1
|
Kumar A, Mahajan A, Salazar EA, Pruitt K, Guzman CA, Clauss MA, Almodovar S, Dhillon NK. Impact of human immunodeficiency virus on pulmonary vascular disease. Glob Cardiol Sci Pract 2021; 2021:e202112. [PMID: 34285903 PMCID: PMC8272407 DOI: 10.21542/gcsp.2021.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
With the advent of anti-retroviral therapy, non-AIDS-related comorbidities have increased in people living with HIV. Among these comorbidities, pulmonary hypertension (PH) is one of the most common causes of morbidity and mortality. Although chronic HIV-1 infection is independently associated with the development of pulmonary arterial hypertension, PH in people living with HIV may also be the outcome of various co-morbidities commonly observed in these individuals including chronic obstructive pulmonary disease, left heart disease and co-infections. In addition, the association of these co-morbidities and other risk factors, such as illicit drug use, can exacerbate the development of pulmonary vascular disease. This review will focus on these complex interactions contributing to PH development and exacerbation in HIV patients. We also examine the interactions of HIV proteins, including Nef, Tat, and gp120 in the pulmonary vasculature and how these proteins alter the endothelial and smooth muscle function by transforming them into susceptible PH phenotype. The review also discusses the available infectious and non-infectious animal models to study HIV-associated PAH, highlighting the advantages and disadvantages of each model, along with their ability to mimic the clinical manifestations of HIV-PAH.
Collapse
Affiliation(s)
- Ashok Kumar
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aatish Mahajan
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ethan A Salazar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Christian Arce Guzman
- Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthias A Clauss
- Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Navneet K Dhillon
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Joas S, Sauermann U, Roshani B, Klippert A, Daskalaki M, Mätz-Rensing K, Stolte-Leeb N, Heigele A, Tharp GK, Gupta PM, Nelson S, Bosinger S, Parodi L, Giavedoni L, Silvestri G, Sauter D, Stahl-Hennig C, Kirchhoff F. Nef-Mediated CD3-TCR Downmodulation Dampens Acute Inflammation and Promotes SIV Immune Evasion. Cell Rep 2021; 30:2261-2274.e7. [PMID: 32075764 PMCID: PMC7052273 DOI: 10.1016/j.celrep.2020.01.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
The inability of Nef to downmodulate the CD3-T cell receptor (TCR) complex distinguishes HIV-1 from other primate lentiviruses and may contribute to its high virulence. However, the role of this Nef function in virus-mediated immune activation and pathogenicity remains speculative. Here, we selectively disrupted this Nef activity in SIVmac239 and analyzed the consequences for the virological, immunological, and clinical outcome of infection in rhesus macaques. The inability to downmodulate CD3-TCR does not impair viral replication during acute infection but is associated with increased immune activation and antiviral gene expression. Subsequent early reversion in three of six animals suggests strong selective pressure for this Nef function and is associated with high viral loads and progression to simian AIDS. In the absence of reversions, however, viral replication and the clinical course of infection are attenuated. Thus, Nef-mediated downmodulation of CD3 dampens the inflammatory response to simian immunodeficiency virus (SIV) infection and seems critical for efficient viral immune evasion. HIV-1 lacks the CD3 downmodulation function of Nef that is otherwise conserved in primate lentiviruses. Joas et al. disrupted this Nef activity in SIVmac239 and show that Nef-mediated downmodulation of CD3 dampens inflammatory responses to SIV. This promotes effective immune evasion and maintenance of high viral loads in infected rhesus macaques.
Collapse
Affiliation(s)
- Simone Joas
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | | | - Berit Roshani
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | | | - Maria Daskalaki
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | | | | | - Anke Heigele
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | - Gregory K Tharp
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Prachi Mehrotra Gupta
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Sydney Nelson
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Steven Bosinger
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Laura Parodi
- Host-Pathogen Interactions Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Giavedoni
- Host-Pathogen Interactions Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Guido Silvestri
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Daniel Sauter
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany.
| |
Collapse
|
3
|
Song J, Cai Z, White AG, Jin T, Wang X, Kadayakkara D, Anderson CJ, Ambrose Z, Young WB. Visualization and quantification of simian immunodeficiency virus-infected cells using non-invasive molecular imaging. J Gen Virol 2015; 96:3131-3142. [PMID: 26297664 DOI: 10.1099/jgv.0.000245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo imaging can provide real-time information and three-dimensional (3D) non-invasive images of deep tissues and organs, including the brain, whilst allowing longitudinal observation of the same animals, thus eliminating potential variation between subjects. Current in vivo imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT) and bioluminescence imaging (BLI), can be used to pinpoint the spatial location of target cells, which is urgently needed for revealing human immunodeficiency virus (HIV) dissemination in real-time and HIV-1 reservoirs during suppressive antiretroviral therapy (ART). To demonstrate that in vivo imaging can be used to visualize and quantify simian immunodeficiency virus (SIV)-transduced cells, we genetically engineered SIV to carry different imaging reporters. Based on the expression of the reporter genes, we could visualize and quantify the SIV-transduced cells via vesicular stomatitis virus glycoprotein pseudotyping in a mouse model using BLI, PET-CT or MRI. We also engineered a chimeric EcoSIV for in vivo infection study. Our results demonstrated that BLI is sensitive enough to detect as few as five single cells transduced with virus, whilst PET-CT can provide 3D images of the spatial location of as few as 10 000 SIV-infected cells. We also demonstrated that MRI can provide images with high spatial resolution in a 3D anatomical context to distinguish a small population of SIV-transduced cells. The in vivo imaging platform described here can potentially serve as a powerful tool to visualize lentiviral infection, including when and where viraemia rebounds, and how reservoirs are formed and maintained during latency or suppressive ART.
