1
|
Struble EB, Rawson JMO, Stantchev T, Scott D, Shapiro MA. Uses and Challenges of Antiviral Polyclonal and Monoclonal Antibody Therapies. Pharmaceutics 2023; 15:pharmaceutics15051538. [PMID: 37242780 DOI: 10.3390/pharmaceutics15051538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Viral diseases represent a major public health concerns and ever-present risks for developing into future pandemics. Antiviral antibody therapeutics, either alone or in combination with other therapies, emerged as valuable preventative and treatment options, including during global emergencies. Here we will discuss polyclonal and monoclonal antiviral antibody therapies, focusing on the unique biochemical and physiological properties that make them well-suited as therapeutic agents. We will describe the methods of antibody characterization and potency assessment throughout development, highlighting similarities and differences between polyclonal and monoclonal products as appropriate. In addition, we will consider the benefits and challenges of antiviral antibodies when used in combination with other antibodies or other types of antiviral therapeutics. Lastly, we will discuss novel approaches to the characterization and development of antiviral antibodies and identify areas that would benefit from additional research.
Collapse
Affiliation(s)
- Evi B Struble
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jonathan M O Rawson
- Division of Antivirals, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dorothy Scott
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marjorie A Shapiro
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
2
|
Fels JM, Maurer DP, Herbert AS, Wirchnianski AS, Vergnolle O, Cross RW, Abelson DM, Moyer CL, Mishra AK, Aguilan JT, Kuehne AI, Pauli NT, Bakken RR, Nyakatura EK, Hellert J, Quevedo G, Lobel L, Balinandi S, Lutwama JJ, Zeitlin L, Geisbert TW, Rey FA, Sidoli S, McLellan JS, Lai JR, Bornholdt ZA, Dye JM, Walker LM, Chandran K. Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell 2021; 184:3486-3501.e21. [PMID: 34077751 PMCID: PMC8559771 DOI: 10.1016/j.cell.2021.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/19/2021] [Accepted: 04/29/2021] [Indexed: 12/31/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein. Competition experiments showed that these nAbs bind six distinct antigenic sites in the Gc subunit. These sites were further delineated through mutagenesis and mapped onto a prefusion model of Gc. Pairwise screening identified combinations of non-competing nAbs that afford synergistic neutralization. Further enhancements in neutralization breadth and potency were attained by physically linking variable domains of synergistic nAb pairs through bispecific antibody (bsAb) engineering. Although multiple nAbs protected mice from lethal CCHFV challenge in pre- or post-exposure prophylactic settings, only a single bsAb, DVD-121-801, afforded therapeutic protection. DVD-121-801 is a promising candidate suitable for clinical development as a CCHFV therapeutic.
Collapse
Affiliation(s)
- J Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; The Geneva Foundation, Tacoma, WA 98402, USA
| | - Ariel S Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olivia Vergnolle
- Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | | | - Akaash K Mishra
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer T Aguilan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana I Kuehne
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | - Russell R Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Elisabeth K Nyakatura
- Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jan Hellert
- Structural Virology Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, Paris 75724, France
| | - Gregory Quevedo
- Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leslie Lobel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Felix A Rey
- Structural Virology Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, Paris 75724, France
| | - Simone Sidoli
- Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan R Lai
- Deparment of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Laura M Walker
- Adimab, LLC, Lebanon, NH 03766, USA; Adagio Therapeutics, Inc., Waltham, MA 02451, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
3
|
Gutjahr B, Keller M, Rissmann M, von Arnim F, Jäckel S, Reiche S, Ulrich R, Groschup MH, Eiden M. Two monoclonal antibodies against glycoprotein Gn protect mice from Rift Valley Fever challenge by cooperative effects. PLoS Negl Trop Dis 2020; 14:e0008143. [PMID: 32160203 PMCID: PMC7089562 DOI: 10.1371/journal.pntd.0008143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/23/2020] [Accepted: 02/15/2020] [Indexed: 11/22/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus that causes severe disease in humans and ruminants. The infection is characterized by abortions in pregnant animals, high mortality in neonates as well as febrile illness in humans that develop in 1% of cases encephalitis or hemorrhagic fever. There is presently no specific antiviral treatment for RVFV infection available. In this study, two monoclonal antibodies (mAbs), raised against glycoprotein Gn, were applied in a therapeutic study. Treatment of RVFV infected mice with neutralizing mAb Gn3 alone at two different time points (30 minutes before or 30 minutes after virus challenge) showed only moderate efficacy of about 58.3% survival in both applications. However, a combination therapy together with non-neutralizing mAb Gn32 demonstrated complete protection (100% survival) when applied 30 minutes after the lethal challenge dose. The increase of mAb efficacy is probably based on cooperative neutralization effects. These data suggest that a combination therapy with mAbs Gn3 and Gn32 could be an effective treatment option against RVFV infection.
Collapse
Affiliation(s)
- Benjamin Gutjahr
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Melanie Rissmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Felicitas von Arnim
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Susanne Jäckel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Saxon State Laboratory of Health and Veterinary Affairs, Dresden, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
4
|
Zhang C, Huang X, Chen S, Li Y, Li Y, Wang X, Tang J, Xia L, Lin Z, Luo W, Li T, Li S, Zhang J, Xia N, Zhao Q. Epitope clustering analysis for vaccine-induced human antibodies in relationship to a panel of murine monoclonal antibodies against HPV16 viral capsid. Vaccine 2018; 36:6761-6771. [PMID: 30287156 DOI: 10.1016/j.vaccine.2018.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
Abstract
Human papillomavirus (HPV) type 16 is the most common type implicated as the etiological agent that causes cervical cancer. The marketed prophylactic vaccines against HPV infection are composed of virus-like particles (VLPs) assembled from the recombinant major capsid protein L1. Elicitation of functional and neutralizing antibodies by vaccination is the mode of action by which the vaccines prevent the viral infection. In this study, a panel of murine mAbs against HPV16 L1 were generated and comprehensively characterized with respect to their mapping to the epitope spectrum on the viral capsid. These mAbs were categorized into five epitope bins by two different methods based on the pairwise cross-inhibition and competition with human polyclonal antibodies. In addition, a preliminary demonstration of the spatial relationship of the epitopes recognized by these mAbs was performed using a cross-blocking assay with a well-characterized human mAb, 26D1. Interestingly, two mAbs recognizing different epitopes were found to act synergistically in the pseudovirion-based neutralization assay (PBNA). To facilitate cross-lab and cross-study comparison, the international standard (IS) serum 05/134 was used to calibrate the mAbs as well as the human serum samples from the HPV16/18 vaccine recipients. The neutralizing mAbs, particularly those that recognizing immunodominant epitopes, would be useful in developing epitope-specific assays for monitoring the vaccine production process and for serological assessment.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Siyi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China
| | - Yike Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Yufang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Jixian Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Lin Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Ltd, Xiamen, Fujian, PR China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
5
|
Novel, Broadly Reactive Anticapsular Antibodies against Carbapenem-Resistant Klebsiella pneumoniae Protect from Infection. mBio 2018; 9:mBio.00091-18. [PMID: 29615497 PMCID: PMC5885035 DOI: 10.1128/mbio.00091-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Carbapenem-resistant (CR) sequence type 258 (ST258) Klebsiella pneumoniae has become an urgent health care threat, causing an increasing number of high-mortality infections. Its resistance to numerous antibiotics and threat to immunocompromised patients necessitate finding new therapies to combat these infections. Previous successes in the laboratory, as well as the conservation of capsular polysaccharide (CPS) among the members of the ST258 clone, suggest that monoclonal antibody (MAb) therapy targeting the outer polysaccharide capsule of K. pneumoniae could serve as a valuable treatment alternative for afflicted patients. Here, we isolated several IgG antibodies from mice inoculated with a mixture of CR K. pneumoniae CPS conjugated to anthrax protective antigen. Two of these MAbs, 17H12 and 8F12, bind whole and oligosaccharide epitopes of the CPS of clade 2 ST258 CR K. pneumoniae, which is responsible for the most virulent CR K. pneumoniae infections in the United States. These antibodies were shown to agglutinate all clade 2 strains and were also shown to promote extracellular processes killing these bacteria, including biofilm inhibition, complement deposition, and deployment of neutrophil extracellular traps. Additionally, they promoted opsonophagocytosis and intracellular killing of CR K. pneumoniae by human-derived neutrophils and cultured murine macrophages. Finally, when mice were intratracheally infected with preopsonized clade 2 CR K. pneumoniae, these MAbs reduced bacterial dissemination to organs. Our data suggest that broadly reactive anticapsular antibodies and vaccines against clade 2 ST258 CR K. pneumoniae are possible. Such MAbs and vaccines would benefit those susceptible populations at risk of infection with this group of multidrug-resistant bacteria.IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is an enteric bacterium that has been responsible for an increasing number of deadly outbreaks and hospital-acquired infections. The pathogen's resistance to numerous antibiotics, including new drugs, leaves few therapeutic options available for infected patients, who often are too sick to fight the infection themselves. Immunotherapy utilizing monoclonal antibodies has been successful in other medical fields, and antibodies targeting the outer polysaccharide capsule of these bacteria could be a valuable treatment alternative. This study presents two anticapsular antibodies, 17H12 and 8F12, that were found to be protective against the most virulent carbapenem-resistant K. pneumoniae clinical strains. These antibodies are shown to promote the killing of these strains through several extracellular and intracellular processes and prevent the spread of infection in mice from the lungs to distal organs. Thus, they could ultimately treat or protect patients infected or at risk of infection by this multidrug-resistant bacterium.
Collapse
|
6
|
Ruprecht RM. Anti-HIV Passive Immunization: New Weapons in the Arsenal. Trends Microbiol 2017; 25:954-956. [PMID: 29097089 DOI: 10.1016/j.tim.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/17/2022]
Abstract
Anti-HIV passive immunization with human neutralizing monoclonal antibodies (nmAbs) has made exciting gains: (i) identification of the HIV envelope V2 apex as a new in vivo protective epitope, (ii) a novel clade C SHIV for challenge studies, and (iii) a highly protective, trispecific nmAb. Potent, broad-spectrum protection by nmAbs holds promise.
