM, Moriishi K, Moriya K, Koike K, Matsuura Y. Characterization of SPP inhibitors suppressing propagation of HCV and protozoa. Proc Natl Acad Sci U S A 2017; 114:E10782-E10791. [PMID: 29187532 PMCID: PMC5740650 DOI: 10.1073/pnas.1712484114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Signal peptide peptidase (SPP) is an intramembrane aspartic protease involved in the maturation of the core protein of hepatitis C virus (HCV). The processing of HCV core protein by SPP has been reported to be critical for the propagation and pathogenesis of HCV. Here we examined the inhibitory activity of inhibitors for γ-secretase, another intramembrane cleaving protease, against SPP, and our findings revealed that the dibenzoazepine-type structure in the γ-secretase inhibitors is critical for the inhibition of SPP. The spatial distribution showed that the γ-secretase inhibitor compound YO-01027 with the dibenzoazepine structure exhibits potent inhibiting activity against SPP in vitro and in vivo through the interaction of Val223 in SPP. Treatment with this SPP inhibitor suppressed the maturation of core proteins of all HCV genotypes without the emergence of drug-resistant viruses, in contrast to the treatment with direct-acting antivirals. YO-01027 also efficiently inhibited the propagation of protozoa such as Plasmodium falciparum and Toxoplasma gondii These data suggest that SPP is an ideal target for the development of therapeutics not only against chronic hepatitis C but also against protozoiasis.
Collapse
Affiliation(s)
- Junki Hirano
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Yukari Sugiyama
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tatsuya Suzuki
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shinji Kusakabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Makoto Tokunaga
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yasue Matsunaga
- Planning and Promotion Office for University-Industry Collaboration, Osaka University, Osaka 565-0871, Japan
| | | | - Yusuke Sakai
- Department of Veterinary Pathology, Yamaguchi University, Yamaguchi 753-0841, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kyoji Moriya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| |
Collapse
|
17
|
Kwak J, Choi JH, Jang KL. Hepatitis C virus Core overcomes all- trans retinoic acid-induced apoptosis in human hepatoma cells by inhibiting p14 expression via DNA methylation. Oncotarget 2017; 8:85584-85598. [PMID: 29156743 PMCID: PMC5689633 DOI: 10.18632/oncotarget.20337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/25/2017] [Indexed: 01/15/2023] Open
Abstract
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to induce p14 expression via promoter hypomethylation to activate the p14-MDM2-p53 pathway, which leads to activation of the p53-dependent apoptotic pathway and subsequent induction of apoptosis in human hepatoma cells. In the present study, we found that hepatitis C virus (HCV) Core derived from ectopic expression or HCV infection overcomes ATRA-induced apoptosis in p53-positive hepatoma cells. For this effect, HCV Core upregulated both protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b and thereby repressed p14 expression via promoter hypermethylation, resulting in inactivation of the pathway leading to p53 accumulation in the presence of ATRA. As a result, HCV Core prevented ATRA from activating several apoptosis-related molecules, including Bax, p53 upregulated modulator of apoptosis, caspase-9, caspase-3, and poly (ADP-ribose) polymerase. In addition, complementation of p14 in the Core-expressing cells by either ectopic expression or treatment with 5-Aza-2′dC almost completely abolished the potential of HCV Core to suppress ATRA-induced apoptosis. Based on these observations, we conclude that HCV Core executes its oncogenic potential by suppressing the p53-dependent apoptosis induced by ATRA in human hepatoma cells.
Collapse
Affiliation(s)
- Juri Kwak
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Jung-Hye Choi
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
18
|
Aghbari SMH, Abushouk AI, Attia A, Elmaraezy A, Menshawy A, Ahmed MS, Elsaadany BA, Ahmed EM. Malignant transformation of oral lichen planus and oral lichenoid lesions: A meta-analysis of 20095 patient data. Oral Oncol 2017; 68:92-102. [PMID: 28438300 DOI: 10.1016/j.oraloncology.2017.03.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/25/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES For over a century, a heated debate existed over the possibility of malignant transformation of oral lichen planus (OLP). We performed this meta-analysis to evaluate the malignant potential of OLP and oral lichenoid lesions (OLL) and investigate the possible risk factors for OLP malignant transformation into oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS We searched Medline, Scopus, and Web of Knowledge for relevant observational studies. Data on OLP malignant transformation were calculated as a pooled proportion (PP), using the Der-Simonian Liard method. We performed subgroup analyses by OLP diagnostic criteria, site, and clinical type, using Open Meta[Analyst] software. Data on possible risk factors for malignant transformation were pooled as odds ratios (ORs), using Comprehensive Meta-Analysis software. RESULTS Pooling data for OLP malignant transformation from 57 studies (19,676 patients) resulted in an overall PP of 1.1% [95% CI: 0.9%, 1.4%], while pooling data from 14 recent studies that used the World Health Organization-2003 diagnostic criteria resulted in an overall-PP of 0.9% [95% CI: 0.5%, 1.3%]. The risk of malignant transformation was higher (PP=2.5%, 95% CI [1%, 4%]) in OLL patients (419 patients). A significant increase of malignant transformation risk was noted among smokers (OR=2, 95% CI [1.25, 3.22]), alcoholics (OR=3.52, 95% CI [1.54, 8.03]), and HCV-infected patients (OR=5, 95% CI [1.56, 16.07]), compared to patients without these risk factors. CONCLUSION A small subset of OLP patients (1.1%) develop OSCC; therefore, regular follow-up for these patients is recommended. A higher incidence of malignant transformation was found among smokers, alcoholics, and HCV-infected patients; however, these associations should be further investigated.