Collapse
Affiliation(s)
- Jiasheng Song
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhengxin Cai
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexander G White
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaolei Wang
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deepak Kadayakkara
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Carolyn J Anderson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zandrea Ambrose
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Won-Bin Young
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Misra A, Thippeshappa R, Kimata JT. Macaques as model hosts for studies of HIV-1 infection. Front Microbiol 2013; 4:176. [PMID: 23825473 PMCID: PMC3695370 DOI: 10.3389/fmicb.2013.00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/11/2013] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence indicates that the host range of primate lentiviruses is in part determined by their ability to counteract innate restriction factors that are effectors of the type 1 interferon (IFN-1) response. For human immunodeficiency virus type 1 (HIV-1), in vitro experiments have shown that its tropism may be narrow and limited to humans and chimpanzees because its replication in other non-human primate species is hindered by factors such as TRIM5α (tripartite motif 5 alpha), APOBEC3G (apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3), and tetherin. Based on these data, it has been hypothesized that primate lentiviruses will infect and replicate in a new species if they are able to counteract and evade suppression by the IFN-1 response. Several studies have tested whether engineering HIV-1 recombinants with minimal amounts of simian immunodeficiency virus sequences would enable replication in CD4+ T cells of non-natural hosts such as Asian macaques and proposed that infection of these macaque species could be used to study transmission and pathogenesis. Indeed, infection of macaques with these viruses revealed that Vif-mediated counteraction of APOBEC3G function is central to cross-species tropism but that other IFN-induced factors may also play important roles in controlling replication. Further studies of these macaque models of infection with HIV-1 derivatives could provide valuable insights into the interaction of lentiviruses and the innate immune response and how lentiviruses adapt and cause disease.
Collapse
Affiliation(s)
- Anisha Misra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston, TX, USA
| | | | | |
Collapse
|
5
|
Thippeshappa R, Ruan H, Kimata JT. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. BIOLOGY 2012; 1:134-64. [PMID: 23336082 PMCID: PMC3546514 DOI: 10.3390/biology1020134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retro viral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.
Collapse
Affiliation(s)
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.); (H.R.)
| |
Collapse
|
6
|
Vif substitution enables persistent infection of pig-tailed macaques by human immunodeficiency virus type 1. J Virol 2011; 85:3767-79. [PMID: 21289128 DOI: 10.1128/jvi.02438-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among Old World monkeys, pig-tailed macaques (Pt) are uniquely susceptible to human immunodeficiency virus type 1 (HIV-1), although the infection does not persist. We demonstrate that the susceptibility of Pt T cells to HIV-1 infection is due to the absence of postentry inhibition by a TRIM5 isoform. Notably, substitution of the viral infectivity factor protein, Vif, with that from pathogenic SIVmne enabled replication of HIV-1 in Pt T cells in vitro. When inoculated into juvenile pig-tailed macaques, the Pt-tropic HIV-1 persistently replicated for more than 1.5 to 2 years, producing low but measurable plasma viral loads and persistent proviral DNA in peripheral blood mononuclear cells. It also elicited strong antibody responses. However, there was no decline in CD4(+) T cells or evidence of disease. Surprisingly, the Pt-tropic HIV-1 was rapidly controlled when inoculated into newborn Pt macaques, although it transiently rebounded after 6 months. We identified two notable differences between the Pt-tropic HIV-1 and SIVmne. First, SIV Vif does not associate with Pt-tropic HIV-1 viral particles. Second, while Pt-tropic HIV-1 degrades both Pt APOBEC3G and APOBEC3F, it prevents their inclusion in virions to a lesser extent than pathogenic SIVmne. Thus, while SIV Vif is necessary for persistent infection by Pt-tropic HIV-1, improved expression and inhibition of APOBEC3 proteins may be required for robust viral replication in vivo. Additional adaptation of the virus may also be necessary to enhance viral replication. Nevertheless, our data suggest the potential for the pig-tailed macaque to be developed as an animal model of HIV-1 infection and disease.
Collapse
|
7
|
George MP, Brower A, Kling H, Shipley T, Kristoff J, Reinhart TA, Murphey-Corb M, Gladwin MT, Champion HC, Morris A, Norris KA. Pulmonary vascular lesions are common in SIV- and SHIV-env-infected macaques. AIDS Res Hum Retroviruses 2011; 27:103-11. [PMID: 20961277 DOI: 10.1089/aid.2009.0297] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The lack of animal models of HIV-related pulmonary arterial hypertension (HIV-PAH) severely limits investigation of this serious disease. While histological evidence of HIV-PAH has been demonstrated in macaques infected with simian immunodeficiency virus (SIV) as well as with chimeric simian/human immunodeficiency virus (SHIV) containing HIV-1-derived Nef protein, other primate models have not been studied. The objective was to document and describe the development of pulmonary vascular changes in macaques infected with SIV or with SIV containing HIV-1-derived envelope protein (SHIV-env). Lung tissue was obtained at necropsy from 13 SHIV (89.6P)-env-infected macaques and 10 SIV (ΔB670)-infected macaques. Pulmonary arterial pathology, including arterial hyperplasia and the presence of plexiform lesions, was compared to normal monkey lung. Pulmonary artery hyperplasia was present in 8 of 13 (62%) SHIV-env-infected macaques and 4/10 (36%) SIV-infected macaques. The most common histopathological lesions were intimal and medial hyperplasia of medium and large pulmonary arteries. Hyperplastic lesions were predominantly due to smooth muscle cell hyperplasia. This is the first report of pulmonary vascular lesions in SHIV-env-infected macaques and confirms prior reports of pulmonary vasculopathy in SIV-infected macaques. The finding of pulmonary arteriopathy in monkeys infected with SHIV not containing HIV-nef suggests that other factors might also be important in the development of HIV-PAH. This SHIV-env model provides a new means to investigate HIV-PAH.
