1
|
|
2
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
3
|
Kaiser P, Joos B, Niederöst B, Weber R, Günthard HF, Fischer M. Productive human immunodeficiency virus type 1 infection in peripheral blood predominantly takes place in CD4/CD8 double-negative T lymphocytes. J Virol 2007; 81:9693-706. [PMID: 17609262 PMCID: PMC2045436 DOI: 10.1128/jvi.00492-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) transcription is subject to substantial fluctuation during the viral life cycle. Due to the low frequencies of HIV-1-infected cells, and because latently and productively infected cells collocate in vivo, little quantitative knowledge has been attained about the range of in vivo HIV-1 transcription in peripheral blood mononuclear cells (PBMC). By combining cell sorting, terminal dilution of intact cells, and highly sensitive, patient-specific PCR assays, we divided PBMC obtained from HIV-1-infected patients according to their degree of viral transcription activity and their cellular phenotype. Regardless of a patient's treatment status, the bulk of infected cells exhibited a CD4+ phenotype but transcribed HIV-1 provirus at low levels, presumably insufficient for virion production. Furthermore, the expression of activation markers on the surface of these CD4+ T lymphocytes showed little or no association with enhancement of viral transcription. In contrast, HIV-infected T lymphocytes of a CD4-/CD8- phenotype, occurring exclusively in untreated patients, exhibited elevated viral transcription rates. This cell type harbored a substantial proportion of all HIV RNA+ cells and intracellular viral RNAs and the majority of cell-associated virus particles. In conjunction with the observation that the HIV quasispecies in CD4+ and CD4-)/CD8- T cells were phylogenetically closely related, these findings provide evidence that CD4 expression is downmodulated during the transition to productive infection in vivo. The abundance of viral RNA in CD4-/CD8- T cells from viremic patients and the almost complete absence of viral DNA and RNA in this cell type during antiretroviral treatment identify HIV+ CD4-/CD8 T cells as the major cell type harboring productive infection in peripheral blood.
Collapse
Affiliation(s)
- Philipp Kaiser
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich Rämistrasse, 100 8091 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
OBJECTIVE Sequential acquisition of viral variants, or HIV-1 superinfection, has been proposed to explain the high fractions of recombinant viruses observed in some geographical regions, but only a few cases of superinfection in humans have been reported. Animal models suggest that susceptibility to superinfection may be restricted to a short period of time after initial infection, possibly due to maturation of broad antiviral immune responses. METHODS A mathematical model involving a system of differential equations was developed to identify transmission and superinfection patterns that would lead to the observed global patterns of viral diversity. RESULTS Requirements for a high prevalence of infections involving recombinant viruses include high viral infectivity, the presence of highly sexually active core groups, and introduction of divergent viruses early in the epidemic spread of HIV-1. Restricted superinfection could explain the persistent predominance of single virus subtypes in regions with well-established HIV-1 epidemics. The rate of recombination within individuals was not strongly related to recombinant fractions in populations. CONCLUSIONS HIV-1 superinfection restricted to early HIV-1 infection could account for the high fraction of recombinant virus infections observed in populations. The relationship between recombination in cellular infections and recombinant fractions in populations is complex and depends on epidemiological factors and biological factors that can be modeled.
Collapse
Affiliation(s)
- Kimber L Gross
- San Francisco Department of Public Health, San Francisco, California, USA
| | | | | |
Collapse
|
5
|
|
6
|
Abstract
The relentless expansion of the HIV pandemic has demonstrated that the need for a vaccine is desperate. However, the development of an effective vaccine against HIV is a formidable challenge. It is likely that a successful vaccine will have to induce an immune response consisting of not only neutralizing antibodies targeted to conserved epitopes of the viral envelope and cytotoxic T-lymphocytes targeted to a variety of viral antigens, but also local mucosal immunity. Furthermore, a vaccine should induce broad-spectrum immunity covering all HIV subtypes. It is unlikely that a single vaccine will achieve all this, and a combination of vaccines will probably be necessary. Although no efficacious HIV vaccine is available yet, definite progress has been made. It was demonstrated that chimpanzees could be protected from both cell-free and cell-associated HIV challenge. Protection from mucosal challenge was also demonstrated in several studies and limited cross-protection between HIV subtypes was observed in several animal models. In spite of these successes, much remains to be done. Prototype vaccines studied to date have only induced short-lived immune responses and elicited no antibodies able to neutralize clinical isolates of HIV-1. Novel ways of producing HIV-1 envelope antigens may lead to improved antibody responses and raise the chances of a vaccine inducing long-term protective immunity.
