1
|
Kawahara E, Senpuku K, Kawaguchi Y, Yamamoto S, Yasuda K, Kuroda E, Ouji-Sageshima N, Ito T, Hirai T, Shibata T, Yoshioka Y. Recombinant RSV G protein vaccine induces enhanced respiratory disease via IL-13 and mucin overproduction. NPJ Vaccines 2024; 9:187. [PMID: 39394212 PMCID: PMC11470036 DOI: 10.1038/s41541-024-00987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The G protein expressed on the surface of respiratory syncytial virus (RSV) is important for adhesion to host cells and as a vaccine target antigen. The corresponding vaccines can effectively eliminate RSV. However, they exacerbate pulmonary immunopathology including eosinophilic infiltration in the lungs after an RSV challenge in animal models, raising concerns about enhanced respiratory disease (ERD); thus, approaches that mitigate these effects are urgently needed. Herein, we aimed to examine the mechanisms of G protein vaccine-induced ERD in mice, using recombinant G protein as a vaccine antigen. After the RSV challenge, G protein-vaccinated mice exhibited lung weight gain, lung tissue damage, and increased infiltration of eosinophils, neutrophils, and CD4+ T cells into the lungs. We set lung weight gain as the endpoint for ERD and examined the impact of each infiltrating cell on lung weight gain. We observed that CD4+ T cells, but not eosinophils or neutrophils, that infiltrate the lungs are responsible for lung weight gain. In addition, T helper 2 cell-mediated IL-13 induced mucin hypersecretion and lung weight gain. Mucin hypersecretion may contribute to weight gain in the lungs. In conclusion, our results indicate a novel mechanism of G protein vaccine-induced ERD via IL-13 and mucin hypersecretion, which could lead to the development of safe G protein vaccines and the elucidation of the causes of ERD associated with other vaccines.
Collapse
Affiliation(s)
- Eigo Kawahara
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kota Senpuku
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshino Kawaguchi
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shinya Yamamoto
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | | | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Nara, Japan
| | - Toshiro Hirai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Anderson J, Do LAH, van Kasteren PB, Licciardi PV. The role of respiratory syncytial virus G protein in immune cell infection and pathogenesis. EBioMedicine 2024; 107:105318. [PMID: 39217853 PMCID: PMC11402919 DOI: 10.1016/j.ebiom.2024.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Severe respiratory syncytial virus (RSV) disease is a significant contributor to the global burden of disease in infants and children. The RSV attachment protein (G) has been shown to be critical in invading airway epithelial cells through its CX3C motif interacting with the host receptor CX3CR1. The ubiquitous expression of this receptor on immune cells may explain their susceptibility to RSV infection. The RSV G protein may enhance disease severity through reprogramming of normal cellular functionality leading to inhibition of antiviral responses. While existing preventives targeting the RSV fusion (F) protein are highly effective, there are no RSV therapeutics based on the G protein to limit RSV pathogenesis. Monoclonal antibodies targeting the RSV G protein administered as post-infection therapeutics in mice have been shown to improve the antiviral response, reduce viral load and limit disease severity. Further research is required to better understand how RSV infection of immune cells contributes to pathogenesis for the development of more targeted and efficacious therapeutics.
Collapse
Affiliation(s)
- Jeremy Anderson
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Lien Anh Ha Do
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Puck B van Kasteren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Paul V Licciardi
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
3
|
Kim MJ, Chu KB, Lee SH, Mao J, Eom GD, Yoon KW, Moon EK, Quan FS. Assessing the protection elicited by virus-like particles expressing the RSV pre-fusion F and tandem repeated G proteins against RSV rA2 line19F infection in mice. Respir Res 2024; 25:7. [PMID: 38178222 PMCID: PMC10765939 DOI: 10.1186/s12931-023-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
Excessive pulmonary inflammation is the hallmark of respiratory syncytial virus (RSV) infection hindering efficacious RSV vaccine development. Yet, the vast majority of the experimental RSV vaccine studies use laboratory-adapted RSV strains that do not reflect the highly pathogenic and inflammatory nature of the virus found in clinical settings. Here, we re-evaluated the protective efficacy of the virus-like particle (VLP) vaccine co-expressing the pre-fusion (pre-F) protein and G protein with tandem repeats (Gt) reported in our previous study against the recombinant RSV rA2-line19F strain, which inflicts severe mucus production and inflammation in mice. VLP vaccine immunization elicited virus-specific serum antibody responses that mediated RSV rA2-line19F virus neutralization. VLP vaccine immunization promoted Th1 immune response development in the spleens and CD8 + T cell influx into the lungs of mice, which are essential for efficient viral clearance and dampened inflammatory response. When compared to the VLPs expressing only the pre-F antigen, those co-expressing both pre-F and Gt antigens conferred better protection in mice against rA2-line19F challenge infection. Overall, our data suggest that the pre-clinical VLP vaccine co-expressing RSV pre-F and Gt antigens can effectively protect mice against RSV strains that resemble pathogenic clinical isolates.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Anandhan G, Narkhede YB, Mohan M, Paramasivam P. Immunoinformatics aided approach for predicting potent cytotoxic T cell epitopes of respiratory syncytial virus. J Biomol Struct Dyn 2023; 41:12093-12105. [PMID: 36935101 DOI: 10.1080/07391102.2023.2191136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/27/2022] [Indexed: 03/21/2023]
Abstract
Respiratory syncytial virus (RSV) is an infectious viral pathogen that causing serious respiratory infection in adults and neonates. The only approved therapies for RSV are the monoclonal antibodies palivizumab and its derivative motavizumab. Both treatments are expensive and require a hospital setting for administration. A vaccine represents a safe, effective and cheaper alternative for preventing RSV infection. In silico prediction methods have proven to be valuable in speeding up the process of vaccine design. In this study, reverse vaccinology methods were used to predict the cytotoxic T lymphocytes (CTL) epitopes from the entire proteome of RSV strain A. From amongst 3402 predicted binders to 12 high frequency alleles from the Immune Epitope Database (IEDB), 567 had positive processing scores while 327 epitopes were predicted to be immunogenic. A thorough examination of the 327 epitopes for possible antigenicity, allergenicity and toxicity resulted in 95 epitopes with desirable properties. A BLASTp analysis revealed 94 unique and non-homologous epitopes that were subjected to molecular docking across the 12 high frequency alleles. The final dataset of 70 epitopes contained 13 experimentally proven and 57 unique epitopes from a total of 11 RSV proteins. From our findings on selected T-cell-specific RSV antigen epitopes, notably the four epitopes confirmed to exhibit stable binding by molecular dynamics. The prediction pipeline used in this study represents an effective way to screen the immunogenic epitopes from other pathogens.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gayathri Anandhan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, USA
- Vaxigen International Research Center, Coimbatore, Tamil Nadu, India
| | - Premasudha Paramasivam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
5
|
Virus-like Particle Vaccine Expressing the Respiratory Syncytial Virus Pre-Fusion and G Proteins Confers Protection against RSV Challenge Infection. Pharmaceutics 2023; 15:pharmaceutics15030782. [PMID: 36986643 PMCID: PMC10051362 DOI: 10.3390/pharmaceutics15030782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Respiratory syncytial virus (RSV) causes severe lower respiratory tract disease in children and the elderly. However, there are no effective antiviral drugs or licensed vaccines available for RSV infection. Here, RSV virus-like particle (VLP) vaccines expressing Pre-F, G, or Pre-F and G proteins on the surface of influenza virus matrix protein 1 (M1) were produced using the baculovirus expression system, and their protective efficacy was evaluated in mice. The morphology and successful assembly of VLPs were confirmed by transmission electron microscope (TEM) and Western blot. High levels of serum IgG antibody response were detected in VLP-immunized mice, and significantly higher levels of IgG2a and IgG2b were found in the Pre-F+G VLP immunization group compared to the unimmunized control. Serum-neutralizing activity was higher in the VLP immunization groups compared to the naïve group, with Pre-F+G VLPs demonstrating superior neutralizing activity to the single antigen-expressing VLP groups. Pulmonary IgA and IgG responses were generally comparable across the immunization groups, with VLPs expressing the Pre-F antigen eliciting higher IFN-γ in spleens. The frequencies of eosinophils and IL-4-producing CD4+ T cell populations were substantially lower in the lungs of VLP-immunized mice, with the PreF+G vaccine inducing a significant increase in CD4+ and CD8+ T cells. VLP immunization significantly decreased the viral titer and inflammation in the lungs of mice, with Pre-F+G VLPs conferring the best protection. In conclusion, our present study suggests that the Pre-F+G VLPs could be a potential vaccine candidate against RSV infection.
Collapse
|
6
|
Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol 2022; 13:932408. [PMID: 36033843 PMCID: PMC9399815 DOI: 10.3389/fmicb.2022.932408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.
Collapse
Affiliation(s)
| | | | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud-INSERM U1184, CEA, Fontenay-Aux-Roses, France
| | | |
Collapse
|
7
|
Ebenig A, Muraleedharan S, Kazmierski J, Todt D, Auste A, Anzaghe M, Gömer A, Postmus D, Gogesch P, Niles M, Plesker R, Miskey C, Gellhorn Serra M, Breithaupt A, Hörner C, Kruip C, Ehmann R, Ivics Z, Waibler Z, Pfaender S, Wyler E, Landthaler M, Kupke A, Nouailles G, Goffinet C, Brown RJP, Mühlebach MD. Vaccine-associated enhanced respiratory pathology in COVID-19 hamsters after TH2-biased immunization. Cell Rep 2022; 40:111214. [PMID: 35952673 PMCID: PMC9346010 DOI: 10.1016/j.celrep.2022.111214] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccine-associated enhanced respiratory disease (VAERD) is a severe complication for some respiratory infections. To investigate the potential for VAERD induction in coronavirus disease 2019 (COVID-19), we evaluate two vaccine leads utilizing a severe hamster infection model: a T helper type 1 (TH1)-biased measles vaccine-derived candidate and a TH2-biased alum-adjuvanted, non-stabilized spike protein. The measles virus (MeV)-derived vaccine protects the animals, but the protein lead induces VAERD, which can be alleviated by dexamethasone treatment. Bulk transcriptomic analysis reveals that our protein vaccine prepares enhanced host gene dysregulation in the lung, exclusively up-regulating mRNAs encoding the eosinophil attractant CCL-11, TH2-driving interleukin (IL)-19, or TH2 cytokines IL-4, IL-5, and IL-13. Single-cell RNA sequencing (scRNA-seq) identifies lung macrophages or lymphoid cells as sources, respectively. Our findings imply that VAERD is caused by the concerted action of hyperstimulated macrophages and TH2 cytokine-secreting lymphoid cells and potentially links VAERD to antibody-dependent enhancement (ADE). In summary, we identify the cytokine drivers and cellular contributors that mediate VAERD after TH2-biased vaccination.
