1
|
Berraondo P, Cuesta R, Sanmamed MF, Melero I. Immunogenicity and Efficacy of Personalized Adjuvant mRNA Cancer Vaccines. Cancer Discov 2024; 14:2021-2024. [PMID: 39485256 DOI: 10.1158/2159-8290.cd-24-1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 11/03/2024]
Abstract
In this issue, Gainor and colleagues report on the immunogenicity of personalized neoantigen-encoding mRNA vaccines that elicit measurable polyfunctional CD8+ and CD4+ T-cell responses in patients whose tumors have been resected. Reactivity is substantiated to 20% to 30% of the predicted MHC-I and MHC-II epitopes in four patients with NSCLC postsurgically treated with the vaccine alone and in 12 patients with melanoma treated with their individualized vaccines plus pembrolizumab in the context of a phase 1 clinical trial (NCT03313778). See related article by Gainor et al., p. 2209.
Collapse
Affiliation(s)
- Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Raquel Cuesta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Oncology and Immunology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Oncology and Immunology, Clinica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Gainor JF, Patel MR, Weber JS, Gutierrez M, Bauman JE, Clarke JM, Julian R, Scott AJ, Geiger JL, Kirtane K, Robert-Tissot C, Coder B, Tasneem M, Sun J, Zheng W, Gerbereux L, Laino A, Porichis F, Pollard JR, Hou P, Sehgal V, Chen X, Morrissey M, Daghestani HN, Feldman I, Srinivasan L, Frederick JP, Brown M, Aanur P, Meehan R, Burris HA. T-cell Responses to Individualized Neoantigen Therapy mRNA-4157 (V940) Alone or in Combination with Pembrolizumab in the Phase 1 KEYNOTE-603 Study. Cancer Discov 2024; 14:2209-2223. [PMID: 39115419 DOI: 10.1158/2159-8290.cd-24-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/06/2024] [Accepted: 07/23/2024] [Indexed: 11/02/2024]
Abstract
mRNA-4157 (V940) is an individualized neoantigen therapy targeting up to 34 patient-specific tumor neoantigens to induce T-cell responses and potentiate antitumor activity. We report mechanistic insights into the immunogenicity of mRNA-4157 via characterization of T-cell responses to neoantigens from the first-in-human, phase 1, KEYNOTE-603 study (NCT03313778) in patients with resected non-small cell lung cancer (Part A: 1-mg mRNA-4157, n = 4) or resected cutaneous melanoma (Part D: 1-mg mRNA-4157 + 200-mg pembrolizumab, n = 12). Safety, tolerability, and immunogenicity were assessed. All patients experienced ≥1 treatment-emergent adverse event; there were no grade 4/5 adverse events or dose-limiting toxicities. mRNA-4157 alone induced consistent de novo and strengthened preexisting T-cell responses to targeted neoantigens. Following combination therapy, sustained mRNA-4157-induced neoantigen-specific T-cell responses and expansion of cytotoxic CD8 and CD4 T cells were observed. These findings show the potential of a novel mRNA individualized neoantigen therapy approach in oncology. Significance: The safety and immunogenicity results from this phase 1 study of mRNA-4157 as adjuvant monotherapy or combination therapy with pembrolizumab show generation of de novo and enhancement of existing neoantigen-specific T-cell responses and provide mechanistic proof of concept to support further development of mRNA-4157 for patients with resected solid tumors. See related commentary by Berraondo et al., p. 2021.
Collapse
Affiliation(s)
| | - Manish R Patel
- Florida Cancer Specialists, Sarasota, Florida
- Sarah Cannon Research Institute, Nashville, Tennessee
| | - Jeffrey S Weber
- Perlmutter Cancer Center at NYU Langone Health, New York, New York
| | | | - Julie E Bauman
- George Washington University Cancer Center, Washington, District of Columbia
| | | | | | - Aaron J Scott
- University of Arizona Cancer Center, Tucson, Arizona
| | | | - Kedar Kirtane
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | | - Jing Sun
- Moderna, Inc., Cambridge, Massachusetts
| | - Wei Zheng
- Moderna, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | | | - Xing Chen
- Moderna, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Spring J, Gurbuxani S, Golovkina T. Microbiota may affect the tumor type but not overall tumor development in two models of heritable cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561890. [PMID: 37873087 PMCID: PMC10592741 DOI: 10.1101/2023.10.11.561890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Microbial impact on tumorigenesis of heritable cancers proximal to the gut is well documented. Whether the microbiota influences cancers arising from inborn mutations at sites distal to the gut is undetermined. Using two models of heritable cancer, we found the microbiota to be inconsequential for tumor development. However, the type of tumor that develops may be influenced by the microbiota. This work furthers our understanding of the microbial impact on tumor development.
Collapse
|
4
|
Tasoulas J, Srivastava S, Xu X, Tarasova V, Maniakas A, Karreth FA, Amelio AL. Genetically engineered mouse models of head and neck cancers. Oncogene 2023; 42:2593-2609. [PMID: 37474617 PMCID: PMC10457205 DOI: 10.1038/s41388-023-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The head and neck region is one of the anatomic sites commonly afflicted by cancer, with ~1.5 million new diagnoses reported worldwide in 2020 alone. Remarkable progress has been made in understanding the underlying disease mechanisms, personalizing care based on each tumor's individual molecular characteristics, and even therapeutically exploiting the inherent vulnerabilities of these neoplasms. In this regard, genetically engineered mouse models (GEMMs) have played an instrumental role. While progress in the development of GEMMs has been slower than in other major cancer types, several GEMMs are now available that recapitulate most of the heterogeneous characteristics of head and neck cancers such as the tumor microenvironment. Different approaches have been employed in GEMM development and implementation, though each can generally recapitulate only certain disease aspects. As a result, appropriate model selection is essential for addressing specific research questions. In this review, we present an overview of all currently available head and neck cancer GEMMs, encompassing models for head and neck squamous cell carcinoma, nasopharyngeal carcinoma, and salivary and thyroid gland carcinomas.
Collapse
Affiliation(s)
- Jason Tasoulas
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sonal Srivastava
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Valentina Tarasova
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Antonio L Amelio
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
5
|
Modic Z, Cemazar M, Markelc B, Cör A, Sersa G, Kranjc Brezar S, Jesenko T. HPV-positive murine oral squamous cell carcinoma: development and characterization of a new mouse tumor model for immunological studies. J Transl Med 2023; 21:376. [PMID: 37296466 PMCID: PMC10257320 DOI: 10.1186/s12967-023-04221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Infection with high-risk human papillomavirus (HPV) strains is one of the risk factors for the development of oral squamous cell carcinoma (OSCC). Some patients with HPV-positive OSCC have a better prognosis and respond better to various treatment modalities, including radiotherapy or immunotherapy. However, since HPV can only infect human cells, there are only a few immunocompetent mouse models available that enable immunological studies. Therefore, the aim of our study was to develop a transplantable immunocompetent mouse model of HPV-positive OSCC and characterize it in vitro and in vivo. METHODS Two monoclonal HPV-positive OSCC mouse cell lines were established by inducing the expression of HPV-16 oncogenes E6 and E7 in the MOC1 OSCC cell line using retroviral transduction. After confirming stable expression of HPV-16 E6 and E7 with quantitative real-time PCR and immunofluorescence staining, the cell lines were further characterized in vitro using proliferation assay, wound healing assay, clonogenic assay and RNA sequencing. In addition, tumor models were characterized in vivo in C57Bl/6NCrl mice in terms of their histological properties, tumor growth kinetics, and radiosensitivity. Furthermore, immunofluorescence staining of blood vessels, hypoxic areas, proliferating cells and immune cells was performed to characterize the tumor microenvironment of all three tumor models. RESULTS Characterization of the resulting MOC1-HPV cell lines and tumor models confirmed stable expression of HPV-16 oncogenes and differences in cell morphology, in vitro migration capacity, and tumor microenvironment characteristics. Although the cell lines did not differ in their intrinsic radiosensitivity, one of the HPV-positive tumor models, MOC1-HPV K1, showed a significantly longer growth delay after irradiation with a single dose of 15 Gy compared to parental MOC1 tumors. Consistent with this, MOC1-HPV K1 tumors had a lower percentage of hypoxic tumor area and a higher percentage of proliferating cells. Characteristics of the newly developed HPV-positive OSCC tumor models correlate with the transcriptomic profile of MOC1-HPV cell lines. CONCLUSIONS In conclusion, we developed and characterized a novel immunocompetent mouse model of HPV-positive OSCC that exhibits increased radiosensitivity and enables studies of immune-based treatment approaches in HPV-positive OSCC.
Collapse
Affiliation(s)
- Ziva Modic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, Izola, Slovenia.
