1
|
West AC, Harpur CM, Le Page MA, Lam M, Hodges C, Ely LK, Gearing AJ, Tate MD. Harnessing Endogenous Peptide Compounds as Potential Therapeutics for Severe Influenza. J Infect Dis 2024; 230:e384-e394. [PMID: 38060822 PMCID: PMC11326819 DOI: 10.1093/infdis/jiad566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/05/2023] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Excessive pulmonary inflammation and damage are characteristic features of severe influenza virus infections. LAT8881 is a synthetic 16-amino acid cyclic peptide form of a naturally occurring C-terminal fragment of human growth hormone with therapeutic efficacy against influenza. Shorter linear peptides are typically easier to manufacture and formulate for delivery than larger cyclic peptides. A 6-amino acid linear peptide fragment of LAT8881, LAT9997, was investigated as a potential influenza therapy. METHODS LAT9997 was evaluated for its potential to limit disease in a preclinical mouse model of severe influenza infection. RESULTS Intranasal treatment of mice with either LAT8881 or LAT9997 from day 1 following influenza infection significantly improved survival outcomes. Initiating LAT9997 treatment at the onset of severe disease also significantly improved disease severity. Greater disease resistance in LAT9997-treated mice correlated with reduced lung immunopathology, damage markers, vascular leak, and epithelial cell death. Treatment reduced viral loads, cytokines, and neutrophil infiltration in the airways yet maintained protective alveolar macrophages in a dose-dependent manner. Sequential trimming of N- and C-terminal amino acids from LAT9997 revealed a structure-activity relationship. CONCLUSIONS These findings provide preclinical evidence that therapeutic LAT9997 treatment limits viral burden and characteristic features of severe influenza, including hyperinflammation and lung damage. SUMMARY Excessive pulmonary inflammation and damage are characteristic features of severe influenza virus infections. LAT9997 is a linear peptide fragment derived from human growth hormone. This study provides preclinical evidence that therapeutic LAT9997 treatment limits viral burden, hyperinflammation, and lung damage.
Collapse
Affiliation(s)
- Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | | | | | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| |
Collapse
|
2
|
Cardenas M, Seibert B, Cowan B, Fraiha ALS, Carnaccini S, Gay LC, Faccin FC, Caceres CJ, Anderson TK, Vincent Baker AL, Perez DR, Rajao DS. Amino acid 138 in the HA of a H3N2 subtype influenza A virus increases affinity for the lower respiratory tract and alveolar macrophages in pigs. PLoS Pathog 2024; 20:e1012026. [PMID: 38377132 PMCID: PMC10906893 DOI: 10.1371/journal.ppat.1012026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Influenza A virus (FLUAV) infects a wide range of hosts and human-to-swine spillover events are frequently reported. However, only a few of these human viruses have become established in pigs and the host barriers and molecular mechanisms driving adaptation to the swine host remain poorly understood. We previously found that infection of pigs with a 2:6 reassortant virus (hVIC/11) containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from the human strain A/Victoria/361/2011 (H3N2) and internal gene segments of an endemic swine strain (sOH/04) resulted in a fixed amino acid substitution in the HA (A138S, mature H3 HA numbering). In silico analysis revealed that S138 became predominant among swine H3N2 virus sequences deposited in public databases, while 138A predominates in human isolates. To understand the role of the HA A138S substitution in the adaptation of a human-origin FLUAV HA to swine, we infected pigs with the hVIC/11A138S mutant and analyzed pathogenesis and transmission compared to hVIC/11 and sOH/04. Our results showed that the hVIC/11A138S virus had an intermediary pathogenesis between hVIC/11 and sOH/04. The hVIC/11A138S infected the upper respiratory tract, right caudal, and both cranial lobes while hVIC/11 was only detected in nose and trachea samples. Viruses induced a distinct expression pattern of various pro-inflammatory cytokines such as IL-8, TNF-α, and IFN-β. Flow cytometric analysis of lung samples revealed a significant reduction of porcine alveolar macrophages (PAMs) in hVIC/11A138S-infected pigs compared to hVIC/11 while a MHCIIlowCD163neg population was increased. The hVIC/11A138S showed a higher affinity for PAMs than hVIC/11, noted as an increase of infected PAMs in bronchoalveolar lavage fluid (BALF), and showed no differences in the percentage of HA-positive PAMs compared to sOH/04. This increased infection of PAMs led to an increase of granulocyte-monocyte colony-stimulating factor (GM-CSF) stimulation but a reduced expression of peroxisome proliferator-activated receptor gamma (PPARγ) in the sOH/04-infected group. Analysis using the PAM cell line 3D4/21 revealed that the A138S substitution improved replication and apoptosis induction in this cell type compared to hVIC/11 but at lower levels than sOH/04. Overall, our study indicates that adaptation of human viruses to the swine host involves an increased affinity for the lower respiratory tract and alveolar macrophages.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ana Luiza S. Fraiha
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
3
|
Rivière F, Burger J, Lefèvre F, Garnier A, Vigne C, Tournier JN, Billon-Denis E. Infection with Influenzavirus A in a murine model induces epithelial bronchial lesions and distinct waves of innate immune-cell recruitment. Front Immunol 2023; 14:1241323. [PMID: 37649477 PMCID: PMC10464834 DOI: 10.3389/fimmu.2023.1241323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Inflammatory lesions after Influenza A viruses (IAV) are potential therapeutic target for which better understanding of post-infection immune mechanisms is required. Most studies to evaluate innate immune reactions induced by IAV are based on quantitative/functional methods and anatomical exploration is most often non-existent. We aimed to study pulmonary damage and macrophage recruitment using two-photon excitation microscopy (TPEM) after IAV infection. Methods We infected C57BL/6 CD11c+YFP mice with A/Puerto Ricco/8/34 H1N1. We performed immune cell analysis, including flow cytometry, cytokine concentration assays, and TPEM observations after staining with anti-F4/80 antibody coupled to BV421. We adapted live lung slice (LLS) method for ex-vivo intravital microscopy to analyze cell motility. Results TPEM provided complementary data to flow cytometry and cytokine assays by allowing observation of bronchial epithelium lesions and spreading of local infection. Addition of F4/80-BV421 staining allowed us to precisely determine timing of recruitment and pulmonary migration of macrophages. Ex-vivo LLS preserved cellular viability, allowing us to observe acceleration of macrophage motility. Conclusion After IAV infection, we were able to explore structural consequences and successive waves of innate immune cell recruitment. By combining microscopy, flow cytometry and chemokine measurements, we describe novel and precise scenario of innate immune response against IAV.
Collapse
Affiliation(s)
- Frédéric Rivière
- Immunity and Pathogen Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Respiratory Department, Percy Military Teaching Hospital, Clamart, France
- Ecole du Val-de-Grâce, Paris, France
| | - Julien Burger
- Immunity and Pathogen Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - François Lefèvre
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité de Recherche (UR) 0892 Virology and Molecular Immunology Unit, Centre de recherche Ile-de-France-Jouy-en-Josas, Jouy-en-Josas, France
| | - Annabelle Garnier
- Immunity and Pathogen Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Clarisse Vigne
- Immunity and Pathogen Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
| | - Jean-Nicolas Tournier
- Immunity and Pathogen Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Ecole du Val-de-Grâce, Paris, France
- Innovative Vaccine Laboratory, Institut Pasteur, Paris, France
| | - Emmanuelle Billon-Denis
- Immunity and Pathogen Unit, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France
- Innovative Vaccine Laboratory, Institut Pasteur, Paris, France
| |
Collapse
|
4
|
Menezes dos Reis L, Berçot MR, Castelucci BG, Martins AJE, Castro G, Moraes-Vieira PM. Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses 2023; 15:v15020525. [PMID: 36851739 PMCID: PMC9965666 DOI: 10.3390/v15020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.
Collapse
Affiliation(s)
- Larissa Menezes dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Marcelo Rodrigues Berçot
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Ana Julia Estumano Martins
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence:
| |
Collapse
|
5
|
Harpur CM, Le Page MA, Tate MD. Too young to die? How aging affects cellular innate immune responses to influenza virus and disease severity. Virulence 2021; 12:1629-1646. [PMID: 34152253 PMCID: PMC8218692 DOI: 10.1080/21505594.2021.1939608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Influenza is a respiratory viral infection that causes significant morbidity and mortality worldwide. The innate immune cell response elicited during influenza A virus (IAV) infection forms the critical first line of defense, which typically is impaired as we age. As such, elderly individuals more commonly succumb to influenza-associated complications, which is reflected in most aged animal models of IAV infection. Here, we review the important roles of several major innate immune cell populations in influenza pathogenesis, some of which being deleterious to the host, and the current knowledge of how age-associated numerical, phenotypic and functional cell changes impact disease development. Further investigation into age-related modulation of innate immune cell responses, using appropriate animal models, will help reveal how immunity to IAV may be compromised by aging and inform the development of novel therapies, tailored for use in this vulnerable group.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
6
|
Albers GJ, Iwasaki J, McErlean P, Ogger PP, Ghai P, Khoyratty TE, Udalova IA, Lloyd CM, Byrne AJ. IRF5 regulates airway macrophage metabolic responses. Clin Exp Immunol 2021; 204:134-143. [PMID: 33423291 PMCID: PMC7944363 DOI: 10.1111/cei.13573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Interferon regulatory factor 5 (IRF5) is a master regulator of macrophage phenotype and a key transcription factor involved in expression of proinflammatory cytokine responses to microbial and viral infection. Here, we show that IRF5 controls cellular and metabolic responses. By integrating ChIP sequencing (ChIP-Seq) and assay for transposase-accessible chromatin using sequencing (ATAC)-seq data sets, we found that IRF5 directly regulates metabolic genes such as hexokinase-2 (Hk2). The interaction of IRF5 and metabolic genes had a functional consequence, as Irf5-/- airway macrophages but not bone marrow-derived macrophages (BMDMs) were characterized by a quiescent metabolic phenotype at baseline and had reduced ability to utilize oxidative phosphorylation after Toll-like receptor (TLR)-3 activation, in comparison to controls, ex vivo. In a murine model of influenza infection, IRF5 deficiency had no effect on viral load in comparison to wild-type controls but controlled metabolic responses to viral infection, as IRF5 deficiency led to reduced expression of Sirt6 and Hk2. Together, our data indicate that IRF5 is a key component of AM metabolic responses following influenza infection and TLR-3 activation.
