1
|
Moon SK, Lim DJ. Intratympanic Gene Delivery of Antimicrobial Molecules in Otitis Media. Curr Allergy Asthma Rep 2015; 15:14. [PMID: 26130474 DOI: 10.1007/s11882-015-0517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Otitis media (OM) in children is clinically important because of its detrimental effects on the development of language and motor coordination and is the most common reason for prescription of antibiotics. A recent bacteriological change in OM pathogens such as emergence of antibiotic resistance and vaccination-mediated pathogenic shift urges us to develop a new non-antibiotic strategy. The middle ear epithelium abundantly secretes a variety of antimicrobial molecules suppressing the viability of the common OM pathogens. Recently, we have demonstrated that the adenoviral vector is able to deliver the β-defensin 2 gene to the middle ear epithelial cells in vitro and in vivo, and adenovirus-mediated overexpression of β-defensin 2 is protective for experimental OM. There are many hurdles limiting successful clinical application of gene delivery to the respiratory epithelium of the tubotympanum; however, intratympanic gene therapy with β-defensin 2 is a promising alternative or adjuvant strategy for the management of OM.
Collapse
Affiliation(s)
- Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, 2100 W. 3rd Street, Los Angeles, CA, 90057, USA,
| | | |
Collapse
|
2
|
Shimizu K, Sakurai F, Tomita K, Nagamoto Y, Nakamura SI, Katayama K, Tachibana M, Kawabata K, Mizuguchi H. Suppression of leaky expression of adenovirus genes by insertion of microRNA-targeted sequences in the replication-incompetent adenovirus vector genome. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14035. [PMID: 26015975 PMCID: PMC4362365 DOI: 10.1038/mtm.2014.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 11/09/2022]
Abstract
Leaky expression of adenovirus (Ad) genes occurs following transduction with a conventional replication-incompetent Ad vector, leading to an induction of cellular immunity against Ad proteins and Ad protein-induced toxicity, especially in the late phase following administration. To suppress the leaky expression of Ad genes, we developed novel Ad vectors by incorporating four tandem copies of sequences with perfect complementarity to miR-122a or miR-142-3p into the 3′-untranslated region (UTR) of the E2A, E4, or pIX gene, which were mainly expressed from the Ad vector genome after transduction. These Ad vectors easily grew to high titers comparable to those of a conventional Ad vector in conventional 293 cells. The leaky expression of these Ad genes in mouse organs was significantly suppressed by 2- to 100-fold, compared with a conventional Ad vector, by insertion of the miRNA-targeted sequences. Notably, the Ad vector carrying the miR-122a–targeted sequences into the 3′-UTR of the E4 gene expressed higher and longer-term transgene expression and more than 20-fold lower levels of all the Ad early and late genes examined in the liver than a conventional Ad vector. miR-122a–mediated suppression of the E4 gene expression in the liver significantly reduced the hepatotoxicity which an Ad vector causes via both adaptive and non-adaptive immune responses.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan ; Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Kyoko Tomita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Yasuhito Nagamoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan ; Laboratory of Hepatocyte Differentiation, National Institute of Biomedical Innovation , Osaka, Japan
| | - Shin-Ichiro Nakamura
- Research Center of Animal Life Science, Shiga University of Medical Science , Shiga, Japan
| | - Kazufumi Katayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation , Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan ; Laboratory of Hepatocyte Differentiation, National Institute of Biomedical Innovation , Osaka, Japan ; iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan ; The Center for Advanced Medical Engineering and Informatics, Osaka University , Osaka, Japan
| |
Collapse
|
3
|
Woo JI, Kil SH, Brough DE, Lee YJ, Lim DJ, Moon SK. Therapeutic potential of adenovirus-mediated delivery of β-defensin 2 for experimental otitis media. Innate Immun 2014; 21:215-24. [PMID: 24842664 DOI: 10.1177/1753425914534002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Otitis media (OM), one of the most prevalent diseases in young children, is clinically important owing to its high incidence in children and its potential impact on language development and motor coordination. OM is the most common reason for the prescription of antibiotics (accounting for 25% of prescriptions) due to its extremely high incidence. A recent increase in antibiotic resistance among OM pathogens is emerging as a major public health concern globally, which led us to consider non-antibiotic approaches for the management of OM. In this study, we evaluated gene transfer of an antimicrobial peptide, human β-defensin 2 (DEFB4), using an adenoviral vector (Ad5 with deletions of E1/E3/E4) as a potential therapeutic approach. We demonstrated that the transduction of human β-defensin 2 induces the production of human β-defensin 2 and suppresses non-typeable Haemophilus influenzae (NTHi) adhesion to human middle ear epithelial cells. Moreover, intratympanic inoculation of Ad-DEFB4 was found to attenuate NTHi-induced middle ear effusions without eliciting a significant immune response. Most importantly, intratympanic inoculation of Ad-DEFB4 appeared to significantly augment clearance of NTHi from middle ear cavity. Collectively, our results suggest that intratympanic gene delivery of antimicrobial molecules may serve as an alternative/adjuvant approach for the management of OM.
Collapse
Affiliation(s)
- Jeong-Im Woo
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | - Sung-Hee Kil
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | | | - Yoo Jin Lee
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | - David J Lim
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | - Sung K Moon
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Abstract
Therapies aimed at the protection and/or regeneration of inner ear hair cells are of great interest, given the significant monetary and quality of life impact of balance disorders. Different viral vectors have been shown to transfect various cell types in the inner ear. The past decade has provided tremendous advances in the use of adenoviral vectors to achieve targeted treatment delivery. Several routes of delivery have been identified to introduce vectors into the inner ear while minimizing injury to surrounding structures. Recently, the transcription factor Atoh1 was determined to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo has demonstrated the ability to regenerate vestibular hair cells by causing transdifferentiation of neighbouring epithelial-supporting cells. Functional recovery of the vestibular system has also been documented following adenoviral-induced Atoh1 overexpression. Experiments demonstrating gene transfer in human vestibular epithelial cells reveal that the human inner ear is a suitable target for gene therapy.
Collapse
Affiliation(s)
- Silviu Albu
- Second Department of Otolaryngology, University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania.
| | | |
Collapse
|
5
|
Zhou YC, Chen S, Cao JJ, Chen SY, Xie YF, Niu QX. Adenovirus-mediated viral interleukin-10 gene transfer prevents concanavalin A-induced liver injury. Dig Liver Dis 2012; 44:398-405. [PMID: 22209949 DOI: 10.1016/j.dld.2011.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 11/14/2011] [Accepted: 11/25/2011] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Liver injury is closely associated with immune inflammation. Lacking immunostimulatory functions, viral interleukin-10 (vIL-10), a cellular IL-10 homologue, has been an attractive molecule for immunomodulatory therapy. We aimed to reveal a protective effect of the gene transfer of an adenoviral vector encoding vIL-10 on liver injury induced by concanavalin A. METHODS C57BL/6J mice were intravenously injected with adenoviral vector encoding vIL-10 before concanavalin A challenge. Liver injury was assessed. Interferon-γ and interleukin-4 levels were measured by ELISA. The activation of splenic and hepatic immune cells was analysed using an MTT assay. RESULTS Adenoviral vector encoding vIL-10 pretreatment significantly decreased concanavalin A-mediated elevations in serum alanine aminotransaminase and aspartate aminotransaminase activity, and necrotic area in liver tissues. The protective effect of adenoviral vector encoding vIL-10 was attributed to its inhibition of T cell activation, and production of interferon-γ and interleukin-4 by the immune cells. Recombinant mouse IL-10, a high homologous cytokine to vIL-10, effectively downregulated interferon-γ and interleukin-4 release by hepatic mononuclear cells. CONCLUSION Adenovirus vector-mediated vIL-10 gene transfer can prevent concanavalin A-induced hepatic injury, minimise pro-inflammatory cytokine release, and inhibit the activation of T lymphocytes.
Collapse
Affiliation(s)
- Yan-Chun Zhou
- Institute of Inflammation and Immune Diseases, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
6
|
Alba R, Baker AH, Nicklin SA. Vector systems for prenatal gene therapy: principles of adenovirus design and production. Methods Mol Biol 2012; 891:55-84. [PMID: 22648768 DOI: 10.1007/978-1-61779-873-3_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adenoviruses have many attributes, which have made them one of the most widely investigated vectors for gene therapy applications. These include ease of genetic manipulation to produce replication-deficient vectors, ability to readily generate high titer stocks, efficiency of gene delivery into many cell types, and ability to encode large genetic inserts. Recent advances in adenoviral vector engineering have included the ability to genetically manipulate the tropism of the vector by engineering of the major capsid proteins, particularly fiber and hexon. Furthermore, simple replication-deficient adenoviral vectors deleted for expression of a single gene have been complemented by the development of systems in which the majority of adenoviral genes are deleted, generating sophisticated Ad vectors which can mediate sustained transgene expression following a single delivery. This chapter outlines methods for developing simple transgene over expressing Ad vectors and detailed strategies to engineer mutations into the major capsid proteins.
Collapse
Affiliation(s)
- Raul Alba
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
7
|
Abstract
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology.
Collapse
Affiliation(s)
- Amanda Rosewell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Francesco Vetrini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| |
Collapse
|
8
|
Abstract
Adenovirus (Ad) vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue). Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA) contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.