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Andrej Cör
- Department of Research, Valdoltra Orthopedic Hospital, Jadranska cesta 31, Ankaran, Slovenia
- Faculty of Education, University of Primorska, Cankarjeva pot 5, Koper, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Böttinger P, Schreiber K, Hyjek E, Krausz T, Spiotto MT, Steiner M, Idel C, Booras H, Beck-Engeser G, Riederer J, Willimsky G, Wolf SP, Karrison T, Jensen E, Weichselbaum RR, Nakamura Y, Yew PY, Lambert PF, Kurita T, Kiyotani K, Leisegang M, Schreiber H. Cooperation of genes in HPV16 E6/E7-dependent cervicovaginal carcinogenesis trackable by endoscopy and independent of exogenous estrogens or carcinogens. Carcinogenesis 2021; 41:1605-1615. [PMID: 32221533 DOI: 10.1093/carcin/bgaa027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) infection is necessary but insufficient for progression of epithelial cells from dysplasia to carcinoma-in situ (CIS) to invasive cancer. The combination of mutant cellular and viral oncogenes that regulate progression of cervical cancer (CC) remains unclear. Using combinations of HPV16 E6/E7 (E+), mutant Kras (mKras) (K+) and/or loss of Pten (P-/-), we generated autochthonous models of CC without exogenous estrogen, carcinogen or promoters. Furthermore, intravaginal instillation of adenoCre virus enabled focal activation of the oncogenes/inactivation of the tumor suppressor gene. In P+/+ mice, E6/E7 alone (P+/+E+K-) failed to cause premalignant changes, while mKras alone (P+/+E-K+) caused persistent mucosal abnormalities in about one-third of mice, but no cancers. To develop cancer, P+/+ mice needed both E6/E7 and mKras expression. Longitudinal endoscopies of P+/+E+K+ mice predicted carcinoma development by detection of mucosal lesions, found on an average of 23 weeks prior to death, unlike longitudinal quantitative PCRs of vaginal lavage samples from the same mice. Endoscopy revealed that individual mice differed widely in the time required for mucosal lesions to appear after adenoCre and in the time required for these lesions to progress to cancer. These cancers developed in the transition zone that extends, unlike in women, from the murine cervix to the distal vagina. The P-/-E+K+ genotype led to precipitous cancer development within a few weeks and E6/E7-independent cancer development occurred in the P-/-E-K+ genotype. In the P-/-E+K- genotype, mice only developed CIS. Thus, distinct combinations of viral and cellular oncogenes are involved in distinct steps in cervical carcinogenesis.
Collapse
Affiliation(s)
- Paula Böttinger
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Karin Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Elizabeth Hyjek
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Thomas Krausz
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Michael T Spiotto
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Madeline Steiner
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Christian Idel
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Heather Booras
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | - Jessie Riederer
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Buch, Berlin, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Partner site Berlin, Berlin, Germany
| | - Steven P Wolf
- Department of Pathology, The University of Chicago, Chicago, IL, USA.,Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Buch, Berlin, Germany
| | - Theodore Karrison
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Elizabeth Jensen
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
| | - Yusuke Nakamura
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Poh Yin Yew
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research/Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH, USA
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Matthias Leisegang
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Campus Buch, Berlin, Germany
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Minute L, Teijeira A, Sanchez-Paulete AR, Ochoa MC, Alvarez M, Otano I, Etxeberrria I, Bolaños E, Azpilikueta A, Garasa S, Casares N, Luis Perez Gracia J, Rodriguez-Ruiz ME, Berraondo P, Melero I. Cellular cytotoxicity is a form of immunogenic cell death. J Immunother Cancer 2020; 8:jitc-2019-000325. [PMID: 32217765 PMCID: PMC7206966 DOI: 10.1136/jitc-2019-000325] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2020] [Indexed: 01/11/2023] Open
Abstract
Background The immune response to cancer is often conceptualized with the cancer immunity cycle. An essential step in this interpretation is that antigens released by dying tumors are presented by dendritic cells to naive or memory T cells in the tumor-draining lymph nodes. Whether tumor cell death resulting from cytotoxicity, as mediated by T cells or natural killer (NK) lymphocytes, is actually immunogenic currently remains unknown. Methods In this study, tumor cells were killed by antigen-specific T-cell receptor (TCR) transgenic CD8 T cells or activated NK cells. Immunogenic cell death was studied analyzing the membrane exposure of calreticulin and the release of high mobility group box 1 (HMGB1) by the dying tumor cells. Furthermore, the potential immunogenicity of the tumor cell debris was evaluated in immunocompetent mice challenged with an unrelated tumor sharing only one tumor-associated antigen and by class I major histocompatibility complex (MHC)-multimer stainings. Mice deficient in Batf3, Ifnar1 and Sting1 were used to study mechanistic requirements. Results We observe in cocultures of tumor cells and effector cytotoxic cells, the presence of markers of immunogenic cell death such as calreticulin exposure and soluble HMGB1 protein. Ovalbumin (OVA)-transfected MC38 colon cancer cells, exogenously pulsed to present the gp100 epitope are killed in culture by mouse gp100-specific TCR transgenic CD8 T cells. Immunization of mice with the resulting destroyed cells induces epitope spreading as observed by detection of OVA-specific T cells by MHC multimer staining and rejection of OVA+ EG7 lymphoma cells. Similar results were observed in mice immunized with cell debris generated by NK-cell mediated cytotoxicity. Mice deficient in Batf3-dependent dendritic cells (conventional dendritic cells type 1, cDC1) fail to develop an anti-OVA response when immunized with tumor cells killed by cytotoxic lymphocytes. In line with this, cultured cDC1 dendritic cells uptake and can readily cross-present antigen from cytotoxicity-killed tumor cells to cognate CD8+ T lymphocytes. Conclusion These results support that an ongoing cytotoxic antitumor immune response can lead to immunogenic tumor cell death.
Collapse
Affiliation(s)
- Luna Minute
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alfonso R Sanchez-Paulete
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Itziar Otano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Iñaki Etxeberrria
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Jose Luis Perez Gracia
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
8
|
An Immunocompetent Mouse Model of HPV16(+) Head and Neck Squamous Cell Carcinoma. Cell Rep 2020; 29:1660-1674.e7. [PMID: 31693903 PMCID: PMC6870917 DOI: 10.1016/j.celrep.2019.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The incidence of human papilloma virus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) is increasing and implicated in more than 60% of all oropharyngeal carcinomas (OPSCCs). Although whole-genome, transcriptome, and proteome analyses have identified altered signaling pathways in HPV-induced HNSCCs, additional tools are needed to investigate the unique pathobiology of OPSCC. Herein, bioinformatics analyses of human HPV(+) HNSCCs revealed that all tumors express full-length E6 and identified molecular subtypes based on relative E6 and E7 expression levels. To recapitulate the levels, stoichiometric ratios, and anatomic location of E6/E7 expression, we generated a genetically engineered mouse model whereby balanced expression of E6/E7 is directed to the oropharyngeal epithelium. The addition of a mutant PIK3CAE545K allele leads to the rapid development of pre-malignant lesions marked by immune cell accumulation, and a subset of these lesions progress to OPSCC. This mouse provides a faithful immunocompetent model for testing treatments and investigating mechanisms of immuno- suppression. Carper et al. present the ‘‘iKHP’’ mouse, in which HPV16 oncogenes are inducibly activated in vivo in a tissue-specific and temporal manner. Oropharyngeal- specific expression of E6/E7 with PIK3CAE545K in these mice promotes the development of premalignant lesions marked by immune cell infiltration, but only a subset spontaneously convert to OPSCC.
Collapse
|
9
|
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens. Proc Natl Acad Sci U S A 2019; 116:23662-23670. [PMID: 31685621 DOI: 10.1073/pnas.1906026116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The impact of intratumoral heterogeneity (ITH) and the resultant neoantigen landscape on T cell immunity are poorly understood. ITH is a widely recognized feature of solid tumors and poses distinct challenges related to the development of effective therapeutic strategies, including cancer neoantigen vaccines. Here, we performed deep targeted DNA sequencing of multiple metastases from melanoma patients and observed ubiquitous sharing of clonal and subclonal single nucleotide variants (SNVs) encoding putative HLA class I-restricted neoantigen epitopes. However, spontaneous antitumor CD8+ T cell immunity in peripheral blood and tumors was restricted to a few clonal neoantigens featuring an oligo-/monoclonal T cell-receptor (TCR) repertoire. Moreover, in various tumors of the 4 patients examined, no neoantigen-specific TCR clonotypes were identified despite clonal neoantigen expression. Mature dendritic cell (mDC) vaccination with tumor-encoded amino acid-substituted (AAS) peptides revealed diverse neoantigen-specific CD8+ T responses, each composed of multiple TCR clonotypes. Isolation of T cell clones by limiting dilution from tumor-infiltrating lymphocytes (TILs) permitted functional validation regarding neoantigen specificity. Gene transfer of TCRαβ heterodimers specific for clonal neoantigens confirmed correct TCR clonotype assignments based on high-throughput TCRBV CDR3 sequencing. Our findings implicate immunological ignorance of clonal neoantigens as the basis for ineffective T cell immunity to melanoma and support the concept that therapeutic vaccination, as an adjunct to checkpoint inhibitor treatment, is required to increase the breadth and diversity of neoantigen-specific CD8+ T cells.
Collapse
|
10
|
Woodby B, Scott M, Bodily J. The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:169-238. [PMID: 27865458 PMCID: PMC5727914 DOI: 10.1016/bs.pmbts.2016.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that replicate in stratified squamous epithelia and cause a variety of malignancies. Current efforts in HPV biology are focused on understanding the virus-host interactions that enable HPV to persist for years or decades in the tissue. The importance of interactions between tumor cells and the stromal microenvironment has become increasingly apparent in recent years, but how stromal interactions impact the normal, benign life cycle of HPVs, or progression of lesions to cancer is less understood. Furthermore, how productively replicating HPV impacts cells in the stromal environment is also unclear. Here we bring together some of the relevant literature on keratinocyte-stromal interactions and their impacts on HPV biology, focusing on stromal fibroblasts, immune cells, and endothelial cells. We discuss how HPV oncogenes in infected cells manipulate other cells in their environment, and, conversely, how neighboring cells may impact the efficiency or course of HPV infection.