Collapse
Affiliation(s)
- M. Patricia George
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexandra Brower
- Department of Pathobiological Sciences, University of Wisconsin/Wisconsin Veterinary Diagnostic Laboratory, Madison, Wisconsin
| | - Heather Kling
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tim Shipley
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jan Kristoff
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Todd A. Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Murphey-Corb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark T. Gladwin
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hunter C. Champion
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alison Morris
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karen A. Norris
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Abstract
Mammalian cells are equipped with so-called "restriction factors" that suppress virus replication and help to prevent virus transmission from one species to another. This Essay discusses the host restriction factor tetherin, which blocks the release of enveloped viruses like HIV-1, and the factors evolved by primate lentiviruses, such as Vpu and Nef, that antagonize tetherin's action.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, University Clinic Ulm, Meyerhofstrasse 1, 89081 Ulm, Germany
| | | | | |
Collapse
|
9
|
Zhang F, Wilson SJ, Landford WC, Virgen B, Gregory D, Johnson MC, Munch J, Kirchhoff F, Bieniasz PD, Hatziioannou T. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 2009; 6:54-67. [PMID: 19501037 DOI: 10.1016/j.chom.2009.05.008] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/22/2009] [Accepted: 05/14/2009] [Indexed: 01/12/2023]
Abstract
The tetherin/BST2/CD317 protein blocks the release of HIV-1 and other enveloped viruses by inducing tethering of nascent particles to infected cell surfaces. The HIV-1 Vpu protein antagonizes the antiviral activity of human but not monkey tetherins and many simian immunodeficiency viruses (SIVs) do not encode Vpu. Here, we show that the apparently "missing" antitetherin activity in SIVs has been acquired by several SIV Nef proteins. Specifically, SIV(MAC)/SIV(SMM), SIV(AGM), and SIV(BLU) Nef proteins can suppress tetherin activity. Notably, tetherin antagonism by SIV Nef proteins is species specific, is genetically separable from other Nef activities, and is most evident with simian rather than human tetherin proteins. Accordingly, a critical determinant of sensitivity to SIV(MAC) Nef in the tetherin cytoplasmic tail is variable in nonhuman primate tetherins and deleted in human tetherin, likely due to selective pressures imposed by viral antagonists, perhaps including Nef proteins.
Collapse
Affiliation(s)
- Fengwen Zhang
- Aaron Diamond AIDS Research Center, Laboratory of Retrovirology, the Rockefeller University, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J, Fofana IB, Johnson WE, Westmoreland S, Evans DT. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog 2009; 5:e1000429. [PMID: 19436700 PMCID: PMC2673686 DOI: 10.1371/journal.ppat.1000429] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 04/14/2009] [Indexed: 01/14/2023] Open
Abstract
Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host–cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIVsmm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIVmac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIVsmm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts. Tetherin was recently identified as a host–cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes the antiviral effects of tetherin by expressing Vpu, which mediates the degradation of tetherin. While tetherin has broad activity against diverse types of viruses, only a few of the primate AIDS viruses express Vpu. Simian immunodeficiency virus (SIV) does not have a vpu gene. Since SIV infection of the rhesus macaque is an important animal model for AIDS vaccine development, we set out to determine how SIV overcomes restriction by tetherin in this species. We found that the SIV Nef protein could counteract rhesus macaque tetherin, but not human tetherin. Conversely, the HIV-1 Vpu protein counteracted human tetherin, but not rhesus tetherin. The specificity of Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. These observations identify a role for the SIV Nef protein in counteracting tetherin, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.
Collapse
Affiliation(s)
- Bin Jia
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Ruth Serra-Moreno
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - William Neidermyer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Andrew Rahmberg
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - John Mackey
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Ismael Ben Fofana
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Welkin E. Johnson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Susan Westmoreland
- Department of Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - David T. Evans
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution? Nat Rev Microbiol 2009; 7:467-76. [PMID: 19305418 DOI: 10.1038/nrmicro2111] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the subset of primate lentiviruses that contain a vpu gene - HIV-1 and its simian precursors - the Nef protein has lost the ability to down-modulate CD3, block T cell activation and suppress programmed death. Vpu counteracts a host restriction factor induced by the inflammatory cytokine interferon-alpha. I propose that the acquisition of vpu may have allowed the viral lineage that gave rise to HIV-1 to evolve towards greater pathogenicity by removing the selective pressure for a protective Nef function that prevents damagingly high levels of immune activation.
Collapse
|
12
|
Qiu CL, Zhao H, Yang GB, Liu Q, Shao Y. Flow cytometric characterization of T lymphocyte subsets in the peripheral blood of Chinese rhesus macaques: normal range, age- and sex-related differences. Vet Immunol Immunopathol 2008; 124:313-21. [PMID: 18499268 DOI: 10.1016/j.vetimm.2008.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 03/25/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
Abstract
Available data on the normal levels of white blood cell populations in healthy rhesus macaques (Macaca mulatta) originated and living in China is scanty. To obtain such data, blood samples from 150 Chinese rhesus macaques were collected and the normal range of white blood cells and their subsets were analyzed according to age and sex by flow cytometry. CBC data showed that the count of total white blood cells and lymphocytes decreased with age. Phenotypic analysis of CD4 and CD8 expression on CD3+ T lymphocytes showed that the percentage of CD4+ T cells (51.4+/-9.6%), CD4-CD8- T cells (8.5+/-4.1%) and the ratio of CD4+ T to CD8+ T cells (1.26+/-0.55) decreased with age; and the percentage of CD8+ T cells (42.0+/-9.7%), CD4+CD8+ T cells (1.3+/-0.9%) and CD3+ lymphocytes (55.3+/-13.3%) increased with age. However, no statistically significant difference was observed between the male and female groups in most parameters in these monkeys except for the percentage of CD4+CD8+ T cells. This study provided basic information about blood cell count and T lymphocyte subsets in Chinese rhesus macaques. It may be useful for comparative studies using Indian and Chinese rhesus macaques.
Collapse
Affiliation(s)
- Chen-Li Qiu
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, China-CDC, 27 Nanwei Road, Xuanwu District, Beijing 100050, PR China
| | | | | | | | | |
Collapse
|
13
|
Ndolo T, George M, Nguyen H, Dandekar S. Expression of simian immunodeficiency virus Nef protein in CD4+ T cells leads to a molecular profile of viral persistence and immune evasion. Virology 2006; 353:374-87. [PMID: 16857233 DOI: 10.1016/j.virol.2006.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/22/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
The Nef protein of human immunodeficiency virus and simian immunodeficiency virus is expressed early in infection and plays an important role in disease progression in vivo. In addition, Nef has been shown to modulate cellular functions. To decipher Nef-mediated changes in gene expression, we utilized DNA microarray analysis to elucidate changes in gene expression in a Jurkat CD4+ T-cell line stably expressing SIV-Nef protein under the control of an inducible promoter. Our results showed that genes associated with antigen presentation including members of the T-cell receptor and major histocompatibility class 1 complex were consistently down-regulated at the transcript level in SIV-Nef-expressing cells. In addition, Nef induced a transcriptional profile of cell-cycle-related genes that support the survival of Nef-expressing cells. Furthermore, Nef enhanced the transcription of genes encoding enzymes and factors that catalyze the biosynthesis of membrane glycolipids and phospholipids. In conclusion, gene expression profiling showed that SIV-Nef induces a transcriptional profile in CD4+ T cells that promotes immune evasion and cell survival, thus facilitating viral persistence.