Collapse
|
9
|
Brockmeier SL, Lager KM, Grubman MJ, Brough DE, Ettyreddy D, Sacco RE, Gauger PC, Loving CL, Vorwald AC, Kehrli ME, Lehmkuhl HD. Adenovirus-mediated expression of interferon-alpha delays viral replication and reduces disease signs in swine challenged with porcine reproductive and respiratory syndrome virus. Viral Immunol 2009; 22:173-80. [PMID: 19435413 DOI: 10.1089/vim.2008.0075] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, pigs were injected with a nonreplicating human adenovirus type 5 vector expressing porcine interferon-alpha (Ad5-pIFN-alpha) and then challenged with porcine reproductive and respiratory syndrome virus (PRRSV) to determine whether the presence of increased levels of IFN-alpha would decrease viral replication and/or disease. Groups of 10 pigs each were inoculated with Ad5-pIFN-alpha and not challenged, Ad5-pIFN-alpha and challenged with PRRSV 1 d later, or inoculated with a control adenovirus that does not express IFN-alpha (Ad5-null) and challenged 1 d later with PRRSV. IFN-alpha levels in all pigs inoculated with the Ad5-pIFN-alpha were elevated the day of challenge (1 d after inoculation), but were undetectable by 3 d after inoculation in the pigs that were not challenged with PRRSV. Pigs inoculated with Ad5-pIFN-alpha and challenged with PRRSV had lower febrile responses, a decreased percentage of lung involvement at 10 d post-infection, delayed viremia and antibody response, and higher serum IFN-alpha levels as a result of PRRSV infection, compared to pigs inoculated with Ad5-null and challenged with PRRSV. These results indicate that IFN-alpha can have protective effects if present during the time of infection with PRRSV.
Collapse
Affiliation(s)
- S L Brockmeier
- National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, 2300 Dayton Avenue, Ames, IA 50010, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Therapies for the protection and regeneration of auditory hair cells are of great interest given the significant monetary and lifestyle impact of hearing loss. The past decade has seen tremendous advances in the use of adenoviral vectors to achieve these aims. Preliminary data demonstrated the functional capacity of this technique as adenoviral-induced expression of neurotrophic and growth factors protected hair cells and spiral ganglion neurons from ototoxic insults. Subsequent efforts confirmed the feasibility of adenoviral transfection of cells in the auditory neuroepithelium via cochleostomy into the scala media. Most recently, efforts have focused on regeneration of depleted hair cells. Mammalian hearing loss is generally considered a permanent insult as the auditory epithelium lacks a basal layer capable of producing new hair cells. Recently, the transcription factor Atoh1 has been found to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo have shown the ability to regenerate auditory and vestibular hair cells by causing transdifferentiation of neighboring epithelial-supporting cells. Functional recovery of both the auditory and vestibular systems has been documented following adenoviral induced Atoh1 overexpression.
Collapse
|
11
|
Izumikawa M, Kawamoto K, Yagi M, Yehoash R, Yamashita T, Tomoda K. [Treatment of labyrinthine diseases--the frontier of experimental studies--Introduction of genes (regeneration of cochlear hair cells and restoration of auditory function)]. NIHON JIBIINKOKA GAKKAI KAIHO 2009; 111:727-33. [PMID: 19288607 DOI: 10.3950/jibiinkoka.111.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Izumikawa M, Batts SA, Miyazawa T, Swiderski DL, Raphael Y. Response of the flat cochlear epithelium to forced expression of Atoh1. Hear Res 2008; 240:52-6. [PMID: 18430530 DOI: 10.1016/j.heares.2008.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/05/2008] [Accepted: 02/17/2008] [Indexed: 12/18/2022]
Abstract
Following hair cell elimination in severely traumatized cochleae, differentiated supporting cells are often replaced by a simple epithelium with cuboidal or flat appearance. Atoh1 (previously Math1) is a basic helix-loop-helix transcription factor critical to hair cell differentiation during mammalian embryogenesis. Forced expression of Atoh1 in the differentiated supporting cell population can induce transdifferentiation leading to hair cell regeneration. Here, we examined the outcome of adenovirus mediated over-expression of Atoh1 in the non-sensory cells of the flat epithelium. We determined that seven days after unilateral elimination of hair cells with neomycin, differentiated supporting cells are absent, replaced by a flat epithelium. Nerve processes were also missing from the auditory epithelium, with the exception of infrequent looping nerve processes above the habenula perforata. We then inoculated an adenovirus vector with Atoh1 insert into the scala media of the deafened cochlea. The inoculation resulted in upregulation of Atoh1 in the flat epithelium. However, two months after the inoculation, Atoh1-treated ears did not exhibit clear signs of hair cell regeneration. Combined with previous data on induction of supporting cell to hair cell transdifferentiation by forced expression of Atoh1, these results suggest that the presence of differentiated supporting cells in the organ of Corti is necessary for transdifferentiation to occur.
Collapse
Affiliation(s)
- Masahiko Izumikawa
- Kresge Hearing Research Institute, The University of Michigan Medical School, Ann Arbor, MI 48109-5648, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Human adenoviruses (HAdVs) can cause mild respiratory, gastrointestinal, urogenital and ocular disease. Knowledge about HAdVs has been expanding for more than five decades putting them amongst the most-studied viruses. This continued interest stems, to a great extent, from the fact that these double-stranded DNA viruses have proven to be a versatile tool to probe the basic phenomena of eukaryotic cells. HAdV research has led to the discovery of, for instance, RNA splicing and greatly contributed to our knowledge of processes as fundamental as replication, transcription and translation. Moreover, the transformation of rodent cells by HAdVs has provided a system to unravel the molecular pathways that control cell proliferation. As a result, the genetic organisation of these agents is known in great detail allowing the straightforward manipulation of their genomes. In addition, the virus itself became renowned for its ability to produce large amounts of progeny and to efficiently infect mammalian cells regardless of their cell cycle status. These features contributed to the broad use of recombinant HAdVs as gene carriers particularly in in vivo settings where the vast majority of target cells are post-mitotic. The most advanced type of HAdV vectors can accommodate up to 37 kb of foreign DNA and are devoid of viral genes. With the aid of these high-capacity HAdV vectors large physiologically responsive transcriptional elements and/or genes can be efficiently introduced into target cells while minimising adaptive immune responses against the transduced cells. This article provides information on HAdV especially on the aspects pertinent to the design, production and performance of its recombinant forms. The development and characteristics of the main HAdV-based vector types are also briefly reviewed.
Collapse
Affiliation(s)
- Manuel A F V Gonçalves
- Gene Therapy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
14
|
Abrashkin KA, Izumikawa M, Miyazawa T, Wang CH, Crumling MA, Swiderski DL, Beyer LA, Gong TWL, Raphael Y. The fate of outer hair cells after acoustic or ototoxic insults. Hear Res 2006; 218:20-9. [PMID: 16777363 DOI: 10.1016/j.heares.2006.04.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 04/07/2006] [Accepted: 04/10/2006] [Indexed: 11/15/2022]
Abstract
In epithelial sheets, clearance of dead cells may occur by one of several routes, including extrusion into the lumen, phagocytic clearance by invading lymphocytes, or phagocytosis by neighboring cells. The fate of dead cochlear outer hair cells is unclear. We investigated the fate of the "corpses" of dead outer hair cells in guinea pigs and mice following drug or noise exposure. We examined whole mounts and plastic sections of normal and lesioned organ of Corti for the presence of prestin, a protein unique to outer hair cells. Supporting cells, which are devoid of prestin in the normal ear, contained clumps of prestin in areas of hair cell loss. The data show that cochlear supporting cells surround the corpses and/or debris of degenerated outer hair cells, and suggest that outer hair cell remains are phagocytosed by supporting cells within the epithelium.
Collapse
MESH Headings
- Animals
- Cell Death/drug effects
- Ethacrynic Acid/toxicity
- Female
- Guinea Pigs
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/injuries
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Hearing Loss, Noise-Induced/genetics
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Kanamycin/toxicity
- Male
- Mice
- Molecular Motor Proteins
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Karen A Abrashkin
- Kresge Hearing Research Institute, Department of Otolaryngology, Rm. 9301 MSRB-3, Ann Arbor, MI 48109-0648, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Crumling MA, Raphael Y. Manipulating gene expression in the mature inner ear. Brain Res 2006; 1091:265-9. [PMID: 16513096 DOI: 10.1016/j.brainres.2006.01.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 01/18/2006] [Accepted: 01/21/2006] [Indexed: 10/25/2022]
Abstract
It is possible to manipulate gene expression in cochlear tissue, but technical issues have made this challenging in the mature in vivo inner ear. Generally, the most common reasons for such manipulations involve basic science or therapeutic quests. Examples of experimental studies are those designed to elucidate the role of a specific gene or a gene expression cascade or to understand the function of a particular cell type. Therapeutic goals may include replacing a defective gene or enhancing tissue protection, repair, or regeneration. This review summarizes the main technical approaches that are viable options for in vivo manipulation of gene expression in the mature inner ear, as well as major research and clinical issues likely to benefit from such genetic manipulations.