Collapse
Affiliation(s)
- G. J. Albers
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - J. Iwasaki
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - P. McErlean
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - P. P. Ogger
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - P. Ghai
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - T. E. Khoyratty
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - I. A. Udalova
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - C. M. Lloyd
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| | - A. J. Byrne
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
7
|
Abstract
Influenza virus infections are a leading cause of morbidity and mortality worldwide. This is due in part to the continual emergence of new viral variants and to synergistic interactions with other viruses and bacteria. There is a lack of understanding about how host responses work to control the infection and how other pathogens capitalize on the altered immune state. The complexity of multi-pathogen infections makes dissecting contributing mechanisms, which may be non-linear and occur on different time scales, challenging. Fortunately, mathematical models have been able to uncover infection control mechanisms, establish regulatory feedbacks, connect mechanisms across time scales, and determine the processes that dictate different disease outcomes. These models have tested existing hypotheses and generated new hypotheses, some of which have been subsequently tested and validated in the laboratory. They have been particularly a key in studying influenza-bacteria coinfections and will be undoubtedly be useful in examining the interplay between influenza virus and other viruses. Here, I review recent advances in modeling influenza-related infections, the novel biological insight that has been gained through modeling, the importance of model-driven experimental design, and future directions of the field.
Collapse
Affiliation(s)
- Amber M Smith
- University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
8
|
Influenza and Memory T Cells: How to Awake the Force. Vaccines (Basel) 2016; 4:vaccines4040033. [PMID: 27754364 PMCID: PMC5192353 DOI: 10.3390/vaccines4040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus.
Collapse
|
9
|
LeMessurier KS, Lin Y, McCullers JA, Samarasinghe AE. Antimicrobial peptides alter early immune response to influenza A virus infection in C57BL/6 mice. Antiviral Res 2016; 133:208-17. [PMID: 27531368 DOI: 10.1016/j.antiviral.2016.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023]
Abstract
Influenza is a disease of the respiratory system caused by single stranded RNA viruses with varying genotypes. Immunopathogenesis to influenza viruses differs based on virus strain, dose, and mouse strain used in laboratory models. Although effective mucosal immune defenses are important in early host defense against influenza, information on the kinetics of these immune defense mechanisms during the course of influenza infection is limited. We investigated changes to antimicrobial peptides and primary innate immune cells at early time points after infection and compared these variables between two prominent H1N1 influenza A virus (IAV) strains, A/CA/04/2009 and A/PR/08/1934 in C57BL/6 mice. Alveolar and parenchymal macrophage ratios were altered after IAV infection and pro-inflammatory cytokine production in macrophages was induced after IAV infection. Genes encoding antimicrobial peptides, β-defensin (Defb4), bactericidal-permeability increasing protein (Bpifa1), and cathelicidin antimicrobial peptide (Camp), were differentially regulated after IAV infection and the kinetics of Defb4 expression differed in response to each virus strain. Beta-defensin reduced infectivity of A/CA/04/2009 virus but not A/PR/08/1934. Beta defensins also changed the innate immune cell profile wherein mice pre-treated with β-defensin had increased alveolar macrophages and CD103(+) dendritic cells, and reduced CD11b(+) dendritic cells and neutrophils. In addition to highlighting that immune responses may vary based on influenza virus strain used, our data suggest an important role for antimicrobial peptides in host defense against influenza virus.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yanyan Lin
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jonathan A McCullers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
10
|
Acosta-Ramirez E, Tram C, Kampen RM, Tillman MR, Schwendener RA, Xing Z, Halperin SA, Wang J. Respiratory macrophages regulate CD4 T memory responses to mucosal immunization with recombinant adenovirus-based vaccines. Cell Immunol 2016; 310:53-62. [PMID: 27425590 PMCID: PMC7094387 DOI: 10.1016/j.cellimm.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Respiratory macrophages have dual functional roles that regulate CD4 T cell responses to recombinant adenovirus-based vaccination in a stage-dependent manner. Respiratory macrophages suppress the initial CD4 T cell activation and the subsequent size of tissue-resident CD4 memory T cells. Respiratory macrophages and potentially circulating monocytes are critically required for the development and fitness of long-term tissue-resident CD4 memory T cells.
Respiratory immunization is an attractive way to generate systemic and mucosal protective memory responses that are required for preventing mucosally transmitted infections. However, the molecular and cellular mechanisms for controlling memory T cell responses remain incompletely understood. In this study, we investigated the role of respiratory macrophage (MΦ) in regulating CD4 T cell responses to recombinant adenovirus-based (rAd) vaccines. We demonstrated that rAd intranasal (i.n.) vaccination induced migration and accumulation of respiratory MΦ and circulatory monocytes in the mediastinal lymph nodes and lung parenchyma. Under the influence of respiratory MΦ CD4 T cells exhibited slow proliferation kinetics and an increased tendency of generating central memory, as opposed to effector memory, CD4 T cell responses in vitro and in vivo. Correspondingly, depletion of MΦ using clodronate-containing liposome prior to i.n. immunization significantly enhanced CD4 T cell proliferation and increased the frequency of CD4 memory T cells in the airway lumen, demonstrating that MΦ initially serve as a negative regulator in limiting generation of mucosal tissue-resident memory CD4 T cells. However, clodronate-containing liposome delivery following i.n. immunization markedly reduced the frequencies of memory CD4 T cells in the airway lumen and spleen, indicating that respiratory MΦ and potentially circulating monocytes are critically required for maintaining long-term memory CD4 T cells. Collectively, our data demonstrate that rAd-induced mucosal CD4 T memory responses are regulated by respiratory MΦ and/or monocytes at multiple stages.
Collapse
Affiliation(s)
- Elizabeth Acosta-Ramirez
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Cynthia Tram
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Rachel M Kampen
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Melanie R Tillman
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Reto A Schwendener
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Zhou Xing
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Scott A Halperin
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Jun Wang
- Canadian Center for Vaccinology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, and IWK Health Centre, Halifax, Nova Scotia, Canada.
| |
Collapse
|
11
|
Abstract
Alveolar macrophages (AMs) are critical for immunity against influenza A virus (IAV) infection. Depletion, hyporeactivity, and disruption of AM development and differentiation are all associated with lethal IAV infection. AMs drive the innate immune response that limits IAV infection. AMs are crucial for steady-state homeostasis of pulmonary surfactant, and in turn surfactant proteins regulate AMs and participate in host defense against IAV. Known factors that are necessary for AM function and differentiation in vivo include surfactant proteins, the growth factor GM-CSF, the hormone receptor PPARγ, and the transcription factors PU.1 and Bach2. Although PU.1 and PPARγ are downstream effectors of GM-CSF, Bach2 works independently. GM-CSF and Bach2-deficient AMs have phenotypes with immature or alternatively activated states of differentiation, respectively, and both extremes are unsuitable for surfactant homeostasis. The activation state of AMs and the local microenvironment may determine the development of symptomatic versus asymptomatic IAV infection in different individuals.
Collapse
Affiliation(s)
- E Scott Halstead
- a 1 Department of Pediatrics, Division of Pulmonary Critical Care, Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Pennsylvania State University Hershey Children's Hospital, Hershey, PA, USA
| | - Zissis C Chroneos
- b 2 Department of Pediatrics, Microbiology and Immunology, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Kolli D, Gupta MR, Sbrana E, Velayutham TS, Chao H, Casola A, Garofalo RP. Alveolar macrophages contribute to the pathogenesis of human metapneumovirus infection while protecting against respiratory syncytial virus infection. Am J Respir Cell Mol Biol 2014; 51:502-15. [PMID: 24749674 DOI: 10.1165/rcmb.2013-0414oc] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human metapneumovirus (hMPV) and respiratory syncytial virus (RSV) are leading causes of upper and lower respiratory tract infections in young children and among elderly and immunocompromised patients. The pathogenesis of hMPV-induced lung disease is poorly understood. The lung macrophage population consists of alveolar macrophages (AMs) residing at the luminal surface of alveoli and interstitial macrophages present within the parenchymal lung interstitium. The involvement of AMs in innate immune responses to virus infections remains elusive. In this study, BALB/c mice depleted of AMs by intranasal instillation of dichloromethylene bisphosphonate (L-CL2MBP) liposomes were examined for disease, lung inflammation, and viral replication after infection with hMPV or RSV. hMPV-infected mice lacking AMs exhibited improved disease in terms of body weight loss, lung inflammation, airway obstruction, and hyperresponsiveness compared with AM-competent mice. AM depletion was associated with significantly reduced hMPV titers in the lungs, suggesting that hMPV required AMs for early entry and replication in the lung. In contrast, AM depletion in the context of RSV infection was characterized by an increase in viral replication, worsened disease, and inflammation, with increased airway neutrophils and inflammatory dendritic cells. Overall, lack of AMs resulted in a broad-spectrum disruption in type I IFN and certain inflammatory cytokine production, including TNF and IL-6, while causing a virus-specific alteration in the profile of several immunomodulatory cytokines, chemokines, and growth factors. Our study demonstrates that AMs have distinct roles in the context of human infections caused by members of the Paramyxoviridae family.