Collapse
Affiliation(s)
- Thomas Ndolo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
14
|
Schindler M, Münch J, Kutsch O, Li H, Santiago ML, Bibollet-Ruche F, Müller-Trutwin MC, Novembre FJ, Peeters M, Courgnaud V, Bailes E, Roques P, Sodora DL, Silvestri G, Sharp PM, Hahn BH, Kirchhoff F. Nef-Mediated Suppression of T Cell Activation Was Lost in a Lentiviral Lineage that Gave Rise to HIV-1. Cell 2006; 125:1055-67. [PMID: 16777597 DOI: 10.1016/j.cell.2006.04.033] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 02/22/2006] [Accepted: 04/11/2006] [Indexed: 01/29/2023]
Abstract
High-level immune activation and T cell apoptosis represent a hallmark of HIV-1 infection that is absent from nonpathogenic SIV infections in natural primate hosts. The mechanisms causing these varying levels of immune activation are not understood. Here, we report that nef alleles from the great majority of primate lentiviruses, including HIV-2, downmodulate TCR-CD3 from infected T cells, thereby blocking their responsiveness to activation. In contrast, nef alleles from HIV-1 and a subset of closely related SIVs fail to downregulate TCR-CD3 and to inhibit cell death. Thus, Nef-mediated suppression of T cell activation is a fundamental property of primate lentiviruses that likely evolved to maintain viral persistence in the context of an intact host immune system. This function was lost during viral evolution in a lineage that gave rise to HIV-1 and may have predisposed the simian precursor of HIV-1 for greater pathogenicity in humans.
Collapse
MESH Headings
- Animals
- Apoptosis
- CD4 Antigens/immunology
- Cells, Cultured
- Cercocebus atys
- Down-Regulation
- Evolution, Molecular
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- HIV-1/immunology
- HIV-1/pathogenicity
- HIV-1/physiology
- HIV-2/immunology
- HIV-2/physiology
- Humans
- Lentiviruses, Primate/immunology
- Lentiviruses, Primate/physiology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Lymphocyte Activation
- Molecular Sequence Data
- Phylogeny
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/physiology
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- nef Gene Products, Human Immunodeficiency Virus
Collapse
|
15
|
Marecki JC, Cool CD, Parr JE, Beckey VE, Luciw PA, Tarantal AF, Carville A, Shannon RP, Cota-Gomez A, Tuder RM, Voelkel NF, Flores SC. HIV-1 Nef is associated with complex pulmonary vascular lesions in SHIV-nef-infected macaques. Am J Respir Crit Care Med 2006; 174:437-45. [PMID: 16728715 PMCID: PMC2648120 DOI: 10.1164/rccm.200601-005oc] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE HIV-infected patients with pulmonary arterial hypertension have histologic manifestations that are indistinguishable from those found in patients with idiopathic pulmonary arterial hypertension. In addition, the role of pleiotropic viral proteins in the development of plexiform lesions in HIV-related pulmonary hypertension (HRPH) has not been explored. Simian immunodeficiency virus (SIV) infection of macaques has been found to closely recapitulate many of the characteristic features of HIV infection, and thus hallmarks of pulmonary arterial hypertension should also be found in this nonhuman primate model of HIV. OBJECTIVES To determine whether pulmonary arterial lesions were present in archived SIV-infected macaque lung tissues from Johns Hopkins University and two National Primate Research Centers. METHODS Archived macaque and human lung sections were examined via immunohistochemistry for evidence of complex vascular lesions. RESULTS Complex plexiform-like lesions characterized by lumenal obliteration, intimal disruption, medial hypertrophy, thrombosis, and recanalized lumena were found exclusively in animals infected with SHIV-nef (a chimeric viral construct containing the HIV nef gene in an SIV backbone), but not in animals infected with SIV. The mass of cells in the lesions were factor VIII positive, and contained cells positive for muscle-specific and smooth muscle actins. Lung mononuclear cells were positive for HIV Nef, suggesting viral replication. Endothelial cells in both the SHIV-nef macaques and patients with HRPH, but not in patients with idiopathic pulmonary arterial hypertension, were also Nef positive. CONCLUSIONS The discovery of complex vascular lesions in SHIV-nef- but not SIV-infected animals, and the presence of Nef in the vascular cells of patients with HRPH, suggest that Nef plays a key role in the development of severe pulmonary arterial disease.
Collapse
Affiliation(s)
- John C Marecki
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, 4200 East Ninth Avenue, Box C272, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alexander L, Cuchura L, Simpson BJ, Andiman WA. Virologic and host characteristics of human immunodeficiency virus type 1-infected pediatric long term survivors. Pediatr Infect Dis J 2006; 25:135-41. [PMID: 16462290 DOI: 10.1097/01.inf.0000199299.00345.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND There are limited data concerning determinants of varying clinical progression rates in human immunodeficiency virus type 1 (HIV-1)-infected children. Therefore, we sought to determine whether viral or host factors associated with nonprogressive HIV-1 infection in adults play a role in limiting progression of infection in 5 vertically infected youths, ages 12-18 years, who have displayed no signs of advanced HIV-1 disease or acquired immunodeficiency syndrome despite having received minimal treatment with antiretroviral drugs. RESULTS The 5 individuals, whom we characterize as long term survivors, have maintained low loads of HIV-1 RNA in plasma when compared to many of their peers, and have also maintained normal and stable CD4 T-lymphocyte numbers and percentages throughout their lives. Determination of their predominant HIV-1 sequences revealed that 4 of 5 patients harbor virus with markers of resistance to their therapy (one was never treated). Furthermore 2 harbored viral isolates that contained insertions in Gag or Vif that inhibit HIV-1 replication. Moreover, 2 were found to be heterozygous for the CCR2 polymorphism 64I, a genotype associated with slower progression to acquired immunodeficiency syndrome in adults. All 5 expressed the histocompatibility leukocyte antigen DQ1 and 2 had unusual DR/DQ1 phenotypes. CONCLUSIONS We believe that the limited antiretroviral therapy received by the long term survivors cannot solely account for their benign clinical status. Therefore, we conclude that other factors, including gene polymorphisms that affect viral replicative capacity, account for the long term survival in some, and deduce that, as in adults, no single factor (virologic or host) can account for this clinical phenotype in all cases.