Collapse
Affiliation(s)
- Aileen Ebenig
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Samada Muraleedharan
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Arne Auste
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Martina Anzaghe
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - André Gömer
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Patricia Gogesch
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Marc Niles
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Roland Plesker
- Animal Facilities, Div. Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Csaba Miskey
- Div. of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | | | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Cindy Hörner
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Carina Kruip
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Rosina Ehmann
- Institute for Microbiology, Bundeswehr, 80937 München, Germany
| | - Zoltan Ivics
- Div. of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Zoe Waibler
- Div. of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10115 Berlin, Germany; IRI Life Sciences, Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Alexandra Kupke
- German Center for Infection Research, Gießen-Marburg-Langen, Germany; Institute for Virology, Phillipps-University, 35043 Marburg, Germany
| | - Geraldine Nouailles
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Richard J P Brown
- Virus Tropism and Immunogenicity, Div. of Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Michael D Mühlebach
- Product Testing of IVMPs, Div. of Veterinary Medicines, Paul-Ehrlich-Institut, 63225 Langen, Germany; German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
8
|
Nuñez Castrejon AM, O’Rourke SM, Kauvar LM, DuBois RM. Structure-Based Design and Antigenic Validation of Respiratory Syncytial Virus G Immunogens. J Virol 2022; 96:e0220121. [PMID: 35266806 PMCID: PMC9006937 DOI: 10.1128/jvi.02201-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease of children, the elderly, and immunocompromised individuals. Currently, there are no FDA-approved RSV vaccines. The RSV G glycoprotein is used for viral attachment to host cells and impairment of host immunity by interacting with the human chemokine receptor CX3CR1. Antibodies that disrupt this interaction are protective against infection and disease. Nevertheless, development of an RSV G vaccine antigen has been hindered by its low immunogenicity and safety concerns. A previous study described three engineered RSV G proteins containing single-point mutations that induce higher levels of IgG antibodies and have improved safety profiles compared to wild-type RSV G (H. C. Bergeron, J. Murray, A. M. Nuñez Castrejon, et al., Viruses 13:352, 2021, https://doi.org/10.3390/v13020352). However, it is unclear if the mutations affect RSV G protein folding and display of its conformational epitopes. In this study, we show that the RSV G S177Q protein retains high-affinity binding to protective human and mouse monoclonal antibodies and has equal reactivity as wild-type RSV G protein to human reference immunoglobulin to RSV. Additionally, we determined the high-resolution crystal structure of RSV G S177Q protein in complex with the anti-RSV G antibody 3G12, further validating its antigenic structure. These studies show for the first time that an engineered RSV G protein with increased immunogenicity and safety retains conformational epitopes to high-affinity protective antibodies, supporting its further development as an RSV vaccine immunogen. IMPORTANCE Respiratory syncytial virus (RSV) causes severe lower respiratory diseases of children, the elderly, and immunocompromised populations. There currently are no FDA-approved RSV vaccines. Most vaccine development efforts have focused on the RSV F protein, and the field has generally overlooked the receptor-binding antigen RSV G due to its poor immunogenicity and safety concerns. However, single-point mutant RSV G proteins have been previously identified that have increased immunogenicity and safety. In this study, we investigate the antibody reactivities of three known RSV G mutant proteins. We show that one mutant RSV G protein retains high-affinity binding to protective monoclonal antibodies, is equally recognized by anti-RSV antibodies in human sera, and forms the same three-dimensional structure as the wild-type RSV G protein. Our study validates the structure-guided design of the RSV G protein as an RSV vaccine antigen.
Collapse
Affiliation(s)
- Ana M. Nuñez Castrejon
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Sara M. O’Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
9
|
DiPiazza AT, Leist SR, Abiona OM, Moliva JI, Werner A, Minai M, Nagata BM, Bock KW, Phung E, Schäfer A, Dinnon KH, Chang LA, Loomis RJ, Boyoglu-Barnum S, Alvarado GS, Sullivan NJ, Edwards DK, Morabito KM, Mascola JR, Carfi A, Corbett KS, Moore IN, Baric RS, Graham BS, Ruckwardt TJ. COVID-19 vaccine mRNA-1273 elicits a protective immune profile in mice that is not associated with vaccine-enhanced disease upon SARS-CoV-2 challenge. Immunity 2021; 54:1869-1882.e6. [PMID: 34270939 PMCID: PMC8249710 DOI: 10.1016/j.immuni.2021.06.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022]
Abstract
Vaccine-associated enhanced respiratory disease (VAERD) was previously observed in some preclinical models of severe acute respiratory syndrome (SARS) and MERS coronavirus vaccines. We used the SARS coronavirus 2 (SARS-CoV-2) mouse-adapted, passage 10, lethal challenge virus (MA10) mouse model of acute lung injury to evaluate the immune response and potential for immunopathology in animals vaccinated with research-grade mRNA-1273. Whole-inactivated virus or heat-denatured spike protein subunit vaccines with alum designed to elicit low-potency antibodies and Th2-skewed CD4+ T cells resulted in reduced viral titers and weight loss post challenge but more severe pathological changes in the lung compared to saline-immunized animals. In contrast, a protective dose of mRNA-1273 induced favorable humoral and cellular immune responses that protected from viral replication in the upper and lower respiratory tract upon challenge. A subprotective dose of mRNA-1273 reduced viral replication and limited histopathological manifestations compared to animals given saline. Overall, our findings demonstrate an immunological signature associated with antiviral protection without disease enhancement following vaccination with mRNA-1273.
Collapse
Affiliation(s)
- Anthony T DiPiazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olubukola M Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Dinnon
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren A Chang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca J Loomis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriela S Alvarado
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Eichinger KM, Kosanovich JL, Gidwani SV, Zomback A, Lipp MA, Perkins TN, Oury TD, Petrovsky N, Marshall CP, Yondola MA, Empey KM. Prefusion RSV F Immunization Elicits Th2-Mediated Lung Pathology in Mice When Formulated With a Th2 (but Not a Th1/Th2-Balanced) Adjuvant Despite Complete Viral Protection. Front Immunol 2020; 11:1673. [PMID: 32849580 PMCID: PMC7403488 DOI: 10.3389/fimmu.2020.01673] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) remains the most common cause of lower respiratory tract infections in children worldwide. Development of a vaccine has been hindered by the risk of developing enhanced respiratory disease (ERD) upon natural exposure to the virus. Generation of higher quality neutralizing antibodies with stabilized pre-fusion F protein antigens has been proposed as a strategy to prevent ERD. We sought to test whether there was evidence of ERD in naïve BALB/c mice immunized with an unadjuvanted, stabilized pre-fusion F protein, and challenged with RSV line 19. We further sought to determine the extent to which formulation with a Th2-biased (alum) or a more Th1/Th2-balanced (Advax-SM) adjuvant influenced cellular responses and lung pathology. When exposed to RSV, mice immunized with pre-fusion F protein alone (PreF) exhibited increased airway eosinophilia and mucus accumulation. This was further exacerbated by formulation of PreF with Alum (aluminum hydroxide). Conversely, formulation of PreF with a Th1/Th2-balanced adjuvant, Advax-SM, not only suppressed RSV viral replication, but also inhibited airway eosinophilia and mucus accumulation. This was associated with lower numbers of lung innate lymphocyte cells (ILC2s) and CD4+ T cells producing IL-5+ or IL-13+ and increased IFNγ+ CD4+ and CD8+ T cells, in addition to RSV F-specific CD8+ T cells. These data suggest that in the absence of preimmunity, stabilized PreF antigens may still be associated with aberrant Th2 responses that induce lung pathology in response to RSV infection, and can be prevented by formulation with more Th1/Th2-balanced adjuvants that enhance CD4+ and CD8+ IFNγ+ T cell responses. This may support the use of stabilized PreF antigens with Th1/Th2-balanced adjuvants like, Advax-SM, as safer alternatives to alum in RSV vaccine candidates.
Collapse
Affiliation(s)
- Katherine M Eichinger
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Medicine, Division of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jessica L Kosanovich
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Aaron Zomback
- Calder Biosciences, New York City, NY, United States
| | - Madeline A Lipp
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, SA, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | | | - Kerry M Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate Immune Components that Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections. Viruses 2020; 12:E637. [PMID: 32545470 PMCID: PMC7354512 DOI: 10.3390/v12060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Gaspar A. Pacheco
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Nicolas M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|
12
|
Immunological Lessons from Respiratory Syncytial Virus Vaccine Development. Immunity 2019; 51:429-442. [DOI: 10.1016/j.immuni.2019.08.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022]
|
13
|
Muralidharan A, Larocque L, Russell M, Creskey M, Li C, Chen W, Van Domselaar G, Cao J, Cyr T, Rosu-Myles M, Wang L, Li X. PD-1 of Sigmodon hispidus: Gene identification, characterization and preliminary evaluation of expression in inactivated RSV vaccine-induced enhanced respiratory disease. Sci Rep 2019; 9:11638. [PMID: 31406266 PMCID: PMC6690999 DOI: 10.1038/s41598-019-48225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/29/2019] [Indexed: 12/03/2022] Open
Abstract
Sigmodon hispidus or cotton rat is an excellent animal model for studying human infections of respiratory viruses including respiratory syncytial virus (RSV), which is the leading cause of hospitalization in infants and causes high rates of infection in the elderly and immunocompromised patient populations. Despite several decades of research, no vaccine has been licensed whereas inactivated vaccines have been shown to induce severe adverse reaction in a clinical trial, with other forms of RSV vaccine also found to induce enhanced disease in preclinical animal studies. While arguably the cotton rat is the best small animal model for evaluation of RSV vaccines and antivirals, many important genes of the immune system remain to be isolated. Programmed cell death-1 (PD-1) plays an integral role in regulating many aspects of immunity by inducing suppressive signals. In this study, we report the isolation of mRNA encoding the cotton rat PD-1 (crPD-1) and characterization of the PD-1 protein. crPD-1 bound to its cognate ligand on dendritic cells and effectively suppressed cytokine secretion. Moreover, using the newly acquired gene sequence, we observed a decreased level of crPD-1 levels in cotton rats with enhanced respiratory disease induced by inactivated RSV vaccine, unraveling a new facet of vaccine-induced disease.