Collapse
Affiliation(s)
| | | | - Attia Attia
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Amr Menshawy
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | - Eman Magdy Ahmed
- Faculty of Oral and Dental Medicine, Beni Suef University, Beni Suef, Egypt
| |
Collapse
|
19
|
Hepatitis C virus - Associated marginal zone lymphoma. Best Pract Res Clin Haematol 2017; 30:41-49. [PMID: 28288715 DOI: 10.1016/j.beha.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Abstract
The link between hepatitis C virus (HCV) infection and the development of B-cell non-Hodgkin lymphoma is now well established and based on a number of epidemiological studies. It is further supported by the observation of lymphoma regression after HCV eradication by antiviral treatment. The far most frequent entities are marginal zone lymphoma (MZL) and diffuse large B-cell lymphoma (DLBCL). MZL usually emerge on a background of mixed cryoglobulinemia, a low-grade lymphoproliferation, and often transform into DLBCL, thereby following a multistep oncogenesis process. The role of HCV in lymphomagenesis is not yet fully understood but several mechanisms have been proposed including (i) chronic external stimulation through the B-cell receptor and other surface receptors, and (ii) direct transformation by intracellular viral proteins, the former being probably predominant in MZL. Regression of HCV-associated MZL can be achieved with antiviral therapy and the novel generation of direct-acting antiviral agents appears highly effective and safe for the treatment of these lymphoma.
Collapse
|
20
|
Carli JPD, Silva SOD, Linden MSS, Busin CS, Paranhos LR, Souza PHC. Evaluation of cellular proliferative activity in patients with oral lichen planus and hepatitis C through AgNOR method. Braz Dent J 2016; 25:461-5. [PMID: 25590189 DOI: 10.1590/0103-6440201302379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 10/06/2014] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to evaluate the cellular proliferative potential of oral lichen planus (OLP) lesions from patients without hepatitis C virus (HCV) by means of AgNOR method, as well as the cellular proliferative potential of the normal oral mucosa from patients with HCV, treated or untreated by interferon and ribavirin. A cross-sectional study was developed to investigate four groups: 10 HCV+ patients without clinical signs of OLP who had never been treated for HCV infection - Group 1; 10 HCV+ patients that were under interferon and ribavirin treatment - Group 2; 15 patients with reticular OLP lesions histopathologically confirmed, without HCV - Group 3; and 15 blood donors without HCV infection and no clinical signs of OLP GROUP 4 Control Group. The cytological material of all groups was collected by the liquid-based cytology technique. Then, the sedimented material from each patient was filled with the Nucleolar Organizer Regions impregnation by silver method (AgNOR). The count of NORs was performed on 100 epithelial cell nuclei per patient using the Image Tool(tm) software. The Tukey HSD test was used to compare the median value of NORs among the groups and showed that the oral mucosa of HCV+ patients previously treated with anti-HCV drugs (GROUP 2), presented a higher average number of NORs in relation to others (p<0.05). The anti-HCV treatment may be related to increased cell proliferation of oral mucosa, indicating a possible relationship between OLP and HCV+ patients treated with interferon and ribavirin.
Collapse
Affiliation(s)
- João Paulo De Carli
- Department of Stomatology and Oral Implant Dentistry, UPF - University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | | | - Carmen Silvia Busin
- Department of Cellular Biology, UPF - University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Luiz Renato Paranhos
- Department of Dentistry, UFS - Federal University of Sergipe, Lagarto, SE, Brazil
| | | |
Collapse
|
21
|
Li L, Zhao GD, Shi Z, Qi LL, Zhou LY, Fu ZX. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol Lett 2016; 12:3045-3050. [PMID: 27899961 PMCID: PMC5103898 DOI: 10.3892/ol.2016.5110] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common tumor worldwide and has a very poor prognosis. Its occurrence has been on the increase in recent years. Surgical resection and liver transplantation are the primary methods of treatment for HCC patients, but can only be applied to 15% of patients. The median survival time of unresectable or metastasizing HCC patients is only a few months. Existing systemic treatment methods are not effective for advanced HCC patients and a new method of treatment is needed for these patients. It has been established that the HCC occurs in multiple stages, however, the pathogenesis at a molecular level is not clear and many key factors are yet to be determined. In the past 30 years, it has become evident that the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) signaling pathway plays a significant role in the occurrence and development of HCC. This review focused on the association between the Ras/Raf/MEK/ERK signaling pathway and HCC.
Collapse
Affiliation(s)
- Lei Li
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Guo-Dong Zhao
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Zhe Shi
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Li-Li Qi
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Li-Yuan Zhou
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Ze-Xian Fu
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| |
Collapse
|
22
|
HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1. Biochem Biophys Res Commun 2015; 466:592-8. [PMID: 26392314 DOI: 10.1016/j.bbrc.2015.09.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022]
Abstract
This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 (low) and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96(®)Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 - RUNX3 (low), the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3.