Collapse
Affiliation(s)
- Louis Alexander
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
17
|
Khan M, Jin L, Miles L, Bond VC, Powell MD. Chimeric human immunodeficiency virus type 1 virions that contain the simian immunodeficiency virus nef gene are cyclosporin A resistant. J Virol 2005; 79:3211-6. [PMID: 15709044 PMCID: PMC548445 DOI: 10.1128/jvi.79.5.3211-3216.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have previously shown that human immunodeficiency virus type 1 (HIV-1) virions which have their own nef gene deleted and are trans complemented to contain HIV-2 or simian immunodeficiency virus (SIV) Nef become resistant to treatment with cyclosporin A. To expand and confirm these studies, we have tested an HIV-1 isolate in which the HIV-1 nef gene has been replaced by the nef gene from SIV in a multiround infectivity assay using more physiologically relevant cell types. Our results confirm that HIV-1 virions that contain SIV nef can replicate in a cyclophilin-independent fashion.
Collapse
Affiliation(s)
- Mahfuz Khan
- Dept. of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA.
| | | | | | | | | |
Collapse
|
18
|
Choi J, Walker J, Boichuk S, Kirkiles-Smith N, Torpey N, Pober JS, Alexander L. Human endothelial cells enhance human immunodeficiency virus type 1 replication in CD4+ T cells in a Nef-dependent manner in vitro and in vivo. J Virol 2005; 79:264-76. [PMID: 15596822 PMCID: PMC538695 DOI: 10.1128/jvi.79.1.264-276.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infected CD4+ T cells are the primary sites of human immunodeficiency virus type 1 (HIV-1) replication in vivo. However, signals from professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, greatly enhance HIV-1 replication in T cells. Here, we report that in cocultures, vascular endothelial cells (ECs), which in humans can also serve as APCs, can enhance HIV-1 production of both CCR5- and CXCR4-utilizing strains approximately 50,000-fold. The observed HIV-1 replication enhancement conferred by ECs occurred only in memory CD4+ T cells, required expression of major histocompatibility complex class II (MHC-II) molecules by the ECs, and could not be conferred by fixed ECs, all of which are consistent with a requirement for EC-mediated T-cell activation via T-cell receptor (TCR) signaling. Deletion of nef (Nef-) decreased HIV-1 production by approximately 100-fold in T cells cocultured with ECs but had no effect on virus production in T cells cocultured with professional APCs or fibroblasts induced to express MHC-II. Human ECs do not express B7 costimulators, but Nef- replication in CD4(+)-T-cell and EC cocultures could not be rescued by anti-CD28 antibody. ECs act in trans to enhance wild-type but not Nef- replication and facilitate enhanced wild-type replication in naive T cells when added to T-cell or B-lymphoblastoid cell cocultures, suggesting that ECs also provide a TCR-independent signal to infected T cells. Consistent with these in vitro observations, wild-type HIV-1 replicated 30- to 50-fold more than Nef- in human T cells infiltrating allogeneic human skin grafts on human huPBL-SCID/bg mice, an in vivo model of T-cell activation by ECs. Our studies suggest that ECs, which line the entire cardiovascular system and are, per force, in frequent contact with memory CD4+ T cells, provide signals to HIV-1-infected CD4+ T cells to greatly enhance HIV-1 production in a Nef-dependent manner, a mechanism that could contribute to the development of AIDS.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Swigut T, Alexander L, Morgan J, Lifson J, Mansfield KG, Lang S, Johnson RP, Skowronski J, Desrosiers R. Impact of Nef-mediated downregulation of major histocompatibility complex class I on immune response to simian immunodeficiency virus. J Virol 2004; 78:13335-44. [PMID: 15542684 PMCID: PMC525019 DOI: 10.1128/jvi.78.23.13335-13344.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Functional activities that have been ascribed to the nef gene product of simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) include CD4 downregulation, major histocompatibility complex (MHC) class I downregulation, downregulation of other plasma membrane proteins, and lymphocyte activation. Monkeys were infected experimentally with SIV containing difficult-to-revert mutations in nef that selectively eliminated MHC downregulation but not these other activities. Monkeys infected with these mutant forms of SIV exhibited higher levels of CD8(+) T-cell responses 4 to 16 weeks postinfection than seen in monkeys infected with the parental wild-type virus. Furthermore, unusual compensatory mutations appeared by 16 to 32 weeks postinfection which restored some or all of the MHC-downregulating activity. These results indicate that nef does serve to limit the virus-specific CD8 cellular response of the host and that the ability to downregulate MHC class I contributes importantly to the totality of nef function.
Collapse
Affiliation(s)
- Tomek Swigut
- New England Primate Research Center, One Pine Hill Drive, Box 9102, Southborough, MA 01772-9102, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schindler M, Münch J, Brenner M, Stahl-Hennig C, Skowronski J, Kirchhoff F. Comprehensive analysis of nef functions selected in simian immunodeficiency virus-infected macaques. J Virol 2004; 78:10588-97. [PMID: 15367626 PMCID: PMC516420 DOI: 10.1128/jvi.78.19.10588-10597.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of simian immunodeficiency virus (SIVmac) nef mutants have been investigated to clarify which in vitro Nef functions contribute to efficient viral replication and pathogenicity in rhesus macaques. Most of these nef alleles, however, were only functionally characterized for their ability to down-modulate CD4 and class I major histocompatibility complex (MHC-I) cell surface expression and to enhance SIV replication and infectivity. To obtain information on the in vivo relevance of more recently established Nef functions, we examined the ability of a large panel of constructed SIVmac Nef mutants and of variants that emerged in infected macaques to down-regulate CD3, CD28, and MHC-II and to up-regulate the MHC-II-associated invariant chain (Ii). We found that all these four Nef functions were restored in SIV-infected macaques. In most cases, however, the initial mutations and the changes selected in vivo affected several in vitro Nef functions. For example, truncated Nef proteins that emerged in animals infected with SIVmac239 containing a 152-bp deletion in nef efficiently modulated both CD3 and Ii surface expression. Overall, our results suggest that the effect of Nef on each of the six cellular receptors investigated contributes to viral fitness in the infected host but also indicate that modulation of CD3, MHC-I, MHC-II, or Ii surface expression alone is insufficient for SIV virulence.