Collapse
Affiliation(s)
- E van der Ryst
- Pfizer Global Research and Development, Sandwich, Kent, UK.
| |
Collapse
|
7
|
Ramos A, Hu DJ, Nguyen L, Phan KO, Vanichseni S, Promadej N, Choopanya K, Callahan M, Young NL, McNicholl J, Mastro TD, Folks TM, Subbarao S. Intersubtype human immunodeficiency virus type 1 superinfection following seroconversion to primary infection in two injection drug users. J Virol 2002; 76:7444-52. [PMID: 12097556 PMCID: PMC136380 DOI: 10.1128/jvi.76.15.7444-7452.2002] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we describe two cases of human immunodeficiency virus type 1 (HIV-1) intersubtype superinfection with CRF01_AE and subtype B strains, which occurred in two injection drug users participating in a prospective cohort study in Bangkok, Thailand. In both cases, the superinfecting strain was detected by molecular and serologic analyses several weeks after complete seroconversion to the primary infection with a strain belonging to a different subtype. Superinfection occurred despite specific T-cell and humoral antibody responses to the primary virus. In both cases, cross-subtype immune responses were limited or absent prior to the second infection. These data show that, in some individuals, the quality and quantity of the immune response elicited by primary HIV-1 infection may not protect against superinfection. This finding has important implications for vaccine design. HIV-1 vaccines, at a minimum, will need to include potent, broadly protective, conserved immunogens derived from several group M subtypes.
Collapse
Affiliation(s)
- Artur Ramos
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wei Q, Fultz PN. Differential selection of specific human immunodeficiency virus type 1/JC499 variants after mucosal and parenteral inoculation of chimpanzees. J Virol 2002; 76:851-64. [PMID: 11752174 PMCID: PMC136816 DOI: 10.1128/jvi.76.2.851-864.2002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regardless of the route of transmission, it is generally accepted that the human immunodeficiency virus type 1 (HIV-1) quasispecies transmitted from an infected individual to an uninfected individual is genetically homogeneous. This finding and the observation that HIV-1 genotypes in recipients are minor variants in the donors suggest strongly that selection for specific variants occurs. However, most analyses have been limited to the V3 region of env. In addition, the exact time at which most new infections occurred was not known, making it almost impossible to analyze virus populations present in donor-recipient pairs at the time of HIV-1 transmission. To circumvent this problem, three chimpanzees were inoculated with a genetically defined stock of cell-free HIV-1/JC499 by one of three routes: intravenously or via the cervical or penile mucosa. PCR products of the C2-to-V5 region of env were amplified from both proviral DNA and virion RNA in blood samples collected soon after infection and were screened by heteroduplex analysis (HDA). Those PCR products with distinct HDA banding patterns were cloned and sequenced. In all three animals, transmitted variants encoded one of two V3-loop populations identified in the inoculum, indicating relative homogeneity in this region. However, different virus populations, defined by combinations of specific V4 and V5 sequences, were found when variants in the animal inoculated intravenously (at least 13 V4-plus-V5 combinations) were compared with those in the two animals inoculated by the mucosal routes (limited to only four V4-plus-V5 combinations). The only V4-plus-V5 population in variants found in all three chimpanzees was the major population in the inoculum, which contained viruses with more than 30 different V4-plus-V5 combinations. That the majority of the V4-plus-V5 genotypes in variants transmitted to all three animals were minor populations in the inoculum indicated that selective transmission defined by the V4-plus-V5 regions had occurred but that distinct populations were transmitted by parenteral versus mucosal routes. These results indicate that the putative homogeneity of HIV-1 variants in a newly infected individual might be an artifact of the region of the env gene evaluated and that regions other than V3 might play a major role in selective transmission.
