1
|
Jamaleddine H, Rogers D, Perreault G, Postat J, Patel D, Mandl JN, Khadra A. Chronic infection control relies on T cells with lower foreign antigen binding strength generated by N-nucleotide diversity. PLoS Biol 2024; 22:e3002465. [PMID: 38300945 PMCID: PMC10833529 DOI: 10.1371/journal.pbio.3002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
The breadth of pathogens to which T cells can respond is determined by the T cell receptors (TCRs) present in an individual's repertoire. Although more than 90% of the sequence diversity among TCRs is generated by terminal deoxynucleotidyl transferase (TdT)-mediated N-nucleotide addition during V(D)J recombination, the benefit of TdT-altered TCRs remains unclear. Here, we computationally and experimentally investigated whether TCRs with higher N-nucleotide diversity via TdT make distinct contributions to acute or chronic pathogen control specifically through the inclusion of TCRs with lower antigen binding strengths (i.e., lower reactivity to peptide-major histocompatibility complex (pMHC)). When T cells with high pMHC reactivity have a greater propensity to become functionally exhausted than those of low pMHC reactivity, our computational model predicts a shift toward T cells with low pMHC reactivity over time during chronic, but not acute, infections. This TCR-affinity shift is critical, as the elimination of T cells with lower pMHC reactivity in silico substantially increased the time to clear a chronic infection, while acute infection control remained largely unchanged. Corroborating an affinity-centric benefit for TCR diversification via TdT, we found evidence that TdT-deficient TCR repertoires possess fewer T cells with weaker pMHC binding strengths in vivo and showed that TdT-deficient mice infected with a chronic, but not an acute, viral pathogen led to protracted viral clearance. In contrast, in the case of a chronic fungal pathogen where T cells fail to clear the infection, both our computational model and experimental data showed that TdT-diversified TCR repertoires conferred no additional protection to the hosts. Taken together, our in silico and in vivo data suggest that TdT-mediated TCR diversity is of particular benefit for the eventual resolution of prolonged pathogen replication through the inclusion of TCRs with lower foreign antigen binding strengths.
Collapse
Affiliation(s)
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Geneviève Perreault
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Jérémy Postat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Dhanesh Patel
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Judith N. Mandl
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
The Combined Expression of the Non-structural Protein NS1 and the N-Terminal Half of NS2 (NS2 1-180) by ChAdOx1 and MVA Confers Protection against Clinical Disease in Sheep upon Bluetongue Virus Challenge. J Virol 2021; 96:e0161421. [PMID: 34787454 PMCID: PMC8826911 DOI: 10.1128/jvi.01614-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bluetongue, caused by bluetongue virus (BTV), is a widespread arthropod-borne disease of ruminants that entails a recurrent threat to the primary sector of developed and developing countries. In this work, we report modified vaccinia virus Ankara (MVA) and ChAdOx1-vectored vaccines designed to simultaneously express the immunogenic NS1 protein and/or NS2-Nt, the N-terminal half of protein NS2 (NS21-180). A single dose of MVA or ChAdOx1 expressing NS1-NS2-Nt improved the protection conferred by NS1 alone in IFNAR(-/-) mice. Moreover, mice immunized with ChAdOx1/MVA-NS1, ChAdOx1/MVA-NS2-Nt, or ChAdOx1/MVA-NS1-NS2-Nt developed strong cytotoxic CD8+ T-cell responses against NS1, NS2-Nt, or both proteins and were fully protected against a lethal infection with BTV serotypes 1, 4, and 8. Furthermore, although a single immunization with ChAdOx1-NS1-NS2-Nt partially protected sheep against BTV-4, the administration of a booster dose of MVA-NS1-NS2-Nt promoted a faster viral clearance, reduction of the period and level of viremia and also protected from the pathology produced by BTV infection. IMPORTANCE Current BTV vaccines are effective but they do not allow to distinguish between vaccinated and infected animals (DIVA strategy) and are serotype specific. In this work we have develop a DIVA multiserotype vaccination strategy based on adenoviral (ChAdOx1) and MVA vaccine vectors, the most widely used in current phase I and II clinical trials, and the conserved nonstructural BTV proteins NS1 and NS2. This immunization strategy solves the major drawbacks of the current marketed vaccines.
Collapse
|
3
|
Gilfillan CB, Hebeisen M, Rufer N, Speiser DE. Constant regulation for stable CD8 T-cell functional avidity and its possible implications for cancer immunotherapy. Eur J Immunol 2021; 51:1348-1360. [PMID: 33704770 PMCID: PMC8252569 DOI: 10.1002/eji.202049016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/30/2022]
Abstract
The functional avidity (FA) of cytotoxic CD8 T cells impacts strongly on their functional capabilities and correlates with protection from infection and cancer. FA depends on TCR affinity, downstream signaling strength, and TCR affinity-independent parameters of the immune synapse, such as costimulatory and inhibitory receptors. The functional impact of coreceptors on FA remains to be fully elucidated. Despite its importance, FA is infrequently assessed and incompletely understood. There is currently no consensus as to whether FA can be enhanced by optimized vaccine dose or boosting schedule. Recent findings suggest that FA is remarkably stable in vivo, possibly due to continued signaling modulation of critical receptors in the immune synapse. In this review, we provide an overview of the current knowledge and hypothesize that in vivo, codominant T cells constantly "equalize" their FA for similar function. We present a new model of constant FA regulation, and discuss practical implications for T-cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Connie B. Gilfillan
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Michael Hebeisen
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Nathalie Rufer
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| | - Daniel E. Speiser
- Department of OncologyUniversity Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Gilfillan CB, Wang C, Mohsen MO, Rufer N, Hebeisen M, Allard M, Verdeil G, Irvine DJ, Bachmann MF, Speiser DE. Murine CD8 T-cell functional avidity is stable in vivo but not in vitro: Independence from homologous prime/boost time interval and antigen density. Eur J Immunol 2019; 50:505-514. [PMID: 31785153 PMCID: PMC7187562 DOI: 10.1002/eji.201948355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 01/13/2023]
Abstract
It is known that for achieving high affinity antibody responses, vaccines must be optimized for antigen dose/density, and the prime/boost interval should be at least 4 weeks. Similar knowledge is lacking for generating high avidity T‐cell responses. The functional avidity (FA) of T cells, describing responsiveness to peptide, is associated with the quality of effector function and the protective capacity in vivo. Despite its importance, the FA is rarely determined in T‐cell vaccination studies. We addressed the question whether different time intervals for short‐term homologous vaccinations impact the FA of CD8 T‐cell responses. Four‐week instead of 2‐week intervals between priming and boosting with potent subunit vaccines in C57BL/6 mice did not improve FA. Equally, similar FA was observed after vaccination with virus‐like particles displaying low versus high antigen densities. Interestingly, FA was stable in vivo but not in vitro, depending on the antigen dose and the time interval since T‐cell activation, as observed in murine monoclonal T cells. Our findings suggest dynamic in vivo modulation for equal FA. We conclude that low antigen density vaccines or a minimal 4‐week prime/boost interval are not crucial for the T‐cell's FA, in contrast to antibody responses.
Collapse
Affiliation(s)
| | - Chensu Wang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Mona O Mohsen
- Inselspital, Universitaetsklinik RIA, Immunologie, Bern, Switzerland.,Jenner Institute, University of Oxford, Oxford, UK
| | - Nathalie Rufer
- Department of Oncology, University of Lausanne, Switzerland.,Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Martin F Bachmann
- Inselspital, Universitaetsklinik RIA, Immunologie, Bern, Switzerland.,Jenner Institute, University of Oxford, Oxford, UK
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Switzerland.,Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
5
|
Mbewana S, Meyers AE, Rybicki EP. Chimaeric Rift Valley Fever Virus-Like Particle Vaccine Candidate Production in Nicotiana benthamiana. Biotechnol J 2019; 14:e1800238. [PMID: 30488669 DOI: 10.1002/biot.201800238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/13/2018] [Indexed: 01/21/2023]
Abstract
Rift Valley fever virus (RVFV) is an emerging mosquito-borne virus and hemorrhagic fever agent, which causes abortion storms in farmed small ruminants and potentially causes miscarriages in humans. Although live-attenuated vaccines are available for animals, they can only be used in endemic areas and there are currently no commercially available vaccines for humans. Here the authors describe the production of chimaeric RVFV virus-like particles transiently expressed in Nicotiana benthamiana by Agrobacterium tumefaciens-mediated gene transfer. The glycoprotein (Gn) gene is modified by removing its ectodomain (Gne) and fusing it to the transmembrane domain and cytosolic tail-encoding region of avian influenza H5N1 hemagglutinin. This is expressed transiently in N. benthamiana with purified protein yields calculated to be ≈57 mg kg-1 fresh weight. Transmission electron microscopy shows putative chimaeric RVFV Gne-HA particles of 49-60 nm which are immunogenic, eliciting Gn-specific antibody responses in vaccinated mice without the use of adjuvant. To our knowledge, this is the first demonstration of the synthesis of Gne-HA chimaeric RVFV VLPs and the first demonstration of a detectable yield of RVFV Gn in plants.