Collapse
Affiliation(s)
- Mark A Crumling
- Kresge Hearing Research Institute, The University of Michigan, MSRB III Room-9303, Ann Arbor, MI 48109-0648, USA
| | | |
Collapse
|
16
|
Abstract
Broadly defined, the concept of gene therapy involves the transfer of genetic material into a cell, tissue, or whole organ, with the goal of curing a disease or at least improving the clinical status of a patient. A key factor in the success of gene therapy is the development of delivery systems that are capable of efficient gene transfer in a variety of tissues, without causing any associated pathogenic effects. Vectors based upon many different viral systems, including retroviruses, lentiviruses, adenoviruses, and adeno-associated viruses, currently offer the best choice for efficient gene delivery. Their performance and pathogenicity has been evaluated in animal models, and encouraging results form the basis for clinical trials to treat genetic disorders and acquired diseases. Despite some initial success in these trials, vector development remains a seminal concern for improved gene therapy technologies.
Collapse
Affiliation(s)
- Inder M Verma
- Laboratory of Genetics, The Salk Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
17
|
Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005; 11:271-6. [PMID: 15711559 DOI: 10.1038/nm1193] [Citation(s) in RCA: 524] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 01/25/2005] [Indexed: 12/16/2022]
Abstract
In the mammalian auditory system, sensory cell loss resulting from aging, ototoxic drugs, infections, overstimulation and other causes is irreversible and leads to permanent sensorineural hearing loss. To restore hearing, it is necessary to generate new functional hair cells. One potential way to regenerate hair cells is to induce a phenotypic transdifferentiation of nonsensory cells that remain in the deaf cochlea. Here we report that Atoh1, a gene also known as Math1 encoding a basic helix-loop-helix transcription factor and key regulator of hair cell development, induces regeneration of hair cells and substantially improves hearing thresholds in the mature deaf inner ear after delivery to nonsensory cells through adenovectors. This is the first demonstration of cellular and functional repair in the organ of Corti of a mature deaf mammal. The data suggest a new therapeutic approach based on expressing crucial developmental genes for cellular and functional restoration in the damaged auditory epithelium and other sensory systems.
Collapse
Affiliation(s)
- Masahiko Izumikawa
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, MSRB 3, Room 9303, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0648, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Schagen FHE, Ossevoort M, Toes REM, Hoeben RC. Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 2005; 50:51-70. [PMID: 15094159 DOI: 10.1016/s1040-8428(03)00172-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2003] [Indexed: 01/05/2023] Open
Abstract
Human adenoviruses have been adopted as attractive vectors for in vivo gene therapy since they have a well-characterized genomic organization, can be grown to high titres and efficiently transduce a wide spectrum of dividing and non-dividing cells. However, the first-generation of adenoviral (Ad) vectors yielded only transient expression of the transgene in most immunocompetent mice. This constituted a major limitation of this early vector type. In contrast, persistent transgene expression can be established in immunodeficient mice. This suggests that the immunogenicity of adenoviral vectors limits the effective period of adenovirus-based gene therapy. Much effort has been put in devising strategies to circumvent the limitations imposed onto gene therapy by the immune system. Improvements in vector design have significantly improved the performance of the adenovirus vectors. Based on these results it is reasonable to anticipate that new modifications of the vectors will overcome some of the immunological barriers and will further expand the applicability of adenovirus-derived vectors.
Collapse
Affiliation(s)
- Frederik H E Schagen
- Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
19
|
McConnell MJ, Imperiale MJ. Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 2004; 15:1022-33. [PMID: 15610603 DOI: 10.1089/hum.2004.15.1022] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Michael J McConnell
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
20
|
Li X, Babiuk LA, Tikoo SK. Analysis of early region 4 of porcine adenovirus type 3. Virus Res 2004; 104:181-90. [PMID: 15246655 DOI: 10.1016/j.virusres.2004.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 04/05/2004] [Accepted: 04/05/2004] [Indexed: 12/25/2022]
Abstract
The early region 4 (E4) of porcine adenovirus (PAdV)-3, located at the right-hand end of the genome is transcribed in a leftward direction and has the potential to encode seven (p1-p7) open reading frames (ORFs). To determine the role of each protein in viral replication, we constructed full-length PAdV-3 genomic clones containing deletions of individual E4 ORF or combined deletions of the neighboring ORFs. Transfection of swine testicular (ST) cells with individual E4 mutant plasmid DNAs generated PAdV-3 E4 mutant viruses except with plasmids containing a deletion of ORF p3, ORF p2+ p3 or ORF p3+ p4. Each of the mutants was further analyzed for growth kinetics, and early/late protein synthesis. Mutant viruses carrying deletions in ORF p1, ORF p2 or ORF p4 showed growth characteristics similar to that of wild-type PAdV-3. Early/late protein synthesis was also indistinguishable from that of wild-type PAdV-3. However, mutant viruses carrying deletions in ORF p5, ORF p6 or ORF p7 showed a modest effect in their ability to grow in porcine cells and express early proteins. These results suggest that the E4 ORF p3 (showing low homology with non-essential human adenovirus (HAdV)-9-E4 ORF1 encoded proteins) is essential for the replication of PAdV-3 in vitro. In contrast, the E4 ORF p7 (showing homology to essential HAdV-2 34 kDa protein) is not essential for replication of PAdV-3 in vitro. Moreover, successful deletion of 1.957 kb fragment in E4 region increased the available capacity of replication-competent PAdV-3 (E3 + E4 deleted) to approximately 4.3 kb and that of replication-defective PAdV-3 (E1 + E3 + E4 deleted) to approximately 7 kb. This is extremely useful for the construction of PAdV-3 vectors that express multiple genes and/or regulatory elements for gene therapy and vaccination.
Collapse
Affiliation(s)
- Xiaoxin Li
- Vaccine & Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada S7N 5E3
| | | | | |
Collapse
|
21
|
Abstract
The auditory sensory epithelium is a mosaic composed of sensory (hair) cells and several types of non-sensory (supporting) cells. All these cells are highly differentiated in their structure and function. Mosaic epithelia (and other complex tissues) are generally formed by differentiation of distinct and specialized cell types from common progenitors. Most types of epithelial tissues maintain a population of undifferentiated (basal) cells which facilitate turnover (renewal) and repair, but this is not the case for the organ of Corti in the cochlea. Therefore, when cochlear hair cells are lost they cannot be replaced. Consequently, sensorineural hearing loss is permanent. In designing therapy for sensorineural deafness, the most important task is to find a way to generate new cochlear hair cells to replace lost cells.
Collapse
Affiliation(s)
- Ryosei Minoda
- Kresge Hearing Research Institute, The University of Michigan Medical School, MSRB III Room-9303, Ann Arbor, MI 48109-0648, USA
| | | | | | | |
Collapse
|
22
|
Ehrhardt A, Xu H, Dillow AM, Bellinger DA, Nichols TC, Kay MA. A gene-deleted adenoviral vector results in phenotypic correction of canine hemophilia B without liver toxicity or thrombocytopenia. Blood 2003; 102:2403-11. [PMID: 12805062 DOI: 10.1182/blood-2003-01-0314] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many approaches for treating hemophilia via gene transfer have been attempted in large animal models but all have potential drawbacks. Recombinant adenoviral vectors offer high-efficiency transfer of an episomal vector but have been plagued by the cytotoxicity/immunogenicity of early-generation vectors that contain viral genes. In our current study, we have used a nonintegrating helper-dependent (HD) adenoviral vector for liver-directed gene transfer to achieve hemostatic correction in a dog with hemophilia B. We measured plasma canine factor IX (cFIX) concentrations at a therapeutic range for up to 2.5 months and normalization of the whole blood clotting time (WBCT) for about a month. This was followed by a decrease and stabilized partial correction for 4.5 months. Hepatic gene transfer of a slightly lower dose of the HD vector resulted in WBCTs that were close to normal for 2 weeks, suggesting a dose threshold effect in dogs. In sharp contrast to other studies using first- or second-generation adenoviral vectors, we observed no vector-related elevation of liver enzymes, no fall in platelet counts, and normal liver histology. Taken together, this study demonstrates that injection of an adenoviral HD vector results in complete but transient phenotypic correction of FIX deficiency in canine models with no detectable toxicity.
Collapse
Affiliation(s)
- Anja Ehrhardt
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
23
|
Ehrhardt A, Xu H, Kay MA. Episomal persistence of recombinant adenoviral vector genomes during the cell cycle in vivo. J Virol 2003; 77:7689-95. [PMID: 12805471 PMCID: PMC164819 DOI: 10.1128/jvi.77.13.7689-7695.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we showed that recombinant adenoviral helper-dependent (HD) vectors result in long-term transgene expression levels in vivo which slowly declined by 95% over a period of 1 year. In this study, we further establish that this was not predominantly immune mediated. To determine if cell turnover was responsible for the loss of transgene expression, we induced rapid hepatocyte cell cycling in mouse liver, by performing a surgical two-thirds partial hepatectomy. We observed a 55 and 65% reduction in transgene expression levels and a 50 and 71% loss of vector genomes for the HD vector and the first-generation adenoviral vector. In sharp contrast, in nonviral, episomal plasmid DNA-injected mice, transgene expression levels and DNA copy numbers decreased by 95 and 99%, respectively. These findings suggest that cell division alone was not the primary reason for the slow decrease in transgene expression levels and that recombinant adenoviral vectors have a more robust mechanism for maintaining persistence during cell cycling. Several potential mechanisms are proposed.