Collapse
|
13
|
Fox JM, Sage LK, Poore S, Johnson S, Tompkins SM, Tripp RA. Drug analog inhibition of indoleamine 2,3-dioxygenase (IDO) activity modifies pattern recognition receptor expression and proinflammatory cytokine responses early during influenza virus infection. J Leukoc Biol 2014; 96:447-52. [PMID: 24799604 DOI: 10.1189/jlb.3ab0114-046rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Influenza virus is recognized by PRRs, which are critical in the early response to virus infection and induction of proinflammatory cytokines. IDO is increased in the lung of mice immediately following influenza infection, and the presence of IDO has been shown to mediate immune suppression through depletion of trp and reduction in IL-6 production. To determine the role of IDO activity in the early immune response to influenza infection, IDO activity was inhibited using the synthetic analog, 1MT. The results show that IDO inhibition enhanced proinflammatory cytokine gene and protein expression at 24 and 48 h postinfection, respectively, compared with control-treated mice and affected PRR expression. The enhanced proinflammatory response in the presence of 1MT was attributed to macrophages in the airways, as Raw264.7 and primary AMs showed enhanced production of IFN-β, IL-1β, IL-6, and TNF-α in the presence of 1MT. These findings provide important knowledge for the role of IDO during initial host response to influenza infection.
Collapse
Affiliation(s)
- Julie M Fox
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Leo K Sage
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Spencer Poore
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Scott Johnson
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
The macrophage galactose-type lectin can function as an attachment and entry receptor for influenza virus. J Virol 2013; 88:1659-72. [PMID: 24257596 DOI: 10.1128/jvi.02014-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Specific protein receptors that mediate internalization and entry of influenza A virus (IAV) have not been identified for any cell type. Sialic acid (SIA), the primary attachment factor for IAV hemagglutinin, is expressed by numerous cell surface glycoproteins and glycolipids, confounding efforts to identify specific receptors involved in virus infection. Lec1 Chinese hamster ovary (CHO) epithelial cells express cell surface SIA and bind IAV yet are largely resistant to infection. Here, we demonstrate that expression of the murine macrophage galactose-type lectin 1 (MGL1) by Lec1 cells enhanced Ca(2+)-dependent IAV binding and restored permissivity to infection. Lec1 cells expressing MGL1 were infected in the presence or absence of cell surface SIA, indicating that MGL1 can act as a primary receptor or as a coreceptor with SIA. Lec1 cells expressing endocytosis-deficient MGL1 mediated Ca(2+)-dependent IAV binding but were less sensitive to IAV infection, indicating that direct internalization via MGL1 can result in cellular infection. Together, these studies identify MGL1 as a cell surface glycoprotein that can act as an authentic receptor for both attachment and infectious entry of IAV.
Collapse
|
15
|
Comparative virus replication and host innate responses in human cells infected with three prevalent clades (2.3.4, 2.3.2, and 7) of highly pathogenic avian influenza H5N1 viruses. J Virol 2013; 88:725-9. [PMID: 24131718 DOI: 10.1128/jvi.02510-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Highly pathogenic avian influenza H5N1 virus clades 2.3.4, 2.3.2, and 7 are the dominant cocirculating H5N1 viruses in poultry in China. However, humans appear to be clinically susceptible mostly to the 2.3.4 virus clade. Here, we demonstrated that A549 cells and human macrophages infected with clade 2.3.4 viruses produced significantly more viruses than those infected with the other two clades. Likewise, clade 2.3.4-infected macrophages caused the most severe cellular damage and strongest proinflammatory response.
Collapse
|
16
|
Phenotypic differences in virulence and immune response in closely related clinical isolates of influenza A 2009 H1N1 pandemic viruses in mice. PLoS One 2013; 8:e56602. [PMID: 23441208 PMCID: PMC3575477 DOI: 10.1371/journal.pone.0056602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/14/2013] [Indexed: 01/07/2023] Open
Abstract
To capture the possible genotypic and phenotypic differences of the 2009 influenza A virus H1N1 pandemic (H1N1pdm) strains circulating in adult hospitalized patients, we isolated and sequenced nine H1N1pdm viruses from patients hospitalized during 2009–2010 with severe influenza pneumonia in Kentucky. Each viral isolate was characterized in mice along with two additional H1N1 pandemic strains and one seasonal strain to assess replication and virulence. All isolates showed similar levels of replication in nasal turbinates and lung, but varied in their ability to cause morbidity. Further differences were identified in cytokine and chemokine responses. IL-6 and KC were expressed early in mice infected with strains associated with higher virulence. Strains that showed lower pathogenicity in mice had greater IFNγ, MIG, and IL-10 responses. A principal component analysis (PCA) of the cytokine and chemokine profiles revealed 4 immune response phenotypes that correlated with the severity of disease. A/KY/180/10, which showed the greatest virulence with a rapid onset of disease progression, was compared in additional studies with A/KY/136/09, which showed low virulence in mice. Analyses comparing a low (KY/136) versus a high (KY/180) virulent isolate showed a significant difference in the kinetics of infection within the lower respiratory tract and immune responses. Notably by 4 DPI, virus titers within the lung, bronchoalveolar lavage fluid (BALf), and cells within the BAL (BALc) revealed that the KY/136 replicated in BALc, while KY/180 replication persisted in lungs and BALc. In summary, our studies suggest four phenotypic groups based on immune responses that result in different virulence outcomes in H1N1pdm isolates with a high degree of genetic similarity. In vitro studies with two of these isolates suggested that the more virulent isolate, KY/180, replicates productively in macrophages and this may be a key determinant in tipping the response toward a more severe disease progression.
Collapse
|
17
|
The hemagglutinin protein of highly pathogenic H5N1 influenza viruses overcomes an early block in the replication cycle to promote productive replication in macrophages. J Virol 2012; 87:1411-9. [PMID: 23152519 DOI: 10.1128/jvi.02682-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophages are known to be one of the first lines of defense against influenza virus infection. However, they may also contribute to severe disease caused by the highly pathogenic avian (HPAI) H5N1 influenza viruses. One reason for this may be the ability of certain influenza virus strains to productively replicate in macrophages. However, studies investigating the productive replication of influenza viruses in macrophages have been contradictory, and the results may depend on both the type of macrophages used and the specific viral strain. In this work, we investigated the ability of H1 to H16 viruses to productively replicate in primary murine alveolar macrophages and RAW264.7 macrophages. We show that only a subset of HPAI H5N1 viruses, those that cause high morbidity and mortality in mammals, can productively replicate in macrophages, as measured by the release of newly synthesized virus particles into the cell supernatant. Mechanistically, we found that these H5 strains can overcome a block early in the viral life cycle leading to efficient nuclear entry, viral transcription, translation, and ultimately replication. Studies with reassortant viruses demonstrated that expression of the hemagglutinin gene from an H5N1 virus rescued replication of H1N1 influenza virus in macrophages. This study is the first to characterize H5N1 influenza viruses as the only subtype of influenza virus capable of productive replication in macrophages and establishes the viral gene that is required for this characteristic. The ability to productively replicate in macrophages is unique to H5N1 influenza viruses and may contribute to their increased pathogenesis.
Collapse
|
18
|
Briggs CM, Mayer AE, Parks GD. Mumps virus inhibits migration of primary human macrophages toward a chemokine gradient through a TNF-alpha dependent mechanism. Virology 2012; 433:245-52. [PMID: 22935226 PMCID: PMC3457059 DOI: 10.1016/j.virol.2012.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/22/2012] [Accepted: 08/10/2012] [Indexed: 01/04/2023]
Abstract
Macrophages are an important cell type for regulation of immunity, and can play key roles in virus pathogenesis. Here we address the effect of infection of primary human macrophages with the related paramyxoviruses Parainfluenza virus 5 (PIV5) and Mumps virus (MuV). Monocyte-derived macrophages infected with PIV5 or MuV showed very little cytopathic effect, but were found to be defective in migration toward a gradient of chemokines such as macrophage colony stimulating factor (MCSF) and vascular endothelial growth factor (VEGF). For MuV infection, the inhibition of migration required live virus infection, but was not caused by a loss of chemokine receptors on the surface of infected cells. MuV-mediated inhibition of macrophage chemotaxis was through a soluble factor released from infected cells. MuV infection enhanced secretion of TNF-α, but not macrophage inhibitory factor (MIF). Antibody inhibition and add-back experiments demonstrated that TNF-α was both necessary and sufficient for MuV-mediate chemotaxis inhibition.
Collapse
Affiliation(s)
- Caitlin M. Briggs
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1064
| | - Anne E. Mayer
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1064
| | - Griffith D. Parks
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1064
| |
Collapse
|
19
|
Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis. Clin Dev Immunol 2012; 2012:628293. [PMID: 22545059 PMCID: PMC3321538 DOI: 10.1155/2012/628293] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/18/2012] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB.
Collapse
|
20
|
Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res 2011; 162:19-30. [PMID: 21963677 DOI: 10.1016/j.virusres.2011.09.022] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy.
Collapse
Affiliation(s)
- J H C M Kreijtz
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
21
|
Oslund KL, Baumgarth N. Influenza-induced innate immunity: regulators of viral replication, respiratory tract pathology & adaptive immunity. Future Virol 2011; 6:951-962. [PMID: 21909336 DOI: 10.2217/fvl.11.63] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Influenza virus infections usually cause mild to moderately severe respiratory disease, however some infections, like those involving the avian H5N1 virus, can cause massive viral pneumonia, systemic disease and death. The innate immune response of respiratory tract resident cells is the first line of defense and limits virus replication. Enhanced cytokine and chemokine production following infection, however, appears to underlie much of the pathology that develops after infection with highly pathogenic strains. A so-called `cytokine storm' can damage the lung tissue and cause systemic disease, despite the control of viral replication. By summarizing current knowledge of the innate responses mounted to influenza infection, this review highlights the importance of the respiratory tract epithelial cells as regulators of innate and adaptive immunity to influenza virus.