Collapse
Affiliation(s)
- Sandiswa Mbewana
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, 22 University Ave, Rondebosch 7700, Cape Town, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, 22 University Ave, Rondebosch 7700, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, 22 University Ave, Rondebosch 7700, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
6
|
Kolawole EM, Andargachew R, Liu B, Jacobs JR, Evavold BD. 2D Kinetic Analysis of TCR and CD8 Coreceptor for LCMV GP33 Epitopes. Front Immunol 2018; 9:2348. [PMID: 30374353 PMCID: PMC6197077 DOI: 10.3389/fimmu.2018.02348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
The LCMV GP33 CD8 epitope has long been one of the most widely used antigens in viral immunology. Of note, almost all of the in vitro analyses of CD8 T cell responses to this epitope make use of an altered peptide ligand (APL) in which the cysteine from the original 9-mer peptide (KAVYNFATC) is substituted by a methionine at position 41 (KAVYNFATM). In addition, it is possible that the antigen processed during natural LCMV infection is an 11-mer peptide (KAVYNFATCGI) rather than the widely used 9-mer. Although previous affinity measurements using purified proteins for these antigen variants revealed minimal differences, we applied highly sensitive two dimensional (2D) biophysical based techniques to further dissect TCR interaction with these closely related GP33 variants. The kinetic analyses of affinity provided by the 2D micropipette adhesion frequency assay (2D-MP) and bond lifetime under force analyzed using a biomembrane force probe (BFP) revealed significant differences between 41M, 41C and the 11-mer 41CGI antigen. We found a hierarchy in 2D affinity as 41M peptide displayed augmented TCR 2D affinity compared to 41C and 41CGI. These differences were also maintained in the presence of CD8 coreceptor and when analysis of total TCR:pMHC and CD8:pMHC bonds were considered. Moreover, the three ligands displayed dramatic differences in the bond lifetimes generated under force, in particular the 41CGI variant with the lowest 2D affinity demonstrated a 15-fold synergistic contribution of the CD8 coreceptor to overall bond lifetime. Our analyses emphasize the sensitivity of single cell and single bond 2D kinetic measurements in distinguishing between related agonist peptides.
Collapse
Affiliation(s)
- Elizabeth M Kolawole
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Rakieb Andargachew
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Baoyu Liu
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Jesica R Jacobs
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Brian D Evavold
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Abstract
Retroviruses are genome invaders that have shared a long history of coevolution with vertebrates and their immune system. Found endogenously in genomes as traces of past invasions, retroviruses are also considerable threats to human health when they exist as exogenous viruses such as HIV. The immune response to retroviruses is engaged by germline-encoded sensors of innate immunity that recognize viral components and damage induced by the infection. This response develops with the induction of antiviral effectors and launching of the clonal adaptive immune response, which can contribute to protective immunity. However, retroviruses efficiently evade the immune response, owing to their rapid evolution. The failure of specialized immune cells to respond, a form of neglect, may also contribute to inadequate antiretroviral immune responses. Here, we discuss the mechanisms by which immune responses to retroviruses are mounted at the molecular, cellular, and organismal levels. We also discuss how intrinsic, innate, and adaptive immunity may cooperate or conflict during the generation of immune responses.
Collapse
Affiliation(s)
- Asier Sáez-Cirión
- HIV Inflammation and Persistence, Institut Pasteur, 75015 Paris, France;
| | - Nicolas Manel
- Immunity and Cancer Department, INSERM U932, Institut Curie, PSL Research University, 75005 Paris, France;
| |
Collapse
|
8
|
Adams NM, O'Sullivan TE, Geary CD, Karo JM, Amezquita RA, Joshi NS, Kaech SM, Sun JC. NK Cell Responses Redefine Immunological Memory. THE JOURNAL OF IMMUNOLOGY 2017; 197:2963-2970. [PMID: 27824591 DOI: 10.4049/jimmunol.1600973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 01/16/2023]
Abstract
Immunological memory has traditionally been regarded as a unique trait of the adaptive immune system. Nevertheless, there is evidence of immunological memory in lower organisms and invertebrates, which lack an adaptive immune system. Despite their innate ability to rapidly produce effector cytokines and kill virally infected or transformed cells, NK cells also exhibit adaptive characteristics such as clonal expansion, longevity, self-renewal, and robust recall responses to antigenic or nonantigenic stimuli. In this review, we highlight the intracellular and extracellular requirements for memory NK cell generation and describe the emerging evidence for memory precursor NK cells and their derivation.
Collapse
Affiliation(s)
- Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | | | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenny M Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; .,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
9
|
Heterogeneity assessment of functional T cell avidity. Sci Rep 2017; 7:44320. [PMID: 28287160 PMCID: PMC5347081 DOI: 10.1038/srep44320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022] Open
Abstract
The potency of cellular immune responses strongly depends on T cell avidity to antigen. Yet, functional avidity measurements are rarely performed in patients, mainly due to the technical challenges of characterizing heterogeneous T cells. The mean functional T cell avidity can be determined by the IFN-γ Elispot assay, with titrated amounts of peptide. Using this assay, we developed a method revealing the heterogeneity of functional avidity, represented by the steepness/hillslope of the peptide titration curve, documented by proof of principle experiments and mathematical modeling. Our data show that not only natural polyclonal CD8 T cell populations from cancer patients, but also monoclonal T cells differ strongly in their heterogeneity of functional avidity. Interestingly, clones and polyclonal cells displayed comparable ranges of heterogeneity. We conclude that besides the mean functional avidity, it is feasible and useful to determine its heterogeneity (hillslope) for characterizing T cell responses in basic research and patient investigation.
Collapse
|
10
|
Ono N, Murakami K, Chan O, Hall H, Elford AR, Yen P, Calzascia T, Spencer DM, Ohashi PS, Dhanji S. Exposure to sequestered self-antigens in vivo is not sufficient for the induction of autoimmune diabetes. PLoS One 2017; 12:e0173176. [PMID: 28257518 PMCID: PMC5336264 DOI: 10.1371/journal.pone.0173176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/16/2017] [Indexed: 11/18/2022] Open
Abstract
Although the role of T cells in autoimmunity has been explored for many years, the mechanisms leading to the initial priming of an autoimmune T cell response remain enigmatic. The 'hit and run' model suggests that self-antigens released upon cell death can provide the initial signal for a self-sustaining autoimmune response. Using a novel transgenic mouse model where we could induce the release of self-antigens via caspase-dependent apoptosis. We tracked the fate of CD8+ T cells specific for the self-antigen. Our studies demonstrated that antigens released from apoptotic cells were cross-presented by CD11c+ cells in the draining lymph node. This cross-presentation led to proliferation of self-antigen specific T cells, followed by a transient ability to produce IFN-γ, but did not lead to the development of autoimmune diabetes. Using this model we examined the consequences on T cell immunity when apoptosis was combined with dendritic cell maturation signals, an autoimmune susceptible genetic background, and the deletion of Tregs. The results of our study demonstrate that autoimmune diabetes cannot be initiated by the presentation of antigens released from apoptotic cells in vivo even in the presence of factors known to promote autoimmunity.
Collapse
Affiliation(s)
- Nobuyuki Ono
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Kiichi Murakami
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Olivia Chan
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Håkan Hall
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Patty Yen
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Thomas Calzascia
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - David M. Spencer
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Medical Center, Houston, Texas, United States of America
- Bellicum Pharmaceuticals, Inc. Houston, Texas, United States of America
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Salim Dhanji
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Nicoli F, Gallerani E, Skarlis C, Sicurella M, Cafaro A, Ensoli B, Caputo A, Marconi PC, Gavioli R. Systemic immunodominant CD8 responses with an effector-like phenotype are induced by intravaginal immunization with attenuated HSV vectors expressing HIV Tat and mediate protection against HSV infection. Vaccine 2016; 34:2216-24. [PMID: 27002499 DOI: 10.1016/j.vaccine.2016.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 03/09/2016] [Indexed: 01/01/2023]
Abstract
Mucosal HSV infection remains a public health issue in developing and developed world. However, an effective vaccine is still missing, partly because of the incomplete knowledge of correlates of protection. In this study we have investigated the kinetics and quality of immunity elicited by an attenuated HSV1 vector expressing the immunomodulatory Tat protein of HIV-1 (HSV1-Tat). Animals were immunized by intravaginal (IVag) or intradermal (ID) route with HSV1-Tat or with a control HSV1 vector expressing the LacZ gene (HSV1-LacZ) and immune responses were characterized in different anatomical districts. IVag immunization with HSV1-Tat enhanced both expansion and memory phases of HSV-specific immunodominant CD8 responses at systemic, but not local, level and induced short- and long-term protection against mucosal challenge. Conversely, ID immunization with HSV1-Tat favored HSV-subdominant CD8 responses, which protected mice only at early time points after immunization. IVag immunization, in particular with HSV1-Tat, compared to ID immunization, induced the differentiation of CD8(+) T lymphocytes into short-lived effector (SLEC) and effector memory (Tem) cells, generating more robust recall responses associated with increased control of virus replication. Notably, systemic SLEC and Tem contributed to generate protective local secondary responses, demonstrating their importance for mucosal control of HSV. Finally, IgG responses were observed mostly in IVag HSV1-Tat immunized animals, although seemed dispensable for protection, which occurred even in few IgG negative mice. Thus, HSV1 vectors expressing Tat induce protective anti-HSV1 immune responses.