Collapse
Affiliation(s)
- Ruth M Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Southwest National Primate Research Center, San Antonio, TX, USA.
| |
Collapse
|
7
|
Howell KA, Brannan JM, Bryan C, McNeal A, Davidson E, Turner HL, Vu H, Shulenin S, He S, Kuehne A, Herbert AS, Qiu X, Doranz BJ, Holtsberg FW, Ward AB, Dye JM, Aman MJ. Cooperativity Enables Non-neutralizing Antibodies to Neutralize Ebolavirus. Cell Rep 2017; 19:413-424. [PMID: 28402862 PMCID: PMC6082427 DOI: 10.1016/j.celrep.2017.03.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/13/2017] [Accepted: 03/15/2017] [Indexed: 11/25/2022] Open
Abstract
Drug combinations are synergistic when their combined efficacy exceeds the sum of the individual actions, but they rarely include ineffective drugs that become effective only in combination. We identified several “enabling pairs” of neutralizing and non-neutralizing anti-ebolavirus monoclonal antibodies, whose combination exhibited new functional profiles, including transforming a non-neutralizing antibody to a neutralizer. Sub-neutralizing concentrations of antibodies 2G4 or m8C4 enabled non-neutralizing antibody FVM09 (IC50 >1 μM) to exhibit potent neutralization (IC50 1–10 nM). While FVM09 or m8C4 alone failed to protect Ebola-virus-infected mice, a combination of the two antibodies provided 100% protection. Furthermore, non-neutralizers FVM09 and FVM02 exponentially enhanced the potency of two neutralizing antibodies against both Ebola and Sudan viruses. We identified a hotspot for the binding of these enabling antibody pairs near the interface of the glycan cap and GP2. Enabling cooperativity may be an underappreciated phenomenon for viruses, with implications for the design and development of immunotherapeutics and vaccines. We describe cooperative neutralization and in vivo protection Cooperativity turns non-neutralizing ebolavirus antibodies into potent neutralizers A hotspot for antibody cooperativity identified on Ebola virus glycoprotein
Collapse
Affiliation(s)
- Katie A Howell
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA
| | - Jennifer M Brannan
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | | | | | | | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hong Vu
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA
| | | | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ana Kuehne
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | - Andrew S Herbert
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John M Dye
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA.
| |
Collapse
|
8
|
Diamant E, Torgeman A, Ozeri E, Zichel R. Monoclonal Antibody Combinations that Present Synergistic Neutralizing Activity: A Platform for Next-Generation Anti-Toxin Drugs. Toxins (Basel) 2015; 7:1854-81. [PMID: 26035486 PMCID: PMC4488679 DOI: 10.3390/toxins7061854] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
Monoclonal antibodies (MAbs) are among the fastest-growing therapeutics and are being developed for a broad range of indications, including the neutralization of toxins, bacteria and viruses. Nevertheless, MAbs potency is still relatively low when compared to conventional polyclonal Ab preparations. Moreover, the efficacy of an individual neutralizing MAb may significantly be hampered by the potential absence or modification of its target epitope in a mutant or subtype of the infectious agent. These limitations of individual neutralizing MAbs can be overcome by using oligoclonal combinations of several MAbs with different specificities to the target antigen. Studies conducted in our lab and by others show that such combined MAb preparation may present substantial synergy in its potency over the calculated additive potency of its individual MAb components. Moreover, oligoclonal preparation is expected to be better suited to compensating for reduced efficacy due to epitope variation. In this review, the synergistic neutralization properties of combined oligoclonal Ab preparations are described. The effect of Ab affinity, autologous Fc fraction, and targeting a critical number of epitopes, as well as the unexpected contribution of non-neutralizing clones to the synergistic neutralizing effect are presented and discussed.
Collapse
Affiliation(s)
- Eran Diamant
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Amram Torgeman
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Eyal Ozeri
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel.
| |
Collapse
|
9
|
Van Regenmortel MHV. Why Does the Molecular Structure of Broadly Neutralizing Monoclonal Antibodies Isolated from Individuals Infected with HIV-1 not Inform the Rational Design of an HIV-1 Vaccine? AIMS Public Health 2015; 2:183-193. [PMID: 29546103 PMCID: PMC5690275 DOI: 10.3934/publichealth.2015.2.183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/28/2015] [Indexed: 01/12/2023] Open
Abstract
It is commonly assumed that neutralizing Mabs that bind to the HIV-1 Env glycoprotein are more specific reagents than anti-HIV-1 polyclonal antisera and that knowledge of the structure of these Mabs facilitates the rational design of effective HIV-1 vaccine immunogens. However, after more than ten years of unsuccessful experimentation using the structure-based reverse vaccinology approach, it is now evident that it is not possible to infer from the structure of neutralizing Mabs which HIV immunogens induced their formation nor which vaccine immunogens will elicit similar Abs in an immunized host. The use of Mabs for developing an HIV-1 vaccine was counterproductive because it overlooked the fact that the apparent specificity of a Mab very much depends on the selection procedure used to obtain it and also did not take into account that an antibody is never monospecific for a single epitope but is always polyspecific for many epitopes. When the rationale of the proponents of the unsuccessful rational design strategy is analyzed, it appears that investigators who claim they are designing a vaccine immunogen are only improving the binding reactivity of a single epitope-paratope pair and are not actually designing an immunogen able to generate protective antibodies. The task of a designer consists in imagining what type of immunogen is likely to elicit a protective immune response but in the absence of knowledge regarding which features of the immune system are responsible for producing a functional neutralizing activity in antibodies, it is not feasible to intentionally optimize a potential immunogen candidate in order to obtain the desired outcome. The only available option is actually to test possible solutions by trial-and-error experiments until the preset goal is perhaps attained. Rational design and empirical approaches in HIV vaccine research should thus not be opposed as alternative options since empirical testing is an integral part of a so-called design strategy.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- CNRS, UMR7242 - Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, Illkirch 67400, France ; Tel: +27-793376766
| |
Collapse
|
10
|
Hao Y, Bai G, Wang J, Zhao L, Sutherland K, Cai J, Cao C. Identifiable biomarker and treatment development using HIV-1 long term non-progressor sera. BMC Immunol 2015; 16:25. [PMID: 25927639 PMCID: PMC4410489 DOI: 10.1186/s12865-015-0094-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/10/2015] [Indexed: 12/24/2022] Open
Abstract
Background HIV-infected long-term non-progressor (LTNP) subjects can prevent viral replication and may harbor useful information for the development of both antibody and active vaccination treatments. In this study we used LTNP sera to examine the epitopes presented to the gp160 protein, and from this procedure we hope to elucidate potential biomarkers pertaining to the level of resistance a patient may have in developing AIDS after infection with HIV. We used five clinical sera samples from LTNP patients to identify common epitopes by ELISA; peptides with high binding to sera were selected and analyzed for conservation among HIV clades. Antibodies were generated against one identified epitope using a chimeric peptide in BALB/c mice, and both the sera from these mice and LTNP sera were tested for viral inhibition capabilities. Results A monoclonal antibody, CL3, against one identified epitope was used to compare these epitopes neutralizing capability. LTNP sera was also studied to determine chemokine/cytokine changes in these patients. The sera from LTNP patients 2, 3, 4, and 5 were identified as having the highest titers, and also significantly inhibited syncytia formation in vitro. Finally, the protein cytokine array demonstrated that I-309 and IGFBP-1 decreased in LTNPs, but levels of TIMP-1 and NAP-2 increased significantly. Conclusions Our results indicate that the use of LTNP samples may be a useful for identifying further anti-viral epitopes, and may be a possible predictor for determining if patients show higher resistances of converting the HIV infection to AIDS.
Collapse
Affiliation(s)
- Yuxia Hao
- Shanxi Provincial People's Hospital, Shanxi, China.
| | - Ge Bai
- Department of Chemistry, University of South Florida, Tampa, FL, USA.
| | - Junping Wang
- Shanxi Provincial People's Hospital, Shanxi, China.
| | | | - Kyle Sutherland
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA. .,USF-Health Byrd Alzheimer's Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, USA.
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA. .,USF-Health Byrd Alzheimer's Institute, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA.
| |
Collapse
|
11
|
Monoclonal antibodies for prophylactic and therapeutic use against viral infections. ACTA ACUST UNITED AC 2013; 88:T15-T23. [PMID: 32287402 PMCID: PMC7111719 DOI: 10.1016/j.pepo.2013.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/15/2013] [Indexed: 11/21/2022]
Abstract
Neutralizing antibodies play an essential part in antiviral immunity and are instrumental in preventing or modulating viral diseases. Polyclonal antibody preparations are increasingly being replaced by highly potent monoclonal antibodies (mAbs). Cocktails of mAbs and bispecific constructs can be used to simultaneously target multiple viral epitopes and to overcome issues of neutralization escape. Advances in antibody engineering have led to a large array of novel mAb formats, while deeper insight into the biology of several viruses and increasing knowledge of their neutralizing epitopes has extended the list of potential targets. In addition, progress in developing inexpensive production platforms will make antiviral mAbs more widely available and affordable.