Collapse
Affiliation(s)
- B Woodby
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - M Scott
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - J Bodily
- Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
11
|
Callejas-Valera JL, Iglesias-Bartolome R, Amornphimoltham P, Palacios-Garcia J, Martin D, Califano JA, Molinolo AA, Gutkind JS. mTOR inhibition prevents rapid-onset of carcinogen-induced malignancies in a novel inducible HPV-16 E6/E7 mouse model. Carcinogenesis 2016; 37:1014-25. [PMID: 27538837 DOI: 10.1093/carcin/bgw086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
The rising incidence of human papillomavirus (HPV)-associated malignancies, especially for oropharyngeal cancers, has highlighted the urgent need to understand how the interplay between high-risk HPV oncogenes and carcinogenic exposure results in squamous cell carcinoma (SCC) development. Here, we describe an inducible mouse model expressing high risk HPV-16 E6/E7 oncoproteins in adults, bypassing the impact of these viral genes during development. HPV-16 E6/E7 genes were targeted to the basal squamous epithelia in transgenic mice using a doxycycline inducible cytokeratin 5 promoter (cK5-rtTA) system. After doxycycline induction, both E6 and E7 were highly expressed, resulting in rapid epidermal hyperplasia with a remarkable expansion of the proliferative cell compartment to the suprabasal layers. Surprisingly, in spite of the massive growth of epithelial cells and their stem cell progenitors, HPV-E6/E7 expression was not sufficient to trigger mTOR activation, a key oncogenic driver in HPV-associated malignancies, and malignant progression to SCC. However, these mice develop SCC rapidly after a single exposure to a skin carcinogen, DMBA, which was increased by the prolonged exposure to a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA). Thus, only few oncogenic hits may be sufficient to induce cancer in E6/E7 expressing cells. All HPV-E6/E7 expressing SCC lesions exhibited increased mTOR activation. Remarkably, rapamycin, an mTOR inhibitor, abolished tumor development when administered to HPV-E6/E7 mice prior to DMBA exposure. Our findings revealed that mTOR inhibition protects HPV-E6/E7 expressing tissues form SCC development upon carcinogen exposure, thus supporting the potential clinical use of mTOR inhibitors as a molecular targeted approach for prevention of HPV-associated malignancies.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Martin
- Oral and Pharyngeal Cancer Branch, NIH/NIDCR, Building 30, Bethesda, MD 20892-2190, USA
| | | | | | | |
Collapse
|
12
|
Smahel M. Biolistic DNA vaccination against cervical cancer. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 940:339-55. [PMID: 23104353 DOI: 10.1007/978-1-62703-110-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The development of cervical cancer is associated with infection by oncogenic human papillomaviruses (HPVs), of which type 16 (HPV16) is the most prevalent in HPV-induced malignant diseases. The viral oncoproteins E6 and E7 are convenient targets for anti-tumor immunization. To adapt the corresponding genes for DNA vaccination, their oncogenicity needs to be reduced and immunogenicity enhanced. The main modifications for achieving these aims include mutagenesis, rearrangement of gene parts, and fusion with supportive cellular or viral/bacterial genes or their functional parts. As HPVs are strictly human specific, an animal model of HPV infection does not exist. Therefore, immunization against HPV-induced tumors is most frequently tested in mouse models utilizing transplantable syngeneic tumor cells producing the HPV16 E6/E7 oncoproteins. In this chapter, one such cell line designated TC-1 is characterized and the effect of immunization with the modified E7 fusion gene against TC-1-induced subcutaneous tumors is described. As down-regulation of MHC class I molecules is one of the most important escape mechanisms of cervical carcinoma cells, the TC-1/A9 clone with reversibly reduced MHC class I expression has been developed and, herein, its response to DNA vaccination is also shown and compared with that of the TC-1 cells.
Collapse
Affiliation(s)
- Michal Smahel
- Department of Experimental Virology, Laboratory of Molecular Oncology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| |
Collapse
|
13
|
James EA, DeVoti JA, Rosenthal DW, Hatam LJ, Steinberg BM, Abramson AL, Kwok WW, Bonagura VR. Papillomavirus-specific CD4+ T cells exhibit reduced STAT-5 signaling and altered cytokine profiles in patients with recurrent respiratory papillomatosis. THE JOURNAL OF IMMUNOLOGY 2011; 186:6633-40. [PMID: 21531896 DOI: 10.4049/jimmunol.1004181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recurrent respiratory papillomatosis (RRP) is caused by human papillomavirus type 6 (HPV-6) or HPV-11. Specific HLA-DR haplotypes DRB1*01:02 and DRB1*03:01 are associated with the development of RRP, disease severity, and Th2-like responses to HPV early proteins. Th1-like responses to HPV proteins have been shown to be protective in animal models. Therefore, we investigated the hypothesis that RRP patients have dysfunctional Th1-like, HPV-specific T cell responses. Using MHC class II tetramers, we identified immunogenic peptides within HPV-11 early proteins. Two distinct peptides (E6(113-132) and E2(1-20)) contained DRB1*01:02- or DRB1*03:01-restricted epitopes, respectively. An additional peptide (E2(281-300)) contained an epitope presented by both alleles. Peptide binding, tetramer, and proliferation assays identified minimal epitopes within these peptides. These epitopes elicited E2/E6-specific CD4(+) T cell responses in RRP patients and healthy control subjects, allowing the isolation of HPV-specific T cell lines using tetramers. The cytokine profiles and STAT signaling of these tetramer-positive T cells were measured to compare the polarization and responsiveness of HPV-specific T cells from patients with RRP and healthy subjects. HPV-specific IFN-γ secretion was substantially lower in T cells from RRP patients. HPV-specific IL-13 secretion was seen at modest levels in T cells from RRP patients and was absent in T cells from healthy control subjects. HPV-specific T cells from RRP patients exhibited reduced STAT-5 phosphorylation and reduced IL-2 secretion, suggesting anergy. Levels of STAT-5 phosphorylation and IFN-γ secretion could be improved through addition of IL-2 to HPV-specific T cell lines from RRP patients. Therapeutic vaccination or interventions aimed at restoring Th1-like cytokine responses to HPV proteins and reversing anergy could improve clinical outcomes for RRP patients.
Collapse
Affiliation(s)
- Eddie A James
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
McDole JR, Danzer SC, Pun RYK, Chen Y, Johnson HL, Pirko I, Johnson AJ. Rapid formation of extended processes and engagement of Theiler's virus-infected neurons by CNS-infiltrating CD8 T cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1823-33. [PMID: 20813972 DOI: 10.2353/ajpath.2010.100231] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental question in neuroimmunology is the extent to which CD8 T cells actively engage virus-infected neurons. In the Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis, an effective central nervous system (CNS)-infiltrating antiviral CD8 T cell response offers protection from this demyelinating disease. However, the specific CNS cell types engaged by these protective CD8 T cells in TMEV-resistant strains remains unknown. We used confocal microscopy to visualize the morphology, migration, and specific cellular interactions between adoptively transferred CD8 T cells and specific CNS cell types. Adoptively transferred GFP+ CD8+ splenocytes migrated to the brain and became 93% specific for the immunodominant virus epitope D(b):VP2(121-130). These CD8 T cells also polarized T cell receptor, CD8 protein, and granzyme B toward target neurons. Furthermore, we observed CD8 T cells forming cytoplasmic processes up to 45 μm in length. Using live tissue imaging, we determined that these T cell-extended processes (TCEPs) could be rapidly formed and were associated with migratory behavior through CNS tissues. These studies provide evidence that antiviral CD8 T cells have the capacity to engage virus-infected neurons in vivo and are the first to document and measure the rapid formation of TCEPs on these brain-infiltrating lymphocytes using live tissue imaging.
Collapse
Affiliation(s)
- Jeremiah R McDole
- Departments of Neurology,University of Cincinnati College of Medicine , Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kanodia S, Da Silva DM, Kast WM. Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int J Cancer 2008; 122:247-59. [PMID: 17973257 PMCID: PMC4943456 DOI: 10.1002/ijc.23252] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human papillomavirus (HPV)-induced lesions are distinct in that they have targetable foreign antigens, the expression of which is necessary to maintain the cancerous phenotype. Hence, they pose as a very attractive target for "proof of concept" studies in the development of therapeutic vaccines. This review will focus on the most recent clinical trials for the immunotherapy of mucosal and cutaneous HPV-induced lesions as well as emerging therapeutic strategies that have been tested in preclinical models for HPV-induced lesions. Progress in peptide-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune response modifiers, photodynamic therapy and T cell receptor based therapy for HPV will be discussed.
Collapse
Affiliation(s)
- Shreya Kanodia
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
16
|
Mazzolini G, Murillo O, Atorrasagasti C, Dubrot J, Tirapu I, Rizzo M, Arina A, Alfaro C, Azpilicueta A, Berasain C, Perez-Gracia JL, Gonzalez A, Melero I. Immunotherapy and immunoescape in colorectal cancer. World J Gastroenterol 2007; 13:5822-31. [PMID: 17990348 PMCID: PMC4205429 DOI: 10.3748/wjg.v13.i44.5822] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses. Colorectal carcinoma often presents as metastatic disease that impedes curative surgery. Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage. Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells). However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances. Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response. For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNγ in colorectal carcinoma cells. Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma.
Collapse
|
17
|
Chappaz S, Flueck L, Farr AG, Rolink AG, Finke D. Increased TSLP availability restores T- and B-cell compartments in adult IL-7 deficient mice. Blood 2007; 110:3862-70. [PMID: 17702899 DOI: 10.1182/blood-2007-02-074245] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interleukin 7 (IL-7) plays a crucial role in adult lymphopoiesis, while in fetal life its effect can be partially compensated by TSLP. Whether adult hematopoietic progenitor cells are unresponsive to TSLP or whether TSLP is less available in adult microenvironments is still a matter of debate. Here, we show that increased TSLP availability through transgene (Tg) expression fully restored lymphopoiesis in IL-7-deficient mice: it rescued B-cell development, increased thymic and splenic cellularities, and restored double-negative (DN) thymocytes, alphabeta and gammadelta T-cell generation, and all peripheral lymphoid compartments. Analysis of bone marrow chimeras demonstrated that hematopoietic progenitor cells from adult wild-type mice efficiently differentiated toward B- and T-cell lineages in lethally irradiated IL-7 deficient mice provided TSLP Tg was expressed in these mice. In vitro, TSLP promoted the differentiation of uncommitted adult bone marrow progenitors toward B and T lineages and the further differentiation of DN1 and DN2 thymocytes. Altogether, our results show that adult hematopoietic cells are TSLP responsive and that TSLP can sustain long-term adult lymphopoiesis.