Collapse
|
23
|
Tasaka-Fujita M, Sugiyama N, Kang W, Masaki T, Masaski T, Murayama A, Yamada N, Sugiyama R, Tsukuda S, Watashi K, Asahina Y, Sakamoto N, Wakita T, Shin EC, Kato T. Amino Acid Polymorphisms in Hepatitis C Virus Core Affect Infectious Virus Production and Major Histocompatibility Complex Class I Molecule Expression. Sci Rep 2015; 5:13994. [PMID: 26365522 PMCID: PMC4568458 DOI: 10.1038/srep13994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023] Open
Abstract
Amino acid (aa) polymorphisms in the hepatitis C virus (HCV) genotype 1b core protein have been reported to be a potent predictor for poor response to interferon (IFN)-based therapy and a risk factor for hepatocarcinogenesis. We investigated the effects of these polymorphisms with genotype 1b/2a chimeric viruses that contained polymorphisms of Arg/Gln at aa 70 and Leu/Met at aa 91. We found that infectious virus production was reduced in cells transfected with chimeric virus RNA that had Gln at aa 70 (aa70Q) compared with RNA with Arg at aa 70 (aa70R). Using flow cytometry analysis, we confirmed that HCV core protein accumulated in aa70Q clone transfected cells, and it caused a reduction in cell-surface expression of major histocompatibility complex (MHC) class I molecules induced by IFN treatment through enhanced protein kinase R phosphorylation. We could not detect any effects due to the polymorphism at aa 91. In conclusion, the polymorphism at aa 70 was associated with efficiency of infectious virus production, and this deteriorated virus production in strains with aa70Q resulted in the intracellular accumulation of HCV proteins and attenuation of MHC class I molecule expression. These observations may explain the strain-associated resistance to IFN-based therapy and hepatocarcinogenesis of HCV.
Collapse
Affiliation(s)
- Megumi Tasaka-Fujita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.,Center for Interprofessional Education, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Nao Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Wonseok Kang
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Takahiro Masaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Norie Yamada
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
24
|
Seo YL, Heo S, Jang KL. Hepatitis C virus core protein overcomes H2O2-induced apoptosis by downregulating p14 expression via DNA methylation. J Gen Virol 2015; 96:822-832. [DOI: 10.1099/vir.0.000032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Young Lan Seo
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Shinhee Heo
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
25
|
Tiwari I, Yoon MH, Park BJ, Jang KL. Hepatitis C virus core protein induces epithelial-mesenchymal transition in human hepatocytes by upregulating E12/E47 levels. Cancer Lett 2015; 362:131-8. [PMID: 25817725 DOI: 10.1016/j.canlet.2015.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 01/18/2023]
Abstract
Downregulation of E-cadherin is a hallmark of epithelial-mesenchymal transition (EMT), an essential component of cancer progression to more aggressive phenotypes characterized by tumor dedifferentiation, infiltration, and metastasis. However, the underlying mechanism for E-cadherin downregulation in hepatitis C virus (HCV)-associated hepatocellular carcinoma (HCC) is still unclear. In this study, we found that ectopic expression of HCV core protein or infection with HCV in human hepatocytes upregulated the levels of the transcriptional repressors, E12 and E47, resulting in inactivation of the E-cadherin promoter, containing E-box motifs, and subsequent repression of its expression. E12/E47 knock-down almost completely abolished the potential of HCV core protein to repress E-cadherin expression. HCV core protein inhibited ubiquitin-dependent proteasomal degradation of E12/E47 without affecting their expression at the transcriptional level. E12/E47 upregulation ultimately led to EMT in human hepatocytes, as demonstrated by morphological changes, altered expression levels of EMT markers, including E-cadherin, plakoglobin, and fibronectin, and increased capacity for cell detachment and migration. In conclusion, HCV core protein represses E-cadherin expression by upregulating E12/E47 levels to induce EMT in HCV-associated HCC.
Collapse
Affiliation(s)
- Indira Tiwari
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
26
|
Dienstag JL, Delemos AS. Viral Hepatitis. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:1439-1468.e7. [DOI: 10.1016/b978-1-4557-4801-3.00119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Choi J, Corder NLB, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med 2014; 72:267-84. [PMID: 24816297 PMCID: PMC4099059 DOI: 10.1016/j.freeradbiomed.2014.04.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.
Collapse
Affiliation(s)
- Jinah Choi
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| | - Nicole L B Corder
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Bhargav Koduru
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yiyan Wang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|
28
|
Lee C. Interaction of hepatitis C virus core protein with janus kinase is required for efficient production of infectious viruses. Biomol Ther (Seoul) 2014; 21:97-106. [PMID: 24009866 PMCID: PMC3762308 DOI: 10.4062/biomolther.2013.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 01/22/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is responsible for the development of liver cirrhosis and hepatocellular carcinoma. HCV core protein plays not only a structural role in the virion morphogenesis by encapsidating a virus RNA genome but also a non-structural role in HCV-induced pathogenesis by blocking innate immunity. Especially, it has been shown to regulate JAK-STAT signaling pathway through its direct interaction with Janus kinase (JAK) via its proline-rich JAK-binding motif (79PGYPWP84). However, little is known about the physiological significance of this HCV core-JAK association in the context of the virus life cycle. In order to gain an insight, a mutant HCV genome (J6/JFH1-79A82A) was constructed to express the mutant core with a defective JAK-binding motif (79AGYAWP84) using an HCV genotype 2a infectious clone (J6/JFH1). When this mutant HCV genome was introduced into hepatocarcinoma cells, it was found to be severely impaired in its ability to produce infectious viruses in spite of its robust RNA genome replication. Taken together, all these results suggest an essential requirement of HCV core-JAK protein interaction for efficient production of infectious viruses and the potential of using core-JAK blockers as a new anti-HCV therapy.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, Republic of Korea