Collapse
Affiliation(s)
- Michael Schindler
- Department of Virology, Universitätsklinikum, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Curlin ME, Gottlieb GS, Hawes SE, Sow PS, Ndoye I, Critchlow CW, Kiviat NB, Mullins JI. No evidence for recombination between HIV type 1 and HIV type 2 within the envelope region in dually seropositive individuals from Senegal. AIDS Res Hum Retroviruses 2004; 20:958-63. [PMID: 15585083 DOI: 10.1089/aid.2004.20.958] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To investigate the frequency of recombination between HIV-1 and HIV-2 in vivo during dual infection, we performed a retrospective analysis of blood samples from 46 dual HIV-1/HIV-2-seropositive adults for evidence of recombination. HIV viral DNA from peripheral blood mononuclear cells (PBMC) was subjected to two separate nested polymerase chain reaction (PCR) assays using opposing HIV-1 and HIV-2 primer pairs selected to flank a approximately 650-base pair region including the V3 loop of the envelope gene. In the first assay, primers were chosen to amplify recombinants with HIV-1 on the 5' end and HIV-2 on the 3' end, and in the second assay, primers were chosen to amplify recombinants with the opposite orientation. All PCR experiments were run in parallel with positive controls consisting of partial-length env fragments bearing a single central HIV-1/2 recombination site, and appropriate primer-binding sites on each end. The limit of detection for both assays was <10 copies of recombinant product per 150,000 cell equivalents of input PBMC DNA. In all 46 dually seropositive patients in this study, PCR screening of PBMC failed to detect evidence of HIV-1/HIV-2 recombinants in the C2-V5 env region. Although genetic recombination between HIV-1 and HIV-2 may occur, we conclude that any such events within env are exceedingly rare, and do not result in the outgrowth of recombinant strains.
Collapse
Affiliation(s)
- Marcel E Curlin
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Costa LJ, Zheng YH, Sabotic J, Mak J, Fackler OT, Peterlin BM. Nef binds p6* in GagPol during replication of human immunodeficiency virus type 1. J Virol 2004; 78:5311-23. [PMID: 15137387 PMCID: PMC400368 DOI: 10.1128/jvi.78.10.5311-5323.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The atypical Nef protein (NefF12) from human immunodeficiency virus type 1 strain F12 (HIV-1(F12)) interferes with virion production and infectivity via a mysterious mechanism. The correlation of these effects with the unusual perinuclear subcellular localization of NefF12 suggested that the wild-type Nef protein could bind to assembly intermediates in late stages of viral replication. To test this hypothesis, Nef from HIV-1(NL4-3) was fused to an endoplasmic reticulum (ER) retention signal (NefKKXX). This mutant NefKKXX protein recapitulated fully the effects of NefF12 on on Gag processing and virion production, either alone or as a CD8 fusion protein. Importantly, the mutant NefKKXX protein also localized to the intermediate compartment, between the ER and the trans-Golgi network. Furthermore, Nef bound the GagPol polyprotein in vitro and in vivo. This binding mapped to the C-terminal flexible loop in Nef and the transframe p6* protein in GagPol. The significance of this interaction was demonstrated by a genetic assay in which the release of a mutant HIV-1 provirus lacking the PTAP motif in the late domain that no longer binds Tsg101 was rescued by a Nef.Tsg101 chimera. Importantly, this rescue as well as incorporation of Nef into HIV-1 virions correlated with the ability of Nef to interact with GagPol. Our data demonstrate that the retention of Nef in the intermediate compartment interferes with viral replication and suggest a new role for Nef in the production of HIV-1.
Collapse
Affiliation(s)
- Luciana J Costa
- Department of Medicine, University of California-San Francisco, UCSF-Mt. Zion Cancer Center, 2340 Sutter Street, San Francisco, CA 94115, USA
| | | | | | | | | | | |
Collapse
|
23
|
Swaggerty CL, Huang H, Lim WS, Schroeder F, Ball JM. Comparison of SIVmac239(352-382) and SIVsmmPBj41(360-390) enterotoxic synthetic peptides. Virology 2004; 320:243-57. [PMID: 15016547 DOI: 10.1016/j.virol.2003.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 11/20/2003] [Accepted: 11/20/2003] [Indexed: 10/26/2022]
Abstract
To characterize the active domain of the simian immunodeficiency virus (SIV) surface unit (SU) enterotoxin, peptides corresponding to the V3 loop of SIVmac239 (SIVmac) and SIVsmmPBj41 (SIVpbj) were synthesized and examined for enterotoxic activity, alpha-helical structure, and interaction(s) with model membranes. SIVmac and SIVpbj induced a dose-dependent diarrhea in 6-8-day-old mouse pups similar to full-length SU. The peptides mobilized [Ca(2+)](i) in HT-29 cells with distinct oscillations and elevated inositol triphosphate levels. Circular dichroism analyses showed the peptides were predominantly random coil in buffer, but increased in alpha-helical content when placed in a hydrophobic environment or with cholesterol-containing membrane vesicles that are rich in anionic phospholipids. None of the peptides underwent significant secondary structural changes in the presence of neutral vesicles indicating ionic interactions were important. These data show that the SIV SU enterotoxic domain localizes in part to the V3 loop region and interacts with anionic membrane domains on the host cell surface.