Collapse
Affiliation(s)
- Stephane Chappaz
- Center for Biomedicine, Department of Clinical and Biological Sciences (DKBW), University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Souders NC, Sewell DA, Pan ZK, Hussain SF, Rodriguez A, Wallecha A, Paterson Y. Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. CANCER IMMUNITY 2007; 7:2. [PMID: 17279610 PMCID: PMC3077294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/03/2007] [Indexed: 05/13/2023]
Abstract
We have created a transgenic mouse with tissue-specific expression of the human papilloma virus (HPV) 16 E6 and E7 oncoproteins in the thyroid as a model of HPV transformed cancer. The expression of the transgenes results in the formation of palpable thyroid tumors. E7 is not expressed in other tissues but is expressed in medullary thymic epithelial cells, which have been implicated in the control of negative selection. We show that Listeria-based vaccines against E7 can induce the regression of solid implanted tumors in the transgenic mice, although at a lower frequency than in wild type (WT) mice. E7-specific CD8+ T cells induced in transgenic mice are of both lower avidity and lower frequency when compared to the WT mice. In this model, Listeria-based vaccines against E7 appear to be overcoming central tolerance by expanding low avidity CD8+ T cells specific for E7 that are not deleted during thymopoesis and can eliminate solid tumors.
Collapse
Affiliation(s)
- Nicholas C Souders
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Mastrolorenzo A, Supuran CT, Zuccati G. The sexually transmitted papillomavirus infections: clinical manifestations, current and future therapies. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.2.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 2007; 67:371-80. [PMID: 17210720 DOI: 10.1158/0008-5472.can-06-2903] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depletion of CD4+CD25+ regulatory T cells (Treg) by treatment with alphaCD25 antibody synergizes with vaccination protocols to engender protective immunity in mice. The effectiveness of targeting CD25 to eliminate Treg is limited by the fact that CD25, the low-affinity interleukin-2 receptor, is up-regulated on conventional T cells. At present, foxp3 is the only product known to be exclusively expressed in Treg of mice. However, foxp3 is not expressed on the cell surface and hence cannot be targeted with antibodies. In this study, we tested the hypothesis that vaccination of mice against foxp3, a self-antigen expressed also in the thymus, is capable of stimulating foxp3-specific CTL that will cause the depletion of Treg and enhanced antitumor immunity. Vaccination of mice with foxp3 mRNA-transfected dendritic cells elicited a robust foxp3-specific CTL response and potentiated vaccine-induced protective immunity comparably with that of alphaCD25 antibody administration. In contrast to alphaCD25 antibody treatment, repeated foxp3 vaccination did not interfere with vaccine-induced protective immunity. Importantly, foxp3 vaccination led to the preferential depletion of foxp3-expressing Treg in the tumor but not in the periphery, whereas alphaCD25 antibody treatment led to depletion of Treg in both the tumor and the periphery. Targeting foxp3 by vaccination offers a specific and simpler protocol for the prolonged control of Treg that may be associated with reduced risk of autoimmunity, introducing an approach whereby specific depletion of cells is not limited to targeting products expressed on the cell surface.
Collapse
Affiliation(s)
- Smita Nair
- Department of Surgery, Duke Center for Translational Research and Medicine, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Carcinoma of the uterine cervix, a leading cause of cancer death in women worldwide, is initiated by infection with high-risk types of human papillomaviruses (HPVs). This review summarizes laboratory studies over the past 20 years that have elucidated the major features of the HPV life cycle, identified the functions of the viral proteins, and clarified the consequences of HPV infection for their host cells. This information has allowed the development of various strategies to prevent or treat infections, including prophylactic vaccination with virus-like particles, therapeutic vaccination against viral proteins expressed in cancer cells, and antiviral approaches to inhibit virus replication, spread, or pathogenesis. These strategies have the potential to cause a dramatic reduction in the incidence of cervical carcinoma and serve as the prototype for comprehensive efforts to combat virus-induced tumors.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
22
|
Zoecklein LJ, Pavelko KD, Gamez J, Papke L, McGavern DB, Ure DR, Njenga MK, Johnson AJ, Nakane S, Rodriguez M. Direct comparison of demyelinating disease induced by the Daniel's strain and BeAn strain of Theiler's murine encephalomyelitis virus. Brain Pathol 2006; 13:291-308. [PMID: 12946019 PMCID: PMC5451092 DOI: 10.1111/j.1750-3639.2003.tb00029.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We compared CNS disease following intracerebral injection of SJL mice with Daniel's (DA) and BeAn 8386 (BeAn) strains of Theiler's murine encephalomyelitis virus (TMEV). In tissue culture, DA was more virulent then BeAn. There was a higher incidence of demyelination in the spinal cords of SJL/J mice infected with DA as compared to BeAn. However, the extent of demyelination was similar between virus strains when comparing those mice that developed demyelination. Even though BeAn infection resulted in lower incidence of demyelination in the spinal cord, these mice showed significant brain disease similar to that observed with DA. There was approximately 100 times more virus specific RNA in the CNS of DA infected mice as compared to BeAn infected mice. This was reflected by more virus antigen positive cells (macrophages/microglia and oligodendrocytes) in the spinal cord white matter of DA infected mice as compared to BeAn. There was no difference in the brain infiltrating immune cells of DA or BeAn infected mice. However, BeAn infected mice showed higher titers of TMEV specific antibody. Functional deficits as measured by Rotarod were more severe in DA infected versus BeAn infected mice. These findings indicate that the diseases induced by DA or BeAn are distinct.
Collapse
Affiliation(s)
- Laurie J. Zoecklein
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | - Jeff Gamez
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | - Louisa Papke
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | | | - Daren R. Ure
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | - M. Kariuki Njenga
- Department of Veterinary Pathobiology at University of Minnesota, Minneapolis
| | - Aaron J. Johnson
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
| | - Shunya Nakane
- Department of Neurology and Mayo Medical and Graduate Schools, Rochester, Minn
| | - Moses Rodriguez
- Department of Neurology and Mayo Medical and Graduate Schools, Rochester, Minn
- Department of Immunology, Mayo Medical and Graduate Schools, Rochester, Minn
- Department of Program for Molecular Neuroscience, Mayo Medical and Graduate Schools, Rochester, Minn
| |
Collapse
|
23
|
Abstract
It is not unusual for antigens and potentially responsive T cells to co-exist in the same organism while these T cells remain silent and do not mount life-threatening immune responses. A rich array of mechanisms has been proposed to explain these observations. T cell silencing is controlled in multiple levels. Initially, dendritic cells and regulatory T cells appear to play critical roles. In addition, T cell immunity is tightly regulated by a molecular network of cytokines and cell receptor interactions by the opposed surfaces of antigen-presenting cells and T cells. Recognition of a specific antigen is therefore shaped and tuned by co-stimulatory and co-inhibitory receptor-ligand pairs. At last, immunologists are beginning to exploit the rules governing these assorted sounds of T cell silence.
Collapse
Affiliation(s)
- Ignacio Melero
- Department of Medicine, CIMA and Clinica Universitaria, University of Navarra, Pamplona, Spain.
| | | | | |
Collapse
|
24
|
Block MS, Mendez-Fernandez YV, Van Keulen VP, Hansen MJ, Allen KS, Taboas AL, Rodriguez M, Pease LR. Inability of bm14 mice to respond to Theiler's murine encephalomyelitis virus is caused by defective antigen presentation, not repertoire selection. THE JOURNAL OF IMMUNOLOGY 2005; 174:2756-62. [PMID: 15728484 DOI: 10.4049/jimmunol.174.5.2756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural selection drives diversification of MHC class I proteins, but the mechanism by which selection for polymorphism occurs is not known. New variant class I alleles differ from parental alleles both in the nature of the CD8 T cell repertoire formed and the ability to present pathogen-derived peptides. In the current study, we examined whether T cell repertoire differences, Ag presentation differences, or both account for differential viral resistance between mice bearing variant and parental alleles. We demonstrate that nonresponsive mice have inadequate presentation of viral Ag, but have T cell repertoires capable of mounting Ag-specific responses. Although previous work suggests a correlation between the ability to present an Ag and the ability to generate a repertoire responsive to that Ag, we show that the two functions of MHC class I are independent.
Collapse
Affiliation(s)
- Matthew S Block
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mendez-Fernandez YV, Hansen MJ, Rodriguez M, Pease LR. Anatomical and cellular requirements for the activation and migration of virus-specific CD8+ T cells to the brain during Theiler's virus infection. J Virol 2005; 79:3063-70. [PMID: 15709026 PMCID: PMC548433 DOI: 10.1128/jvi.79.5.3063-3070.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 10/21/2004] [Indexed: 12/25/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection of the brain induces a virus-specific CD8(+) T-cell response in genetically resistant mice. The peak of the immune response to the virus occurs 7 days after infection, with an immunodominant CD8(+) T-cell response against a VP2-derived capsid peptide in the context of the D(b) molecule. The process of activation of antigen-specific T cells that migrate to the brain in the TMEV model has not been defined. The site of antigenic challenge in the TMEV model is directly into the brain parenchyma, a site that is considered immune privileged. We investigated the hypothesis that antiviral CD8(+) T-cell responses are initiated in situ upon intracranial inoculation with TMEV. To determine whether a brain parenchymal antigen-presenting cell is responsible for the activation of virus-specific CD8(+) T cells, we evaluated the CD8(+) T-cell response to the VP2 peptide in bone marrow chimeras and mutant mice lacking peripheral lymphoid organs. The generation of the anti-TMEV CD8(+) T-cell response in the brain requires priming by a bone marrow-derived antigen-presenting cell and the presence of peripheral lymphoid organs. Although our results show that activation of TMEV-specific CD8(+) T cells occurs in the peripheral lymphoid compartment, they do not exclude the possibility that the immune response to TMEV is initiated by a brain-resident, bone marrow-derived, antigen-presenting cell.