Collapse
Affiliation(s)
- Karen L Oslund
- Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
22
|
Tate MD, Schilter HC, Brooks AG, Reading PC. Responses of mouse airway epithelial cells and alveolar macrophages to virulent and avirulent strains of influenza A virus. Viral Immunol 2011; 24:77-88. [PMID: 21449718 DOI: 10.1089/vim.2010.0118] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Influenza A virus (IAV) infection is associated with outcomes ranging from subclinical infection to severe pneumonia. In this study, we compared IAV strains BJx109 (H3N2), HKx31 (H3N2), and PR8 (H1N1), for their ability to elicit innate immune responses from mouse airway cells in vitro and their virulence in mice. The viruses differed markedly in their ability to induce disease in mice (PR8 > HKx31 > BJx109). In particular, PR8 infection was associated with high levels of virus replication and pulmonary inflammation. We next compared the ability of each virus strain to infect and induce inflammatory mediators from mouse airway cells. First, major differences were observed in the ability of viruses to infect and induce chemokines and cytokines from mouse alveolar macrophages (BJx109 > HKx31 > PR8), but not from airway epithelial cells (AEC) in vitro. Second, C-type lectins of the innate immune system in mouse lung fluids blocked the ability of BJx109, but not PR8, to infect mouse macrophages and AEC. The failure of the virulent PR8 virus to elicit responses from airway macrophages, combined with resistance to antiviral proteins in mouse airway fluids, likely contribute to virulence in mice. These findings provide insight into the mechanisms underlying disease severity in the mouse model of influenza infection.
Collapse
Affiliation(s)
- Michelle D Tate
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
23
|
Ghosh S, Gregory D, Smith A, Kobzik L. MARCO regulates early inflammatory responses against influenza: a useful macrophage function with adverse outcome. Am J Respir Cell Mol Biol 2011; 45:1036-44. [PMID: 21562316 DOI: 10.1165/rcmb.2010-0349oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lung macrophages use the scavenger receptor MARCO to bind and ingest bacteria, particulate matter, and post cellular debris. We investigated the role of MARCO in influenza A virus (IAV) pneumonia. In contrast to higher susceptibility to bacterial infection, MARCO(-/-) mice had lower morbidity and mortality from influenza pneumonia than wild-type (WT) mice. The early course of influenza in MARCO(-/-) lungs was marked by an enhanced but transient neutrophilic inflammatory response and significantly lower viral replication compared with the WT mice. At later time points, no significant differences in lung histopathology or absolute numbers of T lymphocyte influx were evident. Uptake of IAV by WT and MARCO(-/-) bronchoalveolar lavage macrophages in vitro was similar. By LPS coadministration, we demonstrated that rapid neutrophil and monocyte influx during the onset of influenza suppressed viral replication, indicating a protective role of early inflammation. We hypothesized that the presence of increased basal proinflammatory post cellular debris in the absence of scavenging function lowered the inflammatory response threshold to IAV in MARCO(-/-) mice. Indeed, MARCO(-/-) mice showed increased accumulation of proinflammatory oxidized lipoproteins in the bronchoalveolar lavage early in the infection process, which are the potential mediators of the observed enhanced inflammation. These results indicate that MARCO suppresses a protective early inflammatory response to influenza, which modulates viral clearance and delays recovery.
Collapse
Affiliation(s)
- Sanjukta Ghosh
- Department of Integrative and Molecular Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
24
|
Bordetella pertussis infection exacerbates influenza virus infection through pertussis toxin-mediated suppression of innate immunity. PLoS One 2011; 6:e19016. [PMID: 21533103 PMCID: PMC3080395 DOI: 10.1371/journal.pone.0019016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/23/2011] [Indexed: 01/02/2023] Open
Abstract
Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers.
Collapse
|
25
|
Briggs CM, Holder RC, Reid SD, Parks GD. Activation of human macrophages by bacterial components relieves the restriction on replication of an interferon-inducing parainfluenza virus 5 (PIV5) P/V mutant. Microbes Infect 2010; 13:359-68. [PMID: 21185944 DOI: 10.1016/j.micinf.2010.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/04/2010] [Accepted: 12/15/2010] [Indexed: 12/26/2022]
Abstract
Macrophages regulate immune responses during many viral infections, and can be a major determinant of pathogenesis, virus replication and immune response to infection. Here, we have addressed the question of the outcome of infection of primary human macrophages with parainfluenza virus 5 (PIV5) and a PIV5 mutant (P/V-CPI-) that is unable to counteract interferon (IFN) responses. In cultures of naïve monocyte-derived macrophages (MDMs), WT PIV5 established a highly productive infection, whereas the P/V-CPI- mutant was restricted for replication in MDMs by IFN-beta. Restricted replication in vitro was relieved in MDM that had been activated by prior exposure to heat killed Gram positive bacteria, including Listeria monocytogenes, Streptococcus pyogenes, and Bacillus anthracis. Enhanced replication of the P/V mutant in MDM previously activated by bacterial components correlated with a reduced ability to produce IFN-beta in response to virus infection, whereas IFN signaling was intact. Activated MDM were found to upregulate the synthesis of IRAK-M, which has been previously shown to negatively regulate factors involved in TLR signaling and IFN-beta production. We discuss these results in terms of the implications for mixed bacteria-virus infections and for the use of live RNA virus vectors that have been engineered to be attenuated for IFN sensitivity.
Collapse
Affiliation(s)
- Caitlin M Briggs
- Department of Microbiology and Immunology, Wake Forest University, School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1064, United States
| | | | | | | |
Collapse
|
26
|
El Bakkouri K, Descamps F, De Filette M, Smet A, Festjens E, Birkett A, Van Rooijen N, Verbeek S, Fiers W, Saelens X. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. THE JOURNAL OF IMMUNOLOGY 2010; 186:1022-31. [PMID: 21169548 DOI: 10.4049/jimmunol.0902147] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ectodomain of matrix protein 2 (M2e) of influenza A virus is an attractive target for a universal influenza A vaccine: the M2e sequence is highly conserved across influenza virus subtypes, and induced humoral anti-M2e immunity protects against a lethal influenza virus challenge in animal models. Clinical phase I studies with M2e vaccine candidates have been completed. However, the in vivo mechanism of immune protection induced by M2e-carrier vaccination is unclear. Using passive immunization experiments in wild-type, FcRγ(-/-), FcγRI(-/-), FcγRIII(-/-), and (FcγRI, FcγRIII)(-/-) mice, we report in this study that Fc receptors are essential for anti-M2e IgG-mediated immune protection. M2e-specific IgG1 isotype Abs are shown to require functional FcγRIII for in vivo immune protection but other anti-M2e IgG isotypes can rescue FcγRIII(-/-) mice from a lethal challenge. Using a conditional cell depletion protocol, we also demonstrate that alveolar macrophages (AM) play a crucial role in humoral M2e-specific immune protection. Additionally, we show that adoptive transfer of wild-type AM into (FcγRI, FcγRIII)(-/-) mice restores protection by passively transferred anti-M2e IgG. We conclude that AM and Fc receptor-dependent elimination of influenza A virus-infected cells are essential for protection by anti-M2e IgG.
Collapse
Affiliation(s)
- Karim El Bakkouri
- Department for Molecular Biomedical Research, Flanders Institute of Biotechnology (VIB), B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Inhibition of lectin-mediated innate host defences in vivo modulates disease severity during influenza virus infection. Immunol Cell Biol 2010; 89:482-91. [PMID: 20938455 DOI: 10.1038/icb.2010.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Host-mediated recognition of mannose-rich glycans on the surface of pathogens represents an ancient mechanism of innate immune defence. In this study, we demonstrate that the virus strains that differ in the degree of N-linked glycosylation on the globular head of their hemagglutinin glycoprotein also differed in their (i) sensitivity to neutralization by a mannose-specific lectin in mouse lung fluids and (ii) ability to infect (and, therefore, to be destroyed) by airway macrophages. Virus strain BJx109 (H3N2), but not PR8 (H1N1), was sensitive to neutralization by mouse lung fluids and infected airway macrophages efficiently in vitro and these antiviral activities were blocked by mannan, a complex polymer of mannose residues. Although intranasal (i.n.) infection of mice with PR8 led to severe disease and mortality, mice infected with an equivalent dose of BJx109 displayed no signs of disease. However, i.n. treatment of BJx109-infected mice with mannan led to viral pneumonia, severe disease and death characterized by excessive virus replication, pulmonary inflammation, vascular leak and lung edema. Thus, when mannose-specific innate defences were inhibited in vivo, virus strain BJx109 induced severe viral pneumonia similar to that of PR8. Together, these findings highlight the importance of N-linked glycans as a target for recognition and destruction of influenza viruses by the innate immune system. Moreover, soluble and cell-associated lectins coordinate to modulate disease severity following influenza virus infection of mice.
Collapse
|
28
|
Bagashev A, Fitzgerald MC, Larosa DF, Rose PP, Cherry S, Johnson AC, Sullivan KE. Leucine-rich repeat (in Flightless I) interacting protein-1 regulates a rapid type I interferon response. J Interferon Cytokine Res 2010; 30:843-52. [PMID: 20586614 DOI: 10.1089/jir.2010.0017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cell autonomous response to viral infection is carefully regulated to induce type I interferons (IFNs), which in turn induce the establishment of an antiviral state. Leucine-rich repeat (in Flightless I) interacting protein-1 (LRRFIP1) and LRRFIP2 are 2 related proteins that have been identified as interacting with MyD88 and Flightless I homolog, a leucine-rich repeat protein. LRRFIP2 positively regulates NFκB and macrophage cytokine production after lipopolysaccharide, but less is known about LRRFIP1. We hypothesized that LRRFIP1 could be more important in antiviral responses, as overexpression led to type I IFN production in a pilot study. The induction of type I IFNs occurred even in the absence of virus, but was enhanced by the presence of virus. Conversely, knockdown of LRRFIP1 compromised IFN expression. We found that LRRFIP1 was rapidly recruited to influenza-containing early endosomes in a p38-dependent fashion. This was specific for virus-containing endosomes as there was almost no colocalization of LRRFIP1 with early endosomes in the absence of virus. Further, LRRFIP1 was recruited to RNA-containing vesicles. Taken together, these data suggest that LRRFIP1 participates in cell responses to virus at early time points and is important for type I IFN induction.