Collapse
Affiliation(s)
- Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA
| | | |
Collapse
|
9
|
Ondoa P, Davis D, Willems B, Heyndrickx L, Kestens L, van der Berg I, Coppens S, Janssens W, Heeney J, van der Groen G. Genetic variability of the V1 and V2 env domains of SIVcpz-ant and neutralization pattern of plasma viruses in a chimpanzee infected naturally. J Med Virol 2001; 65:765-76. [PMID: 11745943 DOI: 10.1002/jmv.2102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Specific neutralizing epitope changes have been observed in a chimpanzee infected naturally with SIVcpz, which differ from HIV-1 infecting humans. To characterize further these changes, a longitudinal study of env genomic sequence variation of SIVcpz-ant isolates was undertaken in this animal. The V1 and V2 regions of the env were determined to arise from specific recombination events. To determine whether recombination of the V1 and V2 domains was possibly associated with the emergence of neutralization escape viruses, envelope sequences and gene length polymorphisms from PBMC and plasma viral variants were studied over a 7-year period. PBMCs and plasma-associated infectious virus titers as well as plasma RNA viral loads were monitored longitudinally. The first 5 viruses isolated from the plasma were found to be neutralization escape variants. Sequence analysis of their V1 and the V2 regions indicated that a 20 amino acid stretch of the V1 region had undergone recombination and was also associated with the emergence of isolates eliciting strong neutralization responses. These findings support the hypothesis that recombination of the V1 and V2 regions of the envelope play a role in neutralization escape of SIVcpz in chimpanzees infected naturally. Furthermore, the data confirm that the neutralizing antibody response plays an important role in the decline of plasma infectious virus titers in HIV-1 related SIVcpz nonpathogenic infection.
Collapse
Affiliation(s)
- P Ondoa
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- M Peeters
- UR36, Laboratoire Retrovirus, IRD, Montpellier, France.
| |
Collapse
|
11
|
Tovanabutra S, Polonis V, De Souza M, Trichavaroj R, Chanbancherd P, Kim B, Sanders-Buell E, Nitayaphan S, Brown A, Robb MR, Birx DL, McCutchan FE, Carr JK. First CRF01_AE/B recombinant of HIV-1 is found in Thailand. AIDS 2001; 15:1063-5. [PMID: 11399992 DOI: 10.1097/00002030-200105250-00018] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S Tovanabutra
- Research Institute for Health Sciences, Chiang Mai University, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Trimble JJ, Salkowitz JR, Kestler HW. Animal models for AIDS pathogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:479-514. [PMID: 11013772 DOI: 10.1016/s1054-3589(00)49035-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- J J Trimble
- Biology Department, Saint Francis College, Loretto, Pennsylvania 15940, USA
| | | | | |
Collapse
|
13
|
Wei Q, Javadian A, Lausen N, Fultz PN. Distribution and quantification of human immunodeficiency virus type 1, strain JC499, proviral DNA in tissues from an infected chimpanzee. Virology 2000; 276:59-69. [PMID: 11021995 DOI: 10.1006/viro.2000.0520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Data are accumulating to show that the natural history of human immunodeficiency virus type 1 (HIV-1) in chimpanzees closely reproduces that in humans and is influenced by biologic properties of the infecting HIV-1 strain. To determine the distribution and relative amounts of HIV-1, proviral DNA in multiple tissues from a chimpanzee euthanized because of an abdominal tumor and kidney failure was quantified by nested PCR limiting-dilution assays. At death, 21 months after infection with HIV-1(JC499), this animal had a CD4(+) T-cell count of 268 and 1.7 x 10(5) copies of virion RNA/ml of plasma. The highest proviral burdens were in peripheral lymph nodes and blood, followed by lung, colon, and spleen; values ranged from 130 to 3350 proviral copies/microg DNA (equivalent to DNA in 150,000 cells). The lowest levels of virus were in the spinal cord, brain, and cecum (0.3 to 2.5 copies/microg DNA), with all other tissues harboring intermediate levels (6.8 to 114 copies/microg DNA). Viral burdens in all tissues were comparable to or greater than those reported for HIV-1-infected humans in all stages of disease. Immunohistochemistry for HIV-1 p24 Gag antigen revealed (i) trapping of HIV-1 on follicular dendritic cells in lymph node germinal centers and (ii) virus in the brain, where it was localized primarily to capillary endothelial cells in the cerebral cortex. Analysis of the genetic diversity of the Env V3 loop in tissues indicated that there was no apparent compartmentalization