Collapse
Affiliation(s)
- Yanice V Mendez-Fernandez
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Ave. SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
26
|
Nicol AF, Fernandes ATG, Bonecini-Almeida MDG. Immune response in cervical dysplasia induced by human papillomavirus: the influence of human immunodeficiency virus-1 co-infection - review. Mem Inst Oswaldo Cruz 2005; 100:1-12. [PMID: 15867955 DOI: 10.1590/s0074-02762005000100001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) has become an important risk factor for human papillomavirus (HPV) infection and the development of HPV associated lesions in the female genital tract. HIV-1 may also increase the oncogenicity of high risk HPV types and the activation of low risk types. The Center for Disease Control and Prevention declared invasive cervical cancer an acquired immunodeficiency virus (AIDS) defining illness in HIV positive women. Furthermore, cervical cancer happens to be the second most common female cancer worldwide. The host's local immune response plays a critical factor in controlling these conditions, as well as in changes in the number of professional antigen-presenting cells, cytokine, and MHC molecules expression. Also, the production of cytokines may determine which arm of the immune response will be stimulated and may influence the magnitude of immune protection. Although there are many studies describing the inflammatory response in HPV infection, few data are available to demonstrate the influence of the HIV infection and several questions regarding the cervical immune response are still unknown. In this review we present a brief account of the current understanding of HIV/HPV co-infection, emphasizing cervical immune response.
Collapse
Affiliation(s)
- Alcina Frederica Nicol
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Pesquisa Clínica Evandro Chagas-Fiocruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
27
|
Routes JM, Morris K, Ellison MC, Ryan S. Macrophages kill human papillomavirus type 16 E6-expressing tumor cells by tumor necrosis factor alpha- and nitric oxide-dependent mechanisms. J Virol 2005; 79:116-23. [PMID: 15596807 PMCID: PMC538740 DOI: 10.1128/jvi.79.1.116-123.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 08/20/2004] [Indexed: 12/25/2022] Open
Abstract
The expression of adenovirus serotype 2 or 5 (Ad2/5) E1A sensitizes cells to killing by NK cells and activated macrophages, a property that correlates with the ability of E1A to bind the transcriptional coadaptor proteins p300-CBP. The E6 oncoproteins derived from the high-risk human papillomaviruses (HPV) interact with p300 and can complement mutant forms of E1A that cannot interact with p300 to induce cellular immortalization. Therefore, we determined if HPV type 16 (HPV16) E6 could sensitize cells to killing by macrophages and NK cells. HPV16 E6 expression sensitized human (H4 and C33A) and murine (MCA-102) cell lines to lysis by macrophages but not by NK cells. The lysis of cells that expressed E6 by macrophages was p53 independent but dependent on the production of tumor necrosis factor alpha (TNF-alpha) or nitric oxide (NO) by macrophages. Unlike cytolysis assays with macrophages, E6 expression did not significantly sensitize cells to lysis by the direct addition of NO or TNF-alpha. Like E1A, E6 has been reported to sensitize cells to lysis by TNF-alpha by inhibiting the TNF-alpha-induced activation of NF-kappaB. We found that E1A, but not E6, blocked the TNF-alpha-induced activation of NF-kappaB, an activity that correlated with E1A-p300 binding. In summary, Ad5 E1A and HPV16 E6 sensitized cells to lysis by macrophages. Unlike E1A, E6 did not block the ability of TNF-alpha to activate NF-kappaB or sensitize cells to lysis by NK cells, TNF-alpha, or NO. Thus, there appears to be a spectrum of common and unique biological activities that result as a consequence of the interaction of E6 or E1A with p300-CBP.
Collapse
Affiliation(s)
- John M Routes
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Although tumor vaccines have been studied for decades, there is no vaccine approved as a clinical product. Nevertheless, recent advances in immunology and tumor biology justify a renewed interest. First, cancer cells express many antigens that can be recognized by the immune system, some with high tumor selectivity. Second, knowledge about immune regulation, including the importance of costimulatory signals, has been successfully applied to the studies of tumors. Third, mechanisms of how tumors can escape from immunological control have been identified, setting the stage to discover agents to decrease their impact. Rejection of established mouse tumors has been accomplished as a result of therapeutic tumor vaccination and there are encouraging findings from vaccine trials in humans.
Collapse
|
29
|
Affiliation(s)
- Eli Gilboa
- The Center for Cellular and Genetic Therapies, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
30
|
Schreiber K, Cannon RE, Karrison T, Beck-Engeser G, Huo D, Tennant RW, Jensen H, Kast WM, Krausz T, Meredith SC, Chen L, Schreiber H. Strong synergy between mutant ras and HPV16 E6/E7 in the development of primary tumors. Oncogene 2004; 23:3972-9. [PMID: 15077191 DOI: 10.1038/sj.onc.1207507] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
E6/E7 oncogenes of high-risk human papilloma virus (HPV) subtypes are essential for the development of certain types of cancers. However, these oncogenes are insufficient to transform normal cells into an immortalized or malignant state. Mutant Ha-ras cooperates with E6/E7 of HPV subtype 16 in transformation of cells in vitro and may contribute to some HPV-associated cancers in humans. This study investigates whether HPV16 E6/E7 and v-Ha-ras synergize in vivo. FVB/n mice transgenic for v-Ha-ras gene (R+) were crossed with transgenic C57BL/6 mice that harbor E6/E7 of HPV16 (E+). Beginning at about 3 months of age, the bitransgenic E(+)R(+)(C57BL/6 x FVB/n) F1 mice developed mouth, eye and ear tumors. By 6 months, the prevalence of these types of mouth, eye and ear tumors was 100, 71 and 79% respectively in the E(+)R+ mice. Most tumors grew progressively until the mice had to be killed. The median times for the appearance of the first mouth, eye and ear tumor were 3.6, 4.3 and 4.2 months, respectively. For the two singly transgenic groups of mice, the prevalence of mouth, eye and ear tumors was 0, 0 and 6% (E(-)R+) and 0, 0 and 0% (E(+)R-), respectively, and the median time to first tumor was greater than 12 months for singly transgenic mice (E(-)R+, E(+)R-). Thus, a remarkable synergy occurred between the v-Ha-ras and HPV16 E6/E7 oncogenes in the development of primary tumors in mice.
Collapse
Affiliation(s)
- Karin Schreiber
- Department of Pathology, The University of Chicago, 5841 S. Maryland Ave, MC 3008, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hellstrom KE, Hellstrom I. Therapeutic vaccination with tumor cells that engage CD137. J Mol Med (Berl) 2003; 81:71-86. [PMID: 12601523 DOI: 10.1007/s00109-002-0413-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Accepted: 12/11/2002] [Indexed: 01/28/2023]
Abstract
Therapeutic cancer vaccination is based on the finding that tumors in both humans and experimental animals, such as mice, express potential immunological targets, some of which have high selectivity for cancer cells. In contrast to the successful vaccination against some infectious diseases, where most vaccines induce neutralizing antibodies that act prophylactically, the aim of therapeutic cancer vaccines is to treat established tumors (primarily micrometastases). Since most tumor-destructive immune responses are cell-mediated, therapeutic cancer vaccination needs to induce and expand such responses and also to overcome "escape" mechanisms that allow tumors to evade immunological destruction. Tumor antigens (as with other antigens) are presented by "professional" antigen-presenting cells, most notably dendritic cells (DC). Therefore DC that have been transfected or "pulsed" to present antigen provide a logical source of tumor vaccines, and some encouraging results have been obtained clinically as well as in preclinical models. An alternative and more physiological approach is to develop vaccines that deliver tumor antigen for in vivo uptake and presentation by the DC. Vaccines of the latter type include tumor cells that have been modified to produce certain lymphokines or express costimulatory molecules, as well as cDNAs, recombinant viruses, proteins, peptides and glycolipids which are often given together with an adjuvant. Several studies over the past 5 years have demonstrated dramatic therapeutic responses against established mouse tumors as a result of repeated injections of agonistic monoclonal antibodies (MAbs) to the costimulatory molecule CD137 (4-1BB). However, the clinical use of such MAbs may be problematic since they depress antibody formation, for example, to infectious agents. The alternative approach to transfect tumor cells to express the CD137 ligand (CD137L) increases their immunogenicity, but vaccination with tumor cells expressing CD137L is ineffective in several systems where injection of anti-CD137 MAb produces tumor regression. Recent findings indicate that a more effective way to engage CD137 towards tumor destruction is to transfect tumor cells to express a cell-bound form of anti-CD137 single-chain Fv fragments (scFv). Notably, tumors from melanoma K1735, growing either subcutaneously or in the lung, could be eradicated following vaccination with K1735 cells that expressed anti-CD137 scFv. This was in spite of the fact that K1735, as with many human neoplasms, expresses very low levels of MHC class I and has low immunogenicity. Similar results were subsequently obtained with other tumors of low immunogenicity, including sarcoma Ag104. We hypothesize that the concomitant expression of tumor antigen and anti-CD137 scFv effectively engages NK cells, monocytes and dendritic cells, as well as activated CD4(+) and CD8(+) T cells (all of which express CD137) so as to induce and expand a tumor-destructive Th1 response. While vaccines in the form of transfected tumor cells can be effective, at least in mouse models, the logical next step is to construct vaccines that combine genes that encode molecularly defined tumor antigens with a gene that encodes anti-CD137 scFv. Before planning any clinical trials, vaccines that engage CD137 via scFv need to be compared in demanding mouse models for efficacy and side effects with vaccines that are already being tested clinically, including transfected DC and tumor cells producing granulocyte-macrophage colony-stimulating factor.