Collapse
|
12
|
Topological analysis of HIV-1 glycoproteins expressed in situ on virus surfaces reveals tighter packing but greater conformational flexibility than for soluble gp120. J Virol 2013; 87:9233-49. [PMID: 23740975 DOI: 10.1128/jvi.01145-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In natural infection, antibodies interact with HIV-1 primarily through nonfunctional forms of envelope glycoproteins (Env), including uncleaved (UNC) gp160 and gp41 stumps. These antigens are important to fully characterize, as they may be decoys that promote nonneutralizing responses and may also be targets for nonneutralizing effector responses. In this study, we compared the antigenic properties of Env expressed in situ on pseudovirion virus-like particle (VLP) surfaces and soluble gp120 using harmonized enzyme-linked immunosorbent assays (ELISAs) and a panel of 51 monoclonal antibodies (MAbs). Only 32 of 46 soluble gp120-reactive MAbs recognized the primary UNC gp160 antigen of VLPs. Indeed, many epitopes were poorly exposed (C1, V2, C1-C4, C4, C4-V3, CD4 induced [CD4i], and PGT group 3) or obscured (C2, C5, and C1-C5) on VLPs. In further studies, VLP Env exhibited an increased degree of inter-MAb competition, the epicenter of which was the base of the V3 loop, where PGT, 2G12, V3, and CD4 binding site specificities competed. UNC gp160 also underwent more drastic soluble CD4 (sCD4)-induced conformational changes than soluble gp120, exposing CD4i, C1-C4, and V2 epitopes. A greater propensity of UNC gp160 to undergo conformational changes was also suggested by the induction of CD4i MAb binding to VLPs by a V3 MAb as well as by soluble CD4. The same effect was not observed for soluble gp120. Taken together, our data suggest that membrane-expressed UNC gp160 exists in a less "triggered" conformational state than soluble gp120 and that MAb binding to UNC gp160 tends to have greater conformational consequences.
Collapse
|
13
|
Identification of an HIV-1 clade A envelope that exhibits broad antigenicity and neutralization sensitivity and elicits antibodies targeting three distinct epitopes. J Virol 2013; 87:5372-83. [PMID: 23468492 DOI: 10.1128/jvi.02827-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) PG9 and PG16 were isolated from an International AIDS Vaccine Initiative (IAVI) Protocol G subject infected with human immunodeficiency virus type 1 (HIV-1) clade A. Both antibodies are highly potent and neutralize greater than 70% of viruses tested. We sought to begin immunogen design based on viral sequences from this patient; however, pseudoviruses prepared with 19 envelope sequences from this subject were resistant to neutralization by PG9 and PG16. Therefore, we used a bioinformatics approach to identify closely related viruses that were potentially sensitive to PG9 and PG16. A most-recent common ancestor (MRCA) sequence for the viral envelope (Env) was determined and aligned with 99 subtype A gp160 sequences from the Los Alamos HIV database. Virus BG505.W6M.ENV.C2 (BG505) was found to have the highest degree of homology (73%) to the MRCA sequence. Pseudoviruses prepared with this Env were sensitive to neutralization with a broad panel of bNAbs, including PG9 and PG16. When expressed by 293T cells as soluble gp120, the BG505 monomer bound well to both PG9 and PG16. We further showed that a point mutation (L111A) enabled more efficient production of a stable gp120 monomer that preserves the major neutralization epitopes. Finally, we showed that an adjuvanted formulation of this gp120 protein elicited neutralizing antibodies in rabbits (following a gp120 DNA vaccine prime) and that the antisera competed with bNAbs from 3 classes of nonoverlapping epitopes. Thus, the BG505 Env protein warrants further investigation as an HIV vaccine candidate, as a stand-alone protein, or as a component of a vaccine vector.
Collapse
|
14
|
Both L, Banyard AC, van Dolleweerd C, Wright E, Ma JKC, Fooks AR. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine 2013; 31:1553-9. [PMID: 23370150 PMCID: PMC7115371 DOI: 10.1016/j.vaccine.2013.01.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/01/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
Neutralizing antibodies play an essential part in antiviral immunity and are instrumental in preventing or modulating viral diseases. Polyclonal antibody preparations are increasingly being replaced by highly potent monoclonal antibodies (mAbs). Cocktails of mAbs and bispecific constructs can be used to simultaneously target multiple viral epitopes and to overcome issues of neutralization escape. Advances in antibody engineering have led to a large array of novel mAb formats, while deeper insight into the biology of several viruses and increasing knowledge of their neutralizing epitopes has extended the list of potential targets. In addition, progress in developing inexpensive production platforms will make antiviral mAbs more widely available and affordable.
Collapse
Affiliation(s)
- Leonard Both
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
| | - Ashley C. Banyard
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
| | - Craig van Dolleweerd
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
| | - Edward Wright
- School of Life Sciences, University of Westminster, London, UK
| | - Julian K.-C. Ma
- The Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, London, UK
| | - Anthony R. Fooks
- Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey, UK
- National Consortium for Zoonosis Research, University of Liverpool, Leahurst, Neston, South Wirral CH64 7TE, UK
- Corresponding author at: Animal Health and Veterinary Laboratories Agency (AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department of Virology, Weybridge, Surrey KT15 3NB, UK. Tel.: +44 01932 357840; fax: +44 01932 357239.
| |
Collapse
|
15
|
Nicasio M, Sautto G, Clementi N, Diotti RA, Criscuolo E, Castelli M, Solforosi L, Clementi M, Burioni R. Neutralization interfering antibodies: a "novel" example of humoral immune dysfunction facilitating viral escape? Viruses 2012; 4:1731-52. [PMID: 23170181 PMCID: PMC3499828 DOI: 10.3390/v4091731] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/01/2012] [Accepted: 09/17/2012] [Indexed: 02/07/2023] Open
Abstract
The immune response against some viral pathogens, in particular those causing chronic infections, is often ineffective notwithstanding a robust humoral neutralizing response. Several evasion mechanisms capable of subverting the activity of neutralizing antibodies (nAbs) have been described. Among them, the elicitation of non-neutralizing and interfering Abs has been hypothesized. Recently, this evasion mechanism has acquired an increasing interest given its possible impact on novel nAb-based antiviral therapeutic and prophylactic approaches. In this review, we illustrate the mechanisms of Ab-mediated interference and the viral pathogens described in literature as able to adopt this "novel" evasion strategy.
Collapse
Affiliation(s)
- Mancini Nicasio
- Microbiology and Virology Unit, Vita-Salute San Raffaele University, via Olgettina 58, Milan 20132, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen W, Dimitrov DS. Monoclonal antibody-based candidate therapeutics against HIV type 1. AIDS Res Hum Retroviruses 2012; 28:425-34. [PMID: 21827278 DOI: 10.1089/aid.2011.0226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Treatment of HIV-1 infection has been highly successful with small molecule drugs. However, resistance still develops. In addition, long-term use can lead to toxicity with unpredictable effects on health. Finally, current drugs do not lead to HIV-1 eradication. The presence of the virus leads to chronic inflammation, which can result in increased morbidity and mortality after prolonged periods of infection. Monoclonal antibodies (mAbs) have been highly successful during the past two decades for therapy of many diseases, primarily cancers and immune disorders. They are relatively safe, especially human mAbs that have evolved in humans at high concentrations to fight diseases and long-term use may not lead to toxicities. Several broadly neutralizing mAbs (bnmAbs) against HIV-1 can protect animals but are not effective when used for therapy of an established infection. We have hypothesized that HIV-1 has evolved strategies to effectively escape neutralization by full-size antibodies in natural infections but not by smaller antibody fragments. Therefore, a promising direction of research is to discover and exploit antibody fragments as potential candidate therapeutics against HIV-1. Here we review several bnmAbs and engineered antibody domains (eAds), their in vitro and in vivo antiviral efficacy, mechanisms used by HIV-1 to escape them, and strategies that could be effective to develop more powerful mAb-based HIV-1 therapeutics.
Collapse
Affiliation(s)
- Weizao Chen
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, Maryland
| | - Dimiter S. Dimitrov
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, Maryland
| |
Collapse
|
17
|
Ketas TJ, Holuigue S, Matthews K, Moore JP, Klasse PJ. Env-glycoprotein heterogeneity as a source of apparent synergy and enhanced cooperativity in inhibition of HIV-1 infection by neutralizing antibodies and entry inhibitors. Virology 2011; 422:22-36. [PMID: 22018634 DOI: 10.1016/j.virol.2011.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/19/2011] [Accepted: 09/17/2011] [Indexed: 10/16/2022]
Abstract
We measured the inhibition of infectivity of HIV-1 isolates and derivative clones by combinations of neutralizing antibodies (NAbs) and other entry inhibitors in a single-cycle-replication assay. Synergy was analyzed both by the current linear and a new non-linear method. The new method reduced spurious indications of synergy and antagonism. Synergy between NAbs was overall weaker than between other entry inhibitors, and no stronger where one ligand is known to enhance the binding of another. However, synergy was stronger for a genetically heterogeneous HIV-1 R5 isolate than for its derivative clones. Enhanced cooperativity in inhibition by combinations, compared with individual inhibitors, correlated with increased synergy at higher levels of inhibition, while being less variable. Again, cooperativity enhancement was stronger for isolates than clones. We hypothesize that genetic, post-translational or conformational heterogeneity of the Env protein and of other targets for inhibitors can yield apparent synergy and increased cooperativity between inhibitors.
Collapse
Affiliation(s)
- Thomas J Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065-4896, USA
| | | | | | | | | |
Collapse
|
18
|
Combination therapy using chimeric monoclonal antibodies protects mice from lethal H5N1 infection and prevents formation of escape mutants. PLoS One 2009; 4:e5672. [PMID: 19478856 PMCID: PMC2682562 DOI: 10.1371/journal.pone.0005672] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 04/29/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Given that there is a possibility of a human H5N1 pandemic and the fact that the recent H5N1 viruses are resistant to the anti-viral drugs, newer strategies for effective therapy are warranted. Previous studies show that single mAbs in immune prophylaxis can be protective against H5N1 infection. But a single mAb may not be effective in neutralization of a broad range of different strains of H5N1 and control of potential neutralization escape mutants. METHODS/PRINCIPAL FINDINGS We selected two mAbs which recognized different epitopes on the hemagglutinin molecule. These two mAbs could each neutralize in vitro escape mutants to the other and in combination could effectively neutralize viruses from clades 0, 1, 2.1, 2.2, 2.3, 4, 7 and 8 of influenza A H5N1 viruses. This combination of chimeric mAbs when administered passively, pre or post challenge with 10 MLD50 (50% mouse lethal dose) HPAI H5N1 influenza A viruses could protect 100% of the mice from two different clades of viruses (clades 1 and 2.1). We also tested the efficacy of a single dose of the combination of mAbs versus two doses. Two doses of the combination therapy not only affected early clearance of the virus from the lung but could completely prevent lung pathology of the H5N1 infected mice. No escape variants were detected after therapy. CONCLUSIONS/SIGNIFICANCE Our studies provide proof of concept that the synergistic action of two or more mAbs in combination is required for preventing the generation of escape mutants and also to enhance the therapeutic efficacy of passive therapy against H5N1 infection. Combination therapy may allow for a lower dose of antibody to be administered for passive therapy of influenza infection and hence can be made available at reduced economic costs during an outbreak.