| |
Collapse
|
29
|
Sharma SD. Hepatitis C virus 1b viral factors (core, NS3, and NS5A) and increased risk of hepatocellular carcinoma. Hepatology 2013; 58:491-3. [PMID: 23471816 DOI: 10.1002/hep.26362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/19/2013] [Accepted: 02/26/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Suresh D. Sharma
- Department of Biochemistry and Molecular Biology; , Pennsylvania State University University Park; PA
| |
Collapse
|
30
|
El-Shamy A, Shindo M, Shoji I, Deng L, Okuno T, Hotta H. Polymorphisms of the core, NS3, and NS5A proteins of hepatitis C virus genotype 1b associate with development of hepatocellular carcinoma. Hepatology 2013; 58:555-63. [PMID: 23281009 DOI: 10.1002/hep.26205] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/09/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the common sequelae of hepatitis C virus (HCV) infection. It remains controversial, however, whether HCV itself plays a direct role in the development of HCC. Although HCV core, NS3, and NS5A proteins were reported to display tumorigenic activities in cell culture and experimental animal systems, their clinical impact on HCC development in humans is still unclear. In this study we investigated sequence polymorphisms in the core protein, NS3, and NS5A of HCV genotype 1b (HCV-1b) in 49 patients who later developed HCC during a follow-up of an average of 6.5 years and in 100 patients who did not develop HCC after a 15-year follow-up. Sequence analysis revealed that Gln at position 70 of the core protein (core-Gln(70) ), Tyr at position 1082 plus Gln at 1112 of NS3 (NS3-Tyr(1082) /Gln(1112) ), and six or more mutations in the interferon/ribavirin resistance-determining region of NS5A (NS5A-IRRDR≥6) were significantly associated with development of HCC. Multivariate analysis identified core-Gln(70) , NS3-Tyr(1082) /Gln(1112) , and α-fetoprotein (AFP) levels (>20 ng/L) as independent factors associated with HCC. Kaplan-Meier analysis revealed a higher cumulative incidence of HCC for patients infected with HCV isolates with core-Gln(70) , NS3-Tyr(1082) /Gln(1112) or both than for those with non-(Gln(70) plus NS3-Tyr(1082) /Gln(1112) ). In most cases, neither the residues at position 70 of the core protein nor positions 1082 and 1112 of the NS3 protein changed during the observation period. CONCLUSION HCV isolates with core-Gln(70) and/or NS3-Tyr(1082) /Gln(1112) are more closely associated with HCC development compared to those with non-(Gln(70) plus NS3-Tyr(1082) /Gln(1112) ).
Collapse
Affiliation(s)
- Ahmed El-Shamy
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
PML nuclear bodies and their associated functions are part of an intrinsic cellular mechanism aimed at maintaining transcriptional control over viral gene expression and preventing replication of invading viruses. To overcome these barriers, many viruses express early nonstructural, multifunctional proteins to support the viral replication cycle or modulate host immune responses. Virion proteins constituting the invading particle are traditionally investigated for their role in transport during entry or egress and in the assembly of new virions. The additional functions of virion proteins have largely been ignored, in contrast to those of their nonstructural counterparts. A number of recent reports suggest that several virion proteins may also play vital roles in gene activation processes, in particular by counteracting intrinsic immune mechanisms mediated by the PML nuclear body-associated cellular factors Daxx, ATRX, and Sp100. These virion proteins share several features with their more potent nonstructural counterparts, and they may serve to bridge the gap in the early phase of an infection until immediate early viral gene expression is established. In this review, we discuss how virion proteins are an integral part of gene regulation among several viral families and to what extent structural proteins of incoming virions may contribute to species barrier, latency, and oncogenesis.
Collapse
|
32
|
Hepatitis C virus Core protein overcomes all-trans retinoic acid-induced cell growth arrest by inhibiting retinoic acid receptor-β2 expression via DNA methylation. Cancer Lett 2013; 335:372-9. [DOI: 10.1016/j.canlet.2013.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/21/2013] [Accepted: 02/24/2013] [Indexed: 02/08/2023]
|
33
|
Hu WT, Li HC, Lee SK, Ma HC, Yang CH, Chen HL, Lo SY. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice. Biochem Biophys Res Commun 2013; 435:147-52. [PMID: 23628415 DOI: 10.1016/j.bbrc.2013.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 12/27/2022]
Abstract
The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wen-Ta Hu
- Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Hepatitis C virus and hepatocellular carcinoma. BIOLOGY 2013; 2:304-16. [PMID: 24832662 PMCID: PMC4009856 DOI: 10.3390/biology2010304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV), a hepatotropic virus, is a single stranded-positive RNA virus of ~9,600 nt. length belonging to the Flaviviridae family. HCV infection causes acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that HCV-coding proteins interact with host-cell factors that are involved in cell cycle regulation, transcriptional regulation, cell proliferation and apoptosis. Severe inflammation and advanced liver fibrosis in the liver background are also associated with the incidence of HCV-related HCC. In this review, we discuss the mechanism of hepatocarcinogenesis in HCV-related liver diseases.
Collapse
|
35
|
Hepatitis C vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Choi J. Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic Biol Med 2012; 52:1135-50. [PMID: 22306508 DOI: 10.1016/j.freeradbiomed.2012.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.