Collapse
Affiliation(s)
- Anja Ehrhardt
- Department of Pediatrics and Genetics, School of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
24
|
Chen D, Murphy B, Sung R, Bromberg JS. Adaptive and innate immune responses to gene transfer vectors: role of cytokines and chemokines in vector function. Gene Ther 2003; 10:991-8. [PMID: 12756420 DOI: 10.1038/sj.gt.3302031] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D Chen
- Carl C Ichan Center for Gene Therapy and Molecular Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
25
|
Zerby D, Sakhuja K, Reddy PS, Zimmerman H, Kayda D, Ganesh S, Pattison S, Brann T, Kadan MJ, Kaleko M, Connelly S. In vivo ligand-inducible regulation of gene expression in a gutless adenoviral vector system. Hum Gene Ther 2003; 14:749-61. [PMID: 12804138 DOI: 10.1089/104303403765255147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Transcriptional regulation that is rapid, reversible, and repeatedly inducible would greatly enhance the safety and efficacy of many gene therapy strategies. We developed a chimeric ligand-inducible regulation system based on the human estrogen receptor. This system has two components, the responsive promoter driving expression of the transgene of interest, and the ligand-inducible chimeric transcription factor. The transcription factor is composed of a novel DNA binding domain and a modified estrogen receptor ligand-binding domain. A point mutation in the ligand-binding domain significantly reduces estrogen binding while allowing binding of the estrogen antagonist, tamoxifen. We used a gutless adenoviral vector system and incorporated both components into two separate vectors. A single gutless vector encoding both system components was also generated. The tamoxifen-mediated induciblity of transgene expression of the gutless vector system was compared in vitro and in vivo with the analogous components incorporated into early generation, E1/E2a/E3-deficient adenoviral vectors. In normal mice, both the gutless vector and early generation systems displayed inducibility in the presence of tamoxifen. Importantly, the gutless vector system was inducible to extremely high levels, at least four times over a 2-month period. In contrast, the early generation vector system was inducible only once. Furthermore, the early generation system displayed significant toxicity, as evidenced by extremely high liver enzyme levels, abnormal liver pathology, and rapid loss of vector DNA from the liver, while the gutless vector system displayed minimal toxicity. These data directly demonstrate the improved in vivo function of the tamoxifen-inducible transcriptional regulation system in the context of the gutless adenoviral vectors.
Collapse
Affiliation(s)
- Dennis Zerby
- Genetic Therapy, Inc. (A Novartis Company), Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Van Linthout S, Lusky M, Collen D, De Geest B. Persistent hepatic expression of human apo A-I after transfer with a helper-virus independent adenoviral vector. Gene Ther 2002; 9:1520-8. [PMID: 12407424 DOI: 10.1038/sj.gt.3301824] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Accepted: 05/27/2002] [Indexed: 11/09/2022]
Abstract
Gene transfer with 'gutted' vectors is associated with persistent transgene expression and absence of hepatotoxicity, but the requirement of helper viruses hampers efficient production and leads to contamination of viral batches with these helper-viruses. In the present study, gene transfer with a helper-virus independent E(1)/E(3)/E(4)-deleted adenoviral vector induced persistent expression of human apo A-I (200 +/- 16 mg/dl at day 35, 190 +/- 15 mg/dl at 4 months, 170 +/- 16 mg/dl at 6 months) and stable transgene DNA levels (3.5 +/- 0.60 at day 35, 3.3 +/- 0.39 at 4 months, 3.1 +/- 0.47 mg/dl at 6 months) in C57BL/6 mice in the absence of significant toxicity. The vector contained the 1.5 kb human alpha(1)-antitrypsin promoter in front of the genomic human apo A-I sequence and four copies of the human apo E enhancer (hAAT.gA-I.4xapoE) and was deleted in E(1), E(3) and E(4). Reintroduction of E(4) ORF 3 and E(4) ORF 4 in the viral backbone caused a more than four-fold decline of transgene DNA between day 35 and 4 months after transfer both in wild-type and in C57BL/6 SCID and C57BL/6 Rag-1(-/-) mice, indicating that the effect of E(4) ORF 3 and E(4) ORF 4 is independent of a cellular immune response against viral epitopes. Co-injection of an E(1)-deleted vector containing no expression cassette and the E(1)/E(3)/E(4)-deleted vector containing the hAAT.gA-I.4xapoE expression cassette indicated that E(4) gene products destabilize transgene DNA in trans. Gene transfer with an E(1)/E(3)/E(4)-deleted vector containing only E(4) ORF 3 and the hAAT.gA-I.4xapoE expression cassette was associated with transgene DNA decline, but not with hepatotoxicity, indicating that transgene DNA persistence and hepatotoxicity are dissociated processes. After transfer with E(1)/E(3)/E(4)-deleted vectors containing expression cassettes with a different promoter or a different position of the apo E enhancers, transgene DNA levels were less stable than after transfer with the vector containing hAAT.gA-I.4xapoE, indicating that the expression cassette is an important determinant of episomal stability. In conclusion, gene transfer with an E(1)/E(3)/E(4)-deleted vector containing the hAAT.gA-I.4xapoE expression cassette induces persistent expression of human apo A-I in the absence of hepatotoxicity. Transgene DNA turnover is independent of an adaptive cellular immune response against viral epitopes and of hepatotoxicity. E(1)/E(3)/E(4)-deleted vectors containing transgenes under control of the hAAT promoter in combination with four copies of the human apo E enhancer may be suitable for hepatocyte-specific overexpression of transgenes after gene transfer. doi:10.1038/sj.gt.3301824
Collapse
Affiliation(s)
- S Van Linthout
- Center for Molecular and Vascular Biology, University of Leuven, Belgium
| | | | | | | |
Collapse
|
27
|
Gilbert R, Liu A, Petrof B, Nalbantoglu J, Karpati G. Improved performance of a fully gutted adenovirus vector containing two full-length dystrophin cDNAs regulated by a strong promoter. Mol Ther 2002; 6:501-9. [PMID: 12377192 DOI: 10.1006/mthe.2002.0689] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dystrophin gene transfer using gutted or helper-dependent adenoviruses (HDAd), which have most of their genes deleted, is a promising approach to treat Duchenne muscular dystrophy. In an attempt to boost the amount of dystrophin produced after gene transfer, we have constructed a fully deleted HDAd (HDCBDys2x) containing two human dystrophin cDNAs controlled by the powerful hybrid cytomegalovirus enhancer/beta-actin promoter. We demonstrated high dystrophin expression after infection of muscle cultures with HDCBDys2x. Similarly, high (mean=583) and moderate (mean=124) numbers of muscle fibers were transduced in anterior tibialis muscle after intramuscular injection of HDCBDys2x in neonate and adult dystrophindeficient (mdx) mice 10 days postinjection. In fact, in the neonatally injected mdx mice, the transferred dystrophin was five times more abundant than in normal human muscle. However, the high early transduction level was transient in both animal groups, and we observed a humoral response against the human dystrophin. In contrast, we demonstrated sustained dystrophin expression in immunodeficient mouse muscles. Dystrophin expression of HDCBDys2x could be further increased in the presence of an E1/E3-deleted (first-generation) adenovirus, thus demonstrating that the latter vector synthesizes trans-acting enhancing factors. We have achieved abundant dystrophin expression with our new, improved HDAd. It is anticipated that high longterm transgene expression will be possible by employing weaker immunogenic transgenes.
Collapse
Affiliation(s)
- Rénald Gilbert
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montréal, Québec, H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
28
|
Abstract
In the last decade adenovirus (AdV) vectors have emerged as promising technology in gene therapy. They have been used for genetic modification of a variety of somatic cells in vitro and in vivo. They have been widely used as gene delivery vectors in experiments both with curative and preventive purposes. AdV vectors have been used in the experimental and in some extent in the clinical gene therapy of a variety of cancers. The combination of recombinant AdV technology with chemotherapy (pro drug system) seems to be promising, too. AdV vectors offer several advantages over other vectors. Replication defective vectors can be produced in very high titers (10(11) pfu/ml) thus allowing a substantially greater efficiency of direct gene transfer; they have the capacity to infect both replicating and nonreplicating (quiescent) cells from a variety of tissues and species. Several important limitations of adenovirus mediated gene transfer are also known, such as the relatively short-term (transient) expression of foreign genes, induction of the host humoral and cellular immune response to viral proteins and viral infected cells, which may substantially inhibit the effect of repeated treatment with AdV vectors, the limited cloning capacity and the lack of target cell specificity. However, the well-understood structure, molecular biology and host cell interactions of AdV-s offer some potential solutions to these limitations.