Collapse
Affiliation(s)
- Asen Bagashev
- The Division of Allergy Immunology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J Virol 2010; 84:7569-80. [PMID: 20504924 DOI: 10.1128/jvi.00291-10] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Airway macrophages provide a first line of host defense against a range of airborne pathogens, including influenza virus. In this study, we show that influenza viruses differ markedly in their abilities to infect murine macrophages in vitro and that infection of macrophages is nonproductive and no infectious virus is released. Virus strain BJx109 (H3N2) infected macrophages with high efficiency and was associated with mild disease following intranasal infection of mice. In contrast, virus strain PR8 (H1N1) was poor in its ability to infect macrophages and highly virulent for mice. Depletion of airway macrophages by clodronate-loaded liposomes led to the development of severe viral pneumonia in BJx109-infected mice but did not modulate disease severity in PR8-infected mice. The severe disease observed in macrophage-depleted mice infected with BJx109 was associated with exacerbated virus replication in the airways, leading to severe airway inflammation, pulmonary edema, and vascular leakage, indicative of lung injury. Thymic atrophy, lymphopenia, and dysregulated cytokine and chemokine production were additional systemic manifestations associated with severe disease. Thus, airway macrophages play a critical role in limiting lung injury and associated disease caused by BJx109. Furthermore, the inability of PR8 to infect airway macrophages may be a critical factor contributing to its virulence for mice.
Collapse
|
30
|
Carmichael MD, Davis JM, Murphy EA, Carson JA, Van Rooijen N, Mayer E, Ghaffar A. Role of brain macrophages on IL-1beta and fatigue following eccentric exercise-induced muscle damage. Brain Behav Immun 2010; 24:564-8. [PMID: 20051263 DOI: 10.1016/j.bbi.2009.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/15/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022] Open
Abstract
Fatigue associated with recovery from muscle damage has recently been linked to increases in brain and muscle proinflammatory cytokines. However, little is known regarding the origin of these cytokines. Since macrophage-like cells in the brain are a primary source of cytokines, we used a brain specific macrophage depletion technique involving liposome encapsulated clodronate (CLD) to examine the role of macrophages on brain IL-1beta and fatigue following eccentric exercise-induced muscle damage. Mice were assigned to six groups: Downhill saline (DWNSAL), downhill clodronate (DWNCLD), uphill saline (UPSAL), uphill clodronate (UPCLD), non-running saline (CONSAL) or non-running clodronate (CONCLD). Mice were given intracerebroventricular (ICV) (10 microL) injections of clodronate-filled liposomes (CLD) to deplete macrophages, or saline-filled liposomes (SAL) and run on a treadmill at 22m/min and -14% (DWN) or 14% (UP) grade for 150 min. A subset of uphill and downhill running mice (n=40) was then run to fatigue on a treadmill at 36m/min, 8% grade at 24h after the uphill and downhill runs. A second subset of uphill, downhill, and control mice (n=30) was sacrificed 24h after the run for analysis of brain IL-1beta concentration. Histological examination confirmed previous reports that CLD administration reduced perivascular and meningeal macrophage subsets in the brain. CLD reduced IL-1beta concentration in the cortex of DWN mice (P<0.05), which was associated with enhanced treadmill performance 24h after both uphill and downhill runs (P<0.05) although the magnitude was greater following the downhill run. These results suggest that brain macrophages can contribute to the increase in brain IL-1beta and fatigue that are associated with recovery from exercise-induced muscle damage.
Collapse
Affiliation(s)
- Martin D Carmichael
- Division of Applied Physiology, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Influenza viruses differ in ability to infect macrophages and to induce a local inflammatory response following intraperitoneal injection of mice. Immunol Cell Biol 2010; 88:641-50. [PMID: 20142836 DOI: 10.1038/icb.2010.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Strains of influenza A virus show marked differences in their ability to infect murine macrophages (MPhi) such that strain A/PR/8/34 (PR8; H1N1) infects MPhi poorly while strain BJx109 (H3N2) infects MPhi to high levels. Given the central role of MPhi in initiating and regulating inflammatory responses, we hypothesized that virus strains that infect MPhi poorly may also be poor at initiating inflammatory responses. Studies to compare the inflammatory response of mice after intranasal inoculation with either BJx109 or PR8 were confounded by the rapid growth of the PR8 virus in lung tissues. Consequently, we have characterized the cellular inflammatory response following inoculation into the peritoneal cavity, as influenza viruses do not replicate at this site. Herein, we report marked differences in the local inflammatory response to BJx109 or PR8 in the peritoneal cavity with strain PR8 being particularly poor in its ability to recruit and activate peritoneal leukocytes, including NK cells and MPhi. In vitro BJx109, but not PR8, stimulated release of high levels of type I IFNs and TNF-alpha from PEC MPhi, and treatment of mice with neutralizing antibodies to either cytokine inhibited the ability of BJx109 to recruit and activate NK cells and MPhis in the peritoneal cavity. Together, these data suggest that the ability of influenza virus strains to infect MPhi and stimulate cytokine release is an important factor governing the nature of the acute inflammatory response.
Collapse
|
32
|
Macrophage receptors for influenza A virus: role of the macrophage galactose-type lectin and mannose receptor in viral entry. J Virol 2010; 84:3730-7. [PMID: 20106926 DOI: 10.1128/jvi.02148-09] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although sialic acid has long been recognized as the primary receptor determinant for attachment of influenza virus to host cells, the specific receptor molecules that mediate viral entry are not known for any cell type. For the infection of murine macrophages by influenza virus, our earlier study indicated involvement of a C-type lectin, the macrophage mannose receptor (MMR), in this process. Here, we have used direct binding techniques to confirm and characterize the interaction of influenza virus with the MMR and to seek additional macrophage surface molecules that may have potential as receptors for viral entry. We identified the macrophage galactose-type lectin (MGL) as a second macrophage membrane C-type lectin that binds influenza virus and is known to be endocytic. Binding of influenza virus to MMR and MGL occurred independently of sialic acid through Ca(2+)-dependent recognition of viral glycans by the carbohydrate recognition domains of the two lectins; influenza virus also bound to the sialic acid on the MMR. Multivalent ligands of the MMR and MGL inhibited influenza virus infection of macrophages in a manner that correlated with expression of these receptors on different macrophage populations. Influenza virus strain A/PR/8/34, which is poorly glycosylated and infects macrophages poorly, was not recognized by the C-type lectin activity of either the MMR or the MGL. We conclude that lectin-mediated interactions of influenza virus with the MMR or the MGL are required for the endocytic uptake of the virus into macrophages, and these lectins can thus be considered secondary or coreceptors with sialic acid for infection of this cell type.
Collapse
|
33
|
Zhao J, Zhao J, Van Rooijen N, Perlman S. Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice. PLoS Pathog 2009; 5:e1000636. [PMID: 19851468 PMCID: PMC2762542 DOI: 10.1371/journal.ppat.1000636] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/25/2009] [Indexed: 02/04/2023] Open
Abstract
Severe Acute Respiratory Syndrome caused substantial morbidity and mortality during the 2002-2003 epidemic. Many of the features of the human disease are duplicated in BALB/c mice infected with a mouse-adapted version of the virus (MA15), which develop respiratory disease with high morbidity and mortality. Here, we show that severe disease is correlated with slow kinetics of virus clearance and delayed activation and transit of respiratory dendritic cells (rDC) to the draining lymph nodes (DLN) with a consequent deficient virus-specific T cell response. All of these defects are corrected when mice are treated with liposomes containing clodronate, which deplete alveolar macrophages (AM). Inhibitory AMs are believed to prevent the development of immune responses to environmental antigens and allergic responses by interacting with lung dendritic cells and T cells. The inhibitory effects of AM can also be nullified if mice or AMs are pretreated with poly I:C, which directly activate AMs and rDCs through toll-like receptors 3 (TLR3). Further, adoptive transfer of activated but not resting bone marrow-derived dendritic cells (BMDC) protect mice from lethal MA15 infection. These results may be relevant for SARS in humans, which is also characterized by prolonged virus persistence and delayed development of a SARS-CoV-specific immune response in individuals with severe disease.