Collapse
MESH Headings
- Animals
- Cytokines/immunology
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Models, Animal
- Gene Expression Regulation/immunology
- HEK293 Cells
- Humans
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Respiratory Syncytial Virus Infections/blood
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/adverse effects
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/immunology
- Sequence Analysis, RNA
- Sigmodontinae/genetics
- Sigmodontinae/immunology
- Vaccination/adverse effects
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Louise Larocque
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Marsha Russell
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Marybeth Creskey
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Changgui Li
- National Institute for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wangxue Chen
- Human Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Cheon IS, Kim JY, Choi Y, Shim BS, Choi JA, Jung DI, Kim JO, Braciale TJ, Youn H, Song MK, Chang J. Sublingual Immunization With an RSV G Glycoprotein Fragment Primes IL-17-Mediated Immunopathology Upon Respiratory Syncytial Virus Infection. Front Immunol 2019; 10:567. [PMID: 30984173 PMCID: PMC6447673 DOI: 10.3389/fimmu.2019.00567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/04/2019] [Indexed: 11/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of serious respiratory tract disease but there is no licensed RSV vaccine. Immunopathological mechanisms have long been suspected as operating in the development of severe RSV disease and have hampered the development of safe and effective vaccines. Here, we show that unlike intranasal immunization, sublingual immunization with RSV glycoprotein fragment containing the central conserved region (Gcf) primes the host for severe disease upon RSV challenge. This increased pathology does not require replication by the challenge virus and is associated with massive infiltration of inflammatory cells, extensive cell death, and excessive mucus production in the airway and lungs. This exacerbated RSV disease primed by sublingual Gcf immunization is distinct from the immunopathology by G-expressing vaccinia virus or formalin-inactivated RSV, and preceded by prominent IL-17 production. IL-17 deficiency abolished the enhanced disease. Our results suggest a novel mechanism of RSV vaccine-induced immunopathology by IL-17, and highlights the importance of vaccination site.
Collapse
Affiliation(s)
- In Su Cheon
- Laboratory Science Division, International Vaccine Institute, Seoul, South Korea
| | - Joo Young Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Youngjoo Choi
- Laboratory Science Division, International Vaccine Institute, Seoul, South Korea
| | - Byoung-Shik Shim
- Laboratory Science Division, International Vaccine Institute, Seoul, South Korea
| | - Jung-Ah Choi
- Laboratory Science Division, International Vaccine Institute, Seoul, South Korea
| | - Dae-Im Jung
- Laboratory Science Division, International Vaccine Institute, Seoul, South Korea
| | - Jae-Ouk Kim
- Laboratory Science Division, International Vaccine Institute, Seoul, South Korea
| | - Thomas J Braciale
- The Beirne B. Carter Center for Immunology Research and Department of Pathology, The University of Virginia, Charlottesville, VA, United States
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Imaging Center, Seoul National University Hospital, Seoul, South Korea
| | - Man Ki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, South Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
15
|
Muralidharan A, Russell M, Larocque L, Gravel C, Li C, Chen W, Cyr T, Lavoie JR, Farnsworth A, Rosu-Myles M, Wang L, Li X. Targeting CD40 enhances antibody- and CD8-mediated protection against respiratory syncytial virus infection. Sci Rep 2018; 8:16648. [PMID: 30413743 PMCID: PMC6226510 DOI: 10.1038/s41598-018-34999-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) infects almost all children under the age of one and is the leading cause of hospitalization among infants. Despite several decades of research with dozens of candidate vaccines being vigorously evaluated in pre-clinical and clinical studies, there is no licensed vaccine available to date. Here, the RSV fusion protein (F) was fused with CD40 ligand and delivered by an adenoviral vector into BALB/c mice where the CD40 ligand serves two vital functions as a molecular adjuvant and an antigen-targeting molecule. In contrast to a formaldehyde-inactivated vaccine, the vectored vaccine effectively protected animals against RSV without inducing enhanced respiratory disease. This protection involved a robust induction of neutralizing antibodies and memory CD8 T cells, which were not observed in the inactivated vaccine group. Finally, the vectored vaccine was able to elicit long-lasting protection against RSV, one of the most challenging issues in RSV vaccine development. Further studies indicate that the long lasting protection elicited by the CD40 ligand targeted vaccine was mediated by increased levels of effector memory CD8 T cell 3 months post-vaccination.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marsha Russell
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Louise Larocque
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Changgui Li
- National Institute for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wangxue Chen
- Human Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jessie R Lavoie
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Aaron Farnsworth
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Up-regulation of serum periostin and squamous cell carcinoma antigen levels in infants with acute bronchitis due to respiratory syncytial virus. Allergol Int 2018; 67:259-265. [PMID: 29122495 DOI: 10.1016/j.alit.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/04/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Periostin and squamous cell carcinoma antigen (SCCA) are involved in the pathogenesis of asthma. Acute bronchitis due to respiratory syncytial virus (RSV) infection during infancy exhibits an asthma-like pathogenesis, suggesting that it may be associated with the subsequent development of asthma. However, the mechanism by which RSV infection leads to development of asthma has not yet been fully elucidated. METHODS Infants younger than 36 months were enrolled and classified into three groups. Group I included patients hospitalized with RSV-induced bronchitis. These patients were further stratified into two sub-groups according to whether the criteria for the modified Asthma Predictive Index (mAPI) had been met: Group I consisted of mAPI (+) and mAPI (-) patients; Group II included patients with food allergy as a positive control group; and Group III included children with no allergy as a negative control group. Serum periostin and SCCA levels were measured in the groups. This study was registered as a clinical trial (UMIN000012339). RESULTS We enrolled 14 subjects in Group I mAPI (+), 22 in Group I mAPI (-), 18 in Group II, and 18 in Group III. In Group I, the serum periostin and SCCA levels were significantly higher during the acute phase compared with the recovery phase. However, no significant differences were found between Group I mAPI (+) and mAPI (-). CONCLUSIONS The serum periostin and SCCA levels increased during acute RSV bronchitis. Both periostin and SCCA may play a role in the pathogenesis of acute bronchitis due to RSV.
Collapse
|
17
|
Lee YT, Ko EJ, Kim KH, Hwang HS, Lee Y, Kwon YM, Kim MC, Lee YN, Jung YJ, Kang SM. Cellular Immune Correlates Preventing Disease Against Respiratory Syncytial Virus by Vaccination with Virus-Like Nanoparticles Carrying Fusion Proteins. J Biomed Nanotechnol 2018; 13:84-98. [PMID: 29302248 DOI: 10.1166/jbn.2017.2341] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular immune correlates conferring protection against respiratory syncytial virus (RSV) but preventing vaccine-enhanced respiratory disease largely remain unclear. We investigated cellular immune correlates that contribute to preventing disease against human respiratory syncytial virus (RSV) by nanoparticle vaccine delivery. Formalin-inactivated RSV (FI-RSV) vaccines and virus-like nanoparticles carrying RSV fusion proteins (F VLP) were investigated in mice. The FI-RSV vaccination caused severe weight loss and histopathology by inducing interleukin (IL)-4+, interferon (IFN)-γ+, IL-4+IFN-γ+ CD4+ T cells, eosinophils, and lung plasmacytoid dendritic cells (DCs), CD103+ DCs, and CD11b+ DCs. In contrast, the F VLP-immune mice induced protection against RSV without disease by inducing natural killer cells, activated IFN-γ+, and IFN-γ+ tumor necrosis factor (TNF)-α+ CD8+ T cells in the lung and bronchiolar airways during RSV infection but not disease-inducing DCs and effector T cells. Clodronate-mediated depletion studies provided evidence that alveolar macrophages that were present at high levels in the F VLP-immune mice play a role in modulating protective cellular immune phenotypes. There was an intrinsic difference between the F VLP and FI-RSV treatments in stimulating proinflammatory cytokines. The F VLP nanoparticle vaccination induced distinct innate and adaptive cellular subsets that potentially prevented lung disease after RSV infection.
Collapse
Affiliation(s)
- Young-Tae Lee
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Youri Lee
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Animal and Plant Quarantine Agency, 175 Anyangro, Anyangsi, Gyeonggido, 430-757, Korea
| | - Yu-Na Lee
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
18
|
Okeke MI, Okoli AS, Diaz D, Offor C, Oludotun TG, Tryland M, Bøhn T, Moens U. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Viruses 2017; 9:v9110318. [PMID: 29109380 PMCID: PMC5707525 DOI: 10.3390/v9110318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.
Collapse
Affiliation(s)
- Malachy I Okeke
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Arinze S Okoli
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Diana Diaz
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| | - Collins Offor
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Taiwo G Oludotun
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Morten Tryland
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
- Artic Infection Biology, Department of Artic and Marine Biology, UIT-The Artic University of Norway, N-9037 Tromso, Norway.
| | - Thomas Bøhn
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| |
Collapse
|
19
|
Respiratory Syncytial Virus: Infection, Detection, and New Options for Prevention and Treatment. Clin Microbiol Rev 2017; 30:277-319. [PMID: 27903593 DOI: 10.1128/cmr.00010-16] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is a significant cause of hospitalization of children in North America and one of the leading causes of death of infants less than 1 year of age worldwide, second only to malaria. Despite its global impact on human health, there are relatively few therapeutic options available to prevent or treat RSV infection. Paradoxically, there is a very large volume of information that is constantly being refined on RSV replication, the mechanisms of RSV-induced pathology, and community transmission. Compounding the burden of acute RSV infections is the exacerbation of preexisting chronic airway diseases and the chronic sequelae of RSV infection. A mechanistic link is even starting to emerge between asthma and those who suffer severe RSV infection early in childhood. In this article, we discuss developments in the understanding of RSV replication, pathogenesis, diagnostics, and therapeutics. We attempt to reconcile the large body of information on RSV and why after many clinical trials there is still no efficacious RSV vaccine and few therapeutics.