Collapse
Affiliation(s)
- I Nász
- Institute of Medical Microbiology, Faculty of General Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | | |
Collapse
|
29
|
Kanzaki S, Ogawa K, Camper SA, Raphael Y. Transgene expression in neonatal mouse inner ear explants mediated by first and advanced generation adenovirus vectors. Hear Res 2002; 169:112-20. [PMID: 12121744 DOI: 10.1016/s0378-5955(02)00347-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mouse serves as a valuable model for treatment leading to the prevention and therapy of inner ear disease. Transgenic correction of genetic inner ear disease in mice may help develop treatment for human genetic inner ear disease. In mutations involving hair cells (HCs) or supporting cells (SCs), it is necessary to insert the wild-type transgenes directly into these cells. We used inner ear explants to characterize the transgenic expression using adenovirus-mediated reporter genes (bacterial lacZ). The variable parameters were the age of the explants (P1-P5), the type of vector (first and advanced generation adenovirus) and the genotype of the mouse (wild-type versus shaker-2 mutant). Transduction of cochlear HCs was detected at P1 and in some of the P3 cochleae. Low efficiency transduction of SCs was observed in P1 explants, but the efficiency increased with age and reached high levels at P5. The pattern of transduction was similar regardless of the genotype and the type of vector used. The data demonstrate that differentiating HCs and SCs in mouse explants can be transduced by adenovirus vectors, suggesting that cultures of mouse ears are a valuable model for developing inner ear gene therapy protocols.
Collapse
Affiliation(s)
- Sho Kanzaki
- Kresge Hearing Research Institute, The University of Michigan, MSRB 3, Room 9303, Ann Arbor, MI 48109-0648, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Gene transfer and gene therapy represent a relatively new field that has grown and expanded enormously in the last 5-10 years. The application of gene transfer and gene medicines to transplantation is currently in its infancy. Consideration for gene medicines in transplantation requires delivery of vectors, either to the graft or to the immune system. Delivery of vectors to the graft provides a choice of potential immunologic targets including: costimulatory signals; inhibitory cytokines; adhesion molecules; and molecules relating to apoptosis. In addition, non-immunologic targets, that increase graft protective mechanisms by reducing ischemic and immunologic damage, represent significant targets for gene transfer. Delivery of vectors to the immune system includes potential targets to modify the immune system, and results in tolerance. Other considerations for gene therapy include the development of additional technologies, such as gene conversion or transgenesis coupled with xenotransplantation, which may provide genetically modified organs. Another important aspect of gene transfer relates to regulation of the transgene expression. A variety of issues concerning innate immunity, adaptive immunity, response to vector components, response to transgene products, and entry of vectors into the antigen presentation and processing pathway require further investigation and refinement of approaches. Lastly, regulatable promoters and the understanding of their interaction with individual cells, tissues and organs, and their interaction with innate and adaptive immunity, are of paramount importance to improving the efficacy and utility of gene transfer. There is no doubt that there is much exciting basic and translational science to be accomplished in the next decade in order to solve these potential barriers and advance gene medicines into the clinical realm in transplantation.
Collapse
Affiliation(s)
- D Chen
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine and the Recanati/Miller Transplantation Institute, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
31
|
Van Linthout S, Collen D, De Geest B. Effect of promoters and enhancers on expression, transgene DNA persistence, and hepatotoxicity after adenoviral gene transfer of human apolipoprotein A-I. Hum Gene Ther 2002; 13:829-40. [PMID: 11975849 DOI: 10.1089/10430340252899000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Liver-directed gene transfer offers new perspectives for the treatment of inherited metabolic diseases and disorders of lipoprotein metabolism. Potent expression cassettes for transgenes in the liver may optimize gene transfer efficiency and improve the therapeutic index of gene transfer vectors. An E(1)-deleted adenovirus comprising the hepatocyte specific 256-base pair (bp) human apolipoprotein A-I (apo A-I) promoter, the genomic human apo A-I DNA, and four human apo E enhancers (AdA-I.gA-I.4xapoE) was associated with low hepatotoxicity, high transgene DNA persistence and absence of promoter shut-off, resulting in human apo A-I plasma levels above 100 mg/dl for 35 days in C57BL/6 mice. In the present investigation, the human apo A-I promoter was compared to the murine small nuclear RNA U1b, the human apolipoprotein C-II (apo C-II), and the human alpha(1) antitrypsin (hAAT) promoters and the effect of copy number and position of liver-specific human apo E enhancers in 16 adenoviral constructs was evaluated. The vector containing the 1.5-kb hAAT instead of the apo A-I promoter (AdhAAT.gA-I.4xapoE) induced 3.7-fold (p < 0.01) more human apo A-I reaching plasma levels above 300 mg/dl for 35 days. The composition of the expression cassette was a major determinant of human apo A-I transgene DNA copy number at day 35. Hepatotoxicity after adenoviral gene transfer was dependent on the promoter and the number of enhancers, and was higher with the enhancers in a 5' position. The combination of the hAAT promoter and four copies of the human apo E enhancer appears to be the expression cassette of choice for hepatocyte-specific overexpression of transgenes after gene transfer.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Center for Molecular and Vascular Biology, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | | | | |
Collapse
|
32
|
Schiedner G, Hertel S, Johnston M, Biermann V, Dries V, Kochanek S. Variables affecting in vivo performance of high-capacity adenovirus vectors. J Virol 2002; 76:1600-9. [PMID: 11799154 PMCID: PMC135880 DOI: 10.1128/jvi.76.4.1600-1609.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In high-capacity adenovirus (HC-Ad) vectors the size and/or composition of the vector genome influences vector stability during production and the expression profile following gene transfer. Typically, an HC-Ad vector will contain both a gene or an expression cassette and stuffer DNA that is required to balance the final vector genome to a size of between 27 and 36 kb. To gain an improved understanding of factors that may influence gene expression from HC-Ad vectors, we have generated a series of vectors that carry different combinations of human alpha-1 antitrypsin (hAAT) expression constructs and stuffer DNAs. Expression in vitro did not predict in vivo performance: all vectors expressed hAAT at similar levels when tested in cell culture. Hepatic expression was evaluated following in vivo gene transfer in C57BL/6J mice. hAAT levels obtained from genomic DNA were significantly higher than levels achieved with small cDNA expression cassettes. Expression was independent of the orientation and only marginally influenced by the location of the expression cassette within the vector genome. The use of lambda stuffer DNA resulted in low-level but stable expression for at least 3 months when higher doses were applied. A potential matrix attachment region element was identified within the hAAT gene and caused a 10-fold increase in expression when introduced in an HC-Ad vector genome carrying a phosphoglycerate kinase (pgk) hAAT cDNA construct. We also illustrate the influence of the promoter on anti-hAAT antibody formation in C57BL/6J mice: a human cytomegalovirus but not a pgk promoter resulted in an anti-hAAT antibody response. Thus, the overall design of HC-Ad vectors may significantly influence amounts and duration of gene expression at different levels.
Collapse
Affiliation(s)
- Gudrun Schiedner
- Center for Molecular Medicine (ZMMK), University of Cologne, D-50931 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Hidaka C, Ibarra C, Hannafin JA, Torzilli PA, Quitoriano M, Jen SS, Warren RF, Crystal RG. Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. TISSUE ENGINEERING 2002; 8:93-105. [PMID: 11886658 DOI: 10.1089/107632702753503090] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ingrowth of host blood vessels into engineered tissues has potential benefits for successful transplantation of engineered tissues as well as healing of surrounding host tissues. In particular, the use of a vascularized bioengineered tissue could be beneficial for treating injuries to the meniscus, a structure in the knee where the lack of a vascular supply is associated with an inadequate healing response. In this study, gene transfer using an adenovirus vector encoding the hepatocyte growth factor gene (AdHGF) was used to induce blood vessel formation in tissue-engineered meniscus. Bovine meniscal cells were treated with AdHGF, a vector encoding a marker gene E. coli beta-galactosidase (Adbetagal), or no virus. Cells were seeded onto poly-glycolic acid felt scaffolds and then transplanted into the subcutaneous pouch of athymic nude mice for 8 weeks. Expression of the marker gene and HGF was detectable for several weeks after gene transfer. Ink injection studies showed that AdHGF-treated meniscal cells formed tissue which contained fourfold more blood vessels at 2 weeks (p < 0.02) and 2.5-fold more blood vessels at 8 weeks (p < 0.001) posttransplantation than controls. This study demonstrates the feasibility of using adenovirus-mediated gene transfer to engineer a blood supply in the bioengineered meniscal tissue.
Collapse
Affiliation(s)
- Chisa Hidaka
- Division of Pulmonary and Critical Care Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Reddy PS, Sakhuja K, Ganesh S, Yang L, Kayda D, Brann T, Pattison S, Golightly D, Idamakanti N, Pinkstaff A, Kaloss M, Barjot C, Chamberlain JS, Kaleko M, Connelly S. Sustained human factor VIII expression in hemophilia A mice following systemic delivery of a gutless adenoviral vector. Mol Ther 2002; 5:63-73. [PMID: 11786047 DOI: 10.1006/mthe.2001.0510] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gutless adenoviral vectors are devoid of all viral coding regions and display reduced cytotoxicity, diminished immunogenicity, and an increased coding capacity compared with early generation vectors. Using hemophilia A, a deficiency in clotting factor VIII (FVIII), as a model disease, we generated and evaluated a gutless vector encoding human FVIII. The FVIII gutless vector grew to high titer and was reproducibly scaled-up from vector seed lots. Extensive viral DNA analyses revealed no rearrangements of the vector genome. A quantitative PCR assay demonstrated helper virus contamination levels of <2%, with the best preparation containing 0.3% helper virus. We compared the gutless vector with an E1/E2a/E3-deficient (Av3) early generation vector encoding an identical FVIII expression cassette following intravenous administration to hemophilia A mice. Gutless vector-treated mice displayed 10-fold higher FVIII expression levels that were sustained for at least 9 months. In contrast, mice treated with the Av3 vector displayed FVIII levels below the limit of sensitivity of the assay at 3 months. Assessment of hepatotoxicity by measuring the serum levels of liver enzymes demonstrated that the gutless vector was significantly less toxic than the Av3 vector at time points later than 7 days. At the highest dose used, both vectors caused a transient 10-fold increase in liver enzymes 1 day after vector administration, suggesting that this increase was caused by direct toxicity of the input capsid proteins. These data demonstrate that the gutless vector displayed increased duration and levels of FVIII expression, and was significantly less toxic than an analogous early generation vector.