Collapse
Affiliation(s)
- Francesco Nicoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Charalampos Skarlis
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Roma, Italy
| | - Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Roma, Italy
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Peggy C Marconi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
12
|
Grusdat M, McIlwain DR, Xu HC, Pozdeev VI, Knievel J, Crome SQ, Robert-Tissot C, Dress RJ, Pandyra AA, Speiser DE, Lang E, Maney SK, Elford AR, Hamilton SR, Scheu S, Pfeffer K, Bode J, Mittrücker HW, Lohoff M, Huber M, Häussinger D, Ohashi PS, Mak TW, Lang KS, Lang PA. IRF4 and BATF are critical for CD8⁺ T-cell function following infection with LCMV. Cell Death Differ 2014; 21:1050-60. [PMID: 24531538 PMCID: PMC4207473 DOI: 10.1038/cdd.2014.19] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/18/2013] [Accepted: 01/10/2014] [Indexed: 02/04/2023] Open
Abstract
CD8(+) T-cell functions are critical for preventing chronic viral infections by eliminating infected cells. For healthy immune responses, beneficial destruction of infected cells must be balanced against immunopathology resulting from collateral damage to tissues. These processes are regulated by factors controlling CD8(+) T-cell function, which are still incompletely understood. Here, we show that the interferon regulatory factor 4 (IRF4) and its cooperating binding partner B-cell-activating transcription factor (BATF) are necessary for sustained CD8(+) T-cell effector function. Although Irf4(-/-) CD8(+) T cells were initially capable of proliferation, IRF4 deficiency resulted in limited CD8(+) T-cell responses after infection with the lymphocytic choriomeningitis virus. Consequently, Irf4(-/-) mice established chronic infections, but were protected from fatal immunopathology. Absence of BATF also resulted in reduced CD8(+) T-cell function, limited immunopathology, and promotion of viral persistence. These data identify the transcription factors IRF4 and BATF as major regulators of antiviral cytotoxic T-cell immunity.
Collapse
Affiliation(s)
- M Grusdat
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - D R McIlwain
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - H C Xu
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - V I Pozdeev
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - J Knievel
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - S Q Crome
- Department of Medical Biophysics and Immunology, Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), University of Toronto, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - C Robert-Tissot
- Department of Medical Biophysics and Immunology, Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), University of Toronto, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - R J Dress
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - A A Pandyra
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - D E Speiser
- Department of Medical Biophysics and Immunology, Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), University of Toronto, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
- Clinical Tumor Biology & Immunotherapy Group, Department of Oncology and Ludwig Center for Cancer Research, University of Lausanne HO-05/1552, Av. P.-Decker 4, CH-1011 Lausanne, Switzerland
| | - E Lang
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - S K Maney
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - A R Elford
- Department of Medical Biophysics and Immunology, Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), University of Toronto, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - S R Hamilton
- Department of Medical Biophysics and Immunology, Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), University of Toronto, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - S Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - K Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - J Bode
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - H-W Mittrücker
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - M Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - D Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - P S Ohashi
- Department of Medical Biophysics and Immunology, Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), University of Toronto, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - T W Mak
- Department of Medical Biophysics and Immunology, Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), University of Toronto, 620 University Avenue, Toronto, Ontario, Canada M5G 2C1
| | - K S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - P A Lang
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Moser C, Amacker M, Zurbriggen R. Influenza virosomes as a vaccine adjuvant and carrier system. Expert Rev Vaccines 2014; 10:437-46. [DOI: 10.1586/erv.11.15] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Functional avidity: a measure to predict the efficacy of effector T cells? Clin Dev Immunol 2012; 2012:153863. [PMID: 23227083 PMCID: PMC3511839 DOI: 10.1155/2012/153863] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 01/30/2023]
Abstract
The functional avidity is determined by exposing T-cell populations in vitro to different amounts of cognate antigen. T-cells with high functional avidity respond to low antigen doses. This in vitro measure is thought to correlate well with the in vivo effector capacity of T-cells. We here present the multifaceted factors determining and influencing the functional avidity of T-cells. We outline how changes in the functional avidity can occur over the course of an infection. This process, known as avidity maturation, can occur despite the fact that T-cells express a fixed TCR. Furthermore, examples are provided illustrating the importance of generating T-cell populations that exhibit a high functional avidity when responding to an infection or tumors. Furthermore, we discuss whether criteria based on which we evaluate an effective T-cell response to acute infections can also be applied to chronic infections such as HIV. Finally, we also focus on observations that high-avidity T-cells show higher signs of exhaustion and facilitate the emergence of virus escape variants. The review summarizes our current understanding of how this may occur as well as how T-cells of different functional avidity contribute to antiviral and anti-tumor immunity. Enhancing our knowledge in this field is relevant for tumor immunotherapy and vaccines design.
Collapse
|
15
|
Sun JC, Beilke JN, Lanier LL. Immune memory redefined: characterizing the longevity of natural killer cells. Immunol Rev 2010; 236:83-94. [PMID: 20636810 DOI: 10.1111/j.1600-065x.2010.00900.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Natural killer (NK) cells respond rapidly to transformed, stressed, or virally infected cells and provide a first-line immune defense against pathogen invasion and cancer. Thought to involve short-lived effector cells that are armed for battle, NK cells were not previously known to contribute in recall responses to pathogen re-encounter. Here, we highlight recent discoveries demonstrating that NK cells are not limited to driving primary immune responses to foreign antigen but can mount secondary responses contributing to immune memory. We also further characterize the phenotype and function of long-lived memory NK cells generated during viral infection.
Collapse
Affiliation(s)
- Joseph C Sun
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
16
|
Pechhold K, Chakrabarty S, Harlan DM. Cytotoxic T cell-mediated diabetes in RIP-CD80 transgenic mice: autoantigen peptide sensitivity and fine specificity. Ann N Y Acad Sci 2007; 1103:132-42. [PMID: 17376836 DOI: 10.1196/annals.1394.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rodent immune-mediated diabetes model studies have advanced understanding of beta cell-specific T cell responses, and the testing of therapeutic approaches. We have used an inducible diabetes model based on rat insulin promotor (RIP)-driven expression of CD80 (B7-1) on pancreatic beta cells. Using these mice, we have established that immunizing with a single autoantigen can promote progressive islet inflammation and eventually T cell-mediated diabetes. We now describe a potent immunization protocol using peptide-pulsed mature dendritic cells (DCs) to examine peptide epitopes derived from endogenous (preproinsulin) and transgenically expressed beta cell antigens, namely lymphocytic choriomeningitis virus glycoprotein (LCMV-GP). LCMV-GP epitopes efficiently promote beta cell destruction, and the autoantigenic peptide concentration used to load the DCs correlates directly with diabetes onset. The system allowed us to assess cytotoxic T cell (CTL) fine specificity by immunizing with DCs presenting altered peptide ligands (APLs) of the dominant LCMV-GP epitope, gp33. Finally, using an adoptive transfer system, we tested alternative in vitro T cell activation conditions, including APLs and mitogens, for their impact on T cell effector function and diabetes onset. Our studies revealed a marked discrepancy between (inflammatory) effector functions and diabetes progression, thus emphasizing the importance of structural identity between sensitizing and target epitope and the context of initial T cell activation.
Collapse
Affiliation(s)
- Klaus Pechhold
- Diabetes Branch, NIDDK, NIH, 10 Center Drive, Bldg. 10-CRC, Room 5W-5888, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
17
|
Venturi V, Kedzierska K, Turner SJ, Doherty PC, Davenport MP. Methods for comparing the diversity of samples of the T cell receptor repertoire. J Immunol Methods 2007; 321:182-95. [PMID: 17337271 DOI: 10.1016/j.jim.2007.01.019] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/19/2007] [Accepted: 01/21/2007] [Indexed: 12/01/2022]
Abstract
Analysis of T cell receptor (TCR) data has become a crucial element in many studies aimed at better understanding the evolution of the T cell repertoire and the role of TCR diversity in immune responses. In this paper we focus on comparing the diversity between samples of the TCR repertoire. We discuss some of the limitations and potential problems inherent in some of the more popular approaches to comparing samples of the TCR repertoire and we suggest alternate methods that both avoid these problems and enrich the analysis of TCR data. Examples from published studies of the CD8(+) T cell responses to the influenza A virus D(b)NP(366) and D(b)PA(224) epitopes in mice are used to demonstrate the implementation of these methods. One example involves a comparison between the central and effector memory T cell subsets, defined on the basis of CD62L expression, and the other examines changes in the TCR repertoire over time.
Collapse
Affiliation(s)
- Vanessa Venturi
- Department of Haematology, Prince of Wales Hospital and, Centre for Vascular Research, University of New South Wales, Kensington NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
18
|
Trautmann L, Rimbert M, Echasserieau K, Saulquin X, Neveu B, Dechanet J, Cerundolo V, Bonneville M. Selection of T cell clones expressing high-affinity public TCRs within Human cytomegalovirus-specific CD8 T cell responses. THE JOURNAL OF IMMUNOLOGY 2005; 175:6123-32. [PMID: 16237109 DOI: 10.4049/jimmunol.175.9.6123] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Assessment of clonal diversity of T cell responses against human CMV (HCMV), a major cause of morbidity in immunodepressed patients, provides important insights into the molecular basis of T cell immunodominance, and has also clinical implications for the immunomonitoring and immunotherapy of HCMV infections. We performed an in-depth molecular and functional characterization of CD8 T cells directed against an immunodominant HLA-A2-restricted epitope derived from HCMV protein pp65 (NLV/A2) in steady state and pathological situations associated with HCMV reactivation. NLV/A2-specific T cells in healthy HCMV-seropositive donors showed limited clonal diversity and usage of a restricted set of TCR Vbeta regions. Although TCRbeta-chain junctional sequences were highly diverse, a large fraction of NLV/A2-specific T cells derived from distinct individuals showed several recurrent (so-called "public") TCR features associated in some cases with full conservation of the TCRalpha chain junctional region. A dramatic clonal focusing of NLV/A2-specific T cells was observed in situations of HCMV reactivation and/or chronic inflammation, which resulted in selection of a single clonotype displaying similar public TCR features in several patients. In most instances the NLV/A2-specific dominant clonotypes showed higher affinity for their Ag than subdominant ones, thus suggesting that TCR affinity/avidity is the primary driving force underlying repertoire focusing along chronic antigenic stimulation.