Collapse
|
19
|
McBurney SP, Ross TM. Viral sequence diversity: challenges for AIDS vaccine designs. Expert Rev Vaccines 2008; 7:1405-17. [PMID: 18980542 DOI: 10.1586/14760584.7.9.1405] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the greatest challenges facing AIDS vaccine development is the intrinsic diversity among circulating populations of HIV-1 in various geographical locations and the need to develop vaccines that can elicit enduring protective immunity to variant HIV-1 strains. While variation is observed in all of the viral proteins, the greatest diversity is localized to the viral envelope glycoproteins, evidently reflecting the predominant role of these proteins in eliciting host immune recognition and responses that result in progressive evolution of the envelope proteins during persistent infection. Interestingly, while envelope glycoprotein variation is widely assumed to be a major obstacle to AIDS vaccine development, there is very little experimental data in animal or human lentivirus systems addressing this critical issue. In this review, the state of vaccine development to address envelope diversity will be presented, focusing on the use of centralized and polyvalent sequence design as mechanisms to elicit broadly reactive immune responses.
Collapse
Affiliation(s)
- Sean P McBurney
- University of Pittsburgh, School of Medicine, Center for Vaccine Research, Program in Molecular Virology and Microbiology, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
20
|
Excretion of human immunodeficiency virus type 1 through polarized epithelium by immunoglobulin A. J Virol 2008; 82:11526-35. [PMID: 18829757 DOI: 10.1128/jvi.01111-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) is transmitted primarily sexually across mucosal surfaces. After infection, HIV propagates initially in the lamina propria below the polarized epithelium and causes extensive destruction of mucosal T cells. Immunoglobulin A (IgA) antibodies, produced in the lamina propria and then transcytosed across the mucosal epithelium into the lumen, can be the first line of immune defense against HIV. Here, we used IgA monoclonal antibodies against HIV envelope proteins to investigate the abilities of polarized primate and human epithelial cells to excrete HIV virions from the basolateral to the apical surface via polymeric Ig receptor (pIgR)-mediated binding and the internalization of HIV-IgA immune complexes. African green monkey kidney cells expressing pIgR demonstrated HIV excretion that was dependent on the IgA concentration and the exposure time. Matched IgG antibodies with the same variable regions as the IgA antibodies and IgA antibodies to non-HIV antigens had no HIV excretory function. A mixture of two IgA anti-bodies against gp120 and gp41 showed a synergistic increase in the level of HIV excreted. The capacity for HIV excretion correlated with the ability of IgA antibodies to bind HIV and of the resulting immune complexes to bind pIgR. Consistent with the epithelial transcytosis of HIV-IgA immune complexes, the colocalization of HIV proteins and HIV-specific IgA was detected intracellularly by confocal microscopy. Our results suggest the potential of IgA antibodies to excrete HIV from mucosal lamina propria, thereby decreasing the viral burden, access to susceptible cells, and the chronic activation of the immune system.
Collapse
|
21
|
Abstract
The authors discuss humoral immune responses to HIV and approaches to designing vaccines that induce viral neutralizing and other potentially protective antibodies.
Collapse
|
22
|
Manrique A, Rusert P, Joos B, Fischer M, Kuster H, Leemann C, Niederöst B, Weber R, Stiegler G, Katinger H, Günthard HF, Trkola A. In vivo and in vitro escape from neutralizing antibodies 2G12, 2F5, and 4E10. J Virol 2007; 81:8793-808. [PMID: 17567707 PMCID: PMC1951363 DOI: 10.1128/jvi.00598-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 03/28/2007] [Indexed: 02/07/2023] Open
Abstract
Recently, passive immunization of human immunodeficiency virus (HIV)-infected individuals with monoclonal antibodies (MAbs) 2G12, 2F5, and 4E10 provided evidence of the in vivo activity of 2G12 but raised concerns about the function of the two membrane-proximal external region (MPER)-specific MAbs (A. Trkola, H. Kuster, P. Rusert, B. Joos, M. Fischer, C. Leemann, A. Manrique, M. Huber, M. Rehr, A. Oxenius, R. Weber, G. Stiegler, B. Vcelar, H. Katinger, L. Aceto, and H. F. Gunthard, Nat. Med. 11:615-622, 2005). In the light of MPER-targeting vaccines under development, we performed an in-depth analysis of the emergence of mutations conferring resistance to these three MAbs to further elucidate their activity. Clonal analysis of the MPER of plasma virus samples derived during antibody treatment confirmed that no changes in this region had occurred in vivo. Sequence analysis of the 2G12 epitope relevant N-glycosylation sites of viruses derived from 13 patients during the trial supported the phenotypic evaluation, demonstrating that mutations in these sites are associated with resistance. In vitro selection experiments with isolates of four of these individuals corroborated the in vivo finding that virus strains rapidly escape 2G12 pressure. Notably, in vitro resistance mutations differed, in most cases, from those found in vivo. Importantly, in vitro selection with 2F5 and 4E10 demonstrated that resistance to these MAbs can be difficult to achieve and can lead to selection of variants with impaired infectivity. This remarkable vulnerability of the virus to interference within the MPER calls for a further evaluation of the safety and efficacy of MPER-targeting therapeutic and vaccination strategies.
Collapse
Affiliation(s)
- Amapola Manrique
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Steckbeck JD, Cole KS. Dissecting the humoral immune response to simian immunodeficiency virus: mechanisms of antibody-mediated virus neutralization. Immunol Res 2007; 36:51-60. [PMID: 17337766 PMCID: PMC3357918 DOI: 10.1385/ir:36:1:51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/28/2022]
Abstract
The ultimate goal of an AIDS vaccine is to elicit potent cellular and humoral immune responses that will result in broadly enduring protective immunity. During the past several years, we have focused on characterizing the quantitative and qualitative properties of the antibody response, principally working to define the mechanism(s) of antibody-mediated neutralization in vitro. We have utilized a panel of monoclonal antibodies generated from monkeys infected with attenuated SIV for more than 8 mo to dissect the early events of virus infection involved in antibody-mediated neutralization. Presented herein are highlights from our studies that have identified potential mechanisms by which antibodies neutralize SIV in vitro.
Collapse
Affiliation(s)
- Jonathan D Steckbeck
- Department of Medicine, Infectious Diseases Division, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| | | |
Collapse
|
24
|
Quan FS, Sailaja G, Skountzou I, Huang C, Vzorov A, Compans RW, Kang SM. Immunogenicity of virus-like particles containing modified human immunodeficiency virus envelope proteins. Vaccine 2007; 25:3841-50. [PMID: 17320250 PMCID: PMC1973151 DOI: 10.1016/j.vaccine.2007.01.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 01/29/2007] [Indexed: 12/20/2022]
Abstract
Extensive glycosylation and variable loops of the HIV envelope protein (Env) are reported to shield some neutralizing epitopes. Here, we investigated the immunogenicity of mutated HIV Envs presented in virus-like particles (VLPs). We immunized mice with simian human immunodeficiency virus (SHIV) VLPs containing mutant HIV Env with reduced glycosylation (3G), variable loop-deleted mutations (dV1V2), or combinations of both types of mutations (3G-dV2-1G), and evaluated immune responses. Immune sera from mice that received VLPs with modified HIV Envs (3G or dV1V2) showed higher neutralizing activities against the homologous HIV 89.6 virus as well as heterologous viruses when compared with wild type SHIV VLP-immunized mice. Lymphocytes from immunized mice produced HIV Env-specific cytokines, with the 3G-dV2-1G mutant producing high levels of cytokines. Interestingly, both dendritic cells and B cells were found to interact with VLPs suggesting that VLPs are effective immunogens. Therefore, this study suggests that VLPs containing modified HIV Env have the potential to be developed as candidate vaccines capable of inducing cellular and humoral immune responses including neutralizing activities.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Microbiology and Immunology, and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58:621-81. [PMID: 16968952 DOI: 10.1124/pr.58.3.10] [Citation(s) in RCA: 3784] [Impact Index Per Article: 210.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The median-effect equation derived from the mass-action law principle at equilibrium-steady state via mathematical induction and deduction for different reaction sequences and mechanisms and different types of inhibition has been shown to be the unified theory for the Michaelis-Menten equation, Hill equation, Henderson-Hasselbalch equation, and Scatchard equation. It is shown that dose and effect are interchangeable via defined parameters. This general equation for the single drug effect has been extended to the multiple drug effect equation for n drugs. These equations provide the theoretical basis for the combination index (CI)-isobologram equation that allows quantitative determination of drug interactions, where CI < 1, = 1, and > 1 indicate synergism, additive effect, and antagonism, respectively. Based on these algorithms, computer software has been developed to allow automated simulation of synergism and antagonism at all dose or effect levels. It displays the dose-effect curve, median-effect plot, combination index plot, isobologram, dose-reduction index plot, and polygonogram for in vitro or in vivo studies. This theoretical development, experimental design, and computerized data analysis have facilitated dose-effect analysis for single drug evaluation or carcinogen and radiation risk assessment, as well as for drug or other entity combinations in a vast field of disciplines of biomedical sciences. In this review, selected examples of applications are given, and step-by-step examples of experimental designs and real data analysis are also illustrated. The merging of the mass-action law principle with mathematical induction-deduction has been proven to be a unique and effective scientific method for general theory development. The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.