Collapse
Affiliation(s)
- Jinah Choi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| |
Collapse
|
37
|
Lim JS, Park SH, Jang KL. Hepatitis C virus Core protein overcomes stress-induced premature senescence by down-regulating p16 expression via DNA methylation. Cancer Lett 2012; 321:154-61. [PMID: 22326283 DOI: 10.1016/j.canlet.2012.01.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus Core plays a vital role in the development of hepatocellular carcinoma; however, the mechanism is still controversial. Here, we show that Core overcomes premature senescence provoked by a reactive oxygen species inducer, H2O2, in human liver cells. For this effect, Core down-regulated levels of p16 via promoter hypermethylation and subsequently induced phosphorylation of Rb in the presence of H2O2. Levels of p21 and p27, however, were little affected by Core under the condition. The potentials of Core to inactivate Rb and suppress H2O2-mediated cellular senescence were abolished when levels of p16 were recovered by either exogenous complementation or inhibition of DNA methylation. Considering that cellular senescence provoked by oxidative stresses is an important tumor suppression process, our present study provides a new strategy by which HCV promotes development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Joo Song Lim
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | |
Collapse
|
38
|
Liu J, Ding X, Tang J, Cao Y, Hu P, Zhou F, Shan X, Cai X, Chen Q, Ling N, Zhang B, Bi Y, Chen K, Ren H, Huang A, He TC, Tang N. Enhancement of canonical Wnt/β-catenin signaling activity by HCV core protein promotes cell growth of hepatocellular carcinoma cells. PLoS One 2011; 6:e27496. [PMID: 22110662 PMCID: PMC3216985 DOI: 10.1371/journal.pone.0027496] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/18/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The Hepatitis C virus (HCV) core protein has been implicated as a potential oncogene or a cofactor in HCV-related hepatocellular carcinoma (HCC), but the underlying mechanisms are unknown. Overactivation of the Wnt/β-catenin signaling is a major factor in oncogenesis of HCC. However, the pathogenesis of HCV core-associated Wnt/β-catenin activation remains to be further characterized. Therefore, we attempted to determine whether HCV core protein plays an important role in regulating Wnt/β-catenin signaling in HCC cells. METHODOLOGY Wnt/β-catenin signaling activity was investigated in core-expressing hepatoma cells. Protein and gene expression were examined by Western blot, immunofluorescence staining, RT-qPCR, and reporter assay. PRINCIPAL FINDINGS HCV core protein significantly enhances Tcf-dependent transcriptional activity induced by Wnt3A in HCC cell lines. Additionally, core protein increases and stabilizes β-catenin levels in hepatoma cell line Huh7 through inactivation of GSK-3β, which contributes to the up-regulation of downstream target genes, such as c-Myc, cyclin D1, WISP2 and CTGF. Also, core protein increases cell proliferation rate and promotes Wnt3A-induced tumor growth in the xenograft tumor model of human HCC. CONCLUSIONS/SIGNIFICANCE HCV core protein enhances Wnt/β-catenin signaling activity, hence playing an important role in HCV-associated carcinogenesis.
Collapse
Affiliation(s)
- Jiao Liu
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiong Ding
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jia Tang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Youde Cao
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fan Zhou
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaoliang Shan
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Qingmei Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ning Ling
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Bingqiang Zhang
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Ni Tang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
39
|
Park SH, Lim JS, Lim SY, Tiwari I, Jang KL. Hepatitis C virus Core protein stimulates cell growth by down-regulating p16 expression via DNA methylation. Cancer Lett 2011; 310:61-8. [PMID: 21757290 DOI: 10.1016/j.canlet.2011.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/27/2011] [Accepted: 06/11/2011] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus Core plays a vital role in the development of hepatocellular carcinoma; however, its action mechanism is still controversial. Here, we showed that Core down-regulated levels of p16, resulting in inactivation of Rb and subsequent activation of E2F1, which lead to growth stimulation of hepatocytes. For this effect, Core inhibited p16 expression by inducing promoter hypermethylation via up-regulation of DNA methyltransferase 1 (DNMT1) and DNMT3b. The growth stimulatory effect of Core was abolished when levels of p16 were restored by either exogenous complementation or treatment with 5-Aza-2'dC, indicating that the effect is critical for the stimulation of cell growth by Core.
Collapse
Affiliation(s)
- Sun-Hye Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Iwai A, Takegami T, Shiozaki T, Miyazaki T. Hepatitis C virus NS3 protein can activate the Notch-signaling pathway through binding to a transcription factor, SRCAP. PLoS One 2011; 6:e20718. [PMID: 21673954 PMCID: PMC3108961 DOI: 10.1371/journal.pone.0020718] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
Persistent infections of hepatitis C virus (HCV) are known to be a major risk factor for causing hepatocellular carcinomas. Nonstructural protein 3 (NS3) of HCV has serine protease and RNA helicase domains, and is essential for the viral replication. Further, NS3 is also considered to be involved in the development of HCV-induced hepatocellular carcinomas. In this report, we focus on the function of NS3 protein, and propose a novel possible molecular mechanism which is thought to be related to the tumorigenesis caused by the persistent infection of HCV. We identified SRCAP (Snf2-related CBP activator protein) as a NS3 binding protein using yeast two-hybrid screening, and a co-immunoprecipitation assay demonstrated that NS3 can bind to SRCAP in mammalian cells. The results of a reporter gene assay using Hes-1 promoter which is known to be a target gene activated by Notch, indicate that NS3 and SRCAP cooperatively activate the Hes-1 promoter in Hep3B cells. In addition, we show in this report that also p400, which is known as a protein closely resembling SRCAP, would be targeted by NS3. NS3 exhibited binding activity also to the 1449–1808 region of p400 by a co-immunoprecipitation assay, and further the activation of the Notch-mediated transcription of Hes-1 promoter by NS3 decreased significantly by the combined silencing of SRCAP and p400 mRNA using short hairpin RNA. These results suggest that the HCV NS3 protein is involved in the activation of the Notch-signaling pathway through the targeting to both SRCAP and p400.