Collapse
Affiliation(s)
- Lydie Trautmann
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 601, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chao DL, Davenport MP, Forrest S, Perelson AS. Modelling the impact of antigen kinetics on T‐cell activation and response. Immunol Cell Biol 2004; 82:55-61. [PMID: 14984595 DOI: 10.1111/j.1440-1711.2004.01207.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cytotoxic T lymphocyte (CTL) responses are thought to be important for the control of many viral and other infections. Qualitative aspects of the CTL response, including the epitope specificity, affinity, and clonal composition, may affect the ability of T cells to mediate infection control. Although it is clear that the mode of introduction and the dose of antigen can affect these qualitative aspects of the response, little is understood of the mechanisms. We have developed an in silico model of the CTL response, which we use to study the impact of antigen dose, antigen kinetics and repeated antigen delivery on the response. The results suggest that recent observations on differences in response to killed antigen can be explained simply by differences in timing of T-cell activation. These findings may provide insight into how different vaccination strategies can quantitatively and qualitatively affect the outcome of the immune response.
Collapse
Affiliation(s)
- Dennis L Chao
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
Virus-specific memory T cell populations demonstrate plasticity in antigenic and functional phenotype, in recognition of antigen, and in their ability to accommodate new memory T cell populations. The adaptability of complex antigen-specific T cell repertoires allows the host to respond to a diverse array of pathogens and accommodate memory pools to many pathogens in a finite immune system. This is in part accounted for by crossreactive memory T cells, which can be employed in immune responses and mediate protective immunity or life-threatening immunopathology.
Collapse
Affiliation(s)
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| |
Collapse
|
21
|
Callan MFC. The evolution of antigen-specific CD8+ T cell responses after natural primary infection of humans with Epstein-Barr virus. Viral Immunol 2003; 16:3-16. [PMID: 12725684 DOI: 10.1089/088282403763635401] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is a persistent, gamma-herpes virus that infects 90% of the human population. Primary infection, particularly if it is delayed until adolescence or beyond, may cause acute infectious mononucleosis and persistent infection may be associated with the development of several malignancies. CD8(+) T cells play a critical role in controlling both the primary and persistent phases of infection. This review summarises work that has been done characterising the primary immune responses to EBV. It goes on to describe the down regulation of the primary immune response and to discuss some of the factors that may be involved in determining the death or survival of populations of antigen-specific CD8(+) T cells. Finally it describes features of the populations of memory cells that mediate the long-term control of EBV in healthy seropositive individuals. The studies show differences in the responses to epitopes from lytic cycle versus latent proteins and highlight the complexity of naturally occurring, in vivo, immune responses. A clear understanding of the means by which CD8(+) T cells control EBV is important if we are to successfully develop vaccines and other forms of immunotherapy for the virus and its related malignancies.
Collapse
Affiliation(s)
- Margaret F C Callan
- Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, United Kingdom.
| |
Collapse
|
22
|
Kubota R, Furukawa Y, Izumo S, Usuku K, Osame M. Degenerate specificity of HTLV-1-specific CD8+ T cells during viral replication in patients with HTLV-1-associated myelopathy (HAM/TSP). Blood 2003; 101:3074-81. [PMID: 12480698 DOI: 10.1182/blood-2002-08-2477] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is an inflammatory neurologic disease caused by HTLV-1 infection, in which HTLV-1-infected CD4(+) T cells and HTLV-1-specific CD8(+) T cells may play a role in the disease pathogenesis. Patients with HAM/TSP have high proviral loads despite vigorous virus-specific CD8(+) T-cell responses; however, it is unknown whether the T cells are efficient in eliminating the virus in vivo. To define the dynamics of HTLV-1-specific CD8(+) T-cell responses, we investigated longitudinal alterations in HTLV-1 proviral load, amino acid changes in an immunodominant viral epitope, frequency of HTLV-1-specific T cells, and degeneracy of T-cell recognition in patients with HAM/TSP. We showed that the frequency and the degeneracy of the HTLV-1-specific CD8(+) T cells correlated well with proviral load in the longitudinal study. The proviral load was much higher in a patient with low degeneracy of HTLV-1-specific T cells compared to that in a patient with comparable frequency but higher degeneracy of the T cells. Furthermore, in a larger number of patients divided into 2 groups by the proviral load, those with high proviral load had lower degeneracy of T-cell recognition than those with low proviral load. Sequencing analysis revealed that epitope mutations were remarkably increased in a patient when the frequency and the degeneracy were at the lowest. These data suggest that HTLV-1-specific CD8(+) T cells with degenerate specificity are increased during viral replication and control the viral infection.
Collapse
Affiliation(s)
- Ryuji Kubota
- Third Department of Internal Medicine, Center for Chronic Viral Diseases, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | |
Collapse
|
23
|
Slifka MK, Blattman JN, Sourdive DJD, Liu F, Huffman DL, Wolfe T, Hughes A, Oldstone MBA, Ahmed R, Von Herrath MG. Preferential escape of subdominant CD8+ T cells during negative selection results in an altered antiviral T cell hierarchy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1231-9. [PMID: 12538681 DOI: 10.4049/jimmunol.170.3.1231] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Negative selection is designed to purge the immune system of high-avidity, self-reactive T cells and thereby protect the host from overt autoimmunity. In this in vivo viral infection model, we show that there is a previously unappreciated dichotomy involved in negative selection in which high-avidity CD8(+) T cells specific for a dominant epitope are eliminated, whereas T cells specific for a subdominant epitope on the same protein preferentially escape deletion. Although this resulted in significant skewing of immunodominance and a substantial depletion of the most promiscuous T cells, thymic and/or peripheral deletion of high-avidity CD8(+) T cells was not accompanied by any major change in the TCR V beta gene family usage or an absolute deletion of a single preferred complementarity-determining region 3 length polymorphism. This suggests that negative selection allows high-avidity CD8(+) T cells specific for subdominant or cryptic epitopes to persist while effectively deleting high-avidity T cells specific for dominant epitopes. By allowing the escape of subdominant T cells, this process still preserves a relatively broad peripheral TCR repertoire that can actively participate in antiviral and/or autoreactive immune responses.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Clonal Deletion/genetics
- Clonal Deletion/immunology
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Immunodominant Epitopes/immunology
- Lymphocyte Activation/genetics
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Multigene Family/immunology
- Nucleoproteins/biosynthesis
- Nucleoproteins/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Mark K Slifka
- Oregon Health and Science University Vaccine and Gene Therapy Institute, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Haglund K, Leiner I, Kerksiek K, Buonocore L, Pamer E, Rose JK. Robust recall and long-term memory T-cell responses induced by prime-boost regimens with heterologous live viral vectors expressing human immunodeficiency virus type 1 Gag and Env proteins. J Virol 2002; 76:7506-17. [PMID: 12097563 PMCID: PMC136360 DOI: 10.1128/jvi.76.15.7506-7517.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We investigated long-term memory and recall cellular immune responses to human immunodeficiency virus type 1 (HIV-1) Env and Gag proteins elicited by recombinant vesicular stomatitis viruses (VSVs) expressing Env and Gag. More than 7 months after a single vaccination with VSV-Env, approximately 6% of CD8(+) splenocytes stained with major histocompatibility complex class I tetramers containing the Env p18-I10 immunodominant peptide and showed a memory phenotype (CD44(Hi)). The level of tetramer-positive cells in memory was about 14% of the peak primary response. Recall responses elicited in these mice 5 days after boosting with a heterologous recombinant vaccinia virus expressing HIV-1 Env showed that 40 to 45% of CD8(+) splenocytes were tetramer positive and activated (CD62L(Lo)), and these cells produced gamma interferon after stimulation with Env peptide, indicating that they were functional. Five months after the boost, the long-term memory cell population (tetramer positive, CD44(Hi)) constituted 30% of the CD8(+) splenocytes. Recall responses to HIV-1 Gag were examined in mice primed with VSV recombinants expressing HIV-1 Gag protein and boosted with a vaccinia virus recombinant expressing Gag. Using this protocol, we found that approximately 40% of CD8(+) splenocytes were activated (CD62L(Lo)) and specific for a Gag immunodominant peptide (tetramer positive). The high-level Gag recall response elicited by the vaccinia virus-Gag was greater than that obtained by boosting with a VSV-Gag vector with a different VSV glycoprotein. The corresponding levels of CD44(Hi) memory cells were also higher long after boosting with vaccinia virus-Gag than after boosting with a glycoprotein exchange VSV-Gag. Our results show that VSV vectors elicit high-level memory CTL responses and that these can be amplified as much as six- to sevenfold using a heterologous boosting vector.
Collapse
Affiliation(s)
- Karl Haglund
- Department of Pathology, Program in Microbiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
25
|
Davenport MP, Fazou C, McMichael AJ, Callan MFC. Clonal selection, clonal senescence, and clonal succession: the evolution of the T cell response to infection with a persistent virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3309-17. [PMID: 11907087 DOI: 10.4049/jimmunol.168.7.3309] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have analyzed the CD8(+) T cell response to EBV and find that a larger primary burst size is associated with proportionally greater decay during the development of memory. Consequently, immunodominance and clonal dominance are less marked in memory than primary responses. An intuitive interpretation of this finding is that there is a limit to the number of cell divisions a T cell clone can undergo, and that the progeny of clones that have expanded massively during a primary immune response are more prone to die as a result of senescence. To test this hypothesis, we have derived a mathematical model of the response of different T cell clones of varying avidity for Ag in the primary and persistent phases of viral infection. When cellular survival and replication are linked to T cell avidity for Ag and Ag dose, then high-avidity T cells dominate both the primary and secondary responses. We then incorporated a limit in the number of cell divisions of individual T cell clones to test whether such a constraint could reproduce the observed association between cell division number and alterations in the contribution of clones to the response to persistent infection. Comparison of the model output with the experimental results obtained from primary and persistent EBV infection suggests that there is indeed a role for cellular senescence in shaping the immune response to persistent infection.