Collapse
Affiliation(s)
- Ting-Chao Chou
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
26
|
Steckbeck JD, Grieser HJ, Sturgeon T, Taber R, Chow A, Bruno J, Murphy-Corb M, Montelaro RC, Cole KS. Dynamic evolution of antibody populations in a rhesus macaque infected with attenuated simian immunodeficiency virus identified by surface plasmon resonance. J Med Primatol 2006; 35:248-60. [PMID: 16872288 PMCID: PMC3361734 DOI: 10.1111/j.1600-0684.2006.00173.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Increasing evidence suggests that an effective AIDS vaccine will need to elicit broadly neutralizing antibody responses. However, the mechanisms of antibody-mediated neutralization have not been defined. Previous studies from our lab have identified significant differences in the rates of antibody binding to trimeric SIV envelope proteins that correlate with neutralization sensitivity. Importantly, these results demonstrate differences in monoclonal antibody (MAb) binding to neutralization-sensitive and neutralization-resistant envelope proteins, suggesting that one mechanism for virus neutralization may be related to the stability of antibody binding. To date, little has been done to evaluate the binding properties of polyclonal serum antibodies elicited by SIV infection or vaccination. METHODS In the current study, we translate these findings with MAbs to study antibody binding properties of polyclonal serum antibody responses generated in rhesus macaques infected with attenuated SIV. Quantitative and qualitative binding properties of well-characterized longitudinal serum samples to trimeric, recombinant SIV gp140 envelope proteins were analyzed using surface plasmon resonance (SPR) technology (Biacore). RESULTS Results from these studies identified two antibody populations in most of the samples analyzed; one antibody population exhibited fast association/dissociation rates (unstable) while the other population demonstrated slower association/dissociation rates (stable). Over time, the percentage of the total binding response of each antibody population evolved, demonstrating a dynamic evolution of the antibody response that was consistent with the maturation of antibody responses defined using our standard panel of serological assays. However, the current studies provided a higher resolution analysis of polyclonal antibody binding properties, particularly with respect to the early time-points post-infection (PI), that is not possible with standard serological assays. More importantly, the increased stability of the antibody population with time PI corresponded with potent neutralization of homologous SIV in vitro. CONCLUSIONS These results suggest that the stability of the antibody-envelope interaction may be an important mechanism of serum antibody virus neutralization. In addition, measurements of the 'apparent' rates of association and dissociation may offer unique numerical descriptors to characterize the level of antibody maturation achieved by candidate vaccine strategies capable of eliciting broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- J D Steckbeck
- Department of Medicine, Infectious Diseases Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gray ES, Meyers T, Gray G, Montefiori DC, Morris L. Insensitivity of paediatric HIV-1 subtype C viruses to broadly neutralising monoclonal antibodies raised against subtype B. PLoS Med 2006; 3:e255. [PMID: 16834457 PMCID: PMC1502151 DOI: 10.1371/journal.pmed.0030255] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 03/22/2006] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A Phase I clinical trial has been proposed that uses neutralising monoclonal antibodies (MAbs) as passive immunoprophylaxis to prevent mother-to-child transmission of HIV-1 in South Africa. To assess the suitability of such an approach, we determined the sensitivity of paediatric HIV-1 subtype C viruses to the broadly neutralising MAbs IgG1b12, 2G12, 2F5, and 4E10. METHODS AND FINDINGS The gp160 envelope genes from seven children with HIV-1 subtype C infection were cloned and used to construct Env-pseudotyped viruses that were tested in a single-cycle neutralisation assay. The epitopes defining three of these MAbs were determined from sequence analysis of the envelope genes. None of the seven HIV-1 subtype C pseudovirions was sensitive to 2G12 or 2F5, which correlated with the absence of crucial N-linked glycans that define the 2G12 epitope and substitutions of residues integral to the 2F5 epitope. Four viruses were sensitive to IgG1b12, and all seven viruses were sensitive to 4E10. CONCLUSIONS Only 4E10 showed significant activity against HIV-1 subtype C isolates, while 2G12 and 2F5 MAbs were ineffective and IgG1b12 was partly effective. It is therefore recommended that 2G12 and 2F5 MAbs not be used for passive immunization experiments in southern Africa and other regions where HIV-1 subtype C viruses predominate.
Collapse
Affiliation(s)
- Elin Solomonovna Gray
- 1AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Tammy Meyers
- 2Harriet Shezi Clinic, University of the Witwatersrand, Johannesburg, South Africa
| | - Glenda Gray
- 3Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Lynn Morris
- 1AIDS Virus Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
28
|
ter Meulen J, van den Brink EN, Poon LLM, Marissen WE, Leung CSW, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E, Preiser W, Doerr HW, Chow VT, de Kruif J, Peiris JSM, Goudsmit J. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med 2006; 3:e237. [PMID: 16796401 PMCID: PMC1483912 DOI: 10.1371/journal.pmed.0030237] [Citation(s) in RCA: 500] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 04/03/2006] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. METHODS AND FINDINGS Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318-510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. CONCLUSIONS The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibody Affinity
- Antibody Specificity
- Antigen-Antibody Reactions
- Antigenic Variation
- Antigens, Viral/immunology
- Base Sequence
- Binding Sites
- Cells, Cultured/virology
- Chlorocebus aethiops
- Disease Outbreaks
- Dose-Response Relationship, Immunologic
- Drug Synergism
- Epitopes/immunology
- Humans
- Immune Sera
- Immunization, Passive
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/immunology
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/immunology
- Macrophages/virology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Molecular Sequence Data
- Mutation, Missense
- Nandiniidae/virology
- Neutralization Tests
- Point Mutation
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/immunology
- Severe acute respiratory syndrome-related coronavirus/genetics
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe Acute Respiratory Syndrome/drug therapy
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/prevention & control
- Severe Acute Respiratory Syndrome/therapy
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus
- Surface Plasmon Resonance
- Vero Cells
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/physiology
- Virus Replication
Collapse
|
29
|
Cham F, Zhang PF, Heyndrickx L, Bouma P, Zhong P, Katinger H, Robinson J, van der Groen G, Quinnan GV. Neutralization and infectivity characteristics of envelope glycoproteins from human immunodeficiency virus type 1 infected donors whose sera exhibit broadly cross-reactive neutralizing activity. Virology 2005; 347:36-51. [PMID: 16378633 DOI: 10.1016/j.virol.2005.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 10/12/2005] [Accepted: 11/08/2005] [Indexed: 11/30/2022]
Abstract
In this study, we tested the hypothesis that donors with broadly cross-reactive HIV-1 neutralizing (BCN) sera are infected with viruses encoding envelope glycoproteins (Envs) with unusual immunogenic properties. Cloned env genes were from samples of donors previously identified as having BCN antibodies (BCN donors) and from other donors not known to have such antibodies (non-BCN donors). Neutralization properties of viruses pseudotyped with BCN and non-BCN Envs were determined using BCN, non-BCN sera and broadly cross-neutralizing monoclonal antibodies (Mabs). BCN sera neutralized with higher frequency and geometric mean titers than non-BCN sera. Viruses pseudotyped with BCN Envs were mostly resistant to neutralization by anti-gp120 Mabs but tended to be more sensitive to the anti-gp41 Mabs, 2F5 and 4E10 than non-BCN Env-pseudotyped viruses. Sequence analysis of clones obtained from sequential samples of two BCN donors revealed respective 2F5 epitope mutations T662A and K665T. The K665T mutation evolved as the predominant genotype in the respective donor, consistent with an escape mutation event. The A662T mutation reduced sensitivity to 4E10, as well as 2F5 and homologous sera, consistent with neutralization escape mutation and targeting of the 2F5 epitope region by the serum. Our study suggests that viruses infecting these BCN donors encoded Envs that may have been unusually competent for induction of antibodies against the membrane proximal epitope region (MPER) of gp41, and these Envs may be useful vaccine components.
Collapse
Affiliation(s)
- Fatim Cham
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Steckbeck JD, Orlov I, Chow A, Grieser H, Miller K, Bruno J, Robinson JE, Montelaro RC, Cole KS. Kinetic rates of antibody binding correlate with neutralization sensitivity of variant simian immunodeficiency virus strains. J Virol 2005; 79:12311-20. [PMID: 16160158 PMCID: PMC1211559 DOI: 10.1128/jvi.79.19.12311-12320.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 05/28/2005] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that an effective AIDS vaccine will need to elicit both broadly reactive humoral and cellular immune responses. Potent and cross-reactive neutralization of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) by polyclonal and monoclonal antibodies is well documented. However, the mechanisms of antibody-mediated neutralization have not been defined. The current study was designed to determine whether the specificity and quantitative properties of antibody binding to SIV envelope proteins correlate with neutralization. Using a panel of rhesus monoclonal antibodies previously characterized for their ability to bind and neutralize variant SIVs, we compared the kinetic rates and affinity of antibody binding to soluble envelope trimers by using surface plasmon resonance. We identified significant differences in the kinetic rates but not the affinity of monoclonal antibody binding to the neutralization-sensitive SIV/17E-CL and neutralization-resistant SIVmac239 envelope proteins that correlated with the neutralization sensitivities of the corresponding virus strains. These results suggest for the first time that neutralization resistance may be related to quantitative differences in the rates but not the affinity of the antibody-envelope interaction and may provide one mechanism for the inherent resistance of SIVmac239 to neutralization in vitro. Further, we provide evidence that factors in addition to antibody binding, such as epitope specificity, contribute to the mechanisms of neutralization of SIV/17E-CL in vitro. This study will impact the method by which HIV/SIV vaccines are evaluated and will influence the design of candidate AIDS vaccines capable of eliciting effective neutralizing antibody responses.