of HIV-1 variants. Of interest, in 83 of 94 (88.3%) clones sequenced, the unique GYGR motif at the tip of the V3 loop of HIV-1(JC499) had reverted to the more common GPGR. The results support the conclusion that HIV-1 has the potential to maintain high viral burdens in chimpanzees and to disseminate to most organs, including the central nervous system. The use of the chimpanzee model with HIV-1(JC499) (or related strains) in vaccine efficacy studies should prove valuable, especially when assessing protection against disease. Furthermore, comparison of both replicative properties of HIV-1(JC499) with SIVcpz strains and immune responses of chimpanzees infected with these viruses might provide new information about HIV pathogenesis.
Collapse
Affiliation(s)
- Q Wei
- Department of Microbiology, University of Alabama at Birmingham, BBRB 511, Birmingham, Alabama 35294-2170, USA
| | | | | | | |
Collapse
|
14
|
Mikkelsen JG, Pedersen FS. Genetic reassortment and patch repair by recombination in retroviruses. J Biomed Sci 2000; 7:77-99. [PMID: 10754383 DOI: 10.1007/bf02256615] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Retroviral particles contain a diploid RNA genome which serves as template for the synthesis of double-stranded DNA in a complex process guided by virus-encoded reverse transcriptase. The dimeric nature of the genome allows the proceeding polymerase to switch templates during copying of the copackaged RNA molecules, leading to the generation of recombinant proviruses that harbor genetic information derived from both parental RNAs. Template switching abilities of reverse transcriptase facilitate the development of mosaic retroviruses with altered functional properties and thereby contribute to the restoration and evolution of retroviruses facing altering selective forces of their environment. This review focuses on the genetic patchwork of retroviruses and how mixing of sequence patches by recombination may lead to repair in terms of re-established replication and facilitate increased viral fitness, enhanced pathogenic potential, and altered virus tropisms. Endogenous retroelements represent an affluent source of functional viral sequences which may hitchhike with virions and serve as sequence donors in patch repair. We describe here the involvement of endogenous viruses in genetic reassortment and patch repair and review important examples derived from cell culture and animal studies. Moreover, we discuss how the patch repair phenomenon may challenge both safe usage of retrovirus-based gene vehicles in human gene therapy and the use of animal organs as xenografts in humans. Finally, the ongoing mixing of distinct human immunodeficiency virus strains and its implications for antiviral treatment is discussed.
Collapse
MESH Headings
- Animals
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- Endogenous Retroviruses/genetics
- Evolution, Molecular
- Genetic Therapy/adverse effects
- Genetic Variation
- Humans
- Mice
- Models, Genetic
- Mosaicism/genetics
- Proviruses/genetics
- RNA/genetics
- RNA, Double-Stranded/biosynthesis
- RNA, Double-Stranded/genetics
- RNA, Viral/genetics
- RNA-Directed DNA Polymerase/physiology
- Recombination, Genetic
- Retroviridae/genetics
- Retroviridae Infections/genetics
- Retroviridae Infections/transmission
- Retroviridae Infections/virology
- Risk
- Safety
- Templates, Genetic
- Transplantation, Heterologous/adverse effects
- Virion/metabolism
- Virus Replication/genetics
Collapse
Affiliation(s)
- J G Mikkelsen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
15
|
Abstract
Although exchange of genetic information by recombination plays a role in the evolution of viruses, the extent to which it generates diversity is not clear. We analyzed genomes of geminiviruses for recombination using a new statistical procedure developed to detect gene conversions. Geminiviruses (family, Geminiviridae) are a group of plant viruses characterized by a genome of circular single-stranded DNA (approximately 2700 nucleotides in length) encapsidated in twinned quasi-isometric particles. Complete nucleotide sequences of geminiviruses were aligned, and recombination events were detected by searching pairs of viruses for sequences that are significantly more similar than expected based on random distribution of polymorphic sites. The analyses revealed that recombination is very frequent and occurs between species and within and across genera. Tests identified 420 statistically significant recombinant fragments distributed across the genome. The results suggest that recombination is a significant contributor to geminivirus evolution. The high rate of recombination may be contributing to the recent emergence of new geminivirus diseases.