Collapse
Affiliation(s)
- Atsushi Iwai
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Tsutomu Takegami
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- * E-mail:
| | - Takuya Shiozaki
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Tadaaki Miyazaki
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| |
Collapse
|
41
|
Emerging topics in human tumor virology. Int J Cancer 2011; 129:1289-99. [DOI: 10.1002/ijc.26087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/11/2011] [Indexed: 12/17/2022]
|
42
|
Nakamura H, Aoki H, Hino O, Moriyama M. HCV core protein promotes heparin binding EGF-like growth factor expression and activates Akt. Hepatol Res 2011; 41:455-62. [PMID: 21418450 DOI: 10.1111/j.1872-034x.2011.00792.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS Persistent hepatitis C virus (HCV) infection is a major cause of chronic liver dysfunction and is closely associated with the development of human hepatocellular carcinoma (HCC). Among HCV components, core protein is implicated in cell growth regulation, and we previously demonstrated that HCV core protein interacted with 14-3-3 protein and activated the kinase Raf-1 and mitogen-activated protein kinase (MAPK)/extracellular regulated kinase (ERK) pathway. In the present study, we investigated the expression levels and function of downstream molecules in the MAPK/ERK signaling pathway in cells expressing HCV core protein. METHOD Heparin-binding EGF-like growth factor (HB-EGF) mRNA, in HepG2 cells stably expressing HCV core protein, was detected by RT-PCR. The soluble HB-EGF in culture media was measured by heparin agarose chromatography/Western blot analysis. Immunodetection of Akt and IKK and IB, in HeLa cells and HepG2 cells expressing HCV core protein, were performed with neutralizing antibody for HB-EGF, phospatidylinositol-3-kinase [PI(3)K] inhibitor and dominant-negative mutant of Ras (DN-Ras). RESULTS HB-EGF expression was significantly elevated in cells expressing HCV core protein. HCV core protein activated Akt through the Ras/PI(3)K pathway by autocrine secretion of HB-EGF. Also, HCV core protein activated IKK through Ras/PI(3)K/Akt pathway by autocrine secretion of HB-EGF. As the Ras/PI(3)K/Akt pathway is critical in anti-apoptotic HB-EGF signaling, we examined the possible role of this pathway in cells expressing HCV core protein. In addition, we investigated the relationship between IB kinases (IKK) and Akt in cells expressing HCV core protein, since IKKs are known to be activated by HCV core protein and by Akt in the presence of potent mitogen. We showed that HCV core protein promoted autocrine secretion of HB-EGF and activated Akt through the Ras/PI(3)K pathway. This model indicates a new approach to mechanism of proliferation and anti-apoptosis in HCC. CONCLUSION HCV core protein is a potent activator of mitogenic and anti-apoptotic signaling involved in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hitomi Nakamura
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
43
|
Lara J, Xia G, Purdy M, Khudyakov Y. Coevolution of the hepatitis C virus polyprotein sites in patients on combined pegylated interferon and ribavirin therapy. J Virol 2011; 85:3649-63. [PMID: 21248044 PMCID: PMC3067842 DOI: 10.1128/jvi.02197-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/07/2011] [Indexed: 12/19/2022] Open
Abstract
Genotype-specific sensitivity of the hepatitis C virus (HCV) to interferon-ribavirin (IFN-RBV) combination therapy and reduced HCV response to IFN-RBV as infection progresses from acute to chronic infection suggest that HCV genetic factors and intrahost HCV evolution play important roles in therapy outcomes. HCV polyprotein sequences (n = 40) from 10 patients with unsustainable response (UR) (breakthrough and relapse) and 10 patients with no response (NR) following therapy were identified through the Virahep-C study. Bayesian networks (BNs) were constructed to relate interrelationships among HCV polymorphic sites to UR/NR outcomes. All models showed an extensive interdependence of HCV sites and strong connections (P ≤ 0.003) to therapy response. Although all HCV proteins contributed to the networks, the topological properties of sites differed among proteins. E2 and NS5A together contributed ∼40% of all sites and ∼62% of all links to the polyprotein BN. The NS5A BN and E2 BN predicted UR/NR outcomes with 85% and 97.5% accuracy, respectively, in 10-fold cross-validation experiments. The NS5A model constructed using physicochemical properties of only five sites was shown to predict the UR/NR outcomes with 83.3% accuracy for 6 UR and 12 NR cases of the HALT-C study. Thus, HCV adaptation to IFN-RBV is a complex trait encoded in the interrelationships among many sites along the entire HCV polyprotein. E2 and NS5A generate broad epistatic connectivity across the HCV polyprotein and essentially shape intrahost HCV evolution toward the IFN-RBV resistance. Both proteins can be used to accurately predict the outcomes of IFN-RBV therapy.