Collapse
Affiliation(s)
- P Seshidhar Reddy
- Genetic Therapy, Inc. (A Novartis Company), 9 West Watkins Mill Road, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang W, Low JA, Christensen JB, Imperiale MJ. Role for the adenovirus IVa2 protein in packaging of viral DNA. J Virol 2001; 75:10446-54. [PMID: 11581412 PMCID: PMC114618 DOI: 10.1128/jvi.75.21.10446-10454.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although it has been demonstrated that the adenovirus IVa2 protein binds to the packaging domains on the viral chromosome and interacts with the viral L1 52/55-kDa protein, which is required for viral DNA packaging, there has been no direct evidence demonstrating that the IVa2 protein is involved in DNA packaging. To understand in greater detail the DNA packaging mechanisms of adenovirus, we have asked whether DNA packaging is serotype or subgroup specific. We found that Ad7 (subgroup B), Ad12 (subgroup A), and Ad17 (subgroup D) cannot complement the defect of an Ad5 (subgroup C) mutant, pm8001, which does not package its DNA due to a mutation in the L1 52/55-kDa gene. This indicates that the DNA packaging systems of different serotypes cannot interact productively with Ad5 DNA. Based on this, a chimeric virus containing the Ad7 genome except for the inverted terminal repeats and packaging sequence from Ad5 was constructed. This chimeric virus replicates its DNA and synthesizes Ad7 proteins, but it cannot package its DNA in 293 cells or 293 cells expressing the Ad5 L1 52/55-kDa protein. However, this chimeric virus packages its DNA in 293 cells expressing the Ad5 IVa2 protein. These results indicate that the IVa2 protein plays a role in viral DNA packaging and that its function is serotype specific. Since this chimeric virus cannot package its own DNA, but produces all the components for packaging Ad7 DNA, it may be a more suitable helper virus for the growth of Ad7 gutted vectors for gene transfer.
Collapse
Affiliation(s)
- W Zhang
- Department of Microbiology and Immunology, Center for Gene Therapy and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109-0942, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Over the past few years there have been a number of interesting advances in our understanding of the functions encoded by the adenovirus early transcription unit 4 (Ad E4). A large body of recent data demonstrates that E4 proteins encompass an unexpectedly diverse collection of functions required for efficient viral replication. E4 gene products operate through a complex network of protein interactions with key viral and cellular regulatory components involved in transcription, apoptosis, cell cycle control and DNA repair, as well as host cell factors that regulate cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as nuclear bodies (NBs) or PML oncogenic domains (PODs). As understood at present, some of the lytic functions overlap with roles in oncogenic transformation of primary mammalian cells. These observations, together with findings that E4 proteins substantially affect cell toxicity and the immune response of the host have profound implications for the development of Ad vectors for gene therapy. In this article we will summarize recent findings regarding the diverse functions of E4 gene products in the context of earlier work. We will emphasize the interaction of E4 proteins with cellular and viral interaction partners, the role of these interactions for lytic virus growth and how these interactions may contribute to viral oncogenesis. Finally, we will discuss their role in Ad vector and adeno-associated virus infections.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
37
|
Gill DR, Smyth SE, Goddard CA, Pringle IA, Higgins CF, Colledge WH, Hyde SC. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Ther 2001; 8:1539-46. [PMID: 11704814 DOI: 10.1038/sj.gt.3301561] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2001] [Accepted: 08/02/2001] [Indexed: 02/02/2023]
Abstract
For effective gene therapy of chronic disease, persistent transgene expression at therapeutic levels is required. Clinical studies of airway gene transfer in patients with cystic fibrosis (CF) have resulted in short-lived transgene expression. We used intra-nasal dosing of naked plasmid DNA to the murine lung as a model for investigating the duration of airway gene transfer from a series of reporter expression plasmids. Transgene expression was transient when mediated by the viral promoters CMV, RSV and SV40, falling to less than 10% of peak expression after 2 weeks, although the presence of the adenoviral E4ORF3 gene in cis, resulted in extended duration of reporter activity from the CMV promoter. Transient expression from these promoters was not due to loss of the vector as determined by quantitative TaqMan PCR analysis. However, use of the promoters from the human polybiquitin C (UbC) and the elongation factor 1alpha (EF1alpha) genes resulted in persistent gene expression in the mouse lung. The UbC promoter directed high-level reporter activity which was maintained for up to 8 weeks and was still detectable 6 months after a single administration. Such persistent airway transgene expression from a nonviral vector without the concomitant expression of a potential antigen has not been reported previously. Thus, despite the persistence of vector DNA in vivo, attenuation of promoter function may lead to silencing of transgene expression and careful selection of promoter sequences is recommended for in vivo gene transfer.
Collapse
Affiliation(s)
- D R Gill
- GeneMedicine Research Group, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Gilbert R, Nalbantoglu J, Howell JM, Davies L, Fletcher S, Amalfitano A, Petrof BJ, Kamen A, Massie B, Karpati G. Dystrophin expression in muscle following gene transfer with a fully deleted ("gutted") adenovirus is markedly improved by trans-acting adenoviral gene products. Hum Gene Ther 2001; 12:1741-55. [PMID: 11560768 DOI: 10.1089/104303401750476249] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Helper-dependent adenoviruses (HDAd) are Ad vectors lacking all or most viral genes. They hold great promise for gene therapy of diseases such as Duchenne muscular dystrophy (DMD), because they are less immunogenic than E1/E3-deleted Ad (first-generation Ad or FGAd) and can carry the full-length (Fl) dystrophin (dys) cDNA (12 kb). We have compared the transgene expression of a HDAd (HDAdCMVDysFl) and a FGAd (FGAdCMV-dys) in cell culture (HeLa, C2C12 myotubes) and in the muscle of mdx mice (the mouse model for DMD). Both vectors encoded dystrophin regulated by the same cytomegalovirus (CMV) promoter. We demonstrate that the amount of dystrophin expressed was significantly higher after gene transfer with FGAdCMV-dys compared to HDAdCMVDysFl both in vitro and in vivo. However, gene transfer with HDAdCMVDysFl in the presence of a FGAd resulted in a significant increase of dystrophin expression indicating that gene products synthesized by the FGAd increase, in trans, the amount of dystrophin produced. This enhancement occurred in cell culture and after gene transfer in the muscle of mdx mice and dystrophic golden retriever (GRMD) dogs, another animal model for DMD. The E4 region of Ad is required for the enhancement, because no increase of dystrophin expression from HDAdCMVDysFl was observed in the presence of an E1/E4-deleted Ad in vitro and in vivo. The characterization of these enhancing gene products followed by their inclusion into an HDAd may be required to produce sufficient dystrophin to mitigate the pathology of DMD by HDAd-mediated gene transfer.
Collapse
Affiliation(s)
- R Gilbert
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada, H3A 2B4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shen J, Taylor N, Duncan L, Kovesdi I, Bruder JT, Forrester JV, Dick AD. Ex vivo adenovirus mediated gene transfection of human conjunctival epithelium. Br J Ophthalmol 2001; 85:861-7. [PMID: 11423463 PMCID: PMC1724046 DOI: 10.1136/bjo.85.7.861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM To investigate the efficacy of "ex vivo" adenoviral vector mediated gene transfection of human conjunctival epithelial cell as a possible route for gene therapy for the distribution of anti-inflammatory agents for the potential treatment of immune mediated ocular inflammatory disorders. METHODS Human conjunctival cells (HCs) were cultured with various concentrations of recombinant adenoviral vectors carrying a reporter gene LacZ, GFP, or an immunomodulating cytokine vIL-10. vIL-10 in culture supernatant was detected by sandwich ELISA and biological activity was assessed by suppression of ConA stimulated splenocyte proliferation. X-gal and GFP expression was assessed by histochemistry. RESULTS The extent of adenoviral vector mediated transfer of both reporter genes and vIL-10 was dose dependent. LacZ expression could be detected for at least 50 day after infection with multiple of infection (MOI) 200. Following AdCMVvIL-10 transduction, vIL-10 protein expression occurred between 4-6 days post-transduction, and was maintained at a detectable level for at least 1 month. Secreted vIL-10 showed biological activity, significantly inhibiting Con A induced splenocyte proliferation. Additionally, transfection of HCs with two Adv vectors, one carrying LacZ and the other carrying GFP, resulted in co-expression within a single cell. CONCLUSION These results confirm previous successful adenoviral vector mediated gene transfer to HCs and further show that expression can be maintained. Furthermore the data show HCs can secrete biologically active vIL-10 that could be developed as a strategy to suppress immune mediated disorders. The successful co-transduction of HCs as described for other tissues, opens avenues to develop a multiple target gene therapy locally.