Collapse
|
20
|
Shibata T, Ato M. A critical role of Gas6/Axl signal in allergic airway responses during RSV vaccine-enhanced disease. Immunol Cell Biol 2017; 95:906-915. [PMID: 28722020 DOI: 10.1038/icb.2017.61] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 12/12/2022]
Abstract
Respiratory syncytial virus (RSV) is a common virus that causes lower respiratory infections across a wide range of ages. A licensed RSV vaccine is not available because vaccination with formalin-inactivated RSV (FI-RSV) and the subsequent RSV infection cause not only insufficient induction of neutralizing antibodies but also severe allergic airway responses, termed FI-RSV vaccine-enhanced disease (FI-RSV VED). However, the underlying mechanism has not been identified, although a Th2-biased immune response is known to be a hallmark of this disease. Our previous studies have shown that growth arrest-specific 6 (Gas6)/Axl signaling leads to Th2-biased immune responses during fungus-induced allergic airway inflammation. Here, we show that Gas6/Axl signaling also leads to FI-RSV VED and partially identify the mechanism in mice. Inhibiting Gas6/Axl signaling using Gas6-deficient mice, neutralizing antibodies, and a specific inhibitor of Axl attenuated allergic airway hyperresponsiveness, including airway inflammation, goblet cell hyperplasia, and Th2 cytokine production, in addition to increasing interferon-γ levels and the production of RSV-neutralizing IgG2a in FI-RSV VED. Gas6 was produced in lymph nodes during immunization with FI-RSV. Lymph node cells derived from immunized mice produced high levels of Gas6 and Th2 cytokines, but not IFN-γ, after restimulation with RSV. Finally, we found that dendritic cells stimulated with RSV-glycoprotein (G protein) produced Gas6 and that Axl signaling suppressed DC maturation and the induction of IL-12 production by the toll-like receptor 4 agonist RSV-fusion protein. Taken together, these results indicate that RSV-G protein-induced Gas6/Axl signaling causes allergic airway responses during FI-RSV VED.
Collapse
Affiliation(s)
- Takehiko Shibata
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
21
|
Rossi GA, Colin AA. Respiratory syncytial virus-Host interaction in the pathogenesis of bronchiolitis and its impact on respiratory morbidity in later life. Pediatr Allergy Immunol 2017; 28:320-331. [PMID: 28339145 DOI: 10.1111/pai.12716] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common agent of severe airway disease in infants and young children. Large epidemiologic studies have demonstrated a clear relationship between RSV infection and subsequent recurrent wheezing and asthma into childhood, thought to be predominantly related to long-term changes in neuroimmune control of airway tone rather than to allergic sensitization. These changes appear to be governed by the severity of the first RSV infection in infancy which in term depends on viral characteristics and load, but perhaps as importantly, on the genetic susceptibility and on the constitutional characteristic of the host. A variety of viral and host factors and their interplay modify the efficiency of the response to infection, including viral replication and the magnitude of structural and functional damage to the respiratory structures, and ultimately the extent, severity, and duration of subsequent wheezing.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Pulmonary and Allergy Disease Pediatric Unit and Cystic Fibrosis Center, Istituto Giannina Gaslini, Genoa, Italy
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
22
|
Preclinical evaluation of bacterially produced RSV-G protein vaccine: Strong protection against RSV challenge in cotton rat model. Sci Rep 2017; 7:42428. [PMID: 28186208 PMCID: PMC5301242 DOI: 10.1038/srep42428] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/09/2017] [Indexed: 12/01/2022] Open
Abstract
In current study, we evaluated the safety and protective efficacy of recombinant unglycosylated RSV G protein ectodomain produced in E. coli (in presence and absence of oil-in-water adjuvant) in a preclinical RSV susceptible cotton rat challenge model compared to formaldehyde inactivated RSV (FI-RSV) and live RSV experimental infection. The adjuvanted G protein vaccine induced robust neutralization antibody responses comparable to those generated by live RSV infection. Importantly, adjuvanted G protein significantly reduced viral loads in both the lungs and nose at early time points following viral challenge. Antibody kinetics determined by Surface Plasmon Resonance showed that adjuvanted G generated 10-fold higher G-binding antibodies compared to non-adjvuanted G vaccine and live RSV infection, which correlated strongly with both neutralization titers and viral load titers in the nose and lungs post-viral challenge. Antibody diversity analysis revealed immunodominant antigenic sites in the N- and C-termini of the RSV-G protein, that were boosted >10-fold by adjuvant and inversely correlated with viral load titers. Enhanced lung pathology was observed only in animals vaccinated with FI-RSV, but not in animals vaccinated with unadjuvanted or adjuvanted RSV-G vaccine after viral challenge. The bacterially produced unglycosylated G protein could be developed as a protective vaccine against RSV disease.
Collapse
|
23
|
Muralidharan A, Li C, Wang L, Li X. Immunopathogenesis associated with formaldehyde-inactivated RSV vaccine in preclinical and clinical studies. Expert Rev Vaccines 2016; 16:351-360. [DOI: 10.1080/14760584.2017.1260452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologics, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Changgui Li
- Department of Viral Vaccine III, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, PR China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologics, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Francica JR, Lynn GM, Laga R, Joyce MG, Ruckwardt TJ, Morabito KM, Chen M, Chaudhuri R, Zhang B, Sastry M, Druz A, Ko K, Choe M, Pechar M, Georgiev IS, Kueltzo LA, Seymour LW, Mascola JR, Kwong PD, Graham BS, Seder RA. Thermoresponsive Polymer Nanoparticles Co-deliver RSV F Trimers with a TLR-7/8 Adjuvant. Bioconjug Chem 2016; 27:2372-2385. [PMID: 27583777 DOI: 10.1021/acs.bioconjchem.6b00370] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structure-based vaccine design has been used to develop immunogens that display conserved neutralization sites on pathogens such as HIV-1, respiratory syncytial virus (RSV), and influenza. Improving the immunogenicity of these designed immunogens with adjuvants will require formulations that do not alter protein antigenicity. Here, we show that nanoparticle-forming thermoresponsive polymers (TRP) allow for co-delivery of RSV fusion (F) protein trimers with Toll-like receptor 7 and 8 agonists (TLR-7/8a) to enhance protective immunity. Although primary amine conjugation of TLR-7/8a to F trimers severely disrupted the recognition of critical neutralizing epitopes, F trimers site-selectively coupled to TRP nanoparticles retained appropriate antigenicity and elicited high titers of prefusion-specific, TH1 isotype anti-RSV F antibodies following vaccination. Moreover, coupling F trimers to TRP delivering TLR-7/8a resulted in ∼3-fold higher binding and neutralizing antibody titers than soluble F trimers admixed with TLR-7/8a and conferred protection from intranasal RSV challenge. Overall, these data show that TRP nanoparticles may provide a broadly applicable platform for eliciting neutralizing antibodies to structure-dependent epitopes on RSV, influenza, HIV-1, or other pathogens.
Collapse
Affiliation(s)
- Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Geoffrey M Lynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Richard Laga
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , 162 06 Prague, Czech Republic
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Rajoshi Chaudhuri
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Gaithersburg, Maryland 20878, United States
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Kiyoon Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , 162 06 Prague, Czech Republic
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Lisa A Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Gaithersburg, Maryland 20878, United States
| | | | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
25
|
Zhai S, Hu L, Zhong L, Guo Y, Dong L, Jia R, Wang Z. Respiratory Syncytial Virus Aggravates Renal Injury through Cytokines and Direct Renal Injury. Front Cell Infect Microbiol 2016; 6:112. [PMID: 27747195 PMCID: PMC5043133 DOI: 10.3389/fcimb.2016.00112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to investigate the relationship between renal injury and reinfection that is caused by respiratory syncytial virus (RSV) and to analyze the mechanism of renal injury. Rats were repeatedly infected with RSV on days 4, 8, 14, and 28, then sacrificed and examined on day 56 after the primary infection. Renal injury was examined by transmission electron microscopy and histopathology. The F protein of RSV was detected in the renal tissue by indirect immunofluorescence. Proteinuria and urinary glycosaminoglycans (GAGs), serum levels of albumin, urea nitrogen, and creatinine, secretion of cytokines, T lymphocyte population and subsets, and dendritic cell (DC) activation state were examined. The results showed that renal injury was more serious in the reinfection group than in the primary infection group. At a higher infection dose, 6 × 106 PFU, the renal injury was more severe, accompanied by higher levels of proteinuria and urinary GAGs excretion, and lower levels of serum albumin. Podocyte foot effacement was more extensive, and hyperplasia of mesangial cells and proliferation of mesangial matrix were observed. The maturation state of DCs was specific, compared with the primary infection. There was also a decrease in the ratio of CD4+ to CD8+ T lymphocytes, due to an increase in the percentage of CD8+ T lymphocytes and a decrease in the percentage of CD4+ T lymphocytes, and a dramatic increase in the levels of IL-6 and IL-17. In terms of the different reinfection times, the day 14 reinfection group yielded the most serious renal injury and the most significant change in immune function. RSV F protein was still expressed in the glomeruli 56 days after RSV infection. Altogether, these results reveal that RSV infection could aggravate renal injury, which might be due to direct renal injury caused by RSV and the inflammatory lesions caused by the anti-virus response induced by RSV.
Collapse
Affiliation(s)
- Songhui Zhai
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationSichuan, China
| | - Lijuan Hu
- Department of Immunology, College of Preclinical and Forensic Medicine, Sichuan University Chengdu, China
| | - Lin Zhong
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu, China
| | - Yannan Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu, China
| | - Liqun Dong
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu, China
| | - Ruizhen Jia
- West China Institutes of Women and Children's Health, West China Second University Hospital, Sichuan University Chengdu, China
| | - Zheng Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of EducationSichuan, China
| |
Collapse
|
26
|
O'Konek JJ, Makidon PE, Landers JJ, Cao Z, Malinczak CA, Pannu J, Sun J, Bitko V, Ciotti S, Hamouda T, Wojcinski ZW, Lukacs NW, Fattom A, Baker JR. Intranasal nanoemulsion-based inactivated respiratory syncytial virus vaccines protect against viral challenge in cotton rats. Hum Vaccin Immunother 2016; 11:2904-12. [PMID: 26307915 DOI: 10.1080/21645515.2015.1075680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory Syncytial Virus is a leading cause of bronchiolitis and pneumonia in infants, the elderly and individuals with compromised immune systems. Despite decades of research, there is currently no available vaccine for RSV. Our group has previously demonstrated that intranasal immunization of mice with RSV inactivated by and adjuvanted with W805EC nanoemulsion elicits robust humoral and cellular immune responses, resulting in protection against RSV infection. This protection was achieved without the induction of airway hyper-reactivity or a Th2-skewed immune response. The cotton rat Sigmodon hispidus has been used for years as an excellent small animal model of RSV disease. Thus, we extended these rodent studies to the more permissive cotton rat model. Intranasal immunization of the nanoemulsion-adjuvanted RSV vaccines induced high antibody titers and a robust Th1-skewed cellular response. Importantly, vaccination provided sterilizing cross-protective immunity against a heterologous RSV challenge and did not induce marked or severe histological effects or eosinophilia in the lung after viral challenge. Overall, these data demonstrate that nanoemulsion-formulated whole RSV vaccines are both safe and effective for immunization in multiple animal models.