Collapse
Affiliation(s)
- C L Swaggerty
- Department of Pathobiology, College of Veterinary Medicine, Texas A&M University, TAMU 4467, College Station, TX 77843-4467, USA
| | | | | | | | | |
Collapse
|
24
|
Khan M, Jin L, Huang MB, Miles L, Bond VC, Powell MD. Chimeric human immunodeficiency virus type 1 (HIV-1) virions containing HIV-2 or simian immunodeficiency virus Nef are resistant to cyclosporine treatment. J Virol 2004; 78:1843-50. [PMID: 14747548 PMCID: PMC369439 DOI: 10.1128/jvi.78.4.1843-1850.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viral protein Nef and the cellular factor cyclophilin A are both required for full infectivity of human immunodeficiency virus type 1 (HIV-1) virions. In contrast, HIV-2 and simian immunodeficiency virus (SIV) do not incorporate cyclophilin A into virions or need it for full infectivity. Since Nef and cyclophilin A appear to act in similar ways on postentry events, we determined whether chimeric HIV-1 virions that contained either HIV-2 or SIV Nef would have a direct effect on cyclophilin A dependence. Our results show that chimeric HIV-1 virions containing either HIV-2 or SIV Nef are resistant to treatment by cyclosporine and enhance the infectivity of virions with mutations in the cyclophilin A binding loop of Gag. Amino acids at the C terminus of HIV-2 and SIV are necessary for inducing cyclosporine resistance. However, transferring these amino acids to the C terminus of HIV-1 Nef is insufficient to induce cyclosporine resistance in HIV-1. These results suggest that HIV-2 and SIV Nef are able to compensate for the need for cyclophilin A for full infectivity and that amino acids present at the C termini of these proteins are important for this function.
Collapse
Affiliation(s)
- Mahfuz Khan
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kar S, Cummings P, Alexander L. Human immunodeficiency virus type 1 Vif supports efficient primate lentivirus replication in rhesus monkey cells. J Gen Virol 2004; 84:3227-3231. [PMID: 14645904 DOI: 10.1099/vir.0.19449-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) Vif share limited homology and display species-specific activity, leading to speculation that Vif sequences could determine the block in HIV-1 replication in rhesus monkeys. To address this issue, we engineered a novel SIV recombinant in which HIV-1 vif replaced SIV vif in a SIVmac239 background. Insertion of HIV-1 vif into the SIV vif locus did not produce a replication-competent virus. Therefore, we inserted HIV-1 vif sequences into the SIV nef locus, which produced a recombinant that, in the absence of SIV vif sequences, replicated similarly to wild-type SIVmac239 in rhesus monkey PBMC. From these studies we conclude that the HIV-1 replication block in rhesus monkeys is almost certainly not Vif determined. These studies also suggest that SHIV/NVif or derivative sequences could be utilized for structure/function studies of HIV-1 Vif in experimentally infected rhesus monkeys.
Collapse
Affiliation(s)
- Sujata Kar
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520, USA
| | - Phoebe Cummings
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520, USA
| | - Louis Alexander
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Schindler M, Würfl S, Benaroch P, Greenough TC, Daniels R, Easterbrook P, Brenner M, Münch J, Kirchhoff F. Down-modulation of mature major histocompatibility complex class II and up-regulation of invariant chain cell surface expression are well-conserved functions of human and simian immunodeficiency virus nef alleles. J Virol 2003; 77:10548-56. [PMID: 12970439 PMCID: PMC228419 DOI: 10.1128/jvi.77.19.10548-10556.2003] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, it has been demonstrated that the human immunodeficiency virus type 1 (HIV-1) Nef from laboratory strains down-modulates cell surface expression of mature major histocompatibility complex class II (MHC-II) molecules, while up-regulating surface expression of the invariant chain (Ii) associated with immature MHC-II (P. Stumptner-Cuvelette, S. Morchoisne, M. Dugast, S. Le Gall, G. Raposo, O. Schwartz, and P. Benaroch, Proc. Natl. Acad. Sci. USA 98:12144-12149, 2001). These Nef functions could contribute to impaired CD4(+)-T-helper-cell responses found in HIV-1-infected patients with progressive disease. However, it is currently unknown whether nef alleles derived from HIV-1-infected individuals or from other primate lentiviruses also modulate MHC-II and Ii. In the present study, we demonstrate that both activities are conserved among primary HIV-1 nef alleles, as well as among HIV-2 and simian immunodeficiency virus (SIV) nef alleles. Down-modulation of mature MHC-II required high levels of Nef expression. In contrast, surface expression of Ii was already strongly increased at low to medium levels of Nef expression. Notably, nef genes derived from two of four HIV-1-infected long-term nonprogressors did not up-regulate Ii, whereas nef alleles derived from 10 individuals with progressive disease were active in this assay. Unlike other in vitro Nef functions, the average activity of Nef in modulating MHC-II and Ii surface expression did not change significantly during the course of infection. Mutational analysis confirmed that MHC-II down- and Ii up-regulation are functionally separable from each other and from other Nef functions and identified acidic residues, located at the base of the flexible C-proximal loop of Nef, that are critical for increased Ii expression. Overall, our results suggest that the ability of Nef to interfere with MHC-II antigen presentation might play a role in AIDS pathogenesis.
Collapse
|
27
|
Münk C, Brandt SM, Lucero G, Landau NR. A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc Natl Acad Sci U S A 2002; 99:13843-8. [PMID: 12368468 PMCID: PMC129785 DOI: 10.1073/pnas.212400099] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although nonhuman primates are genetically close to humans, their T cells do not support productive replication of HIV-1. In contrast, HIV-1 replicates in activated human CD4(+) T cells, monocytes, and metabolically active human cells of a variety of cell types become permissive for HIV-1 replication when transduced to express CD4 and CCR5 or CXCR4. The molecular basis of this species restriction to HIV-1 replication was investigated by using African green monkey and rhesus macaque cell lines that were stably transduced to express human CD4 and CCR5. The cells supported replication of cognate viruses [simian immunodeficiency virus from African green monkeys (SIV-AGM) and macaques (SIVmac239)] but did not support replication of an R5-tropic cytopathic HIV-1. A beta-lactamase-based HIV-1 entry assay was used to show that the virus efficiently entered the nonhuman primate cells. Provirus formation was reduced 50-fold compared with similarly infected human cells. Real-time PCR quantitation demonstrated that reverse transcription failed to initiate efficiently in the simian cells. The block to reverse transcription was overridden at multiplicity of infection >1 or by preincubation of the nonhuman primate cells with virus, a feature reminiscent of the Friend virus resistance gene-1 (FV-1), restriction to murine leukemia virus replication in mouse cells. Heterokaryon analysis in which human and simian cells were fused demonstrated that the block was dominant. These findings suggested that the primate cells contain a dominant inhibitor that prevents HIV-1 reverse transcription.