Collapse
Affiliation(s)
- Jonathan D Steckbeck
- University of Pittsburgh School of Medicine, Department of Medicine, Infectious Diseases Division, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wilkinson RA, Piscitelli C, Teintze M, Cavacini LA, Posner MR, Lawrence CM. Structure of the Fab fragment of F105, a broadly reactive anti-human immunodeficiency virus (HIV) antibody that recognizes the CD4 binding site of HIV type 1 gp120. J Virol 2005; 79:13060-9. [PMID: 16189008 PMCID: PMC1235812 DOI: 10.1128/jvi.79.20.13060-13069.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have determined the crystal structure of the Fab fragment from F105, a broadly reactive human antibody with limited potency that recognizes the CD4 binding site of gp120. The structure reveals an extended CDR H3 loop with a phenylalanine residue at the apex and shows a striking pattern of serine and tyrosine residues. Modeling the interaction between gp120 and F105 suggests that the phenylalanine may recognize the binding pocket of gp120 used by Phe(43) of CD4 and that numerous tyrosine and serine residues form hydrogen bonds with the main chain atoms of gp120. A comparison of the F105 structure to that of immunoglobulin G1 b12, a much more potent and broadly neutralizing antibody with an overlapping epitope, suggests similarities that contribute to the broad recognition of human immunodeficiency virus by both antibodies. While the putative epitope for F105 shows significant overlap with that predicted for b12, it appears to differ from the b12 epitope in extending across the interface between the inner and outer domains of gp120. In contrast, the CDR loops of b12 appear to interact predominantly with the outer domain of gp120. The difference between the predicted epitopes for b12 and F105 suggests that the unique potency of b12 may arise from its ability to avoid the interface between the inner and outer domains of gp120.
Collapse
Affiliation(s)
- Royce A Wilkinson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, 59717, USA
| | | | | | | | | | | |
Collapse
|
32
|
Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M, Voss G, Goepfert P, Gilbert P, Greene KM, Bilska M, Kothe DL, Salazar-Gonzalez JF, Wei X, Decker JM, Hahn BH, Montefiori DC. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 2005; 79:10108-25. [PMID: 16051804 PMCID: PMC1182643 DOI: 10.1128/jvi.79.16.10108-10125.2005] [Citation(s) in RCA: 953] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 05/09/2005] [Indexed: 01/16/2023] Open
Abstract
Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.
Collapse
Affiliation(s)
- Ming Li
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cao C, Bai Y, Holloway MJ, Edgeworth RL, Jackson EA, Cotropia J, Ugen KE. Characterization of a novel human anti-HIV-1 gp41 IgM monoclonal antibody designated clone 37. DNA Cell Biol 2005; 23:836-41. [PMID: 15684710 DOI: 10.1089/dna.2004.23.836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human monoclonal antibodies (HuMAbs) demonstrate great potential for passive immunotherapy against HIV-1. The gp41 transmembrane envelope glycoprotein of HIV has an important role in the pathogenicity of AIDS and importantly displays considerably less hypervariability than the gp120 surface envelope HIV glycoprotein, which makes it particularly a better candidate for the development of passive and active immunotherapies. The general aim of this study was to develop HuMAbs to HIV surface glycoproteins and particularly gp41. Peripheral blood mononuclear cells (PBMCs) were isolated from an HIV-seropositive long-term nondisease progressing patient. B-cells from this individual were then immortalized by Epstein-Barr virus (EBV) transformation, and antibody production was stabilized by fusion of transformed cells with a heteromyeloma. Subsets of the human heterohybridomas so generated were analyzed by ELISA. The hybridoma with the highest binding by immunoassay against gp160 was further analyzed. This hybridoma, designated as clone 37 (C37), was determined to be an IgM Kappa antibody and overlapping peptides of HIV envelope proteins (derived from the MN tissue culture line adapted HIV isolate) were used to map the specific binding domain of this HuMAb. Overlapping peptides designated 2026 (SWSNKSLDDIWNN, AA614-626), and 2027 (DDIWNNMTWMQWEREIDNYT, AA621-640) within the HIV-1 gp41 transmembrane glycoprotein were demonstrated to bind to C37 indicating that the specific binding domain for the antibody was DDIWNN. High affinity binding of C37 by ELISA to recombinant gp41 was demonstrated as well. Few IgM HuMAbs against HIV have been generated and characterized. Theoretically, because of the pentameric binding nature of IgM antibodies as well as their very efficient ability to activate complement, such reagents could have potential as anti-HIV agents.
Collapse
Affiliation(s)
- Chuanhai Cao
- Department of Medical Microbiology and Immunology, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Zwick MB, Jensen R, Church S, Wang M, Stiegler G, Kunert R, Katinger H, Burton DR. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J Virol 2005; 79:1252-61. [PMID: 15613352 PMCID: PMC538539 DOI: 10.1128/jvi.79.2.1252-1261.2005] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conserved membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 is a target of two broadly neutralizing human monoclonal antibodies, 2F5 and 4E10, and is an important lead for vaccine design. However, immunogens that bear MPER epitopes so far have not elicited neutralizing antibodies in laboratory animals. One explanation is that the immunogens fail to recreate the proper molecular environment in which the epitopes of 2F5 and 4E10 are presented on the virus. To explore this molecular environment, we used alanine-scanning mutagenesis across residues 660 to 680 in the MPER of a pseudotyped variant of HIV-1(JR-FL), designated HIV-1(JR2), and examined the ability of 2F5 and 4E10 to neutralize the Ala mutant viruses. The results show that the only changes to produce neutralization resistance to 2F5 occurred in residue D, K, or W of the core epitope (LELDKWANL). Likewise, 4E10 resistance arose by replacing one of three residues; two (W and F) were in the core epitope, and one (W) was seven residues C-terminal to these two (NWFDISNWLW). Importantly, no single substitution resulted in resistance of virus to both 2F5 and 4E10. Surprisingly, 8 out of 21 MPER Ala mutants were more sensitive than the parental pseudovirus to 2F5 and/or 4E10. At most, only small differences in neutralization sensitivity to anti-gp120 monoclonal antibody b12 and peptide T20 were observed with the MPER Ala mutant pseudoviruses. These data suggest that MPER substitutions can act locally and enhance the neutralizing activity of antibodies to this region and imply a distinct role of the MPER of gp41 during HIV-1 envelope-mediated fusion. Neutralization experiments showing synergy between and T20 and 4E10 against HIV-1 are also presented. The data presented may aid in the design of antigens that better present the MPER of gp41 to the immune system.
Collapse
Affiliation(s)
- Michael B Zwick
- Department of Immunology (IMM-2), The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Binley JM, Wrin T, Korber B, Zwick MB, Wang M, Chappey C, Stiegler G, Kunert R, Zolla-Pazner S, Katinger H, Petropoulos CJ, Burton DR. Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 2004; 78:13232-52. [PMID: 15542675 PMCID: PMC524984 DOI: 10.1128/jvi.78.23.13232-13252.2004] [Citation(s) in RCA: 585] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 07/09/2004] [Indexed: 12/20/2022] Open
Abstract
Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV(+) plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (=7%). MAbs b6 (directed against the CD4 binding site) and X5 (directed against a CD4-induced epitope of gp120) neutralized only sensitive primary clade B viruses. The HIV(+) plasma neutralized 70% of the viruses, including some from all major clades. Further analysis revealed five neutralizing immunotypes that were somewhat associated with clades. As well as the significance for vaccine design, our data have implications for passive-immunization studies in countries where clade C viruses are common, given that only MAbs b12 and 4E10 were effective against viruses from this clade.
Collapse
Affiliation(s)
- James M Binley
- IMM2, Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zwick MB, Parren PWHI, Saphire EO, Church S, Wang M, Scott JK, Dawson PE, Wilson IA, Burton DR. Molecular features of the broadly neutralizing immunoglobulin G1 b12 required for recognition of human immunodeficiency virus type 1 gp120. J Virol 2003; 77:5863-76. [PMID: 12719580 PMCID: PMC154005 DOI: 10.1128/jvi.77.10.5863-5876.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2002] [Accepted: 02/14/2003] [Indexed: 01/11/2023] Open
Abstract
IgG1 b12 is a broadly neutralizing antibody against human immunodeficiency virus type 1 (HIV-1). The epitope recognized by b12 overlaps the CD4 receptor-binding site (CD4bs) on gp120 and has been a target for vaccine design. Determination of the three-dimensional structure of immunoglobulin G1 (IgG1) b12 allowed modeling of the b12-gp120 interaction in which the protruding third complementarity-determining region (CDR) of the heavy chain (H3) was crucial for antibody binding. In the present study, extensive mutational analysis of the antigen-binding site of Fab b12 was carried out to investigate the validity of the model and to identify residues important for gp120 recognition and, by inference, key to the anti-HIV-1 activity of IgG1 b12. In all, 50 mutations were tested: 40 in H3, 4 each in H2 and L1, and 2 in L3. The results suggest that the interaction of gp120 with H3 of b12 is crucially dependent not only on a Trp residue at the apex of the H3 loop but also on a number of residues at the base of the loop. The arrangement of these residues, including aromatic side chains and side chains that hydrogen bond across the base of the loop, may rigidify H3 for penetration of the recessed CD4-binding cavity. The results further emphasize the importance to gp120 binding of a Tyr residue at the apex of the H2 loop that forms a second finger-like structure and a number of Arg residues in L1 that form a positively charged, shelf-like structure. In general, the data are consistent with the b12-gp120 interaction model previously proposed. At the gene level, somatic mutation is seen to be crucial for the generation of many of the structural features described. The Fab b12 mutants were also tested against the b12 epitope-mimic peptide B2.1, and the reactivity profile had many similarities but also significant differences from that observed for gp120. The paratope map of b12 may facilitate the design of molecules that are able to elicit b12-like activities.