Collapse
Affiliation(s)
- James Lara
- Molecular Epidemiology & Bioinformatics Laboratory, Laboratory Branch, Division of Viral Hepatitis, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333
| | - Guoliang Xia
- Molecular Epidemiology & Bioinformatics Laboratory, Laboratory Branch, Division of Viral Hepatitis, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333
| | - Mike Purdy
- Molecular Epidemiology & Bioinformatics Laboratory, Laboratory Branch, Division of Viral Hepatitis, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333
| | - Yury Khudyakov
- Molecular Epidemiology & Bioinformatics Laboratory, Laboratory Branch, Division of Viral Hepatitis, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333
| |
Collapse
|
44
|
Sequence variability of HCV Core region: Important predictors of HCV induced pathogenesis and viral production. INFECTION GENETICS AND EVOLUTION 2011; 11:543-56. [PMID: 21292033 DOI: 10.1016/j.meegid.2011.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/17/2011] [Accepted: 01/21/2011] [Indexed: 02/07/2023]
|
45
|
Maillard E. [Epidemiology, natural history and pathogenesis of hepatocellular carcinoma]. Cancer Radiother 2011; 15:3-6. [PMID: 21239205 DOI: 10.1016/j.canrad.2010.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/04/2010] [Accepted: 11/04/2010] [Indexed: 01/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is the main type of primary liver cancers and the third most common cause of cancer mortality worldwide. In France, rising number between 5000 and 6000 cases are diagnosed each year. The major risk factor for hepatocellular carcinoma is chronic hepatitis: viral hepatitis B, viral hepatitis C, consumption of alcohol, hemochromatosis. Hepatocellular carcinoma is closely associated to liver cirrhosis, which is a true precancerous state. Because hepatocarcinogenesis is a long and heterogeneous process, there is still much to understand. Many genetic and epigenetic alterations are described leading to changes in cellular signalling cascades involved in regulation of growth, differentiation, apoptosis, motility. Hepatitis viruses play a direct oncogenic role through the interaction between viral and cellular proteins, which control cell homeostasis, or by the integration of hepatitis B virus genome into the host genome. Furthermore, hepatitis viruses play an indirect oncogenic role by causing chronic inflammation and hepatocyte regeneration related to viral hepatopathy. In expectation of a better understanding of hepatocarcinogenesis and new treatments, prevention from risk factors and ultrasonographic screening of patients with cirrhosis should increase prognosis.
Collapse
Affiliation(s)
- E Maillard
- Groupement hospitalier Nord, hospices civils de Lyon, hôpital de l'Hôtel-Dieu, 1 place de l'Hôpital, Lyon, France.
| |
Collapse
|
46
|
Banerjee A, Ray RB, Ray R. Oncogenic potential of hepatitis C virus proteins. Viruses 2010; 2:2108-2133. [PMID: 21994721 PMCID: PMC3185750 DOI: 10.3390/v2092108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major risk factor for liver disease progression, and may lead to cirrhosis and hepatocellular carcinoma (HCC). The HCV genome contains a single-stranded positive sense RNA with a cytoplasmic lifecycle. HCV proteins interact with many host-cell factors and are involved in a wide range of activities, including cell cycle regulation, transcriptional regulation, cell proliferation, apoptosis, lipid metabolism, and cell growth promotion. Increasing experimental evidences suggest that HCV contributes to HCC by modulating pathways that may promote malignant transformation of hepatocytes. At least four of the 10 HCV gene products, namely core, NS3, NS5A and NS5B play roles in several potentially oncogenic pathways. Induction of both endoplasmic reticulum (ER) stress and oxidative stress by HCV proteins may also contribute to hepatocyte growth promotion. The current review identifies important functions of the viral proteins connecting HCV infections and potential for development of HCC. However, most of the putative transforming potentials of the HCV proteins have been defined in artificial cellular systems, and need to be established relevant to infection and disease models. The new insight into the mechanisms for HCV mediated disease progression may offer novel therapeutic targets for one of the most devastating human malignancies in the world today.
Collapse
Affiliation(s)
- Arup Banerjee
- Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA; E-Mail:
| | - Ratna B. Ray
- Department of Pathology, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 2nd Floor, St. Louis, MO 63104, USA; E-Mail:
| | - Ranjit Ray
- Department of Internal Medicine, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA; E-Mail:
- Molecular Microbiology & Immunology, Edward A. Doisy Research Center, 1100 S. Grand Blvd., 8th Floor, St. Louis, MO 63104, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 1-314- 977-9034; Fax: 1-314-771-3816
| |
Collapse
|
47
|
King E, Trabue C, Yin D, Yao ZQ, Moorman JP. Hepatitis C: the complications of immune dysfunction. Expert Rev Clin Immunol 2010; 3:145-57. [PMID: 20477104 DOI: 10.1586/1744666x.3.2.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) infection has been linked to numerous diseases of immune dysfunction, including, but not limited to, essential mixed cryoglobulinemia and non-Hodgkin's lymphoma. Clinical studies support these associations and treatment of the underlying HCV infection has been variably successful. Recent studies, focusing on the role of HCV gene products, have discovered evidence of dysregulated responses in multiple aspects of host immunity that may be contributing to the genesis of these diseases. Novel treatments that target these areas of dysregulation offer hope for improved therapy for the diseases associated with immunodysregulation by HCV.
Collapse
Affiliation(s)
- Ellis King
- East Tennessee State University, Department of Internal Medicine, James H. Quillen College of Medicine, Box 70622, Johnson City, TN 37614, USA.
| | | | | | | | | |
Collapse
|
48
|
Deng YB, Nagae G, Midorikawa Y, Yagi K, Tsutsumi S, Yamamoto S, Hasegawa K, Kokudo N, Aburatani H, Kaneda A. Identification of genes preferentially methylated in hepatitis C virus-related hepatocellular carcinoma. Cancer Sci 2010; 101:1501-10. [PMID: 20345479 PMCID: PMC11158022 DOI: 10.1111/j.1349-7006.2010.01549.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic infections by hepatitis B virus (HBV) and hepatitis C virus (HCV) appear to be the most significant causes of hepatocellular carcinoma (HCC). Aberrant promoter methylation is known to be deeply involved in cancer, including in HCC. In this study, we analyzed aberrant promoter methylation by methylated DNA immunoprecipitation-on-chip analysis on a genome-wide scale in six HCCs including three HBV-related and three HCV-related HCCs, six matched noncancerous liver tissues, and three normal liver tissues. Candidate genes with promoter methylation were detected more frequently in HCV-related HCC. Candidate genes methylated preferentially to HBV-related or HCV-related HCCs were detected and selected, and methylation levels of the selected genes were validated by quantitative methylation analysis using MALDI-TOF mass spectrometry using 125 liver tissue samples, including 61 HCCs (28 HBV-related HCCs and 33 HCV-related HCCs) and 59 matched noncancerous livers, and five normal livers. Among analyzed genes, preferential methylation in HBV-related HCC was validated in one gene only. However, 15 genes were found to be methylated preferentially in HCV-related HCC, which was independent from age. Hierarchical clustering of HCC using these genes stratified HCV-related HCC as a cluster of frequently methylated samples. The 15 genes included genes inhibitory to cancer-related signaling such as RAS/RAF/ERK and Wnt/beta-catenin pathways. Methylation of dual specificity phosphatase 4 (DUSP4), cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1), and natriuretic peptide receptor A (NPR1) significantly correlated with recurrence-free survival. It was indicated that genes methylated preferentially in HCV-related HCC exist, and that DNA methylation might play an important role in HCV-related HCC by silencing cancer-related pathway inhibitors, and might perhaps be useful as a prognostic marker.