Collapse
|
32
|
Arina A, Tirapu I, Alfaro C, Rodríguez-Calvillo M, Mazzolini G, Inogés S, López A, Feijoo E, Bendandi M, Melero I. Clinical implications of antigen transfer mechanisms from malignant to dendritic cells. exploiting cross-priming. Exp Hematol 2002; 30:1355-64. [PMID: 12482496 DOI: 10.1016/s0301-472x(02)00956-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expansion and activation of cytolytic T lymphocytes bearing high-affinity T-cell receptors specific for tumor antigens is a major goal of active cancer immunotherapy. Physiologically, T cells receive promitotic and activating signals from endogenous professional antigen-presenting cells (APC) rather than directly from malignant cells. This phenomenon fits with the broader concept of cross-presentation that earlier was demonstrated for minor histocompatibility and viral antigens. Many mechanisms have been found to be capable of transferring antigenic material from malignant cells to APC so that it can be processed and subsequently presented by MHC class I molecules expressed on APC. Dendritic cells (DC) are believed to be the most relevant APC mediating cross-presentation because they can take up antigens from apoptotic, necrotic, and even intact tumor cells. There exist specific molecular mechanisms that ensure this transfer of antigenic material: 1) opsonization of apoptotic bodies; 2) receptors for released heat shock proteins carrying peptides processed intracellularly; 3) Fc receptors that uptake immunocomplexes and immunoglobulins; and 4) pinocytosis. DC have the peculiar capability of reentering the exogenously captured material into the MHC class I pathway. Exploitation of these pieces of knowledge is achieved by providing DC with complex mixtures of tumor antigens ex vivo and by agents and procedures that promote infiltration of malignant tissue by DC. The final outcome of DC cross-presentation could be T-cell activation (cross-priming) but also, and importantly, T-cell tolerance contingent upon the activation/maturation status of DC. Artificial enhancement of tumor antigen cross-presentation and control of the immune-promoting status of the antigen-presenting DC will have important therapeutic implications in the near future.
Collapse
Affiliation(s)
- Ainhoa Arina
- Centro de Investigación Médica Aplicada (CIMA), School of Medicine and Cell Therapy Area (Clínica Universitaria), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Leggatt GR, Dunn LA, De Kluyver RL, Stewart T, Frazer IH. Interferon-gamma enhances cytotoxic T lymphocyte recognition of endogenous peptide in keratinocytes without lowering the requirement for surface peptide. Immunol Cell Biol 2002; 80:415-24. [PMID: 12225377 DOI: 10.1046/j.1440-1711.2002.01105.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Keratinocytes expressing the human papillomavirus (HPV) type 16 E7 protein, as a transgene driven by the K14 promoter, form a murine model of HPV-mediated epithelial cancers in humans. Our previous studies have shown that K14E7 transgenic skin grafts onto syngeneic mice are not susceptible to immune destruction despite the demonstrated presence of a strong, systemic CTL response directed against the E7 protein. Consistent with this finding, we now show that cultured, E7 transgenic keratinocytes (KC) express comparable endogenous levels of E7 protein to a range of CTL-sensitive E7-expressing cell lines but are not susceptible to CTL-mediated lysis in vitro. E7 transgenic and non-transgenic KC are susceptible to conventional mechanisms of CTL-mediated lysis, including perforin and Fas/FasL interaction when an excess of exogenous peptide is provided. The concentration of exogenous peptide required to render a cell susceptible to lysis was similar between KC and other conventional CTL targets (e.g. EL-4), despite large differences in H-2Db expression at the cell surface. Furthermore, exposure of KC to IFN-gamma increased H-2Db expression, but did not substantially alter the exogenous peptide concentration required to sensitize cells for half maximal lysis. In contrast, the lytic sensitivity of transgenic KC expressing endogenous E7 is modestly improved by exposure to IFN-gamma. Thus, failure of CTL to eliminate KC expressing endogenous E7, and by inference squamous tumours expressing E7, may reflect the need for a sustained, local inflammatory environment during the immune effector phase.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/virology
- Cells, Cultured/drug effects
- Cells, Cultured/immunology
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Fas Ligand Protein
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Interferon-gamma/pharmacology
- Keratinocytes/drug effects
- Keratinocytes/immunology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomavirus E7 Proteins
- Peptide Fragments/immunology
- Perforin
- Pore Forming Cytotoxic Proteins
- Skin Neoplasms/immunology
- Skin Neoplasms/virology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- fas Receptor/physiology
Collapse
Affiliation(s)
- Graham R Leggatt
- Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The nature of the interaction between papillomaviruses (PV) and their infected host has led to the identification of ways in which the viral oncoproteins can transform the infected host cells into cancer cells. As viral persistence is required for malignancy, and persistence requires avoidance of immune attack by the host, defining the relationship between PV and the immune system is also paramount in understanding tumorigenesis. It has emerged that PV have evolved several ways in which to prevent clearance by the host immune system. The limitation of the PV replication cycle to the epithelium, together with low level expression of the virus proteins and an absence of inflammation, minimises the exposure of virus to immune cells. In addition, more recently it has been shown that, like many other viruses, PV can directly subvert the immune response, including interference with the interferon pathway, modulation of antigen presentation, inhibition of interleukin-18 activity and down-regulation of major histocompatibility class I on infected cells. Collectively these mechanisms explain how PV lesions are able to persist for long periods of time in immunocompetent hosts.
Collapse
Affiliation(s)
- Philippa M O'Brien
- Department of Veterinary Pathology, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Bearsden Road, G61 1QH, Scotland, Glasgow, UK
| | | |
Collapse
|
35
|
Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, Strome SE, Pease LR, Chen L. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest 2002. [PMID: 11877473 DOI: 10.1172/jci0214184] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treatment of advanced, poorly immunogenic tumors in animal models, considered the closest simulation available thus far for conditions observed in cancer patients, remains a major challenge for cancer immunotherapy. We reported previously that established tumors in mice receiving an agonistic mAb to the T cell costimulatory molecule 4-1BB (CD137) regress due to enhanced tumor antigen-specific cytotoxic T lymphocyte responses. In this study, we demonstrate that several poorly immunogenic tumors, including C3 tumor, TC-1 lung carcinoma, and B16-F10 melanoma, once established as solid tumors or metastases, are refractory to treatment by anti-4-1BB mAb. We provide evidence that immunological ignorance, rather than anergy or deletion, of tumor antigen--specific CTLs during the progressive growth of tumors prevents costimulation by anti-4-1BB mAb. Breaking CTL ignorance by immunization with a tumor antigen-derived peptide, although insufficient to stimulate a curative CTL response, is necessary for anti--4-1BB mAb to induce a CTL response leading to the regression of established tumors. Our results suggest a new approach for immunotherapy of human cancers.
Collapse
Affiliation(s)
- Ryan A Wilcox
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, Strome SE, Pease LR, Chen L. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest 2002; 109:651-9. [PMID: 11877473 PMCID: PMC150893 DOI: 10.1172/jci14184] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Treatment of advanced, poorly immunogenic tumors in animal models, considered the closest simulation available thus far for conditions observed in cancer patients, remains a major challenge for cancer immunotherapy. We reported previously that established tumors in mice receiving an agonistic mAb to the T cell costimulatory molecule 4-1BB (CD137) regress due to enhanced tumor antigen-specific cytotoxic T lymphocyte responses. In this study, we demonstrate that several poorly immunogenic tumors, including C3 tumor, TC-1 lung carcinoma, and B16-F10 melanoma, once established as solid tumors or metastases, are refractory to treatment by anti-4-1BB mAb. We provide evidence that immunological ignorance, rather than anergy or deletion, of tumor antigen--specific CTLs during the progressive growth of tumors prevents costimulation by anti-4-1BB mAb. Breaking CTL ignorance by immunization with a tumor antigen-derived peptide, although insufficient to stimulate a curative CTL response, is necessary for anti--4-1BB mAb to induce a CTL response leading to the regression of established tumors. Our results suggest a new approach for immunotherapy of human cancers.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigens, CD
- Antigens, Neoplasm/metabolism
- Female
- Humans
- Immune Tolerance
- Immunotherapy/methods
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Oncogene Proteins, Viral/immunology
- Papillomavirus E7 Proteins
- Receptors, Nerve Growth Factor/immunology
- Receptors, Tumor Necrosis Factor/immunology
- Signal Transduction/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 9
Collapse
Affiliation(s)
- Ryan A Wilcox
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Johnson AJ, Upshaw J, Pavelko KD, Rodriguez M, Pease LR. Preservation of motor function by inhibition of CD8+ virus peptide-specific T cells in Theiler's virus infection. FASEB J 2001; 15:2760-2. [PMID: 11606479 DOI: 10.1096/fj.01-0373fje] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Central nervous system-infiltrating CD8+ T cells are potential mediators of neuropathology in models of multiple sclerosis induced by Theiler's murine encephalomyelitis virus (TMEV) infection. C57BL/6 mice mount a vigorous cytotoxic T lymphocyte (CTL) response against the immunodominant virus peptide VP2121-130 and clear TMEV infection. Interferon-g (IFN-g)R-/- mice also mount a strong CTL response against the VP2121-130 epitope, but because of genetic deficiencies in critical IFN-g signaling pathways, they do not clear TMEV infection and develop prominent neurological deficits within 6 wk. This pronounced disease process, coupled with a defined CTL response, provides an ideal model for evaluating the importance of antiviral CTL activity in the development of severe demyelination and loss of motor neuron function. By administering the VP2121-130 peptide before and during TMEV infection, 99% of the VP2121-130-specific CD8+ T cell response was inhibited. No decrease in virus infection was observed. Peptide treatment did result in significantly less motor dysfunction, even when no differences in levels of demyelination were observed. Although most investigators focus on the role of CD4+ T cells in demyelinating disease, these studies are the first to demonstrate a clear contribution of antiviral CD8+ T cells in neurological injury in a chronic-progressive model of multiple sclerosis.