Collapse
Affiliation(s)
- Miles P Davenport
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
26
|
Hislop AD, Annels NE, Gudgeon NH, Leese AM, Rickinson AB. Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein-Barr virus infection. J Exp Med 2002; 195:893-905. [PMID: 11927633 PMCID: PMC2193726 DOI: 10.1084/jem.20011692] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Primary virus infection often elicits a large CD8(+) T cell response which subsequently contracts to a smaller memory T cell pool; the relationship between these two virus-specific populations is not well understood. Here we follow the human CD8(+) T cell response to Epstein-Barr virus (EBV) from its primary phase in infectious mononucleosis (IM) through to the persistent carrier state. Using HLA-A2.1 or B8 tetramers specific for four lytic cycle and three latent cycle epitopes, we find marked differences in the epitope-specific composition of the T cell populations between the two phases of infection. The primary response is dominated by lytic epitope specificities which are severely culled (and in one case extinguished) with resolution of the acute infection; in contrast latent epitope specificities are less abundant, if present at all, in acute IM but often then increase their percentage representation in the CD8 pool. Even comparing epitopes of the same type, the relative size of responses seen in primary infection does not necessarily correlate with that seen in the longer term. We also follow the evolution of phenotypic change in these populations and show that, from a uniform CD45RA(-)RO(+)CCR7(-) phenotype in IM, lytic epitope responses show greater reversion to a CD45RA(+)RO(-) phenotype whereas latent epitope responses remain CD45RA(-)RO(+) with a greater tendency to acquire CCR7. Interestingly these phenotypic distinctions reflect the source of the epitope as lytic or latent, and not the extent to which the response has been amplified in vivo.
Collapse
Affiliation(s)
- Andrew D Hislop
- CRC Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Nguyen LT, Elford AR, Murakami K, Garza KM, Schoenberger SP, Odermatt B, Speiser DE, Ohashi PS. Tumor growth enhances cross-presentation leading to limited T cell activation without tolerance. J Exp Med 2002; 195:423-35. [PMID: 11854356 PMCID: PMC2193619 DOI: 10.1084/jem.20010032] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Using a tumor model of spontaneously arising insulinomas expressing a defined tumor-associated antigen, we investigated whether tumor growth promotes cross-presentation and tolerance of tumor-specific T cells. We found that an advanced tumor burden enhanced cross-presentation of tumor-associated antigens to high avidity tumor-specific T cells, inducing T cell proliferation and limited effector function in vivo. However, contrary to other models, tumor-specific T cells were not tolerized despite a high tumor burden. In fact, in tumor-bearing mice, persistence and responsiveness of adoptively transferred tumor-specific T cells were enhanced. Accordingly, a potent T cell-mediated antitumor response could be elicited by intravenous administration of tumor-derived peptide and agonistic anti-CD40 antibody or viral immunization and reimmunization. Thus, in this model, tumor growth promotes activation of high avidity tumor-specific T cells instead of tolerance. Therefore, the host remains responsive to T cell immunotherapy.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/immunology
- Antigen Presentation
- Antigens, Neoplasm/immunology
- Antigens, Tumor-Associated, Carbohydrate/administration & dosage
- Antigens, Tumor-Associated, Carbohydrate/immunology
- CD40 Antigens/immunology
- Cell Division
- Flow Cytometry
- Hyaluronan Receptors/immunology
- Hyaluronan Receptors/metabolism
- Hypoglycemia/complications
- Immune Tolerance
- Immunologic Surveillance
- Immunotherapy, Active
- Insulinoma/complications
- Insulinoma/immunology
- Insulinoma/pathology
- Insulinoma/therapy
- Lymph Nodes/immunology
- Lymphocyte Activation
- Mice
- Mice, Transgenic
- Radiation Chimera
- Survival Analysis
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- Time Factors
Collapse
Affiliation(s)
- Linh T Nguyen
- Departments of Immunology and Medical Biophysics, Ontario Cancer Institute, 610 University Ave., Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Champagne P, Dumont AR, Sékaly RP. Learning to remember: generation and maintenance of T-cell memory. DNA Cell Biol 2001; 20:745-60. [PMID: 11879568 DOI: 10.1089/104454901753438561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Immunologic memory results from a carefully coordinated interplay between cells of the immune system. In this review, we explore various aspects of the nature, generation, and maintenance of T lymphocyte-mediated immunologic memory. In light of the demonstrated heterogeneity of the memory T-cell pool, we hypothesize that subsets of memory T cells instructed to mature to distinct differentiation stages may differ, not only in functional and homing properties, but also in the conditions they require for survival, including antigen persistence and cytokine environment. Hence, according to this hypothesis, distinct memory T-cell subsets result from the nature and timing of the signals provided by the immune environment and occupy distinct niches. Intracellular and extracellular molecular mechanisms that underlie and modulate T-cell memory are discussed.
Collapse
Affiliation(s)
- P Champagne
- Laboratory of Immunology, Université de Montréal and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Canada
| | | | | |
Collapse
|
29
|
Lawson TM, Man S, Williams S, Boon AC, Zambon M, Borysiewicz LK. Influenza A antigen exposure selects dominant Vbeta17+ TCR in human CD8+ cytotoxic T cell responses. Int Immunol 2001; 13:1373-81. [PMID: 11675369 DOI: 10.1093/intimm/13.11.1373] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During acute human viral infections, such as influenza A, specific cytotoxic T lymphocytes (CTL) are generated which aid virus clearance. We have observed that in HLA-A*0201+ subjects, CTL expressing Vbeta17+ TCR and recognizing a peptide from the influenza A matrix protein (M1(58-66)) dominate this response. In experimental models of infection such dominance can be due to inheritance of a restricted T cell repertoire or acquired consequent on expansion of CTL bearing an optimum TCR conformation against the MHC-peptide complex. To examine how influenza A infection might influence the development of TCR Vbeta17 expansion, we studied influenza A-specific CTL in a cross-sectional study of 82 HLA-A*0201+ individuals from birth (cord blood) to adulthood. Primary M1(58-66) -specific CTL were detected in cord blood, but their TCR were diverse and depletion of Vbeta17+ cells did not abrogate specific cytotoxicity. In contrast following natural influenza A infection, TCR Vbeta17+ CTL dominated to the extent that only one of nine adult CTL lines retained any functional activity after in vitro depletion of Vbeta17+ CTL. These results suggest that the dominance of Vbeta17+ TCR among adult M1(58-66)-specific CTL results from maturation and focussing of the response driven by exposure to influenza, and have implications for optimum immunization strategies.
Collapse
Affiliation(s)
- T M Lawson
- Department of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | | | | | |
Collapse
|
30
|
Lawson TM, Man S, Wang EC, Williams S, Amos N, Gillespie GM, Moss PA, Borysiewicz LK. Functional differences between influenza A-specific cytotoxic T lymphocyte clones expressing dominant and subdominant TCR. Int Immunol 2001; 13:1383-90. [PMID: 11675370 DOI: 10.1093/intimm/13.11.1383] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have shown that the dominance of CD8+ T cells expressing TCR Vbeta17 in the adult HLA-A*0201-restricted influenza A/M1(58-66)-specific response is acquired following first antigen exposure. Despite the acquired dominance of Vbeta17+ cells, subdominant M1(58-66)-specific clones expressing non-Vbeta17+ TCR persist in all individuals. To determine whether the affinity of the expressed TCR for the HLA-A*0201/M1(58-66) complex could influence functional properties, M1(58-66)-specific clones expressing subdominant (non-Vbeta17+) TCR were compared to cytotoxic T lymphocyte (CTL) clones expressing dominant (Vbeta17+) TCR. The Vbeta17+ CTL required up to 10,000-fold lower amounts of M1 peptide to mediate lysis compared to CTL clones expressing other Vbeta gene segments. All Vbeta17+ CTL clones tested bound HLA-A*0201/M1(58-66) tetramer, but two of three CTL clones expressing other TCR did not bind tetramer. The inability of non-Vbeta17+ CTL to bind tetramer did not correlate with phenotype, CD8 dependence or with cytokine production profiles. This suggests a limitation for the use of tetramers in examining subdominant T cell responses. Together these findings suggest that Vbeta17+ CTL which dominate the HLA-A*0201-restricted CTL response against influenza A are not functionally distinct from subdominant non-Vbeta17+ CTL. The dominance of Vbeta17+ CTL is likely to result from a competitive advantage due to superior CTL avidity for the HLA-A*0201/M1(58-66) complex.
Collapse
Affiliation(s)
- T M Lawson
- Department of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Puglielli MT, Zajac AJ, van der Most RG, Dzuris JL, Sette A, Altman JD, Ahmed R. In vivo selection of a lymphocytic choriomeningitis virus variant that affects recognition of the GP33-43 epitope by H-2Db but not H-2Kb. J Virol 2001; 75:5099-107. [PMID: 11333891 PMCID: PMC114915 DOI: 10.1128/jvi.75.11.5099-5107.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1999] [Accepted: 03/06/2001] [Indexed: 11/20/2022] Open
Abstract
CD8 T cells drive the protective immune response to lymphocytic choriomeningitis virus (LCMV) infection and are thus a determining force in the selection of viral variants. To examine how escape mutations affect the presentation and recognition of overlapping T-cell epitopes, we isolated an LCMV variant that is not recognized by T-cell receptor (TCR)-transgenic H-2Db-restricted LCMV GP33-41-specific cytotoxic T lymphocytes (CTL). The variant virus carried a single-amino-acid substitution (valine to alanine) at position 35 of the viral glycoprotein. This region of the LCMV glycoprotein encodes both the Db-restricted GP33-43 epitope and a second epitope (GP34-42) presented by the Kb molecule. We determined that the V-to-A CTL escape mutant failed to induce a Db GP33-43-specific CTL response and that Db-restricted GP33-43-specific CTL induced by the wild-type LCMV strain were unable to kill target cells infected with the variant LCMV strain. In contrast, the Kb-restricted response was much less affected. We found that the V-to-A substitution severely impaired peptide binding to Db but not to Kb molecules. Strikingly, the V-to-A mutation did not change any of the anchor residues, and the dramatic effect on binding was therefore unexpected. The strong decrease in Db binding explains why the variant virus escapes the Db GP33-43-specific response but still elicits the Kb-restricted response. These findings also illustrate that mutations within regions encoding overlapping T-cell epitopes can differentially affect the presentation and recognition of individual epitopes.