Collapse
Affiliation(s)
- Jessica J O'Konek
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| | - Paul E Makidon
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA.,b The Unit for Laboratory Animal Medicine; Medical School; University of Michigan ; Ann Arbor , MI USA
| | - Jeffrey J Landers
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| | - Zhengyi Cao
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| | | | | | | | - Vira Bitko
- c NanoBio Corporation ; Ann Arbor , MI USA
| | | | | | | | - Nicholas W Lukacs
- e Department of Pathology ; University of Michigan ; Ann Arbor , MI USA
| | - Ali Fattom
- c NanoBio Corporation ; Ann Arbor , MI USA
| | - James R Baker
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| |
Collapse
|
27
|
Dik B, Dik I, Bahcivan E, Avci O. Corynebacterium cutis Lysate Treatment Can Increase the Efficacies of PPR Vaccine. J Interferon Cytokine Res 2016; 36:599-606. [PMID: 27533481 DOI: 10.1089/jir.2016.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the effects of Peste des petits ruminants (PPR) vaccine on cytokine and antibody levels in sheep when administered alone or in combination with Corynebacterium cutis lysate (CCL). The PPR vaccine group received a single subcutaneous axillary injection of the PPR vaccine (1 mL containing tissue culture infectious dose (TCID)50 attenuated live PPRV, n = 6) and the combination treatment (1 mL CCL and 1 mL PPR vaccine, n = 6) groups received a single subcutaneous axillary injection of both CCL and PPR vaccine. Blood samples were collected from sheep before the treatment and at different points after treatment (1, 3, 7, 14, 21, and 28 days). Plasma and serum samples were evaluated for antibody percentage, levels of cytokines IL-6, IL-10, IFN-γ, IL-4, IL-12, and IL-18, oxidative stress marker Thiobarbituric acid reactive substances, and hematological and biochemical parameters. Maximum protective antibody levels reach 3-4 weeks after vaccine administration. The combination treatment resulted in significant changes in IFN-γ, IL-4, IL-12, and IL-18 cytokine levels. These changes were not evident when only the PPR vaccine was administered and antibody percentage against PPRV was short term in PPR vaccine group. In conclusion, combined usage of the PPR vaccine with CCL resulted in a heightened cytokine response, leading to improved antibody level against PPR virus. Repeated CCL treatments can lead to earlier vaccine potency, provide protective efficacy for a longer time, and increase passive immunity.
Collapse
Affiliation(s)
- Burak Dik
- 1 Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk , Konya, Turkey
| | - Irmak Dik
- 2 Department of Virology, Faculty of Veterinary Medicine, University of Selcuk , Konya, Turkey
| | - Emre Bahcivan
- 1 Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk , Konya, Turkey
| | - Oguzhan Avci
- 2 Department of Virology, Faculty of Veterinary Medicine, University of Selcuk , Konya, Turkey
| |
Collapse
|
28
|
Abstract
Human respiratory syncytial virus (RSV) is understood to be a significant human pathogen in infants, young children, and the elderly and the immunocompromised. Over the last decade many important mechanisms contributing to RSV infection, replication, and disease pathogenesis have been revealed; however, there is still insufficient knowledge which has in part hampered vaccine development. Considerable information is accumulating regarding how RSV proteins modulate molecular signaling and immune responses to infection. Understanding how RSV interacts with its host is crucial to facilitate the development of safe and effective vaccines and therapeutic treatments.In this chapter, we provide a brief introduction into RSV replication, pathogenesis, and host immune response, and summarize the state of RSV vaccine and antiviral compounds in clinical stages of development. This chapter frames features of this book and the molecular methods used for understanding RSV interaction with the host.
Collapse
Affiliation(s)
- Patricia A Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA
| | - Lydia Anderson
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA.
| |
Collapse
|
29
|
Shein SL, Li H, Gaston B. Blood eosinophilia is associated with unfavorable hospitalization outcomes in children with bronchiolitis. Pediatr Pulmonol 2016; 51:77-83. [PMID: 26062028 DOI: 10.1002/ppul.23219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/11/2015] [Accepted: 05/12/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bronchiolitis, the most common indication for hospitalization of young children, is associated with subsequent asthma. Blood eosinophilia is associated with increased severity of asthma, but it is unclear if eosinophilia is associated with severity of illness in bronchiolitis. We hypothesized that blood eosinophilia is associated with unfavorable short-term outcomes of bronchiolitis hospitalizations. METHODS Data from initial bronchiolitis admissions to our institution between 2010 and 2013 were extracted using Population Explorer software (Explorys, Cleveland, OH). Children were categorized as "CBC-none" (no complete blood count [CBC] data during the first 7 days of hospitalization), EOS-positive (at least one CBC with ≥300 eosinophils per microliter or ≥3% of all leukocytes identified as eosinophils) or EOS-negative (at least one CBC and no eosinophilia). The association between hospitalization duration and maximum absolute eosinophil count (AEC) was analyzed using Spearman correlation. Variables independently associated with prolonged (≥72 hr) hospitalization were identified using stepwise multivariate logistic regression. RESULTS In 1356 inpatients <24 months with bronchiolitis, median hospitalization duration was 2.46 days and 38.0% had prolonged hospitalization. CBC data were available in 32.4% of subjects: 20.7% were EOS-positive and 79.3% were EOS-negative. Increased maximum AEC was significantly associated with longer duration of hospitalization. Prolonged hospitalization was independently associated with EOS-positive versus EOS-negative children (OR 1.88, 95%CI: 1.12-3.17, P = 0.020). Mechanical ventilation was most common in EOS-positive subjects (24.2% of cases), versus EOS-negative (7.2%) and CBC-none (0.7%) (P < 0.001). CONCLUSIONS Blood eosinophilia is associated with unfavorable clinical outcomes in a large cohort of inpatients with bronchiolitis.
Collapse
Affiliation(s)
- Steven L Shein
- Division of Pediatric Critical Care Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Hong Li
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Benjamin Gaston
- Division of Pediatric Pulmonology, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
30
|
Acosta PL, Caballero MT, Polack FP. Brief History and Characterization of Enhanced Respiratory Syncytial Virus Disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:189-95. [PMID: 26677198 PMCID: PMC4783420 DOI: 10.1128/cvi.00609-15] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In 1967, infants and toddlers immunized with a formalin-inactivated vaccine against respiratory syncytial virus (RSV) experienced an enhanced form of RSV disease characterized by high fever, bronchopneumonia, and wheezing when they became infected with wild-type virus in the community. Hospitalizations were frequent, and two immunized toddlers died upon infection with wild-type RSV. The enhanced disease was initially characterized as a "peribronchiolar monocytic infiltration with some excess in eosinophils." Decades of research defined enhanced RSV disease (ERD) as the result of immunization with antigens not processed in the cytoplasm, resulting in a nonprotective antibody response and CD4(+) T helper priming in the absence of cytotoxic T lymphocytes. This response to vaccination led to a pathogenic Th2 memory response with eosinophil and immune complex deposition in the lungs after RSV infection. In recent years, the field of RSV experienced significant changes. Numerous vaccine candidates with novel designs and formulations are approaching clinical trials, defying our previous understanding of favorable parameters for ERD. This review provides a succinct analysis of these parameters and explores criteria for assessing the risk of ERD in new vaccine candidates.
Collapse
Affiliation(s)
- Patricio L Acosta
- Fundacion INFANT, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Fernando P Polack
- Fundacion INFANT, Buenos Aires, Argentina Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Mangodt TC, Van Herck MA, Nullens S, Ramet J, De Dooy JJ, Jorens PG, De Winter BY. The role of Th17 and Treg responses in the pathogenesis of RSV infection. Pediatr Res 2015; 78:483-91. [PMID: 26267154 DOI: 10.1038/pr.2015.143] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/29/2015] [Indexed: 12/21/2022]
Abstract
The respiratory syncytial virus (RSV) represents the leading cause of viral bronchiolitis and pneumonia in children worldwide and is associated with high morbidity, hospitalization rate, and significant mortality rates. The immune response elicited by RSV is one of the main factors contributing to the pathogenesis of the disease. Two subsets of the cellular immune response, the T helper 17 cell (Th17) and the regulatory T-cell (Treg), and more particularly the balance between these two subsets, might play a significant role in the pathogenesis of the RSV infection. The developmental pathways of Th17 and Treg cells are closely and reciprocally interconnected and plasticity has been demonstrated from Treg toward Th17. During an RSV infection, the functions of both subsets are opposed to one another regarding viral clearance and clinical severity. Th17 and Treg cells offer a promising new view on the pathogenesis of an RSV infection and deserve further exploration.
Collapse
Affiliation(s)
- Thomas C Mangodt
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mikhaïl A Van Herck
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sara Nullens
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - José Ramet
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.,Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Jozef J De Dooy
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.,Department of Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Philippe G Jorens
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.,Department of Critical Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Virus-Like Particle Vaccine Containing the F Protein of Respiratory Syncytial Virus Confers Protection without Pulmonary Disease by Modulating Specific Subsets of Dendritic Cells and Effector T Cells. J Virol 2015; 89:11692-705. [PMID: 26355098 DOI: 10.1128/jvi.02018-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/06/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED There is no licensed vaccine against respiratory syncytial virus (RSV) since the failure of formalin-inactivated RSV (FI-RSV) due to its vaccine-enhanced disease. We investigated immune correlates conferring protection without causing disease after intranasal immunization with virus-like particle vaccine containing the RSV fusion protein (F VLP) in comparison to FI-RSV and live RSV. Upon RSV challenge, FI-RSV immune mice showed severe weight loss, eosinophilia, and histopathology, and RSV reinfection also caused substantial RSV disease despite their viral clearance. In contrast, F VLP immune mice showed least weight loss and no sign of histopathology and eosinophilia. High levels of interleukin-4-positive (IL-4(+)) and tumor necrosis factor alpha-positive (TNF-α(+)) CD4(+) T cells were found in FI-RSV immune mice, whereas gamma interferon-positive (IFN-γ(+)) and TNF-α(+) CD4(+) T cells were predominantly detected in live RSV-infected mice. More importantly, in contrast to FI-RSV and live RSV that induced higher levels of CD11b(+) dendritic cells, F VLP immunization induced CD8α(+) and CD103(+) dendritic cells, as well as F-specific IFN-γ(+) and TNF-α(+) CD8(+) T cells. These results suggest that F VLP can induce protection without causing pulmonary RSV disease by inducing RSV neutralizing antibodies, as well as modulating specific subsets of dendritic cells and CD8 T cell immunity. IMPORTANCE It has been a difficult challenge to develop an effective and safe vaccine against respiratory syncytial virus (RSV), a leading cause of respiratory disease. Immune correlates conferring protection but preventing vaccine-enhanced disease remain poorly understood. RSV F virus-like particle (VLP) would be an efficient vaccine platform conferring protection. Here, we investigated the protective immune correlates without causing disease after intranasal immunization with RSV F VLP in comparison to FI-RSV and live RSV. In addition to inducing RSV neutralizing antibodies responsible for clearing lung viral loads, we show that modulation of specific subsets of dendritic cells and CD8 T cells producing T helper type 1 cytokines are important immune correlates conferring protection but not causing vaccine-enhanced disease.