Collapse
Affiliation(s)
- A J Johnson
- Departments of, Immunology and, Neurology, Mayo Graduate and Medical Schools, Rochester, Minnesota 55901, USA
| | | | | | | | | |
Collapse
|
38
|
Zhu G, Flies DB, Tamada K, Sun Y, Rodriguez M, Fu YX, Chen L. Progressive depletion of peripheral B lymphocytes in 4-1BB (CD137) ligand/I-Ealpha)-transgenic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2671-6. [PMID: 11509610 DOI: 10.4049/jimmunol.167.5.2671] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interaction of 4-1BB (CD137) and its ligand (4-1BBL) is thought to positively regulate cell-mediated and humoral immune responses. We have prepared transgenic mouse strains that express 4-1BBL cDNA under the control of MHC class II I-Ealpha promoter. The 4-1BBL-transgenic mice show progressive splenomegaly and selective depletion of B220(+) B cells accompanied with low levels of circulating IgG and defective humoral responses to Ag challenge. In addition, splenocytes from the transgenic mice fail to provide stimulation for allogeneic T cells in both lymphoproliferative and CTL responses in vitro, whereas their T cells remain functionally normal. Our results reveal unexpected functions of 4-1BBL in the regulation of humoral immune responses and Ag presentation.
Collapse
MESH Headings
- 4-1BB Ligand
- Aging/immunology
- Animals
- Antibody Formation
- Antigen Presentation
- Antigens, CD
- B-Lymphocytes/immunology
- Base Sequence
- DNA, Complementary/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- In Vitro Techniques
- Ligands
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Phenotype
- Promoter Regions, Genetic
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- G Zhu
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- E Gilboa
- Duke University, Experimental Surgery, Box 2601 Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Mannie MD, Norris MS. MHC class-II-restricted antigen presentation by myelin basic protein-specific CD4+ T cells causes prolonged desensitization and outgrowth of CD4- responders. Cell Immunol 2001; 212:51-62. [PMID: 11716529 DOI: 10.1006/cimm.2001.1843] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cells express MHC class II glycoproteins under various conditions of activation or inflammation. To assess whether T cell APC (T-APC) activity had long-term tolerogenic consequences, myelin basic protein (MBP)-specific rat T cells were induced to acquire MBP-derived I-A complexes to promote reciprocal antigen presentation. T-T antigen presentation caused extensive cell death among T-APC and MBP-specific T responders and caused long-term desensitization of surviving responders. Addition of the anti-I-A mAb OX6 to activated I-A+ responders inhibited T-APC activity, accelerated recovery from postactivation refractoriness, and prevented long-term loss of reactivity in responder T cells. Antigenic activation of responder T cells with irradiated T-APC induced profound losses in reactivity that lasted for over 1 month of propagation in IL-2 and was associated with preferential outgrowth of CD4- T cells. Antigen-activated CD4- T cells exhibited more rapid IL-2-dependent growth that eventually normalized compared to CD4+ T cells 1-2 months after antigen exposure. In conclusion, expression of T-APC activity by activated T cells represents an important negative feedback pathway that depletes antigen-reactive T cells and causes long-term desensitization of surviving T cells. Hence, T cell APC may be an important mechanism of self-tolerance.
Collapse
Affiliation(s)
- M D Mannie
- Department of Microbiology and Immunology, Brody Medical Sciences Building, East Carolina University School of Medicine, Greenville, NC 27858-4354, USA.
| | | |
Collapse
|
41
|
Mazzolini G, Narvaiza I, Bustos M, Duarte M, Tirapu I, Bilbao R, Qian C, Prieto J, Melero I. Alpha(v)beta(3) integrin-mediated adenoviral transfer of interleukin-12 at the periphery of hepatic colon cancer metastases induces VCAM-1 expression and T-cell recruitment. Mol Ther 2001; 3:665-72. [PMID: 11356071 DOI: 10.1006/mthe.2001.0317] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We previously reported that systemic injection of recombinant adenovirus resulted in a rim of gene transduction around experimental liver tumor nodules. This zone of higher infection is dependent on the alpha(v)beta(3) integrin, acting as an adenovirus internalization receptor, which is overexpressed in tissues surrounding liver metastases. When a recombinant adenovirus encoding interleukin-12 (AdCMVIL-12) is given into a subcutaneous tumor nodule in mice also bearing concomitant liver tumors, a fraction of AdCMVIL-12 reaches the systemic circulation and infects liver tissue, especially at the malignant/healthy tissue interface. As a result of the expression at this location of the interleukin-12 transgenes, VCAM-1 is induced on vessel cells and mediates the recruitment of adoptively transferred anti-tumor cytolytic T-lymphocytes. These studies provide mechanistic explanations for the potent therapeutic synergy observed between interleukin-12 gene transfer and adoptive T-cell therapy.
Collapse
Affiliation(s)
- G Mazzolini
- Gene Therapy Unit, University of Navarra School of Medicine, C/Irunlarrea, I 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang X, Brewer L, Walcheck B, Johnson A, Pease LR, Njenga MK. Theiler's virus-infected L-selectin-deficient mice have decreased infiltration of CD8(+) T lymphocytes in central nervous system but clear the virus. J Neuroimmunol 2001; 116:178-87. [PMID: 11438172 DOI: 10.1016/s0165-5728(01)00296-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice with targeted deletion of L-selectin gene (L-sel(-/-)) were used to investigate the role of adhesion molecule in immunologic responses following virus infection in the central nervous system (CNS). L-Sel(-/-) mice from a resistant H-2(b) genetic background and parental wild-type H-2(b) (C57BL/6) mice were infected with Theiler's murine encephalomyelitis virus (TMEV) intracerebrally and the kinetics of virus replication and infiltration of immune cells in the CNS determined. The levels of infectious TMEV, as measured by plaque assay at 3, 7, 14, and 28 days after infection were between 4 and 6 log(10) PFU of virus per gram of CNS tissues at days 3 and 7 post-infection, and then decreased to undetectable levels by day 14 after infection in both strains of mice. The L-sel(-/-) mice had decreased numbers of CD8(+) T lymphocytes (17.72%+/-2.4) infiltrating into the CNS at 7 days post-infection when compared to wild-type mice (31.02%+/-7.5). In addition, the L-sel(-/-) mice had significantly lower levels of TMEV-specific serum IgG resulting in lower virus neutralizing activity of the serum when compared to wild-type mice. However, the L-sel(-/-) mice had 2.5-fold increase in B lymphocytes in the CNS (8.29%+/-1.1) when compared to wild-type mice (3.2%+/-0.4). Taken together, these data indicate that L-selectin plays a role in recruitment of B and CD8(+) T lymphocytes into the CNS following virus infection, which, however, did not affect the ability of the mice to clear TMEV infection.
Collapse
Affiliation(s)
- X Zhang
- Department of Veterinary PathoBiology, University of Minnesota, 1971 Commonwealth Avenue, 55108, St. Paul, MN, USA
| | | | | | | | | | | |
Collapse
|
43
|
Azoury-Ziadeh R, Herd K, Fernando GJ, Lambert P, Frazer IH, Tindle RW. Low level expression of human papillomavirus type 16 (HPV16) E6 in squamous epithelium does not elicit E6 specific B- or T-helper immunological responses, or influence the outcome of immunisation with E6 protein. Virus Res 2001; 73:189-99. [PMID: 11172923 DOI: 10.1016/s0168-1702(00)00241-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mice transgenic for E6/E7 oncogenes of Human Papillomavirus type 16 display life-long expression of E6 in lens and skin epithelium, and develop inflammatory skin disease late in life, which progresses to papillomata and squamous carcinoma in some mice. We asked whether endogenous expression of E6 induced a specific immunological outcome, i.e. immunity or tolerance, or whether the mice remained immunologically naïve to E6. We show that prior to the onset of skin disease, E6 transgenic mice did not develop a spontaneous E6-directed antibody response, nor did they display T-cell proliferative responses to dominant T-helper epitope peptides within E6. In contrast, old mice in which skin disease had arisen, developed antibodies to E6. We also show that following immunisation with E6, specific antibody responses did not differ significantly among groups of E6-transgenic mice of different ages (and therefore of different durations and amounts of exposure to endogenous E6), and non-transgenic controls. Additionally, E6 immunisation-induced T-cell proliferative responses were similar in E6-transgenic and non-transgenic mice. These data are consistent with the interpretation that unimmunised E6-transgenic mice that have not developed inflammatory skin disease remain immunologically naïve to E6 at the B- and Th levels. There are implications for E6-mediated tumorigenesis in humans, and for the development of putative E6 therapeutic vaccines.