Collapse
Affiliation(s)
- M T Puglielli
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The molecular interactions between the T-cell receptor (TCR) and peptide-MHC (pMHC) have been elucidated in recent years. Nevertheless, the fact that binding of only slightly different ligands by a TCR, or ligation of the same pMHC at different developmental stages of the T cell, can have opposing consequences, continues to pose intellectual challenges. Kinetic proofreading models, which have at their core the dissociation rates of pMHC from the TCR, are best suited to account for these observations. However, T cells can be triggered by peptides with often minimal homology to the primary immunogenic peptide. This cross-reactivity of the TCR is manifest at several levels, from positive selection of immature thymocytes to homeostasis and antigen-cross- reactive immune responses of mature peripheral T cells. The implications of the high cross-reactivity of T-cell antigen recognition for self-tolerance and T-cell memory are discussed.
Collapse
Affiliation(s)
- M Regner
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, The Australian National University, Canberra.
| |
Collapse
|
33
|
Blattman JN, Sourdive DJ, Murali-Krishna K, Ahmed R, Altman JD. Evolution of the T cell repertoire during primary, memory, and recall responses to viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6081-90. [PMID: 11086040 DOI: 10.4049/jimmunol.165.11.6081] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many viral infections induce a broad repertoire of CD8(+) T cell responses that initiate recognition and elimination of infected cells by interaction of TCRs with viral peptides presented on infected cells by MHC class I proteins. Following clearance of the infection, >90% of activated CD8(+) T cells die, leaving behind a stable pool of memory CD8(+) T cells capable of responding to subsequent infections with enhanced kinetics. To probe the mechanisms involved in the generation of T cell memory, we compared primary, memory, and secondary challenge virus-specific T cell repertoires using a combination of costaining with MHC class I tetramers and a panel of anti-Vss Abs, as well as complementarity-determining region 3 length distribution analysis of TCR Vss transcripts from cells sorted according to tetramer binding. Following individual mice over time, we found identity between primary effector and memory TCR repertoires for each of three immunodominant epitopes from lymphocytic choriomeningitis virus. During secondary responses, we found quantitative changes in epitope-specific T cell hierarchies but little evidence for changes in Vss usage or complementarity-determining region 3 length distributions within epitope-specific populations. We conclude that 1) selection of memory T cell populations is stochastic and not determined by a distinct step of clonal selection necessary for survival from the acute responding population, and 2) maturation of the T cell repertoire during secondary lymphocytic choriomeningitis virus infection alters the relative magnitudes of epitope-specific responses but does not significantly modify the repertoire of T cells responding to a given epitope.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Genes, T-Cell Receptor beta
- Immunization, Secondary
- Immunodominant Epitopes/biosynthesis
- Immunodominant Epitopes/immunology
- Immunologic Memory
- Longitudinal Studies
- Lymphocyte Activation
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/metabolism
- Lymphocytic Choriomeningitis/virology
- Lymphocytic choriomeningitis virus/immunology
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
- J N Blattman
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
34
|
Annels NE, Callan MF, Tan L, Rickinson AB. Changing patterns of dominant TCR usage with maturation of an EBV-specific cytotoxic T cell response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4831-41. [PMID: 11046006 DOI: 10.4049/jimmunol.165.9.4831] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection with EBV provides a unique opportunity to follow the human CD8(+) T cell response to a persistent, genetically stable agent from the primary phase, as seen in infectious mononucleosis (IM) patients, into long-term memory. This study focuses on the response to an immunodominant HLA-A2.01-restricted epitope, GLCTLVAML, from the EBV-lytic cycle Ag BMLF1. TCR analysis of the highly amplified primary response to this epitope revealed markedly oligoclonal receptor usage among in vitro-derived clones, with similar clonotypes dominant in all three IM patients studied. Direct staining of IM T cell preparations with the A2.01/GLCTLVAML tetramer linked this oligoclonal epitope-specific response with appropriate Vbeta subset expansions in the patients' blood. These patients were studied again >2 years later, at which time TCR analysis of in vitro-reactivated clones suggested that rare clonotypes within the primary response had now come to dominate memory. Five additional A2. 01-positive IM patients were studied prospectively for Vbeta subset representation within primary and memory epitope-specific populations as identified by tetramer staining. In each case, the primary response contained large Vbeta2, Vbeta16, or Vbeta22 components, and in three of five cases the originally dominant Vbeta was represented very poorly, if at all, in memory. We conclude 1) that an EBV epitope-specific primary response large enough to account for up to 10% CD8(+) T cells in IM blood may nevertheless be dominated by just a few highly expanded clonotypes, and 2) that with persistent viral challenge such dominant T cell clonotypes may be lost and replaced by others in memory.
Collapse
MESH Headings
- Acute Disease
- Clone Cells
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Herpesvirus 4, Human/immunology
- Humans
- Immunodominant Epitopes/analysis
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunologic Memory/genetics
- Infectious Mononucleosis/immunology
- Peptide Fragments/analysis
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Phosphoproteins/immunology
- Prospective Studies
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Reproducibility of Results
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Trans-Activators/immunology
- Viral Proteins
Collapse
Affiliation(s)
- N E Annels
- Cancer Research Campaign Institute for Cancer Studies and Medical Research Council Centre for Immune Regulation, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
35
|
Callan MF, Fazou C, Yang H, Rostron T, Poon K, Hatton C, McMichael AJ. CD8(+) T-cell selection, function, and death in the primary immune response in vivo. J Clin Invest 2000; 106:1251-61. [PMID: 11086026 PMCID: PMC381436 DOI: 10.1172/jci10590] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2000] [Accepted: 10/03/2000] [Indexed: 11/17/2022] Open
Abstract
The primary immune response to Epstein Barr virus (EBV) is characterized by striking proliferation of EBV-specific CD8(+) T cells. In this study we have investigated the clonal composition and functional properties of the cells mediating this primary response and have analyzed the mechanisms that control the downregulation of the primary response and the selection of memory cells. We show that massively expanded T-cell clones often dominate the primary antigen-specific T-cell response. Despite the enormous extent of expansion, the virus-specific T cells express high levels of intracellular perforin and are potently cytotoxic. They are, however, functionally heterogeneous in their ability to secrete proinflammatory cytokines, with subpopulations of the antigen-specific T cells being hyporesponsive. The primary response is closely regulated, and the majority of cells are programmed to die via a cytokine-rescuable pathway, leaving only small populations of memory T cells surviving. Comparison of the clonal composition of primary and memory responses in vivo shows that the clones that dominate the primary response are relatively heavily culled during the downregulation of the primary response and the establishment of T-cell memory.
Collapse
Affiliation(s)
- M F Callan
- MRC Human Immunology Unit, Institute of Molecular Medicine, Headington, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Beecham EJ, Ma Q, Ripley R, Junghans RP. Coupling CD28 co-stimulation to immunoglobulin T-cell receptor molecules: the dynamics of T-cell proliferation and death. J Immunother 2000; 23:631-42. [PMID: 11186151 DOI: 10.1097/00002371-200011000-00004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Immunoglobulin T-cell receptor (IgTCR) molecules are potentially potent immune response modifiers because they allow T cells to bypass tolerance. Tolerance to self antigens has been one of the major barriers to the development of effective adoptive immunotherapies for treating cancer. In vitro studies in several laboratories have shown that cross-linking IgTCR molecules with the target antigen leads to cytolytic activity, cytokine release, and T-cell proliferation in model systems. However, many of these studies have used established T-cell lines rather than normal T cells or indirect assays of cytotoxicity, proliferation, and cytokine release. We have sought to establish the validity of these model systems while developing more effective adoptive immunotherapies using normal human T cells. In the present study the activation of T-cell proliferation after IgTCR cross-linking was evaluated. The results show that, in addition to IgTCR signals, CD28 costimulation is required to induce expansions of normal peripheral blood mononuclear cell-derived T cells. Signals from IgTCR alone can induce transient cell division, but they do not induce the prolonged polyclonal expansions that are characteristic of native immune responses. Very strong IgTCR signals could circumvent the CD28 requirement, but only at levels that are unlikely to be physiologically relevant. CD28 costimulation also suppressed the deletion of tumor-reactive subclones by activation-induced cell death. These studies confirm the importance of CD28 costimulation to the proliferation of IgTCR-modified human T cells, a key feature of an effective, reconstructed antitumor response.
Collapse
Affiliation(s)
- E J Beecham
- Division of Hematology-Oncology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
37
|
Abstract
CD8 T cells exist in a dynamic network whose repertoire remains static in the absence of infection but changes in the presence of foreign antigens. Individuals each have unique T-cell repertoires that continually evolve in the presence of antigen and of cross-reactive heterologous antigens, and homeostatic forces drive deletions in T-cell memory pools to accommodate the entry of new memory cells into a finite immune system.