Collapse
Affiliation(s)
- M Padidam
- Rohm and Haas Company, 727 Norristown Road, Spring House, Pennsylvania 19477, USA
| | | | | |
Collapse
|
16
|
Takehisa J, Zekeng L, Ido E, Yamaguchi-Kabata Y, Mboudjeka I, Harada Y, Miura T, Kaptu L, Hayami M. Human immunodeficiency virus type 1 intergroup (M/O) recombination in cameroon. J Virol 1999; 73:6810-20. [PMID: 10400779 PMCID: PMC112766 DOI: 10.1128/jvi.73.8.6810-6820.1999] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we describe, for the first time, recombinants between two highly divergent major groups of human immunodeficiency virus type 1 (HIV-1), M and O, within a Cameroonian woman infected with three different HIV-1 strains, a group O virus, a subtype D virus, and a recently reported IBNG (A/G)-like recombinant virus. Using nested extra-long PCR amplification, we sequenced from the pol region to the env region including accessory genes of the viral genome obtained from the patient's uncultured peripheral blood mononuclear cells and examined the phylogenetic position of each gene. Compared with sequential blood samples obtained in 1995 and 1996, there were multiple segmental exchanges between three HIV-1 strains (O, D, and IBNG) and all the recombinants appeared to be derived from a common M/O ancestor. Importantly, recombination between groups M and O occurred, even though the homology between these two groups is 69, 76, 68, and 55% in the gag, pol, vif-vpr, and env regions, respectively. Recombination between strains with such distant lineages may contribute substantially to generating new HIV-1 variants.
Collapse
Affiliation(s)
- J Takehisa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fultz PN, Wei Q, Yue L. Rectal transmission of human immunodeficiency virus type 1 to chimpanzees. J Infect Dis 1999; 179 Suppl 3:S418-21. [PMID: 10099110 DOI: 10.1086/314796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inoculation of chimpanzees with human immunodeficiency virus type 1 (HIV-1) has been used as a model system to define mechanisms of pathogenesis and to test protective efficacy of candidate HIV-1 vaccines. In most of these studies, the animals were inoculated intravenously. However, because HIV-1 is transmitted primarily across mucosal surfaces, future evaluations of vaccines should employ mucosal routes for administering infectious virus to immunized animals. To develop a model of rectal transmission of HIV-1, chimpanzees were exposed without trauma to 4 different HIV-1 strains at doses ranging from 200 to 10,000 TCIDs. Infection, characterized by seroconversion and repeated isolation of virus from lymphocytes, was established in 1 of 5 animals. This animal was sequentially inoculated with a subtype B and then an E strain and was infected with both strains. The results show that rectal exposure of adult chimpanzees to cell-free HIV-1 was not an efficient mode of transmission in this cohort.