Collapse
|
33
|
Lee YT, Kim KH, Hwang HS, Lee Y, Kwon YM, Ko EJ, Jung YJ, Lee YN, Kim MC, Kang SM. Innate and adaptive cellular phenotypes contributing to pulmonary disease in mice after respiratory syncytial virus immunization and infection. Virology 2015. [PMID: 26196232 DOI: 10.1016/j.virol.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Respiratory syncytial virus (RSV) is the major leading cause of infantile viral bronchiolitis. However, cellular phenotypes contributing to the RSV protection and vaccine-enhanced disease remain largely unknown. Upon RSV challenge, we analyzed phenotypes and cellularity in the lung of mice that were naïve, immunized with formalin inactivated RSV (FI-RSV), or re-infected with RSV. In comparison with naïve and live RSV re-infected mice, the high levels of eosinophils, neutrophils, plasmacytoid and CD11b(+) dendritic cells, and IL-4(+) CD4(+) T cells were found to be contributing to pulmonary inflammation in FI-RSV immune mice despite lung viral clearance. Alveolar macrophages appeared to play differential roles in protection and inflammation upon RSV infection of different RSV immune mice. These results suggest that multiple innate and adaptive immune components differentially contribute to RSV disease and inflammation.
Collapse
Affiliation(s)
- Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Animal and Plant Quarantine Agency, 175 Anyangro, Anyangsi, Gyeonggido 430-757, Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
34
|
Lee YT, Ko EJ, Hwang HS, Lee JS, Kim KH, Kwon YM, Kang SM. Respiratory syncytial virus-like nanoparticle vaccination induces long-term protection without pulmonary disease by modulating cytokines and T-cells partially through alveolar macrophages. Int J Nanomedicine 2015. [PMID: 26203246 PMCID: PMC4508085 DOI: 10.2147/ijn.s83493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The mechanisms of protection against respiratory syncytial virus (RSV) are poorly understood. Virus-like nanoparticles expressing RSV glycoproteins (eg, a combination of fusion and glycoprotein virus-like nanoparticles [FG VLPs]) have been suggested to be a promising RSV vaccine candidate. To understand the roles of alveolar macrophages (AMs) in inducing long-term protection, mice that were 12 months earlier vaccinated with formalin-inactivated RSV (FI-RSV) or FG VLPs were treated with clodronate liposome prior to RSV infection. FI-RSV immune mice with clodronate liposome treatment showed increases in eosinophils, plasmacytoid dendritic cells, interleukin (IL)-4+ T-cell infiltration, proinflammatory cytokines, chemokines, and, in particular, mucus production upon RSV infection. In contrast to FI-RSV immune mice with severe pulmonary histopathology, FG VLP immune mice showed no overt sign of histopathology and significantly lower levels of eosinophils, T-cell infiltration, and inflammatory cytokines, but higher levels of interferon-γ, which are correlated with protection against RSV disease. FG VLP immune mice with depletion of AMs showed increases in inflammatory cytokines and chemokines, as well as eosinophils. The results in this study suggest that FG nanoparticle vaccination induces long-term protection against RSV and that AMs play a role in the RSV protection by modulating eosinophilia, mucus production, inflammatory cytokines, and T-cell infiltration.
Collapse
Affiliation(s)
- Young-Tae Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA ; Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA ; Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Jong Seok Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA ; National Institute of Biological Resources, Incheon, South Korea
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA ; Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
35
|
Nonglycosylated G-Protein Vaccine Protects against Homologous and Heterologous Respiratory Syncytial Virus (RSV) Challenge, while Glycosylated G Enhances RSV Lung Pathology and Cytokine Levels. J Virol 2015; 89:8193-205. [PMID: 26018164 DOI: 10.1128/jvi.00133-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED New efforts are under way to develop a vaccine against respiratory syncytial virus (RSV) that will provide protective immunity without the potential for vaccine-associated disease enhancement such as that observed in infants following vaccination with formalin-inactivated RSV vaccine. In addition to the F fusion protein, the G attachment surface protein is a target for neutralizing antibodies and thus represents an important vaccine candidate. However, glycosylated G protein expressed in mammalian cells has been shown to induce pulmonary eosinophilia upon RSV infection in a mouse model. In the current study, we evaluated in parallel the safety and protective efficacy of the RSV A2 recombinant unglycosylated G protein ectodomain (amino acids 67 to 298) expressed in Escherichia coli (REG) and those of glycosylated G produced in mammalian cells (RMG) in a mouse RSV challenge model. Vaccination with REG generated neutralizing antibodies against RSV A2 in 7/11 BALB/c mice, while RMG did not elicit neutralizing antibodies. Total serum binding antibodies against the recombinant proteins (both REG and RMG) were measured by surface plasmon resonance (SPR) and were found to be >10-fold higher for REG- than for RMG-vaccinated animals. Reduction of lung viral loads to undetectable levels after homologous (RSV-A2) and heterologous (RSV-B1) viral challenge was observed in 7/8 animals vaccinated with REG but not in RMG-vaccinated animals. Furthermore, enhanced lung pathology and elevated Th2 cytokines/chemokines were observed exclusively in animals vaccinated with RMG (but not in those vaccinated with REG or phosphate-buffered saline [PBS]) after homologous or heterologous RSV challenge. This study suggests that bacterially produced unglycosylated G protein could be developed alone or as a component of a protective vaccine against RSV disease. IMPORTANCE New efforts are under way to develop vaccines against RSV that will provide protective immunity without the potential for disease enhancement. The G attachment protein represents an important candidate for inclusion in an effective RSV vaccine. In the current study, we evaluated the safety and protective efficacy of the RSV A2 recombinant unglycosylated G protein ectodomain produced in E. coli (REG) and those of glycosylated G produced in mammalian cells (RMG) in a mouse RSV challenge model (strains A2 and B1). The unglycosylated G generated high protective immunity and no lung pathology, even in animals that lacked anti-RSV neutralizing antibodies prior to RSV challenge. Control of viral loads correlated with antibody binding to the G protein. In contrast, the glycosylated G protein provided poor protection and enhanced lung pathology after RSV challenge. Therefore, bacterially produced unglycosylated G protein holds promise as an economical approach to a protective vaccine against RSV.
Collapse
|
36
|
Knudson CJ, Hartwig SM, Meyerholz DK, Varga SM. RSV vaccine-enhanced disease is orchestrated by the combined actions of distinct CD4 T cell subsets. PLoS Pathog 2015; 11:e1004757. [PMID: 25769044 PMCID: PMC4358888 DOI: 10.1371/journal.ppat.1004757] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/20/2015] [Indexed: 12/24/2022] Open
Abstract
There is no currently licensed vaccine for respiratory syncytial virus (RSV) despite being the leading cause of lower respiratory tract infections in children. Children previously immunized with a formalin-inactivated RSV (FI-RSV) vaccine exhibited enhanced respiratory disease following natural RSV infection. Subsequent studies in animal models have implicated roles for CD4 T cells, eosinophils and non-neutralizing antibodies in mediating enhanced respiratory disease. However, the underlying immunological mechanisms responsible for the enhanced respiratory disease and other disease manifestations associated with FI-RSV vaccine-enhanced disease remain unclear. We demonstrate for the first time that while CD4 T cells mediate all aspects of vaccine-enhanced disease, distinct CD4 T cell subsets orchestrate discrete and specific disease parameters. A Th2-biased immune response, but not eosinophils specifically, was required for airway hyperreactivity and mucus hypersecretion. In contrast, the Th1-associated cytokine TNF-α was necessary to mediate airway obstruction and weight loss. Our data demonstrate that individual disease manifestations associated with FI-RSV vaccine-enhanced disease are mediated by distinct subsets of CD4 T cells. RSV is a significant healthcare burden and is the leading cause of bronchiolitis and pneumonia during childhood. The failure of the 1960's FI-RSV vaccine trial to not only elicit protection against RSV infection, but also provoke enhanced morbidity and mortality in vaccinees has significantly hampered development of new RSV vaccines for fear of disease potentiation. Therefore we sought to determine the specific immunological mechanisms that mediate FI-RSV VED to provide a framework to evaluate factors associated with disease exacerbation. Work presented herein demonstrate for the first time that individual disease manifestations associated with FI-RSV-immunization are mediated by distinct CD4 T cell subsets and not by eosinophils. Our results stress the need to evaluate multiple disease parameters for future RSV vaccine candidates. Failure to thoroughly assess the immune response and disease manifestations associated with new candidate vaccines may lead to undesired results in vaccine trials and further hinder future vaccine development.
Collapse
Affiliation(s)
- Cory J. Knudson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Stacey M. Hartwig
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
37
|
Dual proinflammatory and antiviral properties of pulmonary eosinophils in respiratory syncytial virus vaccine-enhanced disease. J Virol 2014; 89:1564-78. [PMID: 25410867 DOI: 10.1128/jvi.01536-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous studies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent airway eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) deficiency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were reduced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) responses. In contrast to wild-type mice, RSV was recovered at high titers from the lungs of eotaxin- and/or IL-5-deficient mice. Adoptive transfer of eosinophils to FI-RSV-immunized eotaxin- and IL-5-deficient (double-deficient) mice challenged with RSV was associated with potent viral clearance that was mediated at least partly through nitric oxide. These studies show that pulmonary eosinophilia has dual outcomes: one linked to RSV-induced airway inflammation and pulmonary pathology and one with innate features that contribute to a reduction in the viral load. IMPORTANCE This study is critical to understanding the mechanisms attributable to RSV vaccine-enhanced disease. This study addresses the hypothesis that IL-5 and eotaxin are critical in pulmonary eosinophil response related to FI-RSV vaccine-enhanced disease. The findings suggest that in addition to mediating tissue pathology, eosinophils within a Th2 environment also have antiviral activity.