Collapse
Affiliation(s)
- R Azoury-Ziadeh
- Centre for Immunology and Cancer Research, University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Routes JM, Ryan S, Li H, Steinke J, Cook JL. Dissimilar immunogenicities of human papillomavirus E7 and adenovirus E1A proteins influence primary tumor development. Virology 2000; 277:48-57. [PMID: 11062035 DOI: 10.1006/viro.2000.0571] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although human papillomaviruses (HPV) and adenoviruses (Ad) both transform cells by expressing functionally related oncogenes (Ad-E1A/E1B; HPV-E7/E6), only HPV are oncogenic in humans. Prior studies have shown that HPV-transformed cells are resistant to NK cell lysis and E7- and E6-specific CTL are inefficiently generated in women with HPV-induced cervical cancer. Therefore, we postulated that the dissimilar oncogenicities of Ad and HPV may be caused by a protective NK and T cell response that is triggered by transformed cells expressing E1A, but not by E7. To test this hypothesis, mice that were either immunologically intact, lacked T cells, or lacked both NK and T cells were challenged with Ad serotype 5 (Ad5)-E1A- or HPV16-E7-transfected tumor cells. E7-expressing tumor cells were resistant to NK cell lysis in vitro and failed to elicit a measurable anti-tumor NK or T cell response in vivo. The concomitant expression of E6 did not change this phenotype. In contrast, E1A-expressing tumor cells were sensitive to NK lysis in vitro and triggered a protective NK and T cell immune response in vivo. These data suggest differences in the capacities of E1A or E7 oncoproteins to trigger protective anti-tumor immune responses may contribute to the dissimilar oncogenicities of Ad and HPV in humans.
Collapse
Affiliation(s)
- J M Routes
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado, 80206, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Neonates often respond poorly to conventional vaccines or microbial infections. Immaturity of the immune system has been considered to play a role in this regard. However, accumulating evidence shows that in certain conditions, neonatal inoculation of antigens leads to protective immunity. In the particular case of DNA vaccines administered to neonates, the rule is immunity rather than tolerance. Exceptions to the rule give opportunities to further understand the neonatal responsiveness and the mechanism of DNA vaccination. Due to the very nature of the vaccine vector, inhibition of neonatal DNA vaccination by maternal antibodies may be limited to the humoral immunity.
Collapse
Affiliation(s)
- A Bot
- Department of Exploratory Biological Research, Alliance Pharmaceutical Corp., San Diego, CA 92121, USA.
| |
Collapse
|
46
|
Narvaiza I, Mazzolini G, Barajas M, Duarte M, Zaratiegui M, Qian C, Melero I, Prieto J. Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3112-22. [PMID: 10706701 DOI: 10.4049/jimmunol.164.6.3112] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have constructed a recombinant defective adenovirus that expresses functional murine IFN-gamma-inducible protein-10 (IP-10) chemokine (AdCMVIP-10). Injection of AdCMVIP-10 into s.c. tumor nodules derived from the CT26 murine colorectal adenocarcinoma cell line displayed some antitumor activity but it was not curative in most cases. Previous studies have shown that injection of similar s. c. CT26 tumor nodules with adenovirus-encoding IL-12 (AdCMVIL-12) induces tumor regression in nearly 70% of cases in association with generation of antitumor CTL activity. AdCMVIP-10 synergizes with the antitumor effect of suboptimal doses of AdCMVIL-12, reaching 100% of tumor eradication not only against injected, but also against distant noninjected tumor nodules. Colocalization of both adenoviruses at the same tumor nodule was required for the local and distant therapeutic effects. Importantly, intratumoral gene transfer with IL-12 and IP-10 generated a powerful tumor-specific CTL response in a synergistic fashion, while both CD4 and CD8 T cells appeared in the infiltrate of regressing tumors. Moreover, the antitumor activity of IP-10 plus IL-12 combined gene therapy was greatly diminished by simultaneous in vivo depletion of CD4+ and CD8+ T cells but was largely unaffected by single depletion of each T cell subset. An important role for NK cells was also suggested by asialo GM1 depletion experiments. From a clinical point of view, the effects of IP-10 permit one to lower the required gene transfer level of IL-12, thus preventing dose-dependent IL-12-mediated toxicity while improving the therapeutic efficacy of the elicited antitumor response.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/immunology
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/immunology
- Antineoplastic Agents/therapeutic use
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line
- Cell-Free System/immunology
- Cell-Free System/virology
- Chemokine CXCL10
- Chemokines, CXC/genetics
- Chemokines, CXC/immunology
- Chemokines, CXC/physiology
- Chemokines, CXC/therapeutic use
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Defective Viruses/genetics
- Defective Viruses/immunology
- Dose-Response Relationship, Immunologic
- Drug Synergism
- Female
- Gene Transfer Techniques
- Genetic Vectors/chemical synthesis
- Growth Inhibitors/administration & dosage
- Growth Inhibitors/genetics
- Growth Inhibitors/immunology
- Growth Inhibitors/therapeutic use
- Humans
- Immunotherapy, Adoptive/methods
- Injections, Intralesional
- Interferon-gamma/immunology
- Interleukin-12/genetics
- Interleukin-12/immunology
- Killer Cells, Natural/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Recombination, Genetic/immunology
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- I Narvaiza
- Departments ofMedicine and Genetics, Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mazzolini G, Qian C, Narvaiza I, Barajas M, Borrás-Cuesta F, Xie X, Duarte M, Melero I, Prieto J. Adenoviral gene transfer of interleukin 12 into tumors synergizes with adoptive T cell therapy both at the induction and effector level. Hum Gene Ther 2000; 11:113-25. [PMID: 10646644 DOI: 10.1089/10430340050016201] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumors infected with a recombinant defective adenovirus expressing interleukin 12 (IL-12) undergo regression, associated with a cytotoxic T lymphocyte (CTL)-mediated antitumor immune response. In the present study we generated anti-CT26 CTLs by short-term coculture of CT26 cells and lymph node cells obtained from mice harboring subcutaneous CT26 tumors injected with an adenoviral vector expressing IL-12 (AdCMVIL-12), control adenovirus (AdCMVlacZ), or saline. Regression of small intrahepatic CT26 tumors in unrelated syngeneic animals was achieved with CTLs derived from mice whose subcutaneous tumors had been injected with AdCMVIL-12 but not with CTLs from the other two control groups. The necessary and sufficient effector cell population for adoptive transfer consisted of CD8+ T cells that showed anti-CT26 specificity partly directed against the AH1 epitope presented by H-2Ld. Interestingly, treatment of a subcutaneous tumor nodule with AdCMVIL-12, combined with intravenous adoptive T cell therapy with short-term CTL cultures, had a marked synergistic effect against large, concomitant live tumors. Expression of IL-12 in the liver in the vicinity of the hepatic tumor nodules, owing to spillover of the vector into the systemic circulation, appeared to be involved in the increased in vivo antitumor activity of injected CTLs. In addition, adoptive T cell therapy improved the outcome of tumor nodules transduced with suboptimal doses of AdCMVIL-12. Our data provide evidence of a strong synergy between gene transfer of IL-12 and adoptive T cell therapy. This synergy operates both at the induction and effector phases of the CTL response, thus providing a rationale for combined therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- G Mazzolini
- Departmento de Medicina Interna, Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Robinson BW, Lake RA, Nelson DJ, Scott BA, Marzo AL. Cross-presentation of tumour antigens: evaluation of threshold, duration, distribution and regulation. Immunol Cell Biol 1999; 77:552-8. [PMID: 10571677 DOI: 10.1046/j.1440-1711.1999.00876.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of technology to measure antigen presentation in the secondary lymphoid system has provided the opportunity of analysing components of the host antitumour immune response that have, until now, been unavailable for study. In particular, this technology has enabled us to evaluate threshold levels of tumour antigen required for cross-presentation in draining lymph nodes, the duration of this antigen presentation and processes that regulate tumour antigen presentation. Thus, we have been able to dissect out the relationship between antigen presentation and the resultant development of effector function in class I-restricted T cells, as well as the role of regulatory CD4 cells. We have also used this technology to evaluate the effects of antitumour therapy on local antigen cross-presentation.
Collapse
Affiliation(s)
- B W Robinson
- University Department of Medicine, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- E Gilboa
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
50
|
Doan T, Herd K, Street M, Bryson G, Fernando G, Lambert P, Tindle R. Human papillomavirus type 16 E7 oncoprotein expressed in peripheral epithelium tolerizes E7-directed cytotoxic T-lymphocyte precursors restricted through human (and mouse) major histocompatibility complex class I alleles. J Virol 1999; 73:6166-70. [PMID: 10364377 PMCID: PMC112686 DOI: 10.1128/jvi.73.7.6166-6170.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mice which coexpress human papillomavirus type 16 E7 and HLA A2.1 in peripheral squamous epithelium and thymic cortical epithelium are tolerant at the cytotoxic T-lymphocyte (CTL) level to E7 epitopes restricted through HLA A*0201 and H-2(b) (T. Doan, M. Chambers, M. Street, G. J. Fernando, K. Herd, P. Lambert, and R. Tindle, Virology 244:352-364, 1998). Here we used bone marrow-reconstituted radiation chimeras to distinguish whether E7-directed CTL tolerance was mediated peripherally by E7 expression in skin or centrally by E7 expression in thymus. In chimeric mice expressing E7 in skin and reconstituted with E7-naïve bone marrow and E7-naïve thymus, CTL responses to vaccine-administered E7 epitopes were not restored, i.e. , the mice remained tolerant. In contrast, chimeric mice not expressing E7 in skin and reconstituted with E7-naïve bone marrow and E7-expressing thymus had full E7-directed CTL responses. These results demonstrate that E7 protein expression in peripheral squamous epithelium is sufficient to tolerize the E7-directed CTL precursor repertoire. The data have implications for E7-mediated tumorigenesis and for the development of E7-based immunotherapeutic strategies, since peripheral immunological tolerance of tumor-associated antigens may create a barrier to effective immunotherapy.
Collapse
Affiliation(s)
- T Doan
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | | | |
Collapse
|