Collapse
Affiliation(s)
- Michael B Zwick
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wolbank S, Kunert R, Stiegler G, Katinger H. Characterization of human class-switched polymeric (immunoglobulin M [IgM] and IgA) anti-human immunodeficiency virus type 1 antibodies 2F5 and 2G12. J Virol 2003; 77:4095-103. [PMID: 12634368 PMCID: PMC150633 DOI: 10.1128/jvi.77.7.4095-4103.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously generated human monoclonal anti-human immunodeficiency virus type 1 (anti-HIV-1) antibodies 2F5IgG and 2G12IgG with an exceptional cross-clade neutralizing potential. 2F5IgG and 2G12IgG passively administrated to macaques were able to confer complete protection from both intravenous and mucosal challenge with pathogenic HIV-simian immunodeficiency virus chimeric strains and have shown beneficial effects in a phase-1 clinical trial. We now class-switched 2F5 and 2G12 to the immunoglobulin M (IgM) or IgA isotype, to enforce features like avidity, complement activation, or the potential to neutralize mucosal transmission. For this purpose we expressed functional polymeric 2F5 and 2G12 antibodies in CHO cells and evaluated their anti-HIV-1 activity in vitro. The class switch had a strong impact on the protective potential of 2F5 and 2G12. 2G12IgM inhibited HIV-1 infection of peripheral blood mononuclear cell cultures up to 28-fold-more efficiently than the corresponding IgG and neutralized all of the primary isolates tested. The 2F5 and 2G12 antibodies of all isotypes were able to interact with active human serum to inhibit viral infection. Furthermore, we demonstrated that polymeric 2F5 and 2G12 antibodies but not the corresponding IgGs could interfere with HIV-1 entry across a mucosal epithelial layer in vitro. Although polymeric 2F5 antibodies had only limited potential in the standard neutralization assay, the results from the mucosal assay suggest that 2F5 and 2G12 antibodies may have a high potential to prevent natural HIV-1 transmission in vivo.
Collapse
Affiliation(s)
- Susanne Wolbank
- Institute of Applied Microbiology, University of Agriculture, A-1190 Vienna, Austria
| | | | | | | |
Collapse
|
38
|
Kitabwalla M, Ferrantelli F, Wang T, Chalmers A, Katinger H, Stiegler G, Cavacini LA, Chou TC, Ruprecht RM. Primary African HIV clade A and D isolates: effective cross-clade neutralization with a quadruple combination of human monoclonal antibodies raised against clade B. AIDS Res Hum Retroviruses 2003; 19:125-31. [PMID: 12639248 DOI: 10.1089/088922203762688630] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the ability of several human neutralizing monoclonal antibodies (nmAbs), originally raised against human immunodeficiency virus (HIV) clade B isolates, to neutralize primary clade A and D isolates as single agents and in combinations. All four primary HIV clade A isolates and five primary HIV clade D isolates tested were neutralized >99% by the quadruple combination of nmAbs IgG1b12, 2G12, 2F5, and 4E10. These mAbs recognize conserved epitopes on HIV-1 envelope (Env), resulting in strong cross-clade neutralization. Previously, we showed synergistic neutralization of primary HIV-1 clade C isolates in vitro by the same nMAb combination. We and others also showed neutralization of primary HIV clade B strains. Together, our data show that the quadruple combination of mAbs effectively neutralized primary HIV clade A, B, C, and D isolates.
Collapse
Affiliation(s)
- Moiz Kitabwalla
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li H, Liu ZQ, Ding J, Chen YH. Recombinant multi-epitope vaccine induce predefined epitope-specific antibodies against HIV-1. Immunol Lett 2002; 84:153-7. [PMID: 12270553 DOI: 10.1016/s0165-2478(02)00175-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monoclonal antibody 2F5 recognizing ELDKWA-epitope on HIV-1 gp41 has significant neutralization potency against 90% of the investigated viruses of African, Asia, American and European strains, but antibodies responses to ELDKWA-epitope in HIV-1 infected individuals were very low. Based on the epitope-vaccine strategy suggested by us, a recombinant glutathione S-transferase (GST) fusion protein (GST-MELDKWAGELDKWAGELDKWAVDIGPGRAFYGPGRAFYGPGRAFY) as vaccine antigen containing three repeats of neutralizing epitope ELDKWA on gp41 and GPGRAFY on gp120 was designed and expressed in Escherichia coli. After vaccination course, the recombinant multi-epitope vaccine could induce high levels of predefined multi-epitope-specific antibodies in mice. These antibodies in sera could bind to both neutralizing epitopes on gp41 peptide, V3 loop peptide and recombinant soluble gp41 (aa539-684) in ELISA assay (antisera dilution: 1:1,600-25,600), while normal sera did not. Moreover, these antibodies in sera could recognize the CHO-WT cells which expressed HIV-1 envelope glycoprotein on the cell surfaces, indicating that the predefined epitope-specific antibodies could recognize natural envelope protein of HIV-1 though these antibodies were induced by recombinant multi-epitope-vaccine. These experimental results suggested a possible way to develop recombinant multi-epitope vaccine inducing multi-antiviral activities against HIV-1.
Collapse
Affiliation(s)
- Hua Li
- Laboratory of Immunology, Research Centre for Medical Science and Department of Biology, Tsinghua University, Protein Science Laboratory of the Ministry of Education, Beijing 100084, PR China
| | | | | | | |
Collapse
|
40
|
Lewis AD, Chen R, Montefiori DC, Johnson PR, Clark KR. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J Virol 2002; 76:8769-75. [PMID: 12163597 PMCID: PMC136414 DOI: 10.1128/jvi.76.17.8769-8775.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although several human immunodeficiency virus (HIV) vaccine approaches have elicited meaningful antigen-specific T-cell responses in animal models, no single vaccine candidate has engendered antibodies that broadly neutralize primary isolates of HIV type 1 (HIV-1). Thus, there remains a significant gap in the design of HIV vaccines. To address this issue, we exploited the existence of rare human monoclonal antibodies that have been isolated from HIV-infected individuals. Such antibodies neutralize a wide array of HIV-1 field isolates and have been shown to be effective in vivo. However, practical considerations preclude the use of antibody preparations as a prophylactic passive immunization strategy in large populations. Our concept calls for an antibody gene of choice to be transferred to muscle where the antibody molecule is synthesized and distributed to the circulatory system. In these experiments, we used a recombinant adeno-associated virus (rAAV) vector to deliver the gene for the human antibody IgG1b12 to mouse muscle. Significant levels of HIV-neutralizing activity were found in the sera of mice for over 6 months after a single intramuscular administration of the rAAV vector. This approach allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein.
Collapse
Affiliation(s)
- Anne D Lewis
- Columbus Children's Research Institute, Children's Hospital, Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
The past few months have seen encouraging successes for neutralizing antibodies against HIV; human monoclonal antibodies targeting conserved HIV envelope epitopes potently neutralized primary virus isolates, including strains of different clades. In primates, passive immunization with combinations containing human monoclonal antibodies completely prevented infection, even after mucosal virus challenges. Epitopes recognized by the protective monoclonal antibodies are important determinants for protection and provide a rational basis for AIDS vaccine development.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
42
|
Gaschen B, Taylor J, Yusim K, Foley B, Gao F, Lang D, Novitsky V, Haynes B, Hahn BH, Bhattacharya T, Korber B. Diversity considerations in HIV-1 vaccine selection. Science 2002; 296:2354-60. [PMID: 12089434 DOI: 10.1126/science.1070441] [Citation(s) in RCA: 608] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Globally, human immunodeficiency virus-type 1 (HIV-1) is extraordinarily variable, and this diversity poses a major obstacle to AIDS vaccine development. Currently, candidate vaccines are derived from isolates, with the hope that they will be sufficiently cross-reactive to protect against circulating viruses. This may be overly optimistic, however, given that HIV-1 envelope proteins can differ in more than 30% of their amino acids. To contend with the diversity, country-specific vaccines are being considered, but evolutionary relationships may be more useful than regional considerations. Consensus or ancestor sequences could be used in vaccine design to minimize the genetic differences between vaccine strains and contemporary isolates, effectively reducing the extent of diversity by half.
Collapse
Affiliation(s)
- Brian Gaschen
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xu W, Hofmann-Lehmann R, McClure HM, Ruprecht RM. Passive immunization with human neutralizing monoclonal antibodies: correlates of protective immunity against HIV. Vaccine 2002; 20:1956-60. [PMID: 11983253 DOI: 10.1016/s0264-410x(02)00077-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Passive immunization with synergistic combinations of human monoclonal antibodies (mAbs) directed against conserved epitopes of the human immunodeficiency virus (HIV) envelope completely protected 13 out of 16 rhesus monkeys challenged intravenously or orally with chimeric simian-human immunodeficiency virus (SHIV) strains; partial protection was seen in another two. A high degree of protection was seen among orally challenged neonates. Thus, we propose that passive immunization with synergistic combinations of neutralizing human mAbs may be effective in preventing maternal HIV transmission when given as post-exposure prophylaxis at birth and as prophylaxis against milk-borne transmission. Because we only used mAbs with well-defined epitope specificities, our studies also yield key information for designing AIDS vaccines: the correlates of immune protection. Vaccine strategies that can evoke antibody responses to epitopes recognized by the mAbs used in our primate studies could be important components of successful AIDS vaccines.