Collapse
Affiliation(s)
- J Shen
- Department of Ophthalmology, University of Aberdeen Medical School, Foresterhill, AB25 2ZD, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Wienzek S, Dobbelstein M. Viral and cellular factors that target the promyelocytic leukemia oncogenic domains strongly activate a glucocorticoid-responsive promoter. J Virol 2001; 75:5391-7. [PMID: 11333923 PMCID: PMC114947 DOI: 10.1128/jvi.75.11.5391-5397.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2000] [Accepted: 03/06/2001] [Indexed: 11/20/2022] Open
Abstract
Promyelocytic leukemia (PML) oncogenic domains (PODs) accumulate the transcriptional cofactor named CREB binding protein (CBP) and have been suggested to function as centers of transcription. Transcriptional activation by nuclear hormones, such as glucocorticoids, is augmented by the key constituent of PODs, the PML protein, and decreased by the POD-associated Tax protein of human T-cell leukemia virus type 1 (HTLV-1). This led to the hypothesis that intact PODs might play a positive role in the activation of these promoters. We report here that transiently expressed E4orf3 protein of adenovirus type 5, immediate-early protein 1 of human cytomegalovirus, and the PML-retinoic acid receptor fusion protein from leukemia cells each redistribute CBP within the nucleus. However, unlike the Tax protein of HTLV-1, these factors did not inhibit a glucocorticoid-inducible promoter but strongly enhanced its activity. Thus, at least glucocorticoid-induced transcription does not depend on POD integrity.
Collapse
Affiliation(s)
- S Wienzek
- Institut für Virologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
41
|
Rafii S, Dias S, Meeus S, Hattori K, Ramachandran R, Feuerback F, Worgall S, Hackett NR, Crystal RG. Infection of Endothelium With E1
−
E4
+
, but Not E1
−
E4
−
, Adenovirus Gene Transfer Vectors Enhances Leukocyte Adhesion and Migration by Modulation of ICAM-1, VCAM-1, CD34, and Chemokine Expression. Circ Res 2001; 88:903-10. [PMID: 11348999 DOI: 10.1161/hh0901.089884] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
—Intravascular introduction of replication-deficient adenoviral vectors (Advectors) provides an ideal model of delivery of transgenes for the treatment of various vascular abnormalities. On the basis of the knowledge that Advectors can induce inflammatory responses after intravascular administration, we speculated that cellular activation by Advector infection could directly modulate the endothelial cell (EC) adhesion molecule/chemokine expression repertoire. Infection of human umbilical vein ECs or bone marrow microvascular ECs with an E1
−
E4
+
Advector resulted in the upregulation of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and CD34, but not E-selectin, P-selectin, CD36, CD13, CD44, HLA-DR or PECAM. Upregulation of ICAM-1, VCAM-1, and CD34 was apparent 12 hours after infection and persisted for weeks after infection. Selective induction of adhesion molecules was mediated by the presence of the E4 gene in the Advector, because infection of ECs with an E1
−
E4
−
Advector had no effect on adhesion molecule expression. ECs infected with E1
−
E4
+
Advector, but not those infected with E1
−
E4
−
Advector, supported the adhesion of leukocytes. Monoclonal antibodies to ICAM-1 and VCAM-1 inhibited adhesion of leukocytes to E1
−
E4
+
-infected ECs. Infection of the ECs with E1
−
E4
+
Advector, but not E1
−
E4
−
Advector, resulted in downregulation of expression of chemocytokines, including interleukin-8, MCP-1, RANTES, and GM-CSF. Nonetheless, a large number of leukocytes migrated through ECs infected with E1
−
E4
+
, but not those infected with E1
−
E4
l−
, in response to exogenous chemokines. These results demonstrate that infection of ECs with E1
−
E4
+
Advectors, but not E1
−
E4
−
Advectors, may directly augment inflammatory responses by upregulating expression of adhesion molecules and enhancing migration through Advector-infected ECs and suggest that E1
−
E4
−
Advectors may be a better choice for gene-transfer strategies directed to the ECs.
Collapse
Affiliation(s)
- S Rafii
- Division of Hematology-Oncology, Belfer Gene Therapy Core Facility, Institute of Genetic Medicine, Cornell University Medical College, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sung RS, Qin L, Bromberg JS. TNFα and IFNγ Induced by Innate Anti-adenoviral Immune Responses Inhibit Adenovirus-Mediated Transgene Expression. Mol Ther 2001; 3:757-67. [PMID: 11356080 DOI: 10.1006/mthe.2001.0318] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transient nature of adenovirus-mediated transgene expression has been attributed to adaptive immune responses to adenoviral proteins and transgene products. However, the cytokines interferon-gamma (IFNgamma) and tumor necrosis factor-alpha (TNFalpha) inhibit transgene expression from adenoviral vectors in vitro by a transcription-related mechanism, and their early induction following vector administration in vivo suggests a contribution of innate immunity in regulating transgene expression. In this study, the significance of cytokine expression and its relation to adaptive and innate immunities were determined in TNFalpha-knockout mice, IFNgamma-knockout mice, or anti-IFNgamma mAb-injected animals. Adenoviral LacZ reporter expression directed by human cytomegalovirus (HCMV) promoters was greater in magnitude and duration than that by the murine CMV (MCMV) promoter. beta-Galactosidase reporter gene expression up to day 7 was greater in cytokine-deficient animals compared with wild type. Decrements in transgene expression occurred in advance of adaptive immune responses and were not due to alterations in specific adaptive immunity or vector clearance in cytokine-depleted mice. We conclude that TNFalpha and IFNgamma inhibit early adenovirus-mediated transgene expression by HCMV and MCMV promoters in vivo. Cytokine inhibition of expression is independent of adaptive immunity and is likely secondary to innate immune responses to adenovirus infection.
Collapse
Affiliation(s)
- R S Sung
- Recanati-Miller Transplant Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6754, USA.
| | | | | |
Collapse
|
43
|
Affiliation(s)
- M M Hitt
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
44
|
Andrews JL, Kadan MJ, Gorziglia MI, Kaleko M, Connelly S. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. Mol Ther 2001; 3:329-36. [PMID: 11273775 DOI: 10.1006/mthe.2001.0264] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The use of adenoviral vectors for gene therapy has been limited due to host immune responses directed toward the vector and/or transgene and vector toxicity. To decrease adenoviral vector immunogenicity and toxicity, we attenuated viral gene expression by eliminating E1, E2a, E3, and E4 early genes from the adenoviral backbone. Two highly attenuated, fourth-generation (Av4) E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII (FVIII) under the control of a liver-specific albumin promoter were generated. One Av4 vector (Av4DeltaE4FVIII) was deficient in the entire E4 coding region and the second vector contained a deletion of the E4 region, except for open reading frame 3 (orf 3; Av4orf3FVIII). The Av4 vectors were compared to an E1/E2a/E3-deficient third-generation vector (Av3H8101) containing an analogous transgene expression cassette in vitro and in vivo following intravenous administration in hemophiliac mice. In vitro transduction of Hep3B cells revealed at all three vectors expressed functional FVIII. However, the Av4DeltaE4FVIII vector could not be scaled-up for in vivo studies. Both Av3H8101 and Av4orf3FVIII initially expressed similar levels of FVIII in hemophiliac mice. However, at 3 months, animals treated with the Av4orf3FVIII vector no longer expressed FVIII while Av3H8101-treated mice displayed persistent FVIII expression. Liver enzyme analyses of plasma samples revealed that the Av4orf3FVIII vector was significantly less hepatotoxic than the Av3H8101 vector. These data demonstrate that further attenuation of the adenoviral vector backbone by removal of the majority of the E4 coding region significantly diminished vector toxicity; however, the duration of transgene expression was reduced.
Collapse
Affiliation(s)
- J L Andrews
- Genetic Therapy, Inc. (A Novartis Company), 9 West Watkins Mill Road, Gaithersburg, Maryland 20878, USA
| | | | | | | | | |
Collapse
|
45
|
Grave L, Dreyer D, Dieterle A, Leroy P, Michou AI, Doderer C, Pavirani A, Lusky M, Mehtali M. Differential influence of the E4 adenoviral genes on viral and cellular promoters. J Gene Med 2000; 2:433-43. [PMID: 11199264 DOI: 10.1002/1521-2254(200011/12)2:6<433::aid-jgm143>3.0.co;2-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Strong and stable transgene expression is fundamental to the success of recombinant adenovirus vectors in human gene therapy. However, control of transgene expression is a complex process, involving both viral and cellular factors. In this study, the influence of the E4 adenoviral region on the activity of various promoters was investigated in vitro and in vivo. METHODS Pairs of isogenic E1o and E1oE4o vectors were generated and compared. Levels of transgene expression were determined by Northern blot, ELISA and FACS analysis. Initiation of transcription was studied by nuclear run-on assays. RESULTS Similar to the viral CMV and RSV promoters, the activity of the ubiquitous cellular PGK promoter required the presence of the E4 genes in vitro and in vivo. In contrast, transgene expression from selected liver- and tumor-specific promoters did not require E4 functions. CONCLUSION Together with the reported low liver toxicity of E1oE4o vectors, the independence of E4 of liver-specific promoters renders such vectors interesting alternatives to the use of gutless vectors.