Collapse
Affiliation(s)
- M Y Lin
- The Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
38
|
Dhodapkar MV, Krasovsky J, Steinman RM, Bhardwaj N. Mature dendritic cells boost functionally superior CD8(+) T-cell in humans without foreign helper epitopes. J Clin Invest 2000; 105:R9-R14. [PMID: 10727452 PMCID: PMC377466 DOI: 10.1172/jci9051] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have recently shown that a single injection of mature, antigen-pulsed, human dendritic cells (DCs) rapidly elicits CD4(+) and CD8(+) T-cell immunity in vivo. The DCs were pulsed with 2 foreign proteins, keyhole limpet hemocyanin (KLH) and tetanus toxoid (TT), as well as an HLA A2.1-restricted influenza matrix peptide (MP). Responses to all 3 antigens peaked at 30-90 days after immunization and declined thereafter. To determine if the foreign helper proteins (TT and KLH) were essential for CD8(+) T-cell responses to the viral peptide, we reinjected 3 of the HLA-2.1 subjects with mature DCs pulsed with MP alone. All 3 volunteers showed a rapid boost in MP-specific immunity, and freshly sampled blood from 1 contained cytolytic T cells. In all 3 subjects, CD8(+) T-cell responses to booster DCs were faster and of greater magnitude than the responses to the first DC injection. Importantly, the T cells that proliferated after booster DC treatment secreted interferon-gamma upon challenge with much lower doses of viral peptide than those elicited after the first injection, indicating a higher functional avidity for the ligand. These data begin to outline the kinetics of T-cell immunity in response to DCs and demonstrate that booster injections of mature DCs enhance both qualitative and quantitative aspects of CD8(+) T-cell function in humans.
Collapse
Affiliation(s)
- M V Dhodapkar
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
39
|
Bachmaier K, Krawczyk C, Kozieradzki I, Kong YY, Sasaki T, Oliveira-dos-Santos A, Mariathasan S, Bouchard D, Wakeham A, Itie A, Le J, Ohashi PS, Sarosi I, Nishina H, Lipkowitz S, Penninger JM. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 2000; 403:211-6. [PMID: 10646608 DOI: 10.1038/35003228] [Citation(s) in RCA: 534] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The signalling thresholds of antigen receptors and co-stimulatory receptors determine immunity or tolerance to self molecules. Changes in co-stimulatory pathways can lead to enhanced activation of lymphocytes and autoimmunity, or the induction of clonal anergy. The molecular mechanisms that maintain immunotolerance in vivo and integrate co-stimulatory signals with antigen receptor signals in T and B lymphocytes are poorly understood. Members of the Cbl/Sli family of molecular adaptors function downstream from growth factor and antigen receptors. Here we show that gene-targeted mice lacking the adaptor Cbl-b develop spontaneous autoimmunity characterized by auto-antibody production, infiltration of activated T and B lymphocytes into multiple organs, and parenchymal damage. Resting cbl-b(-/-) lymphocytes hyperproliferate upon antigen receptor stimulation, and cbl-b(-/-) T cells display specific hyperproduction of the T-cell growth factor interleukin-2, but not interferon-gamma or tumour necrosis factor-alpha. Mutation of Cbl-b uncouples T-cell proliferation, interleukin-2 production and phosphorylation of the GDP/GTP exchange factor Vav1 from the requirement for CD28 co-stimulation. Cbl-b is thus a key regulator of activation thresholds in mature lymphocytes and immunological tolerance and autoimmunity.
Collapse
Affiliation(s)
- K Bachmaier
- Amgen Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Haanen JB, Wolkers MC, Kruisbeek AM, Schumacher TN. Selective expansion of cross-reactive CD8(+) memory T cells by viral variants. J Exp Med 1999; 190:1319-28. [PMID: 10544203 PMCID: PMC2195685 DOI: 10.1084/jem.190.9.1319] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The role of memory T cells during the immune response against random antigenic variants has not been resolved. Here, we show by simultaneous staining with two tetrameric major histocompatibility complex (MHC)-peptide molecules, that the polyclonal CD8(+) T cell response against a series of natural variants of the influenza A nucleoprotein epitope is completely dominated by infrequent cross-reactive T cells that expand from an original memory population. Based on both biochemical and functional criteria, these cross-reactive cytotoxic T cells productively recognize both the parental and the mutant epitope in vitro and in vivo. These results provide direct evidence that the repertoire of antigen-specific T cells used during an infection critically depends on prior antigen encounters, and indicate that polyclonal memory T cell populations can provide protection against a range of antigenic variants.
Collapse
Affiliation(s)
- John B.A.G. Haanen
- Department of Immunology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Monika C. Wolkers
- Department of Immunology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Ada M. Kruisbeek
- Department of Immunology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Ton N.M. Schumacher
- Department of Immunology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
41
|
Borghans JAM, Noest AJ, De Boer RJ. How Specific Should Immunological Memory Be? THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Protection against infection hinges on a close interplay between the innate immune system and the adaptive immune system. Depending on the type and context of a pathogen, the innate system instructs the adaptive immune system to induce an appropriate immune response. Here, we hypothesize that the adaptive immune system stores these instructions by changing from a naive to an appropriate memory phenotype. In a secondary immune reaction, memory lymphocytes adhere to their instructed phenotype. Because cross-reactions with unrelated Ags can be detrimental, such a qualitative form of memory requires a sufficient degree of specificity of the adaptive immune system. For example, lymphocytes instructed to clear a particular pathogen may cause autoimmunity when cross-reacting with ignored self molecules. Alternatively, memory cells may induce an immune response of the wrong mode when cross-reacting with subsequent pathogens. To maximize the likelihood of responding to a wide variety of pathogens, it is also required that the immune system be sufficiently cross-reactive. By means of a probabilistic model, we show that these conflicting requirements are met optimally by a highly specific memory lymphocyte repertoire. This explains why the lymphocyte system that was built on a preserved functional innate immune system has such a high degree of specificity. Our analysis suggests that 1) memory lymphocytes should be more specific than naive lymphocytes and 2) species with small lymphocyte repertoires should be more vulnerable to both infection and autoimmune diseases.
Collapse
Affiliation(s)
| | - André J. Noest
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands
| | - Rob J. De Boer
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
42
|
Callan MF, McMichael AJ. T cell receptor usage in infectious disease. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1999; 21:37-54. [PMID: 10389231 DOI: 10.1007/bf00815177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M F Callan
- Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
43
|
Ruedl C, Kopf M, Bachmann MF. CD8(+) T cells mediate CD40-independent maturation of dendritic cells in vivo. J Exp Med 1999; 189:1875-84. [PMID: 10377183 PMCID: PMC2192972 DOI: 10.1084/jem.189.12.1875] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/1998] [Revised: 03/03/1999] [Indexed: 11/04/2022] Open
Abstract
Induction of cytotoxic T lymphocyte (CTL) responses against minor histocompatibility antigens is dependent upon the presence of T cell help and requires the interaction of CD40 on dendritic cells (DCs) with CD40 ligand on activated T helper cells (Th). This study demonstrates that CD40 is neither involved in Th-dependent nor Th-independent antiviral CTL responses. Moreover, the data show that DC maturation occurs in vivo after viral infection in the absence of CD40 and Th. This maturation did not require viral infection of DCs but was mediated by peptide-specific CD8(+) T cells. Surprisingly, naive CD8(+) T cells were able to trigger DC maturation within 24 h after activation in vivo and in vitro. Moreover, peptide-activated CD8(+) T cells were able to induce maturation in trans, as DCs that failed to present the relevant antigen in vivo also underwent maturation. Upon isolation, the in vivo-stimulated DCs were able to convert a classically Th-dependent CTL response (anti-HY) into a Th-independent response in vitro. Thus, antiviral CD8(+) T cells are sufficient for the maturation of DCs in the absence of CD40.
Collapse
Affiliation(s)
- C Ruedl
- Basel Institute for Immunology, CH-4005 Basel, Switzerland
| | | | | |
Collapse
|
44
|
Bachmann MF, Gallimore A, Linkert S, Cerundolo V, Lanzavecchia A, Kopf M, Viola A. Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells. J Exp Med 1999; 189:1521-30. [PMID: 10330431 PMCID: PMC2193636 DOI: 10.1084/jem.189.10.1521] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1998] [Revised: 03/16/1999] [Indexed: 11/04/2022] Open
Abstract
The question of whether enhanced memory T cell responses are simply due to an increased frequency of specific cells or also to an improved response at the single cell level is widely debated. In this study, we analyzed T cell receptor (TCR) transgenic memory T cells and bona fide memory T cells isolated from virally infected normal mice using the tetramer technology. We found that memory T cells are qualitatively different from naive T cells due to a developmentally regulated rearrangement of the topology of the signaling machinery. In naive cytotoxic T cells, only a few CD8 molecules are associated with Lck and the kinase is homogeneously distributed inside the cell. However, in vivo priming of naive T cells induces the targeting of Lck to the CD8 coreceptor in the cell membrane and the consequent organization of a more efficient TCR signaling machinery in effector and memory cells.