Collapse
Affiliation(s)
- Weidong Xu
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
44
|
Hofmann-Lehmann R, Vlasak J, Chenine AL, Li PL, Baba TW, Montefiori DC, McClure HM, Anderson DC, Ruprecht RM. Molecular evolution of human immunodeficiency virus env in humans and monkeys: similar patterns occur during natural disease progression or rapid virus passage. J Virol 2002; 76:5278-84. [PMID: 11967343 PMCID: PMC136137 DOI: 10.1128/jvi.76.10.5278-5284.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neonatal rhesus macaque 95-3 was inoculated with nonpassaged simian-human immunodeficiency virus strain SHIV-vpu(+), which encodes env of the laboratory-adapted human immunodeficiency virus (HIV) strain IIIB and is considered nonpathogenic. CD4(+) T-cell counts dropped to <200 cells/microl within 4.6 years, and monkey 95-3 died with opportunistic infections 5.9 years postinoculation. Transfer of blood from 95-3 to two naive adult macaques resulted in high peak viral loads and rapid, persistent T-cell depletion. Progeny virus evolved in 95-3 despite high SHIV-vpu(+) neutralizing antibody titers and still used CXCR4 but, in contrast to parental SHIV-vpu(+), productively infected macrophages and resisted neutralization. Sequence analysis revealed three new potential glycosylation sites in gp120; another two were lost. Strikingly similar mutations were detected in a laboratory worker who progressed to AIDS after accidental HIV-IIIB infection (T. Beaumont et al., J. Virol. 75:2246-2252, 2001), thus supporting the SHIV-vpu(+)/rhesus macaque system as a relevant model. Similar mutations were also described after rapid passage of chimeric viruses encoding IIIB env in rhesus and pig-tailed macaques (M. Cayabyab et al., J. Virol. 73:976-984, 1999; Z. Q. Liu et al., Virology 260:295-307, 1999; S. V. Narayan et al., Virology 256:54-63, 1999; R. Raghavan et al., Brain Pathol. 7:851-861, 1997; E. B. Stephens et al., Virology 231:313-321, 1997). Thus, HIV-IIIB env evolved similarly in three different species; this selection occurred in chronically infected individuals during disease progression as well as after rapid virus passage. We postulate that evolutionary pressure led to the outgrowth of more aggressive viral variants in all three species.
Collapse
Affiliation(s)
- Regina Hofmann-Lehmann
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115-6084, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang PF, Bouma P, Park EJ, Margolick JB, Robinson JE, Zolla-Pazner S, Flora MN, Quinnan GV. A variable region 3 (V3) mutation determines a global neutralization phenotype and CD4-independent infectivity of a human immunodeficiency virus type 1 envelope associated with a broadly cross-reactive, primary virus-neutralizing antibody response. J Virol 2002; 76:644-55. [PMID: 11752155 PMCID: PMC136808 DOI: 10.1128/jvi.76.2.644-655.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human serum human immunodeficiency virus type 1 (HIV-1)-neutralizing serum 2 (HNS2) neutralizes many primary isolates of different clades of HIV-1, and virus expressing envelope from the same donor, clone R2, is neutralized cross-reactively by HIV-immune human sera. The basis for this cross-reactivity was investigated. It was found that a rare mutation in the proximal limb of variable region 3 (V3), 313-4 PM, caused virus pseudotyped with the R2 envelope to be highly sensitive to neutralization by monoclonal antibodies (MAbs) directed against conformation-sensitive epitopes at the tip of the V3 loop, such as 19b, and moderately sensitive to MAbs against CD4 binding site (CD4bs) and CD4-induced (CD4i) epitopes, soluble CD4 (sCD4), and HNS2. In addition, introduction of this sequence by mutagenesis caused enhanced sensitivity to neutralization by 19b, anti-CD4i MAb, and HNS2 in three other primary HIV-1 envelopes and by anti-CD4bs MAb and sCD4 in one of the three. The 313-4 PM sequence also conferred increased infectivity for CD4(+) CCR5(+) cells and the ability to infect CCR5(+) cells upon all of these four and two of these four HIV-1 envelopes, respectively. Neutralization of R2 by HNS2 was substantially inhibited by the cyclized R2 V3 35-mer synthetic peptide. Similarly, the peptide also had some lesser efficacy in blocking neutralization of R2 by other sera or of neutralization of other primary viruses by HNS2. Together, these results indicate that the unusual V3 mutation in the R2 clone accounts for its uncommon neutralization sensitivity phenotype and its capacity to mediate CD4-independent infection, both of which could relate to immunogenicity and the neutralizing activity of HNS2. This is also the first primary HIV-1 isolate envelope glycoprotein found to be competent for CD4-independent infection.
Collapse
Affiliation(s)
- Peng Fei Zhang
- Department of Preventive Medicine and Biometrics, Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda 20814, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zeder-Lutz G, Hoebeke J, Van Regenmortel MH. Differential recognition of epitopes present on monomeric and oligomeric forms of gp160 glycoprotein of human immunodeficiency virus type 1 by human monoclonal antibodies. ACTA ACUST UNITED AC 2001; 268:2856-66. [PMID: 11358501 DOI: 10.1046/j.1432-1327.2001.02167.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism of infectivity neutralization of human immunodeficiency virus type 1 (HIV-1) by Ig is poorly understood. Three human monoclonal antibodies (mAbs 1b12, 2G12 and 2F5) that are able to neutralize primary isolates of HIV-1 in vitro have been shown to act synergistically. In the present study this synergy was analyzed by measuring the epitope accessibility and binding kinetics for these three mAbs with respect to monomeric and oligomeric env protein gp160 IIIB using surface plasmon resonance. The results indicate that oligomerization of gp160 affects the accessibility of some of the epitopes recognized by the mAbs and provide some insight into the mechanism of synergy between different anti-(HIV-1) mAbs.
Collapse
Affiliation(s)
- G Zeder-Lutz
- UPR 9021 CNRS Immunochimie des peptides et des virus. Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | |
Collapse
|
47
|
Zwick MB, Wang M, Poignard P, Stiegler G, Katinger H, Burton DR, Parren PW. Neutralization synergy of human immunodeficiency virus type 1 primary isolates by cocktails of broadly neutralizing antibodies. J Virol 2001; 75:12198-208. [PMID: 11711611 PMCID: PMC116117 DOI: 10.1128/jvi.75.24.12198-12208.2001] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Accepted: 09/17/2001] [Indexed: 12/17/2022] Open
Abstract
Several reports have described the existence of synergy between neutralizing monoclonal antibodies (MAbs) against human immunodeficiency virus type 1 (HIV-1). Synergy between human MAbs b12, 2G12, 2F5, and 4E10 in neutralization of primary isolates is of particular interest. Neutralization synergy of these MAbs, however, has not been studied extensively, and the mechanism of synergy remains unclear. We investigated neutralization synergy among this human antibody set by using the classical approach of titrating antibodies mixed at a fixed ratio as well as by an alternative, variable ratio approach in which the neutralization curve of one MAb is assessed in the presence and absence of a fixed, weakly neutralizing concentration of a second antibody. The advantage of this second approach is that it does not require mathematical analysis to establish synergy. No neutralization enhancement of any of the MAb combinations tested was detected for the T-cell-line-adapted molecular HIV-1 clone HxB2 using both assay formats. Studies of primary isolates (89.6, SF162, and JR-CSF) showed neutralization synergy which was relatively weak, with a maximum of two- to fourfold enhancement between antibody pairs, thereby increasing neutralization titers about 10-fold in triple and quadruple antibody combinations. Analysis of b12 and 2G12 binding to oligomeric envelope glycoprotein by using flow cytometry failed to demonstrate cooperativity in binding between these two antibodies. The mechanism by which these antibodies synergize is, therefore, not yet understood. The results lend some support to the notion that an HIV-1 vaccine that elicits moderate neutralizing antibodies to multiple epitopes may be more effective than hereto supposed, although considerable caution in extrapolating to a vaccine situation is required.
Collapse
Affiliation(s)
- M B Zwick
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Ensoli B, Cafaro A. NOVEL STRATEGIES TOWARD THE DEVELOPMENT OF AN EFFECTIVE VACCINE TO PREVENT HUMAN IMMUNODEFICIENCY VIRUS INFECTION OR ACQUIRED IMMUNODEFICIENCY VIRUS*. ACTA ACUST UNITED AC 2001. [DOI: 10.1081/crp-100108179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Verrier F, Nádas A, Gorny MK, Zolla-Pazner S. Additive effects characterize the interaction of antibodies involved in neutralization of the primary dualtropic human immunodeficiency virus type 1 isolate 89.6. J Virol 2001; 75:9177-86. [PMID: 11533181 PMCID: PMC114486 DOI: 10.1128/jvi.75.19.9177-9186.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus-type I (HIV-1) infection elicits antibodies (Abs) directed against several regions of the gp120 and gp41 envelope glycoproteins. Many of these Abs are able to neutralize T-cell-line-adapted strains (TCLA) of HIV-1, but only a few effectively neutralize primary HIV-1 isolates. The nature of HIV-1 neutralization has been carefully studied using human monoclonal Abs (MAbs), and the ability of such MAbs to act in synergy to neutralize HIV-1 has also been extensively studied. However, most synergy studies have been conducted using TCLA strains. To determine the nature of Ab interaction in HIV-1 primary isolate neutralization, a panel of 12 anti-HIV-1 human immunoglobulin G (IgG) MAbs, specific for epitopes in gp120 and gp41, were used. Initial tests showed that six of these MAbs, as well as sCD4, used individually, were able to neutralize the dualtropic primary isolate HIV-1(89.6); MAbs giving significant neutralization at 2 to 10 microg/ml included 2F5 (anti-gp41), 50-69 (anti-gp41), IgG1b12 (anti-gp120(CD4bd)), 447-52D (anti-gp120(V3)), 2G12 (anti-gp120), and 670-D (anti-gp120(C5)). For studies of reagent interaction, 16 binary combinations of reagents were tested for their ability to neutralize HIV-1(89.6). Reagent combinations tested included one neutralizing MAb with sCD4, six pairs consisting of two neutralizing MAbs, and nine pairs consisting of one neutralizing MAb with another non-neutralizing MAb. To assess the interaction of the latter type of combination, a new mathematical treatment of reagent interaction was developed since previously used methods could be used only when both reagents neutralize. Synergy was noted between sCD4 and a neutralizing anti-gp120(V3) MAb. Antagonism was noted between two pairs of anti-gp41 MAbs (one neutralizing and one non-neutralizing). All of the other 13 pairs of MAbs tested displayed only additive effects. These studies suggest that Abs rarely act in synergy to neutralize primary isolate HIV-1(89.6); many anti-HIV-1 Abs act additively to mediate this biological function.
Collapse
Affiliation(s)
- F Verrier
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- P J Klasse
- Imperial College School of Medicine, Jefferiss Research Trust Laboratories, Wright-Fleming Institute, St. Mary's Hospital, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|