Collapse
|
38
|
Han J, Takeda K, Wang M, Zeng W, Jia Y, Shiraishi Y, Okamoto M, Dakhama A, Gelfand EW. Effects of anti-g and anti-f antibodies on airway function after respiratory syncytial virus infection. Am J Respir Cell Mol Biol 2014; 51:143-54. [PMID: 24521403 DOI: 10.1165/rcmb.2013-0360oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illnesses in infants worldwide. Both RSV-G and RSV-F glycoproteins play pathogenic roles during infection with RSV. The objective of this study was to compare the effects of anti-RSV-G and anti-RSV-F monoclonal antibodies (mAbs) on airway hyperresponsiveness (AHR) and inflammation after primary or secondary RSV infection in mice. In the primary infection model, mice were infected with RSV at 6 weeks of age. Anti-RSV-G or anti-RSV-F mAbs were administered 24 hours before infection or Day +2 postinfection. In a secondary infection model, mice were infected (primary) with RSV at 1 week (neonate) and reinfected (secondary) 5 weeks later. Anti-RSV-G and anti-RSV-F mAbs were administered 24 hours before the primary infection. Both mAbs had comparable effects in preventing airway responses after primary RSV infection. When given 2 days after infection, anti-RSV-G-treated mice showed significantly decreased AHR and airway inflammation, which persisted in anti-RSV-F-treated mice. In the reinfection model, anti-RSV-G but not anti-RSV-F administered during primary RSV infection in neonates resulted in decreased AHR, eosinophilia, and IL-13 but increased levels of IFN-γ in bronchoalveolar lavage on reinfection. These results support the use of anti-RSV-G in the prevention and treatment of RSV-induced disease.
Collapse
Affiliation(s)
- Junyan Han
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato Y, Morikawa S, Tashiro M, Sata T, Hasegawa H, Nagata N. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol 2014; 88:8597-614. [PMID: 24850731 PMCID: PMC4135953 DOI: 10.1128/jvi.00983-14] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Severe acute respiratory syndrome-related coronavirus (SARS-CoV) is an emerging pathogen that causes severe respiratory illness. Whole UV-inactivated SARS-CoV (UV-V), bearing multiple epitopes and proteins, is a candidate vaccine against this virus. However, whole inactivated SARS vaccine that includes nucleocapsid protein is reported to induce eosinophilic infiltration in mouse lungs after challenge with live SARS-CoV. In this study, an ability of Toll-like receptor (TLR) agonists to reduce the side effects of UV-V vaccination in a 6-month-old adult BALB/c mouse model was investigated, using the mouse-passaged Frankfurt 1 isolate of SARS-CoV. Immunization of adult mice with UV-V, with or without alum, resulted in partial protection from lethal doses of SARS-CoV challenge, but extensive eosinophil infiltration in the lungs was observed. In contrast, TLR agonists added to UV-V vaccine, including lipopolysaccharide, poly(U), and poly(I·C) (UV-V+TLR), strikingly reduced excess eosinophilic infiltration in the lungs and induced lower levels of interleukin-4 and -13 and eotaxin in the lungs than UV-V-immunization alone. Additionally, microarray analysis showed that genes associated with chemotaxis, eosinophil migration, eosinophilia, and cell movement and the polarization of Th2 cells were upregulated in UV-V-immunized but not in UV-V+TLR-immunized mice. In particular, CD11b(+) cells in the lungs of UV-V-immunized mice showed the upregulation of genes associated with the induction of eosinophils after challenge. These findings suggest that vaccine-induced eosinophil immunopathology in the lungs upon SARS-CoV infection could be avoided by the TLR agonist adjuvants. IMPORTANCE Inactivated whole severe acute respiratory syndrome-related coronavirus (SARS-CoV) vaccines induce neutralizing antibodies in mouse models; however, they also cause increased eosinophilic immunopathology in the lungs upon SARS-CoV challenge. In this study, the ability of adjuvant Toll-like receptor (TLR) agonists to reduce the side effects of UV-inactivated SARS-CoV vaccination in a BALB/c mouse model was tested, using the mouse-passaged Frankfurt 1 isolate of SARS-CoV. We found that TLR stimulation reduced the high level of eosinophilic infiltration that occurred in the lungs of mice immunized with UV-inactivated SARS-CoV. Microarray analysis revealed that genes associated with chemotaxis, eosinophil migration, eosinophilia, and cell movement and the polarization of Th2 cells were upregulated in UV-inactivated SARS-CoV-immunized mice. This study may be helpful for elucidating the pathogenesis underlying eosinophilic infiltration resulting from immunization with inactivated vaccine.
Collapse
Affiliation(s)
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Tashiro
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
40
|
Persson BD, Jaffe AB, Fearns R, Danahay H. Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation. PLoS One 2014; 9:e102368. [PMID: 25033192 PMCID: PMC4102526 DOI: 10.1371/journal.pone.0102368] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/18/2014] [Indexed: 12/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of morbidity and mortality worldwide, causing severe respiratory illness in infants and immune compromised patients. The ciliated cells of the human airway epithelium have been considered to be the exclusive target of RSV, although recent data have suggested that basal cells, the progenitors for the conducting airway epithelium, may also become infected in vivo. Using either mechanical or chemical injury models, we have demonstrated a robust RSV infection of p63+ basal cells in air-liquid interface (ALI) cultures of human bronchial epithelial cells. In addition, proliferating basal cells in 2D culture were also susceptible to RSV infection. We therefore tested the hypothesis that RSV infection of this progenitor cell would influence the differentiation status of the airway epithelium. RSV infection of basal cells on the day of seeding (MOI≤0.0001), resulted in the formation of an epithelium that showed a profound loss of ciliated cells and gain of secretory cells as assessed by acetylated α-tubulin and MUC5AC/MUC5B immunostaining, respectively. The mechanism driving the switch in epithelial phenotype is in part driven by the induced type I and type III interferon response that we demonstrate is triggered early following RSV infection. Neutralization of this response attenuates the RSV-induced loss of ciliated cells. Together, these data show that through infection of proliferating airway basal cells, RSV has the potential to influence the cellular composition of the airway epithelium. The resulting phenotype might be expected to contribute towards both the severity of acute infection, as well as to the longer-term consequences of viral exacerbations in patients with pre-existing respiratory diseases.
Collapse
Affiliation(s)
- B. David Persson
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Aron B. Jaffe
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Henry Danahay
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, United Kingdom
| |
Collapse
|
41
|
Geevarghese B, Weinberg A. Cell-mediated immune responses to respiratory syncytial virus infection: magnitude, kinetics, and correlates with morbidity and age. Hum Vaccin Immunother 2014; 10:1047-56. [PMID: 24513666 DOI: 10.4161/hv.27908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We evaluated the cell-mediated immune (CMI) response to RSV acute infection including the magnitude, kinetics and correlates with morbidity and age. Twenty-nine RSV-infected patients with mean ± SD age of 15 ± 14 months were enrolled during their first week of disease. Th1, Th2, Th9, Th17 and Th22 responses were measured at entry and 2 and 6 weeks later. All subjects were hospitalized for a median (range) of 5 (3-11) days. RSV-specific effector and memory Th1 CMI measured by lymphocyte proliferation and IFNγ ELISPOT significantly increased over time (P ≤ 0.03). In contrast, Th22 responses decreased over time (P ≤ 0.03). Other changes did not reach statistical significance. The severity of RSV disease measured by the length of hospitalization positively correlated with the magnitude of Th9, Th22 and TNFα inflammatory responses (rho ≥ 0.4; P ≤ 0.04) and negatively with memory CMI (rho = -0.45; P = 0.04). The corollary of this observation is that robust Th1 and/or low Th9, Th22, and TNFα inflammatory responses may be associated with efficient clearance of RSV infection and therefore desirable characteristics of an RSV vaccine. Young age was associated with low memory and effector Th1 responses (rho ≥ 0.4; P ≤ 0.04) and high Th2, Th9, Th17, Th22 and TNFα inflammatory responses (rho ≤ -0.4; P ≤ 0.04), indicating that age at vaccination may be a major determinant of the CMI response pattern.
Collapse
Affiliation(s)
- Bessey Geevarghese
- Department of Pediatrics; University of Colorado; Anschutz Medical Center; Aurora, CO USA
| | - Adriana Weinberg
- Department of Pediatrics; University of Colorado; Anschutz Medical Center; Aurora, CO USA; Department of Medicine; University of Colorado; Anschutz Medical Center; Aurora, CO USA; Department of Pathology; University of Colorado; Anschutz Medical Center; Aurora, CO USA
| |
Collapse
|
42
|
Derscheid RJ, Gallup JM, Knudson CJ, Varga SM, Grosz DD, van Geelen A, Hostetter SJ, Ackermann MR. Effects of formalin-inactivated respiratory syncytial virus (FI-RSV) in the perinatal lamb model of RSV. PLoS One 2013; 8:e81472. [PMID: 24324695 PMCID: PMC3855688 DOI: 10.1371/journal.pone.0081472] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most frequent cause of bronchiolitis in infants and children worldwide. There are currently no licensed vaccines or effective antivirals. The lack of a vaccine is partly due to increased caution following the aftermath of a failed clinical trial of a formalin-inactivated RSV vaccine (FI-RSV) conducted in the 1960’s that led to enhanced disease, necessitating hospitalization of 80% of vaccine recipients and resulting in two fatalities. Perinatal lamb lungs are similar in size, structure and physiology to those of human infants and are susceptible to human strains of RSV that induce similar lesions as those observed in infected human infants. We sought to determine if perinatal lambs immunized with FI-RSV would develop key features of vaccine-enhanced disease. This was tested in colostrum-deprived lambs immunized at 3–5 days of age with FI-RSV followed two weeks later by RSV infection. The FI-RSV-vaccinated lambs exhibited several key features of RSV vaccine-enhanced disease, including reduced RSV titers in bronchoalveolar lavage fluid and lung, and increased infiltration of peribronchiolar and perivascular lymphocytes compared to lambs either undergoing an acute RSV infection or naïve controls; all features of RSV vaccine-enhanced disease. These results represent a first step proof-of-principle demonstration that the lamb can develop altered responses to RSV following FI-RSV vaccination. The lamb model may be useful for future mechanistic studies as well as the assessment of RSV vaccines designed for infants.