Collapse
Affiliation(s)
- Jincun Zhao
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jingxian Zhao
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
34
|
Murphy EA, Davis JM, Brown AS, Carmichael MD, Carson JA, Van Rooijen N, Ghaffar A, Mayer EP. Benefits of oat beta-glucan on respiratory infection following exercise stress: role of lung macrophages. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1593-9. [PMID: 18353878 DOI: 10.1152/ajpregu.00562.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise stress is associated with an increased risk for upper respiratory tract infection (URTI). We have shown that consumption of the soluble oat fiber beta-glucan (ObetaG) can offset the increased risk for infection and decreased macrophage antiviral resistance following stressful exercise; however, the direct role of macrophages is unknown. This study examined the effect of macrophage depletion on the benefits of orally administered ObetaG on susceptibility to infection (morbidity, symptom severity, and mortality) following exercise stress. CL(2)MDP (Ex- H(2)O-CL(2)MDP, Ex-ObetaG-CL(2)MDP, Con-H(2)O-CL(2)MDP, Con-ObetaG-CL(2)MDP)-encapsulated liposomes were administered intranasally to deplete macrophages, and PBS (Ex-H(2)O-PBS, Ex-ObetaG-PBS, Con-H(2)O-PBS, Con-ObetaG-PBS)-encapsulated liposomes were given to macrophage-intact groups. Ex mice ran to volitional fatigue on a treadmill for 3 consecutive days, and ObetaG mice were fed a solution of 50% ObetaG in their drinking water for 10 consecutive days before infection. Fifteen minutes following the final bout of Ex or rest, mice were intranasally inoculated with 50 microl of a standardized dose of herpes simplex virus-1. Ex increased morbidity (P < 0.001) and symptom severity (P < 0.05) but not mortality (P = 0.09). The increase in morbidity and symptom severity was blocked by ObetaG consumption for 10 consecutive days before exercise and infection [morbidity (P < 0.001) and symptom severity (P < 0.05)]. Depletion of macrophages negated the beneficial effects of ObetaG on reducing susceptibility to infection following exercise stress, as evidenced by an increase in morbidity (P < 0.01) and symptom severity (P < 0.05). Results indicate that lung macrophages are at least partially responsible for mediating the beneficial effects of ObetaG on susceptibility to respiratory infection following exercise stress.
Collapse
Affiliation(s)
- E A Murphy
- Division of Applied Physiology, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Alveolar macrophages are indispensable for controlling influenza viruses in lungs of pigs. J Virol 2008; 82:4265-74. [PMID: 18287245 DOI: 10.1128/jvi.02602-07] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alveolar macrophages constitutively reside in the respiratory tracts of pigs and humans. An in vivo role of alveolar macrophages in defending against influenza viruses in mice infected with a reassorted influenza virus, 1918 HA/NA:Tx/91, was reported, but there has been no report on an in vivo role of alveolar macrophages in a natural host such as a pig using currently circulating human influenza virus. Here we show that in vivo depletion of alveolar macrophages in pigs by dichloromethylene diphosphonate (MDPCL2) treatment results in 40% mortality when pigs are infected with currently circulating human H1N1 influenza viruses, while none of the infected control pigs died. All infected pigs depleted of alveolar macrophages suffered from more severe respiratory signs than infected control pigs. Induction of tumor necrosis factor alpha in the infected pigs depleted of alveolar macrophages was significantly lower than that in the lungs of infected control pigs, and the induction of interleukin-10, an immunosuppressive cytokine, significantly increased in the lungs of infected pigs depleted of alveolar macrophages compared to infected control pigs. When we measured antibody titers and CD8(+) T lymphocytes expressing gamma interferon (IFN-gamma), lower antibody titers and a lower percentage of CD8(+) T lymphocytes expressing IFN-gamma were detectable in MDPCL2-treated infected pigs than in phosphate-buffered saline- and liposome-treated and infected pigs. Taken together, our findings suggest that alveolar macrophages are essential for controlling H1N1 influenza viruses in pigs.
Collapse
|
36
|
Neutrophils play an essential role in cooperation with antibody in both protection against and recovery from pulmonary infection with influenza virus in mice. J Virol 2008; 82:2772-83. [PMID: 18184718 DOI: 10.1128/jvi.01210-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of polymorphonuclear leukocytes (PMN) in protection in the early phase and recovery in the late phase of influenza A virus infection was investigated by the depletion of PMN in, and passive transfer of anti-influenza virus antiserum to, mice with pulmonary infections. The depletion of PMN in normal mice by treatment with monoclonal antibody RB6-8C5 both increased the mortality rate and pulmonary virus titers from the early to the late phase after infection and delayed virus elimination in the late phase. The passive transfer of the antiserum to normal mice before or after infection abolished pulmonary virus propagation in the early phase, during 3 days, or rapidly decreased high virus titers in the plateau phase, on days 3 to 5, as well as accelerated virus elimination in the late phase, on day 7, after infection, respectively. The passive transfer of the antiserum to PMN-depleted mice could neither prevent the more rapid virus propagation in the early phase, diminish the higher virus titers in the plateau phase, nor accelerate the markedly delayed virus elimination in the late phase after infection in comparison to those for controls. The antibody responses to the virus began to increase on day 7 after infection in normal and PMN-depleted mice. The prevention of virus replication, cytotoxic activity in virus-infected cell cultures, and phagocytosis of the virus in vitro by PMN were all augmented in the presence of the antiserum. These results indicate that PMN play an essential role in virus elimination in both protection against and recovery from infection, in cooperation with the antibody response.
Collapse
|
37
|
Tvinnereim A, Wizel B. CD8+ T cell protective immunity against Chlamydia pneumoniae includes an H2-M3-restricted response that is largely CD4+ T cell-independent. THE JOURNAL OF IMMUNOLOGY 2007; 179:3947-57. [PMID: 17785832 DOI: 10.4049/jimmunol.179.6.3947] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8+ T cells are important for immunity to the intracellular bacterial pathogen Chlamydia pneumoniae (Cpn). Recently, we reported that type 1 CD8+ (Tc1) from Cpn-infected B6 mice recognize peptides from multiple Cpn Ags in a classical MHC class Ia-restricted fashion. In this study, we show that Cpn infection also induces nonclassical MHC class Ib-(H2-M3)-restricted CD8+ T cell responses. H2-M3-binding peptides representing the N-terminal formylated sequences from five Cpn Ags sensitized target cells for lysis by cytolytic effectors from the spleens of infected B6 mice. Of these, only peptides fMFFAPL (P1) and fMLYWFL (P4) stimulated IFN-gamma production by infection-primed splenic and pulmonary CD8+ T cells. Studies with Cpn-infected Kb-/-/Db-/- mice confirmed the Tc1 cytokine profile of P1- and P4-specific CD8+ T cells and revealed the capacity of these effectors to exert in vitro H2-M3-restricted lysis of Cpn-infected macrophages and in vivo pulmonary killing of P1- and P4-coated splenocytes. Furthermore, adoptive transfer of P1- and P4-specific CD8+ T cells into naive Kb-/-/Db-/- mice reduced lung Cpn loads following challenge. Finally, we show that in the absence of MHC class Ia-restricted CD8+ T cell responses, CD4+ T cells are largely expendable for the control of Cpn growth, and for the generation, memory maintenance, and secondary expansion of P1- and P4-specific CD8+ T cells. These results suggest that H2-M3-restricted CD8+ T cells contribute to protective immunity against Cpn, and that chlamydial Ags presented by MHC class Ib molecules may represent novel targets for inclusion in anti-Cpn vaccines.
Collapse
Affiliation(s)
- Amy Tvinnereim
- Department of Microbiology and Immunology, University of Texas Health Center, Tyler, TX 75708, USA
| | | |
Collapse
|
38
|
Dessing MC, van der Sluijs KF, Florquin S, van der Poll T. Monocyte chemoattractant protein 1 contributes to an adequate immune response in influenza pneumonia. Clin Immunol 2007; 125:328-36. [PMID: 17827068 DOI: 10.1016/j.clim.2007.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
Monocyte chemoattractant protein 1 (MCP-1) and its receptor CCR2 have been shown to play an import role in leukocyte recruitment to sites of infection and inflammation. To investigate the role of MCP-1 during infection with influenza we inoculated wild-type (WT) and MCP-1 knockout (KO) mice with a non-lethal dose of a mouse adapted strain of influenza A. Influenza infection of WT mice resulted in a profound increase in pulmonary MCP-1 levels. MCP-1 KO mice had enhanced weight loss and did not fully regain their body weight during the 14-day observation period. In addition, MCP-1 KO mice demonstrated elevated viral loads 8 days after infection, which was accompanied by reduced leukocyte recruitment into the infected lungs, primarily caused by a diminished influx of macrophages and granulocytes. Moreover, pulmonary levels of IgA were reduced in MCP-1 KO mice. The pulmonary concentrations of tumor necrosis factor-alpha, interleukin-6, macrophage inflammatory protein 2 and interferon-gamma were higher in MCP-1 KO mice. This study shows that MCP-1 contributes to an adequate protective immune response against influenza infection in mice.
Collapse
Affiliation(s)
- Mark C Dessing
- Center of Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Pejawar-Gaddy S, Gitiban-Vaghefi N, Parks GD, Alexander-Miller MA. Distinct pathways for signaling maturation in macrophages and dendritic cells after infection with paramyxovirus simian virus 5. Viral Immunol 2007; 20:76-87. [PMID: 17425423 DOI: 10.1089/vim.2006.0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Professional antigen-presenting cells are critical components of both the innate and adaptive immune responses. Although dendritic cells (DCs) are generally thought to be the primary activators of naive T cells, macrophages have also been shown to fulfill this role. As with DCs, the capacity to induce optimal activation of T cells requires that macrophages undergo a process that results in the increased expression of costimulatory molecules, such as CD40, CD80, and CD86, and the production of cytokines. In this study we analyzed the effect of infection of macrophages generated from BALB/c mice with the paramyxovirus simian virus 5 (SV5). Here we have shown that bone marrow-derived macrophages (BMMs) are not productively infected at any multiplicity of infection tested. Analysis of activation markers revealed that SV5-infected BMMs robustly upregulated CD40 and modestly upregulated CD86, but did not upregulate the expression of CD80. Further, SV5-infected BMMs secreted low levels of interferon-beta and interleukin (IL)-12p40, but high levels of tumor necrosis factor-alpha and IL-6. Intriguingly, upregulation of these molecules on BMMs, unlike our previous results using bone marrow-derived dendritic cells, was not dependent on live virus. These findings provide evidence that different professional antigen-presenting cells can detect and respond to virus via distinct mechanisms.