Collapse
Affiliation(s)
- L Grave
- Transgène SA, Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fechner H, Wang X, Wang H, Jansen A, Pauschinger M, Scherübl H, Bergelson JM, Schultheiss HP, Poller W. Trans-complementation of vector replication versus Coxsackie-adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Ther 2000; 7:1954-68. [PMID: 11127584 DOI: 10.1038/sj.gt.3301321] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene therapy of cancer requires high-level expression of therapeutic transgenes in the target cells. Poor gene transfer is an important limitation to adenovector-mediated cancer gene therapy. We investigated two fundamentally different approaches to improve transgene expression in poorly permissive cancer cells. First, overexpression of the adenovirus attachment receptor CAR to facilitate receptor-mediated adenovector (AdV) uptake into the target cells; second, co-infection of this vector together with traces of replication competent adenovirus (RCA) accidentally arising by back-recombination during large-scale vector preparation. Among eight gastrointestinal cancer cell lines, the colorectal cancer lines showed particularly poor vector-mediated transgene expression (down to 67-fold lower than in HeLa cells). Expression of the adenovirus receptors CAR, alpha(v)beta5- and alpha(v)beta3-integrin were highly variable between cell lines. AdV uptake was significantly associated with CAR levels on the cell surface, but not with those of the integrins. AdV-mediated CAR overexpression increased CAR density on the surface of all investigated tumor cells and led to enhancement of transgene expression by 1.8- to 6.7-fold. The other principle to enhance transgene expression was 'trans-complementation' of the therapeutic vector, ie induction of its replication within the target cells. Traces of RCA in a vector preparation, as well as purified RCA were found to provide sufficient E1-region transcripts to induce replication of the therapeutic vector genome. The number of adenovector-based transgene expression cassettes was greatly amplified by this principle, notably without any influence on the rate of vector entry. Co-infection of four colorectal cancer cell lines with marker vector plus RCA (at around 240:1 particle ratio) resulted in far stronger enhancement of transgene expression (up to 46-fold) as compared with CAR overexpression, even in cancers almost refractory to standard adenovector-mediated gene transfer. Whereas RCAs need to be strictly avoided in gene therapy of non-malignant diseases for safety reasons, the magnitude of helper virus-induced therapeutic transgene expression could possibly warrant application of this principle to overcome the resistance of highly malignant cancers against gene therapy.
Collapse
Affiliation(s)
- H Fechner
- Department of Cardiology and Pneumology, University Hospital Benjamin Franklin, Freie Universität, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ramalingam R, Worgall S, Rafii S, Crystal RG. Downregulation of CXCR4 gene expression in primary human endothelial cells following infection with E1(-)E4(+) adenovirus gene transfer vectors. Mol Ther 2000; 2:381-6. [PMID: 11020354 DOI: 10.1006/mthe.2000.0131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infection of human endothelial cells with first-generation E1(-)E4(+) adenovirus (Ad) vectors leads to prolonged cell survival and changes in the cell phenotype to a more quiescent stage. Based on the concept that the CXCR4, the receptor for the endothelial chemoattractant stromal-derived factor-&alpha (SDF-alpha), is constitutively expressed by quiescent, resting endothelial cells, the present study analyzes the effect of Ad vector infection on CXCR4 expression and SDF-alpha responses of human umbilical vein endothelial cells (HUVEC). CXCR4 transcripts were markedly downregulated in E1(-)E4(+) Ad-infected cells 48 h following infection, but not in uninfected control cells or when the cells were infected with an E1(-)E4(-) Ad vector. Analysis of surface CXCR4 expression by flow cytometry demonstrated marked reduction of the CXCR4 receptor on cells infected with E1(-)E4(+) Ad compared to uninfected control cells or E1(-)E4(-) Ad-infected cells. Infection of other cell types which express CXCR4, such as dendritic cells and myeloma cells, did not exhibit CXCR4 receptor downregulation following infection with E1(-)E4(+) Ad. Consistent with the observed downregulation of CXCR4 mRNA and surface protein, infection of the endothelial cells with an E1(-)E4(+) Ad rendered the cells unresponsive to the chemoattractant SDF-alpha compared to naive or E1(-)E4(-) Ad-infected cells. Together, the data suggest that first-generation Ad vectors, likely the E4 region, modify the ability of endothelial cells to respond to at least one important chemoattractant.
Collapse
Affiliation(s)
- R Ramalingam
- Division of Pulmonary and Critical Care Medicine, Weill Medical College of Cornell University-New York Presbyterian Hospital, New York, New York 94143, USA
| | | | | | | |
Collapse
|
48
|
Molinier-Frenkel V, Gahery-Segard H, Mehtali M, Le Boulaire C, Ribault S, Boulanger P, Tursz T, Guillet JG, Farace F. Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol 2000; 74:7678-82. [PMID: 10906225 PMCID: PMC112292 DOI: 10.1128/jvi.74.16.7678-7682.2000] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We previously demonstrated that a single injection of 10(9) PFU of recombinant adenovirus into patients induces strong vector-specific immune responses (H. Gahéry-Ségard, V. Molinier-Frenkel, C. Le Boulaire, P. Saulnier, P. Opolon, R. Lengagne, E. Gautier, A. Le Cesne, L. Zitvogel, A. Venet, C. Schatz, M. Courtney, T. Le Chevalier, T. Tursz, J.-G. Guillet, and F. Farace, J. Clin. Investig. 100:2218-2226, 1997). In the present study we analyzed the mechanism of vector recognition by cytotoxic T lymphocytes (CTL). CD8(+) CTL lines were derived from two patients and maintained in long-term cultures. Target cell infections with E1-deleted and E1-plus E2-deleted adenoviruses, as well as transcription-blocking experiments with actinomycin D, revealed that host T-cell recognition did not require viral gene transcription. Target cells treated with brefeldin A were not lysed, indicating that viral input protein-derived peptides are associated with HLA class I molecules. Using recombinant capsid component-loaded targets, we observed that the three major proteins could be recognized. These results raise the question of the use of multideleted adenoviruses for gene therapy in the quest to diminish antivector CTL responses.
Collapse
Affiliation(s)
- V Molinier-Frenkel
- Départements de Biologie Clinique ou de Médecine, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
O'Connor RJ, Hearing P. The E4-6/7 protein functionally compensates for the loss of E1A expression in adenovirus infection. J Virol 2000; 74:5819-24. [PMID: 10846061 PMCID: PMC112076 DOI: 10.1128/jvi.74.13.5819-5824.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/1999] [Accepted: 04/06/2000] [Indexed: 01/19/2023] Open
Abstract
The E1A gene products are required and sufficient for activation of adenovirus gene expression in cultured cells. The E4-6/7 gene product induces the binding of the cellular transcription factor E2F to the viral E2a promoter region. The induction of E2F binding to the E2a promoter in vitro is directly correlated with transcriptional activation of the E2a promoter in vivo. The E2 region encodes the viral replication proteins, yet adenoviruses lacking E4-6/7 function demonstrate no defective phenotype in infected cells. Here we show that the E4-6/7 protein can functionally compensate for E1A expression in virus infection. In the absence of the E1A gene products, expression of the E4-6/7 protein is sufficient to displace retinoblastoma protein family members from E2Fs, activate expression of early region 2 via induction of E2F DNA binding to the E2a promoter region, and significantly enhance replication of an E1A-defective adenovirus. These results have implications in the regulation of viral gene expression and for the development of recombinant adenovirus vectors.
Collapse
Affiliation(s)
- R J O'Connor
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York, Stony Brook 11794, USA
| | | |
Collapse
|
50
|
Hodges BL, Serra D, Hu H, Begy CA, Chamberlain JS, Amalfitano A. Multiply deleted [E1, polymerase-, and pTP-] adenovirus vector persists despite deletion of the preterminal protein. J Gene Med 2000; 2:250-9. [PMID: 10953916 DOI: 10.1002/1521-2254(200007/08)2:4<250::aid-jgm113>3.0.co;2-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The inherent limitations of [E1-]Ad vectors as gene therapy vehicles suggest that further modifications may improve their overall performance profiles. However, Ad vector modifications can have untoward effects on their basic biology, e.g., some helper-virus dependent Ad vectors have been found to be unstable without the presence of preterminal protein (pTP) activities. Despite this concern, we generated a new class of helper-virus independent Ad vector that was multiply deleted for the E1, polymerase, and pTP genes, and investigated the ramifications of these deletions upon several vector performance parameters. METHODS The construction and propagation of an [E1-, polymerase-, pTP-]Ad vector was achieved with the use of trans-complementing cells co-expressing the Ad E1, polymerase and pTP genes. RESULTS High titer production of the [E1-, polymerase-, pTP-]Ad vector was successfully accomplished via conventional Ad purification techniques. This unique class of Ad vector was capable of long-term gene transfer in vivo (despite lacking pTP functions) that was concomitant with a significantly decreased hepatic toxicity. CONCLUSIONS Previous studies had suggested that Ad genome persistence in vivo may be dependent upon the presence of low level vector genome replication and/or pTP functions. Our results suggest that [E1-, polymerase-, pTP-]Ad vectors can overcome these barriers. The further benefits afforded by the use of this class of Ad vector (increased cloning capacity, high level growth, decreased propensity to generate replication competent Ad (RCA), decreased toxicity) suggests that they will be highly beneficial for use in several aspects of human gene therapy.
Collapse
Affiliation(s)
- B L Hodges
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|