Collapse
Affiliation(s)
- M F Bachmann
- Basel Institute for Immunology, CH-4005 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
45
|
Marten NW, Stohlman SA, Smith-Begolka W, Miller SD, Dimacali E, Yao Q, Stohl S, Goverman J, Bergmann CC. Selection of CD8+ T Cells with Highly Focused Specificity During Viral Persistence in the Central Nervous System. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The relationships between T cell populations during primary viral infection and persistence are poorly understood. Mice infected with the neurotropic JHMV strain of mouse hepatitis virus mount potent regional CTL responses that effectively reduce infectious virus; nevertheless, viral RNA persists in the central nervous system (CNS). To evaluate whether persistence influences Ag-specific CD8+ T cells, functional TCR diversity was studied in spleen and CNS-derived CTL populations based on differential recognition of variant peptides for the dominant nucleocapsid epitope. Increased specificity of peripheral CTL from persistently infected mice for the index epitope compared with immunized mice suggested T cell selection during persistence. This was confirmed with CD8+ T cell clones derived from the CNS of either acutely (CTLac) or persistently (CTLper) infected mice. Whereas CTLac clones recognized a broad diversity of amino acid substitutions, CTLper clones exhibited exquisite specificity for the wild-type sequence. Highly focused specificity was CD8 independent but correlated with longer complementarity-determining regions 3 characteristic of CTLper clonotypes despite limited TCR α/β-chain heterogeneity. Direct ex vivo analysis of CNS-derived mononuclear cells by IFN-γ enzyme-linked immunospot assay confirmed the selection of T cells with narrow Ag specificity during persistence at the population level. These data suggest that broadly reactive CTL during primary infection are capable of controlling potentially emerging mutations. By contrast, the predominance of CD8+ T cells with dramatically focused specificity during persistence at the site of infection and in the periphery supports selective pressure driven by persisting Ag.
Collapse
Affiliation(s)
| | - Stephen A. Stohlman
- *Neurology and
- †Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, CA 90033
| | - Wendy Smith-Begolka
- ‡Immunobiology Center, Northwestern University Medical School, Chicago, IL 60601; and
| | - Stephen D. Miller
- ‡Immunobiology Center, Northwestern University Medical School, Chicago, IL 60601; and
| | | | | | | | - Joan Goverman
- §Department of Molecular Biotechnology and Immunology, University of Washington, Seattle, WA 981195
| | - Cornelia C. Bergmann
- *Neurology and
- †Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, CA 90033
| |
Collapse
|
46
|
Busch DH, Pamer EG. T cell affinity maturation by selective expansion during infection. J Exp Med 1999; 189:701-10. [PMID: 9989985 PMCID: PMC2192934 DOI: 10.1084/jem.189.4.701] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Revised: 12/29/1998] [Indexed: 12/11/2022] Open
Abstract
T lymphocyte recognition of infected cells is mediated by T cell receptors (TCRs) interacting with their ligands, self-major histocompatibility complex (MHC) molecules complexed with pathogen-derived peptides. Serial TCR interactions with potentially small numbers of MHC/ peptide complexes on infected cells transmit signals that result in T lymphocyte expansion and activation of effector functions. The impact of TCR affinity for MHC/peptide complexes on the rate or extent of in vivo T cell expansion is not known. Here we show that in vivo expansion of complex T cell populations after bacterial infection is accompanied by an increase in their overall affinity for antigen. T cell populations that have undergone additional rounds of in vivo expansion express a narrower range of TCRs, have increased sensitivity for antigen in cytotoxic T lymphocyte assays, and bind MHC/peptide complexes with greater affinity. The selective expansion of higher affinity T cells provides an in vivo mechanism for optimizing the early detection of infected cells.
Collapse
Affiliation(s)
- D H Busch
- Sections of Infectious Diseases and Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
47
|
Lin MY, Welsh RM. Stability and diversity of T cell receptor repertoire usage during lymphocytic choriomeningitis virus infection of mice. J Exp Med 1998; 188:1993-2005. [PMID: 9841914 PMCID: PMC2212379 DOI: 10.1084/jem.188.11.1993] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Revised: 08/18/1998] [Indexed: 11/22/2022] Open
Abstract
Numerous studies have examined T cell receptor (TCR) usage of selected virus-specific T cell clones, yet little information is available regarding the stability and diversity of TCR repertoire usage during viral infections. Here, we analyzed the Vbeta8.1 TCR repertoire directly ex vivo by complementarity-determining region 3 (CDR3) length spectratyping throughout the acute lymphocytic choriomeningitis virus (LCMV) infection, into memory, and under conditions of T cell clonal exhaustion. The Vbeta8 population represented 30-35% of the LCMV-induced CD8(+) T cells and included T cells recognizing several LCMV-encoded peptides, allowing for a comprehensive study of a multiclonal T cell response against a complex antigen. Genetically identical mice generated remarkably different T cell responses, as reflected by different spectratypes and different TCR sequences in same sized spectratype bands; however, a conserved CDR3 motif was found within some same sized bands. This indicated that meaningful studies on the evolution of the T cell repertoire required longitudinal studies within individual mice. Such longitudinal studies with peripheral blood lymphocyte samples showed that (a) the virus-induced T cell repertoire changes little during the apoptosis period after clearance of the viral antigens; (b) the LCMV infection dramatically skews the host T cell repertoire in the memory state; and (c) continuous selection of the T cell repertoire occurs under conditions of persistent infections.
Collapse
Affiliation(s)
- M Y Lin
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
48
|
Callan MF, Annels N, Steven N, Tan L, Wilson J, McMichael AJ, Rickinson AB. T cell selection during the evolution of CD8+ T cell memory in vivo. Eur J Immunol 1998; 28:4382-90. [PMID: 9862375 DOI: 10.1002/(sici)1521-4141(199812)28:12<4382::aid-immu4382>3.0.co;2-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Memory T cell responses are frequently highly restricted in terms of receptor usage. How and when such clonotypic dominance is established remains poorly understood. Here we have investigated the evolution of the T cell responses to an epitope from Epstein-Barr virus (EBV), (FLRGRAYGL), by analyzing TCR use of clones specific for this epitope, derived from peripheral blood mononuclear cells taken from individuals early during primary EBV infection and up to 3 years later. We show that, in a given individual, particular T cell clonotypes are selected early during the primary response to this epitope and that the same clonotypes dominate the late memory response. In one individual direct analysis of HLA-B8-restricted FLRGRAYGL-specific T cells, isolated from peripheral blood lymphocytes taken during primary EBV infection using a tetrameric MHC-peptide complex, confirmed the early selection of the dominant clonotypes.
Collapse
Affiliation(s)
- M F Callan
- Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, GB.
| | | | | | | | | | | | | |
Collapse
|
49
|
Klenerman P, Zinkernagel RM. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 1998; 394:482-5. [PMID: 9697771 DOI: 10.1038/28860] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Some viruses, including human immunodeficiency virus (HIV) and hepatitis B virus (HBV) in humans, and lymphocytic choriomeningitis virus (LCMV) in mice, are initially controlled by cytotoxic T lymphocytes (CTLs), but may subsequently escape through mutation of the relevant T-cell epitope. Some of these mutations preserve the normal binding to major histocompatibility complex class I molecules, but present an altered surface to the T-cell antigen receptor. The exact role of these so-called altered peptide ligands in vivo is not clear. Here we report that mice primed with LCMV-WE strain respond to a subsequent infection by WE-derived CTL epitope variants with a CTL response directed against the initial epitope rather than against the new variant epitope. This phenomenon of 'original antigenic sin' was initially described in influenza and is an asymmetric pattern of protective antibody crossreactivity determined by exposure to previously existing strains, which may therefore extend to some CTL responses. Original antigenic sin by CTL leads to impaired clearance of variant viruses infecting the same individual and so may enhance the immune escape of mutant viruses evolving in an individual host.
Collapse
Affiliation(s)
- P Klenerman
- Institute for Experimental Immunology, University Hospital, Zurich, Switzerland
| | | |
Collapse
|
50
|
Sourdive DJ, Murali-Krishna K, Altman JD, Zajac AJ, Whitmire JK, Pannetier C, Kourilsky P, Evavold B, Sette A, Ahmed R. Conserved T cell receptor repertoire in primary and memory CD8 T cell responses to an acute viral infection. J Exp Med 1998; 188:71-82. [PMID: 9653085 PMCID: PMC2525546 DOI: 10.1084/jem.188.1.71] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/1998] [Revised: 04/09/1998] [Indexed: 02/01/2023] Open
Abstract
Viral infections often induce potent CD8 T cell responses that play a key role in antiviral immunity. After viral clearance, the vast majority of the expanded CD8 T cells undergo apoptosis, leaving behind a stable number of memory cells. The relationship between the CD8 T cells that clear the acute viral infection and the long-lived CD8 memory pool remaining in the individual is not fully understood. To address this issue, we examined the T cell receptor (TCR) repertoire of virus-specific CD8 T cells in the mouse model of infection with lymphocytic choriomeningitis virus (LCMV) using three approaches: (a) in vivo quantitative TCR beta chain V segment and complementarity determining region 3 (CDR3) length repertoire analysis by spectratyping (immunoscope); (b) identification of LCMV-specific CD8 T cells with MHC class I tetramers containing viral peptide and costaining with TCR Vbeta-specific antibodies; and (c) functional TCR fingerprinting based on recognition of variant peptides. We compared the repertoire of CD8 T cells responding to acute primary and secondary LCMV infections, together with that of virus-specific memory T cells in immune mice. Our analysis showed that CD8 T cells from several Vbeta families participated in the anti-LCMV response directed to the dominant cytotoxic T lymphocyte (CTL) epitope (NP118-126). However, the bulk (approximately 70%) of this CTL response was due to three privileged T cell populations systematically expanding during LCMV infection. Approximately 30% of the response consisted of Vbeta10+ CD8 T cells with a beta chain CDR3 length of nine amino acids, and 40% consisted of Vbeta8.1+ (beta CDR3 = eight amino acids) and Vbeta8.2+ cells (beta CDR3 = six amino acids). Finally, we showed that the TCR repertoire of the primary antiviral CD8 T cell response was similar both structurally and functionally to that of the memory pool and the secondary CD8 T cell effectors. These results suggest a stochastic selection of memory cells from the pool of CD8 T cells activated during primary infection.
Collapse
Affiliation(s)
- D J Sourdive
- Emory Vaccine Center, Rollins Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|