Collapse
Affiliation(s)
- Sharmila Pejawar-Gaddy
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
40
|
Vallbracht S, Unsöld H, Ehl S. Functional impairment of cytotoxic T cells in the lung airways following respiratory virus infections. Eur J Immunol 2006; 36:1434-42. [PMID: 16708402 DOI: 10.1002/eji.200535642] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated the differentiation phenotype and function of virus-specific and non-specific CTL that were recruited to the lung parenchyma and the bronchoalveolar space after respiratory virus infections. Soon after virus elimination, we observed functional impairment of CTL isolated from the airways in their ability to produce IFN-gamma and TNF-alpha and to lyse target cells. Impaired cytotoxicity was due to a reduced content of granzyme B and a reduced ability to mobilize lytic granules. This impairment in effector functions (a) was largely restricted to CTL in the lung airways, (b) affected both CTL specific for the infecting virus as well as those that were recruited non-specifically to the inflamed lung, (c) was independent of contact between CTL and their specific viral antigen, (d) was not restricted to terminally differentiated CTL but also affected resting memory CTL and (e) could be elicited by both respiratory syncytial virus and influenza virus and thus seemed to be largely independent of the infecting virus. These observations suggest that functional impairment of antiviral T cells in the lung is not the consequence of a viral escape strategy. It may rather result from the particular milieu in the bronchoalveolar space and reflect a host mechanism to prevent excessive pulmonary inflammation.
Collapse
|
41
|
Tumpey TM, García-Sastre A, Taubenberger JK, Palese P, Swayne DE, Pantin-Jackwood MJ, Schultz-Cherry S, Solórzano A, Van Rooijen N, Katz JM, Basler CF. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol 2006; 79:14933-44. [PMID: 16282492 PMCID: PMC1287592 DOI: 10.1128/jvi.79.23.14933-14944.2005] [Citation(s) in RCA: 395] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Spanish influenza pandemic of 1918 to 1919 swept the globe and resulted in the deaths of at least 20 million people. The basis of the pulmonary damage and high lethality caused by the 1918 H1N1 influenza virus remains largely unknown. Recombinant influenza viruses bearing the 1918 influenza virus hemagglutinin (HA) and neuraminidase (NA) glycoproteins were rescued in the genetic background of the human A/Texas/36/91 (H1N1) (1918 HA/NA:Tx/91) virus. Pathogenesis experiments revealed that the 1918 HA/NA:Tx/91 virus was lethal for BALB/c mice without the prior adaptation that is usually required for human influenza A H1N1 viruses. The increased mortality of 1918 HA/NA:Tx/91-infected mice was accompanied by (i) increased (>200-fold) viral replication, (ii) greater influx of neutrophils into the lung, (iii) increased numbers of alveolar macrophages (AMs), and (iv) increased protein expression of cytokines and chemokines in lung tissues compared with the levels seen for control Tx/91 virus-infected mice. Because pathological changes in AMs and neutrophil migration correlated with lung inflammation, we assessed the role of these cells in the pathogenesis associated with 1918 HA/NA:Tx/91 virus infection. Neutrophil and/or AM depletion initiated 3 or 5 days after infection did not have a significant effect on the disease outcome following a lethal 1918 HA/NA:Tx/91 virus infection. By contrast, depletion of these cells before a sublethal infection with 1918 HA/NA:Tx/91 virus resulted in uncontrolled virus growth and mortality in mice. In addition, neutrophil and/or AM depletion was associated with decreased expression of cytokines and chemokines. These results indicate that a human influenza H1N1 virus possessing the 1918 HA and NA glycoproteins can induce severe lung inflammation consisting of AMs and neutrophils, which play a role in controlling the replication and spread of 1918 HA/NA:Tx/91 virus after intranasal infection of mice.
Collapse
Affiliation(s)
- Terrence M Tumpey
- Influenza Branch, Mail Stop G-16, DVRD, NCID, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Elder A, Johnston C, Gelein R, Finkelstein J, Wang Z, Notter R, Oberdörster G. Lung inflammation induced by endotoxin is enhanced in rats depleted of alveolar macrophages with aerosolized clodronate. Exp Lung Res 2005; 31:527-46. [PMID: 16019986 DOI: 10.1080/019021490944223] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Clodronate liposomes were given to rats via intratracheal inhalation to investigate the importance of alveolar macrophages (AMs) in inhaled endotoxin-induced lung injury. When AM depletion was maximal (87% to 90%), rats were exposed to lipopolysaccharide (LPS) or saline. Neither clodronate nor saline liposomes induced an influx of neutrophils (PMNs) into the lungs. However, depleted LPS-exposed rats had 5- to 8-fold higher numbers of lavage PMNs and greater lavage cell reactive oxygen species release compared to undepleted rats. Although AM depletion by itself did not significantly increase inflammatory cytokine expression in lung tissue, LPS-induced message levels for interleukin (IL)-1alpha, IL-1beta, IL-6, and tumor necrosis factor (TNF)-alpha were approximately 2-fold higher in AM-depleted rats compared to undepleted rats. These results indicate that cells other than AMs can recruit inflammatory cells into the lungs during acute LPS-induced injury and that AMs play an important suppressive role in the innate pulmonary inflammatory response.
Collapse
Affiliation(s)
- A Elder
- Department of Environmental Medicine, University of Rochester, New York 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Murphy EA, Davis JM, Brown AS, Carmichael MD, Van Rooijen N, Ghaffar A, Mayer EP. Role of lung macrophages on susceptibility to respiratory infection following short-term moderate exercise training. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1354-8. [PMID: 15308485 DOI: 10.1152/ajpregu.00274.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Moderate exercise training is associated with a decreased risk for upper respiratory tract infection in human and animal studies, but the mechanisms have not been elucidated. Lung macrophages play an important role in resistance to respiratory infection, and moderate exercise can enhance macrophage antiviral resistance, but no studies have directly tested the role of lung macrophages in this response. This study tested the effect of lung macrophage depletion on susceptibility to infection following short-term moderate exercise training. Mice were assigned to one of four groups: exercise (Ex) and resting controls (Con) with and without clodronate encapsulated liposomes (CL2MDP-lip). Ex mice ran for 1 h on a treadmill for 6 days at 36 m/min, 8% grade. Fifteen minutes following exercise or rest on the last day of training, mice were intranasally inoculated with a standardized dose of herpes simplex virus type 1. Clodronate (Ex-CL2MDP-lip and Con-CL2MDP-lip) or PBS liposomes (Ex-PBS-lip and Con-PBS-lip) (100 μl) were intranasally administered following exercise or rest on the 4th day of training and again on the 4th day postinfection. Morbidity, mortality, and symptom severity were monitored for 21 days. Exercise decreased morbidity by 36%, mortality by 61%, and symptom severity score on days 5–7 ( P < 0.05). Depletion of lung macrophages negated the beneficial effects of moderate exercise. This was indicated by no differences between Ex-CL2MDP-lip and Con-PBS-lip in morbidity (89 vs. 95%), mortality (79 vs. 95%), or symptom severity. Results indicate that lung macrophages play an important role in mediating the beneficial effects of moderate exercise on susceptibility to respiratory infection.
Collapse
Affiliation(s)
- E A Murphy
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, 1300 Wheat St., Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Hawgood S, Brown C, Edmondson J, Stumbaugh A, Allen L, Goerke J, Clark H, Poulain F. Pulmonary collectins modulate strain-specific influenza a virus infection and host responses. J Virol 2004; 78:8565-72. [PMID: 15280465 PMCID: PMC479098 DOI: 10.1128/jvi.78.16.8565-8572.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Collectins are secreted collagen-like lectins that bind, agglutinate, and neutralize influenza A virus (IAV) in vitro. Surfactant proteins A and D (SP-A and SP-D) are collectins expressed in the airway and alveolar epithelium and could have a role in the regulation of IAV infection in vivo. Previous studies have shown that binding of SP-D to IAV is dependent on the glycosylation of specific sites on the HA1 domain of hemagglutinin on the surface of IAV, while the binding of SP-A to the HA1 domain is dependent on the glycosylation of the carbohydrate recognition domain of SP-A. Here, using SP-A and SP-D gene-targeted mice on a common C57BL6 background, we report that viral replication and the host response as measured by weight loss, neutrophil influx into the lung, and local cytokine release are regulated by SP-D but not SP-A when the IAV is glycosylated at a specific site (N165) on the HA1 domain. SP-D does not protect against IAV infection with a strain lacking glycosylation at N165. With the exception of a small difference on day 2 after infection with X-79, we did not find any significant difference in viral load in SP-A(-/-) mice with either IAV strain, although small differences in the cytokine responses to IAV were detected in SP-A(-/-) mice. Mice deficient in both SP-A and SP-D responded to IAV similarly to mice deficient in SP-D alone. Since most strains of IAV currently circulating are glycosylated at N165, SP-D may play a role in protection from IAV infection.
Collapse
Affiliation(s)
- Samuel Hawgood
- University of California-San Francisco, Laurel Heights Campus, 3333 California St., Suite 150, San Francisco, CA 94118-1944, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Barends M, de Rond LGH, Dormans J, van Oosten M, Boelen A, Neijens HJ, Osterhaus ADME, Kimman TG. Respiratory syncytial virus, pneumonia virus of mice, and influenza A virus differently affect respiratory allergy in mice. Clin Exp Allergy 2004; 34:488-96. [PMID: 15005745 DOI: 10.1111/j.1365-2222.2004.01906.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Respiratory viral infections in early childhood may interact with the immune system and modify allergen sensitization and/or allergic manifestations. In mice, respiratory syncytial virus (RSV) infection during allergic provocation aggravates the allergic T helper (Th) 2 immune response, characterized by the production of IL-4, IL-5, and IL-13, and inflammatory infiltrates. However, it is unclear whether the RSV-enhanced respiratory allergic response is a result of non-specific virus-induced damage of the lung, or virus-specific immune responses. OBJECTIVE In the present study we investigated whether RSV, pneumonia virus of mice (PVM) and influenza A virus similarly affect the allergic response. METHODS BALB/c mice were sensitized and challenged with ovalbumin (OVA), and inoculated with virus during the challenge period. Pulmonary inflammation, lung cytokine mRNA responses, and IgE production in serum were assessed after the last OVA-challenge. RESULTS Like RSV, PVM enhanced the OVA-induced pulmonary IL-4, IL-5, and IL-13 mRNA expression, which was associated with enhanced perivascular inflammation. In addition, PVM increased the influx of eosinophils in lung tissue. In contrast, influenza virus decreased the Th2 cytokine mRNA expression in the lungs. However, like PVM, influenza virus enhanced the pulmonary eosinophilic infiltration in OVA-allergic mice. CONCLUSION The Paramyxoviruses RSV and PVM both are able to enhance the allergic Th2 cytokine response and perivascular inflammation in BALB/c mice, while the Orthomyxovirus influenza A is not.