Collapse
Affiliation(s)
- P N Fultz
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
18
|
Pistello M, Matteucci D, Cammarota G, Mazzetti P, Giannecchini S, Del Mauro D, Macchi S, Zaccaro L, Bendinelli M. Kinetics of replication of a partially attenuated virus and of the challenge virus during a three-year intersubtype feline immunodeficiency virus superinfection experiment in cats. J Virol 1999; 73:1518-27. [PMID: 9882357 PMCID: PMC103976 DOI: 10.1128/jvi.73.2.1518-1527.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of preinfecting cats with a partially attenuated feline immunodeficiency virus (FIV) on subsequent infection with a fully virulent FIV belonging to a different subtype were investigated. Eight specific-pathogen-free cats were preinfected with graded doses of a long-term in vitro-cultured cell-free preparation of FIV Petaluma (FIV-P, subtype A). FIV-P established a low-grade or a silent infection in the inoculated animals. Seven months later, the eight preinfected cats and two uninfected cats were challenged with in vivo-grown FIV-M2 (subtype B) and periodically monitored for immunological and virological status. FIV-P-preinfected cats were not protected from acute infection by FIV-M2, and the sustained replication of this virus was accompanied by a reduction of FIV-P viral loads in the peripheral blood mononuclear cells and plasma. However, from 2 years postchallenge (p.c.) until 3 years p.c., when the experiment was terminated, preinfected cats exhibited reduced total viral burdens, and some also exhibited a diminished decline of circulating CD4(+) T lymphocytes relative to control cats infected with FIV-M2 alone. Interestingly, most of the virus detected in challenged cats at late times p.c. was of FIV-P origin, indicating that the preinfecting, attenuated virus had become largely predominant. By the end of follow-up, two challenged cats had no FIV-M2 detectable in the tissues examined. The possible mechanisms underlying the interplay between the two viral populations are discussed.
Collapse
Affiliation(s)
- M Pistello
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mwaengo DM, Novembre FJ. Molecular cloning and characterization of viruses isolated from chimpanzees with pathogenic human immunodeficiency virus type 1 infections. J Virol 1998; 72:8976-87. [PMID: 9765443 PMCID: PMC110315 DOI: 10.1128/jvi.72.11.8976-8987.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/1998] [Accepted: 07/14/1998] [Indexed: 11/20/2022] Open
Abstract
We have previously described the development of AIDS in a chimpanzee (C499) infected with human immunodeficiency virus type 1 (HIV-1) and the subsequent pathogenic HIV-1 infection in another chimpanzee (C455) transfused with blood from C499 (F. J. Novembre et al., J. Virol. 71:4086-4091, 1997). In the present study, two virus isolates were derived from these animals: HIV-1JC from peripheral blood mononuclear cells (PBMC) of C499, and HIV-1NC from plasma of C455. These virus isolates were used to generate two infectious molecular clones, termed HIV-1JC16 and HIV-1NC7 (JC16 and NC7, respectively). Comparative analyses of the sequences of the two clones showed that they were highly interrelated but distinct. Based on heteroduplex mobility assays, JC16 and NC7 appear to represent dominant viruses in the uncloned stock population. Compared with amino acid sequences of the parental viruses HIV-1SF2, HIV-1LAV-1b, and HIV-1NDK, JC16 and NC7 showed a number of differences, including insertions, deletions, and point mutations spread throughout the genome. However, insertion/deletion footprints in several genes of both JC16 and NC7 suggested that recombination between SF2 and LAV-1b could have occurred, possibly contributing to the generation of a pathogenic virus. Comparative in vitro analyses of the molecular clones and the uncloned stocks of HIV-1JC and HIV-1NC revealed that these viruses had strikingly similar replicative abilities in mitogen-stimulated PBMC and in macrophages. Compared to the SF2 and LAV-1b isolates of HIV-1, HIV-1JC and HIV-1NC isolates were more similar to LAV-1b with respect to the ability to replicate in mitogen-stimulated PBMC and macrophages. These viruses should prove to be useful in mapping determinants of pathogenesis.