Collapse
Affiliation(s)
- Rachel J. Derscheid
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Jack M. Gallup
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Cory J. Knudson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Drew D. Grosz
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Albert van Geelen
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Shannon J. Hostetter
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Mark R. Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
43
|
Respiratory syncytial virus G protein CX3C motif impairs human airway epithelial and immune cell responses. J Virol 2013; 87:13466-79. [PMID: 24089561 DOI: 10.1128/jvi.01741-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infection in infants and young children and causes disease in the elderly and persons with compromised cardiac, pulmonary, or immune systems. Despite the high morbidity rates of RSV infection, no highly effective treatment or vaccine is yet available. The RSV G protein is an important contributor to the disease process. A conserved CX3C chemokine-like motif in G likely contributes to the pathogenesis of disease. Through this motif, G protein binds to CX3CR1 present on various immune cells and affects immune responses to RSV, as has been shown in the mouse model of RSV infection. However, very little is known of the role of RSV CX3C-CX3CR1 interactions in human disease. In this study, we use an in vitro model of human RSV infection comprised of human peripheral blood mononuclear cells (PBMCs) separated by a permeable membrane from human airway epithelial cells (A549) infected with RSV with either an intact CX3C motif (CX3C) or a mutated motif (CX4C). We show that the CX4C virus induces higher levels of type I/III interferon (IFN) in A549 cells, increased IFN-α and tumor necrosis factor alpha (TNF-α) production by human plasmacytoid dendritic cells (pDCs) and monocytes, and increased IFN-γ production in effector/memory T cell subpopulations. Treatment of CX3C virus-infected cells with the F(ab')2 form of an anti-G monoclonal antibody (MAb) that blocks binding to CX3CR1 gave results similar to those with the CX4C virus. Our data suggest that the RSV G protein CX3C motif impairs innate and adaptive human immune responses and may be important to vaccine and antiviral drug development.
Collapse
|
44
|
Boyoglu-Barnum S, Gaston KA, Todd SO, Boyoglu C, Chirkova T, Barnum TR, Jorquera P, Haynes LM, Tripp RA, Moore ML, Anderson LJ. A respiratory syncytial virus (RSV) anti-G protein F(ab')2 monoclonal antibody suppresses mucous production and breathing effort in RSV rA2-line19F-infected BALB/c mice. J Virol 2013; 87:10955-67. [PMID: 23885067 PMCID: PMC3807296 DOI: 10.1128/jvi.01164-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/12/2013] [Indexed: 12/27/2022] Open
Abstract
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Increased airway resistance and increased airway mucin production are two manifestations of RSV infection in children. RSV rA2-line19F infection induces pulmonary mucous production and increased breathing effort in BALB/c mice and provides a way to assess these manifestations of RSV disease in an animal model. In the present study, we investigated the effect of prophylactic treatment with the F(ab')2 form of the anti-G protein monoclonal antibody (MAb) 131-2G on disease in RSV rA2-line19F-challenged mice. F(ab')2 131-2G does not affect virus replication. It and the intact form that does decrease virus replication prevented increased breathing effort and airway mucin production, as well as weight loss, pulmonary inflammatory-cell infiltration, and the pulmonary substance P and pulmonary Th2 cytokine levels that occur in mice challenged with this virus. These data suggest that the RSV G protein contributes to prominent manifestations of RSV disease and that MAb 131-2G can prevent these manifestations of RSV disease without inhibiting virus infection.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelsey A. Gaston
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sean O. Todd
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Cemil Boyoglu
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Tatiana Chirkova
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Thomas R. Barnum
- University of Georgia Odum School of Ecology, Athens, Georgia, USA
| | - Patricia Jorquera
- University of Georgia Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - Lia M. Haynes
- Division of Viral Diseases, NCIRD, CDC, Atlanta, Georgia, USA
| | - Ralph A. Tripp
- University of Georgia Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - Martin L. Moore
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Larry J. Anderson
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Shaw CA, Galarneau JR, Bowenkamp KE, Swanson KA, Palmer GA, Palladino G, Markovits JE, Valiante NM, Dormitzer PR, Otten GR. The role of non-viral antigens in the cotton rat model of respiratory syncytial virus vaccine-enhanced disease. Vaccine 2013; 31:306-12. [DOI: 10.1016/j.vaccine.2012.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/02/2012] [Accepted: 11/04/2012] [Indexed: 11/29/2022]
|
46
|
Gelfand EW. Development of asthma is determined by the age-dependent host response to respiratory virus infection: therapeutic implications. Curr Opin Immunol 2012; 24:713-9. [PMID: 22981683 PMCID: PMC3508171 DOI: 10.1016/j.coi.2012.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Lower respiratory tract virus infections are the major cause of asthma exacerbations. Severity of infection and age at initial encounter with virus appear to be major determinants of the risk for allergic asthma later in life. In animal models, reinfection of mice initially infected as neonates leads to markedly enhanced alterations in airway function and inflammation, unlike reinfection of older mice. Both innate and adaptive immune responses contribute to this susceptibility with lung dendritic cells showing marked differences in phenotype and function in young compared to older mice, and these differences are further enhanced following virus infection. These findings have implications for therapeutic targeting, for example, of RSV G and F surface proteins at different stages of the response to infection.
Collapse
Affiliation(s)
- Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
47
|
Mata M, Sarrion I, Armengot M, Carda C, Martinez I, Melero JA, Cortijo J. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine. PLoS One 2012; 7:e48037. [PMID: 23118923 PMCID: PMC3485262 DOI: 10.1371/journal.pone.0048037] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 09/20/2012] [Indexed: 01/23/2023] Open
Abstract
Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H(2)O(2) levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD.
Collapse
Affiliation(s)
- Manuel Mata
- Research Foundation of the University General Hospital of Valencia, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
48
|
Costello HM, Ray WC, Chaiwatpongsakorn S, Peeples ME. Targeting RSV with vaccines and small molecule drugs. Infect Disord Drug Targets 2012; 12:110-28. [PMID: 22335496 DOI: 10.2174/187152612800100143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 01/01/2012] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) is the most significant cause of pediatric respiratory infections. Palivizumab (Synagis®), a humanized monoclonal antibody, has been used successfully for a number of years to prevent severe RSV disease in at-risk infants. However, despite intense efforts, there is no approved vaccine or small molecule drug for RSV. As an enveloped virus, RSV must fuse its envelope with the host cell membrane, which is accomplished through the actions of the fusion (F) glycoprotein, with attachment help from the G glycoprotein. Because of their integral role in initiation of infection and their accessibility outside the lipid bilayer, these proteins have been popular targets in the discovery and development of antiviral compounds and vaccines against RSV. This review examines advances in the development of antiviral compounds and vaccine candidates.
Collapse
Affiliation(s)
- Heather M Costello
- Center for Vaccines & Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | | |
Collapse
|
49
|
Murata Y, Catherman SC. Antibody response to the central unglycosylated region of the respiratory syncytial virus attachment protein in mice. Vaccine 2012; 30:5382-8. [PMID: 22728222 DOI: 10.1016/j.vaccine.2012.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/15/2012] [Accepted: 06/07/2012] [Indexed: 12/30/2022]
Abstract
We examined the humoral immune response to the unglycosylated central region of the respiratory syncytial virus (RSV) attachment (G) protein in mice following intranasal challenge at day 0 (primary) and day 21 (secondary) with subtype A (A2 strain) or B (B1 strain) RSV preparations. Our serological screening reagents included bacterially derived glutathione S-transferase (GST) fusion proteins, each bearing a portion of the RSV G central core (CC; residues 151-190), proximal central core (PCC; residues 151-172), and the distal central core (DCC; residues 173-190) and purified RSV G proteins from subtype A and B viruses. Convalescent sera collected on day 21 following primary RSV infection bore robust IgG response primarily against the homosubtypic RSV G DCC with relatively modest antigen affinity/avidity as demonstrated by brief incubation with 6M urea. In contrast, sera collected on day 42 following secondary homosubtypic RSV infection bore IgG titers of higher magnitudes and antigen affinity/avidity against the homosubtypic RSV G CC, PCC, and/or the DCC regions and full-length RSV G protein but not against the heterosubtypic RSV G protein or recombinant CC subdomains. In contrast, heterosubtypic secondary RSV infection elicits a broad array of IgG responses with titers of varying magnitudes to homo- and heterosubtypic RSV G CC regions as well as to purified F, Ga, and Gb proteins with the notable exception of minimal response to the RSV G DCC domain associated with the secondary RSV challenge. Our results have implications for RSV G-based serological assays as well as prophylactic immunotherapy and RSV vaccine development.
Collapse
Affiliation(s)
- Yoshihiko Murata
- Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | |
Collapse
|
50
|
Krause A, Xu Y, Ross S, Wu W, Joh J, Worgall S. Absence of vaccine-enhanced RSV disease and changes in pulmonary dendritic cells with adenovirus-based RSV vaccine. Virol J 2011; 8:375. [PMID: 21801372 PMCID: PMC3166937 DOI: 10.1186/1743-422x-8-375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/29/2011] [Indexed: 01/22/2023] Open
Abstract
The development of a vaccine against respiratory syncytial virus (RSV) has been hampered by the risk for vaccine-enhanced RSV pulmonary disease induced by immunization with formalin-inactivated RSV (FIRSV). This study focuses on the evaluation of vaccine-enhanced pulmonary disease following immunization with AdF.RGD, an integrin-targeted adenovirus vector that expresses the RSV F protein and includes an RGD (Arg-Gly-Asp) motif. Immunization of BALB/c mice with AdF.RGD, resulted in anti-RSV protective immunity and induced increased RSV-specific IFN-γ T cell responses compared to FIRSV. RSV infection 5 wk after immunization with FIRSV induced pulmonary inflammatory responses in the lung, that was not observed with AdF.RGD. Additionally, In the FIRSV-immunized mice following infection with RSV, pulmonary DC increased and Tregs decreased. This suggests that distinct responses of pulmonary DC and Tregs are a features of vaccine-enhanced RSV disease and that immunization with an RGD-modified Ad vaccine does not trigger vaccine-enhanced disease.
Collapse
Affiliation(s)
- Anja Krause
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|