Collapse
Affiliation(s)
- M Barends
- Laboratory of Vaccine-Preventable Diseases, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Myc A, Kukowska-Latallo JF, Bielinska AU, Cao P, Myc PP, Janczak K, Sturm TR, Grabinski MS, Landers JJ, Young KS, Chang J, Hamouda T, Olszewski MA, Baker JR. Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine 2003; 21:3801-14. [PMID: 12922114 DOI: 10.1016/s0264-410x(03)00381-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nanoemulsion, a water-in-oil formulation stabilized by small amounts of surfactant, is non-toxic to mucous membranes and produces biocidal activity against enveloped viruses. We evaluated nanoemulsion as an adjuvant for mucosal influenza vaccines. Mice (C3H/HeNHsd strain) were vaccinated intranasally with 5 x 10(5) plaque forming units (pfu) of influenza A virus (Ann Arbor/6/60 strain) and a nanoemulsion mixture. The mice were challenged on day 21 after immunization with an intranasal lethal dose of 2 x 10(5) pfu of virus. Animals vaccinated with the influenza A/nanoemulsion mixture were completely protected against infection, while animals vaccinated with either formaldehyde-killed virus or nanoemulsion alone developed viral pneumonitis and died by day 6 after the challenge. Mice vaccinated with virus/nanoemulsion mixture had rapid cytokine responses followed by high levels of specific anti-influenza immunoglobulin G (IgG) and immunoglobulin A (IgA) antibodies. Specificity of the immune response was confirmed by assessment of the proliferation and cytokine production in splenocytes. This paper demonstrates that nanoemulsion can be employed as a non-toxic mucosal adjuvant for influenza virus vaccine.
Collapse
Affiliation(s)
- Andrzej Myc
- Department of Internal Medicine, Division of Allergy, Center of Biologic Nanotechnology, University of Michigan, 9240 MSRB III,, Ann Arbor, MI 48109-0666, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Johnson BJ, Costelloe EO, Fitzpatrick DR, Haanen JBAG, Schumacher TNM, Brown LE, Kelso A. Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus-infected mice. Proc Natl Acad Sci U S A 2003; 100:2657-62. [PMID: 12601154 PMCID: PMC151396 DOI: 10.1073/pnas.0538056100] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus infection activates cytolytic T lymphocytes (CTL) that contribute to viral clearance by releasing perforin and granzymes from cytoplasmic granules. Virus-specific, perforin-dependent CD8(+) CTL were detected in freshly isolated cells from the mouse lung parenchyma but not from the mediastinal lymph nodes (MLN), where they are primed, or from the spleen during primary influenza virus infection. To determine whether this difference was due to the low frequency or incomplete maturation of effector CTL in MLN, we measured expression of perforin, granzymes A, B, and C, and IFN-gamma mRNAs in CD8(+) populations and single cells immediately after isolation from virus-infected mice. Quantitative PCR revealed significant expression of perforin, granzyme A, granzyme B, and IFN-gamma in activated CD8(+) cells from MLN, spleen, and lung parenchyma. Granzyme C expression was not detected. Individual activated or nucleoprotein peptide/class I tetramer-binding CD8(+) cells from the three tissues expressed diverse combinations of perforin, granzyme, and IFN-gamma mRNAs. Although cells from lung expressed granzymes A and B at higher frequency, each of the tissues contained cells that coexpressed perforin with granzymes A and/or B. The main difference between MLN and lung was the elevated frequency of activated CD8(+) T cells in the lung, rather than their perforin/granzyme expression profile. The data suggest that some CTL mature into perforin/granzyme-expressing effector cells in MLN but reach detectable frequencies only when they accumulate in the infected lung.
Collapse
Affiliation(s)
- Barbara J Johnson
- Cooperative Research Centre for Vaccine Technology and Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Queensland 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Polfliet MM, Goede PH, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK. A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J Neuroimmunol 2001; 116:188-95. [PMID: 11438173 DOI: 10.1016/s0165-5728(01)00282-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The perivascular (PVM) and meningeal (MM) macrophages form a distinct population of resident CNS cells, selectively expressing the mature macrophage marker ED2 in the rat. In order to elucidate the role of the PVM and MM in rats during normal functioning of the brain and pathology, we have developed a strategy employing a single intraventricular injection of clodronate liposomes. This resulted in a complete depletion of the PVM and MM. Clodronate liposomes did not deplete the microglial cells. In other parts of the body, a temporal and mild depletion effect was observed, which was restored within 1 week. Detailed analysis of the elimination and repopulation kinetics of the PVM and MM revealed a slow repopulation of the CNS, starting at 14 days post depletion. This selective depletion method of the PVM and MM will enable us to get direct insight in their functions during normal and pathologic conditions of the CNS.
Collapse
Affiliation(s)
- M M Polfliet
- Department of Cell Biology and Immunology, Faculty of Medicine, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, Netherlands.
| | | | | | | | | | | |
Collapse
|
49
|
Tang C, Inman MD, van Rooijen N, Yang P, Shen H, Matsumoto K, O'Byrne PM. Th type 1-stimulating activity of lung macrophages inhibits Th2-mediated allergic airway inflammation by an IFN-gamma-dependent mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1471-81. [PMID: 11160186 DOI: 10.4049/jimmunol.166.3.1471] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the mucosal immune system, resident dendritic cells are specialized for priming Th2-polarized immunity, whereas the Ag-presenting activity of macrophages has been linked with the development of Th1 phenotype. As an immune switch toward Th1 can protect against Th2-mediated allergic response, this study investigated the capacity of lung macrophages to stimulate Th1 responses during the secondary exposure to inhaled allergen, thereby suppressing Th2-mediated allergic airway inflammation in a murine model of allergic asthma. Following airway macrophage depletion in OVA-sensitized mice, lung T cells defaulted to a phenotype that produced less Th1 (IFN-gamma) and more Th2 (IL-4 and IL-5) cytokines, leading to more severe airway hyperreactivity and inflammation after intranasal Ag challenge. After OVA pulsing and adoptive transfer, lung macrophages selectively promoted a Th1 response in Ag-sensitized recipients and did not induce pulmonary eosinophilia. By contrast, OVA pulsing and adoptive transfer of a lung cell preparation, consisting of dendritic cells, B cells, and macrophages, promoted a Th2 response with an associated inflammatory response that was suppressed when macrophages were present and pretreated with IFN-gamma, but exacerbated when macrophages were depleted before IFN-gamma treatment. In addition, Th1-promoting activity of lung macrophages was not related to the autocrine production of IL-12p40. These results suggest that the Th1-promoting APC activity may be an inherent property of the lung macrophage population, and may play an important role, upon stimulation by IFN-gamma, in antagonizing an ongoing Th2 immunity and Th2-dependent allergic responses.
Collapse
Affiliation(s)
- C Tang
- Asthma Research Group, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Reading PC, Miller JL, Anders EM. Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 2000; 74:5190-7. [PMID: 10799594 PMCID: PMC110872 DOI: 10.1128/jvi.74.11.5190-5197.2000] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses A/PR/8/34 (PR8; H1N1), A/Aichi/68 X-31 (HKx31; H3N2), and A/Beijing/89 X-109 (BJx109; H3N2) show marked differences in their ability to infect murine macrophages, including resident alveolar and peritoneal macrophages as well as the macrophage-derived cell line J774. The hierarchy in infectivity of the viruses (PR8 < HKx31 < BJx109) resembles that of their reactivity with mannose-binding lectins of the collectin family. Since the macrophage mannose receptor recognizes the same spectrum of monosaccharides as the collectins do, we investigated the possible involvement of this receptor in infection of macrophages by influenza virus. In competitive binding studies, the binding of (125)I-labeled mannosylated bovine serum albumin to macrophages was inhibited by the purified hemagglutinin and neuraminidase (HANA) glycoproteins of influenza virus but not by HANA that had been treated with periodate to oxidize its oligosaccharide side chains. The inhibitory activity of HANA from the three strains of virus differed markedly and correlated with the infectivity of each virus for macrophages. Infection of macrophages, but not MDCK cells, by influenza virus was inhibited by yeast mannan. A variant line of J774 cells, J774E, which expresses elevated levels of the mannose receptor, was more readily infected than J774, and the sensitivity of J774E cells to infection was greatly reduced by culture in the presence of D-mannose, which down-modulated mannose receptor expression. Together, the data implicate the mannose receptor as a major endocytic receptor in the infectious entry of influenza virus, and perhaps other enveloped viruses, into murine macrophages.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Dogs
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A virus/metabolism
- Influenza A virus/physiology
- Lectins, C-Type
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/virology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/virology
- Mannans/metabolism
- Mannose Receptor
- Mannose-Binding Lectins
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- N-Acetylneuraminic Acid/metabolism
- Neuraminidase/metabolism
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- P C Reading
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|