Collapse
Affiliation(s)
- Ying-Bing Deng
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yan XB, Chen Z, Brechot C. Associations among Genotype 1b Hepatitis C Virus Core Protein, Protein Kinase R, and Signal Transducer and Activator of Transcription 3. HEPATITIS MONTHLY 2010; 10:275-84. [PMID: 22312393 PMCID: PMC3271320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 07/22/2010] [Accepted: 09/17/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Because hepatitis C virus (HCV) core protein (Core), protein kinase R (PKR), and signal transducer and activator of transcription 3 (STAT3) all play relevant roles in the pathogenesis of HCV, persistent infection and hepatocellular carcinoma (HCC) and PKR may interact with HCV Core. In this study, we further investigate the associations among HCV Core, PKR, and STAT3 and the mechanisms involved in these interactions. MATERIALS AND METHODS Expression levels of HCV Core, PKR, eukaryotic initiation factor 2 (eIF-2α), phosphorylated eIF- 2α (p-eIF-2α), STAT3, and phosphorylated-STAT3 (p-STAT3) were compared between Huh-7 and replicon cell-Huh-7 cells harboring the full length of genotype 1b HCV genomes. Co-immunoprecipitation and glutathione S-transferase (GST) pull-down assay were conducted for HCV Core, PKR, and STAT3. RESULTS HCV may have induced the expression of STAT3 and the activity of PKR (p-eIF-2α). HCV Core, STAT3, and PKR appear to have interacted with one another. The N-terminal 1-126 amino acid (aa) of HCV Core contributed to an interaction between HCV Core and STAT3, and only full-length PKR bound to STAT3 and p-STAT3. CONCLUSIONS These findings suggest that HCV Core, PKR, and STAT3 can interact with each other. Specifically, HCV Core may play its role through both PKR and STAT3. Alternatively, HCV Core's binding to and activation of STAT3 might be due to the interaction between HCV Core and PKR. The distinct interactions among these three molecules are important and may reveal a new molecular mechanism in the pathogenesis of HCV-persistent infection and HCV-related HCC.
Collapse
Affiliation(s)
- Xue bing Yan
- Department of Infectious Diseases, The First Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China,Corresponding author at: Dr. Xue-bing Yan, Department of Infectious Diseases, The First Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China. Tel.: +51-685802180, Fax: +51-685802180, E-mail:
| | - Zhi Chen
- Institute of Infectious Diseases, the First Affiliated Hospital, College of Medical Science, Key Laboratory of Ministry Health, Zhejian
| | | |
Collapse
|
50
|
Nakamoto S, Imazeki F, Fukai K, Fujiwara K, Arai M, Kanda T, Yonemitsu Y, Yokosuka O. Association between mutations in the core region of hepatitis C virus genotype 1 and hepatocellular carcinoma development. J Hepatol 2010; 52:72-8. [PMID: 19910070 DOI: 10.1016/j.jhep.2009.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/22/2009] [Accepted: 08/04/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS To determine whether amino acid mutations in the core region of hepatitis C virus (HCV) genotype 1 are associated with response to interferon (IFN) therapy and development of hepatocellular carcinoma (HCC). METHODS We followed up 361 patients (median duration, 121 months), and IFN monotherapy was administered to 275 (76%) [sustained virological response (SVR) rate, 26.5%]. Using pretreatment sera, mutations at core residues 70 and 91 were analyzed [double wild (DW)-type amino acid pattern: arginine, residue 70; leucine, residue 91]. RESULTS A low aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio and low HCV load were independently associated with SVR, but core mutations were not. During follow-up, 12 of 81 (14.8%) patients with the DW-type pattern and 52 of 216 (24.1%) patients with non-DW-type pattern developed HCC (p=0.06, Breslow-Gehan-Wilcoxon test). Multivariate analysis with the Cox proportional-hazards model revealed the following independent risk factors for HCC: male gender [p<0.0001; risk ratio (RR), 3.97], older age (p<0.05; RR, 2.08), advanced fibrosis (p<0.0001; RR, 5.75), absence of SVR (p<0.01; RR, 10.0), high AST level (p<0.01; RR, 2.08), high AST/ALT ratio (p<0.01; RR, 2.21), and non-DW-type pattern (p<0.05; RR, 1.96). In patients with F0-F2 fibrosis at entry, non-DW-type was likely to lead to cirrhosis (p=0.051). CONCLUSIONS In HCV genotype 1 patients, HCC risk could be predicted by studying core mutations, response to IFN, and host factors like age, gender, and liver fibrosis.
Collapse
Affiliation(s)
- Shingo Nakamoto
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ward, Chiba City, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|