Collapse
Affiliation(s)
- D M Mwaengo
- Division of Microbiology and Immunology, Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | |
Collapse
|
20
|
Girard M, Mahoney J, Wei Q, van der Ryst E, Muchmore E, Barré-Sinoussi F, Fultz PN. Genital infection of female chimpanzees with human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1998; 14:1357-67. [PMID: 9788677 DOI: 10.1089/aid.1998.14.1357] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To develop an animal model for mucosal HIV-1 infection, adult chimpanzees were inoculated without trauma by depositing the virus inoculum at the entrance to the cervical canal with a rigid catheter to which flexible tubing was attached. By this procedure, persistent infections were established in some chimpanzees with various infectious doses of either cell-associated HIV-1LAI(IIIB) (peripheral blood mononuclear cells from an infected chimpanzee) or with cell-free HIV-1 strains representing subtypes B and E, but not with a subtype A strain. Although some animals did not become infected until after the second or third cervicovaginal exposure, one chimpanzee was clearly infected after one exposure by several criteria, including virus isolation, but this animal did not seroconvert. A second chimpanzee appeared to be resistant to infection despite repeated mucosal exposures at irregular intervals. However, lymphocytes from both of these animals exhibited low-level proliferative responses to HIV-1 but not SIV antigens. Despite these apparently abortive or latent infections, after exposure to HIV-1 by the intravenous route, both animals developed systemic infections and seroconverted. Overall, 8 of 10 chimpanzees were infected systemically after one to three cervicovaginal exposures to HIV-1LAI(IIIB). The results indicate that (1) HIV-1 productive infection of female chimpanzees by the cervicovaginal route generally requires more than one exposure, just as with humans; (2) low level infections without seroconversion can be established after mucosal exposure to HIV; and (3) vaccine efficacy studies involving a single virus challenge of immunized chimpanzees by the cervicovaginal route probably will not be possible.
Collapse
|
21
|
Wei Q, Fultz PN. Extensive diversification of human immunodeficiency virus type 1 subtype B strains during dual infection of a chimpanzee that progressed to AIDS. J Virol 1998; 72:3005-17. [PMID: 9525623 PMCID: PMC109748 DOI: 10.1128/jvi.72.4.3005-3017.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/1997] [Accepted: 12/24/1997] [Indexed: 02/06/2023] Open
Abstract
A chimpanzee (C-499) infected for more than 9 years with two subtype B isolates of human immunodeficiency virus type 1 (HIV-1), one (HIV-1(SF2)) that replicates poorly and one (HIV-1(LAV-1b)) that replicates efficiently in chimpanzees, died of AIDS 11 years after initial infection (F. J. Novembre et al., J. Virol. 71:4086-4091, 1997). Nucleotide sequence and phylogenetic analyses of the C2 to V5 region of env (C2-V5env) in proviral DNA from peripheral blood lymphocytes obtained 22 months before death revealed two distinct virus populations. One of these populations appeared to be a recombinant in env, having the V3 loop from HIV-1(SF2) and the V4-V5 region from HIV-1(LAV-1b); the other population had evolved from HIV-1(LAV-1b). In addition to C2-V5env, the entire p17gag and nef genes were sequenced; however, based on nucleotide sequences and phylogeny, whether the progenitor of the p17gag and nef genes was SF2 or LAV-1b could not be determined. Compared to the two original viruses, the divergence of all clones of C2-V5env ranged from 9.37 to 20.2%, that of p17gag ranged from 3.11 to 9.29%, and that of nef ranged from 4.02 to 7.9%. In contrast, compared to the maximum variation of 20.2% in C2-V5env for C-499, the maximum diversities in C2-V5env in proviruses from two chimpanzees infected with HIV-1(LAV-1b) for 9 and 10 years were 9.65 and 2.48%, respectively. These results demonstrate that (i) two distinct HIV-1 populations can coexist and undergo extensive diversification in chimpanzees with progressive HIV-1-induced disease and (ii) recombination between two subtype B strains occurred even though the second strain was inoculated 15 months after the first one. Furthermore, evaluation of env genes from three chimpanzees infected with the same strain suggests that the magnitude of HIV-1 diversification could be related to higher viral burdens, manifestations of disease, and/or dual infection.
Collapse
Affiliation(s)
- Q Wei
- Department of Microbiology, University of Alabama School of Medicine, Birmingham 35294, USA
| | | |
Collapse
|