Collapse
Affiliation(s)
- Carsten Münk
- The Salk Institute for Biological Studies, Infectious Disease Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | | | | | | |
Collapse
|
28
|
Alexander L, Aquino-DeJesus MJ, Chan M, Andiman WA. Inhibition of human immunodeficiency virus type 1 (HIV-1) replication by a two-amino-acid insertion in HIV-1 Vif from a nonprogressing mother and child. J Virol 2002; 76:10533-9. [PMID: 12239333 PMCID: PMC136583 DOI: 10.1128/jvi.76.20.10533-10539.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied a 15-year-old girl, patient X, who has maintained consistently low plasma loads of human immunodeficiency virus type 1 (HIV-1) RNA, as well as normal and stable CD4(+) T-cell concentrations. She has presented no clinical manifestations of AIDS, despite having only received zidovudine monotherapy for a part of her life. Patient X's HIV-positive mother (patient Y) has also not progressed to AIDS and has never been treated with antiretroviral agents. HIV-1 isolated from patient X replicated poorly in human peripheral blood mononuclear cells (PBMC). In order to map the determinant of the poor growth of patient X's isolate, viral sequences from patient X were determined and examined for insertion or deletion mutations. These sequences contained a two-amino-acid insertion mutation in the Vif gene, which was also observed in uncultured PBMC acquired at different times. Furthermore, Vif sequences harbored by patient Y contained the identical mutation. These observations suggest that polymorphic HIV-1 was transmitted to patient X perinatally 15 years previously and has been maintained since that time. Recombinant HIV-1, engineered with Vif sequences from patient X, replicated in PBMC to levels approximately 20-fold lower than that of wild type. Removal of the insertion mutation from this recombinant restored replication efficiency to wild-type levels, while introduction of the insertion mutation into wild-type Vif sequences resulted in greatly decreased replication. Furthermore, Vif protein from patient X's HIV-1 was aberrantly cleaved, suggesting a mechanism for loss of Vif function. Since HIV-1 containing these sequences replicates poorly, the implication is that the two-amino-acid insertion mutation in Vif contributes significantly to the nonprogressor status of this mother and child. Further studies of these sequences might provide information regarding contributions of Vif structure and/or function to HIV-1 virulence.
Collapse
Affiliation(s)
- Louis Alexander
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
29
|
Messmer D, Bromberg J, Devgan G, Jacqué JM, Granelli-Piperno A, Pope M. Human immunodeficiency virus type 1 Nef mediates activation of STAT3 in immature dendritic cells. AIDS Res Hum Retroviruses 2002; 18:1043-50. [PMID: 12396456 DOI: 10.1089/08892220260235407] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Replication of immunodeficiency viruses (HIV-1 and SIV) in immature dendritic cell (DC)-T cell cocultures is dependent on Nef. In contrast, mature DCs promote the replication of wild-type and nef-defective SIV in concert with CD4(+) T cells. Transcription factor activation occurs on DC maturation and this study aimed to investigate whether Nef triggers similar events in immature DCs, rendering them more like mature DCs. Recombinant HIV nef-expressing adenovirus was used to selectively introduce nef into immature human or macaque DCs. These data provide the first evidence that the expression of HIV nef in immature DCs induced selective activation of STAT3 and, to a lesser extent, NF-kappaB. This highlights how Nef can signal primary immature DCs, suggesting one way in which Nef may modulate immature DCs to drive virus replication in the DC-T cell milieu.
Collapse
Affiliation(s)
- D Messmer
- North Shore LIJ Research Institute, Manhasset, New York 11030, USA
| | | | | | | | | | | |
Collapse
|
30
|
Simard MC, Chrobak P, Kay DG, Hanna Z, Jothy S, Jolicoeur P. Expression of simian immunodeficiency virus nef in immune cells of transgenic mice leads to a severe AIDS-like disease. J Virol 2002; 76:3981-95. [PMID: 11907238 PMCID: PMC136064 DOI: 10.1128/jvi.76.8.3981-3995.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to study the functions of simian immunodeficiency virus (SIV) Nef in vivo in a small-animal model, we constructed transgenic (Tg) mice expressing the SIV(mac)239 nef gene in the natural target cells of the virus under the control of the human CD4 gene promoter (CD4C). These CD4C/SHIV-nef(SIV) Tg mice develop a severe AIDS-like disease, with manifestations including premature death, failure to thrive or weight loss, wasting, thymic atrophy, an especially low number of peripheral CD8+ T cells as well as a low number of peripheral CD4+ T cells, diarrhea, splenomegaly, and kidney (interstitial nephritis, segmental glomerulosclerosis), lung (lymphocytic interstitial pneumonitis), and heart disease. In addition, these Tg mice fail to mount a class-switched antibody response after immunization with ovalbumin, they produce anti-DNA autoantibodies, and some of them develop Pneumocystis carinii lung infections. All these results suggest a generalized Nef-induced immunodeficiency. The low numbers of peripheral CD8+ and CD4+ T cells are likely to reflect a thymic defect and may be similar to the DiGeorge-like "thymic defect" immunophenotype described for a subgroup of human immunodeficiency virus type 1-infected children. Therefore, it appears that SIV Nef alone expressed in mice, in appropriate cell types and at sufficient levels, can elicit many of the phenotypes of simian and human AIDS. These Tg mice should be instrumental in studying the pathogenesis of SIV Nef-induced phenotypes.
Collapse
Affiliation(s)
- Marie-Chantal Simard
- Laboratory of Molecular Biology, Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Primate lentiviruses encode a small protein designated Nef that has been shown to be a major determinant of virus pathogenicity. Nef regulates multiple host factors in order to optimize the cellular environment for virus replication. The mechanisms by which this small protein modulates distinct host cell properties provide intriguing insight into the intricate interaction between virus and host.
Collapse
Affiliation(s)
- Vivek K Arora
- Department of Internal Medicine, Division of Infectious Diseases Y9.206, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA.
| | | | | |
Collapse
|
32
|
Münch J, Adam N, Finze N, Stolte N, Stahl-Hennig C, Fuchs D, Ten Haaft P, Heeney JL, Kirchhoff F. Simian immunodeficiency virus in which nef and U3 sequences do not overlap replicates efficiently in vitro and in vivo in rhesus macaques. J Virol 2001; 75:8137-46. [PMID: 11483759 PMCID: PMC115058 DOI: 10.1128/jvi.75.17.8137-8146.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nef genes of human immunodeficiency virus and simian immunodeficiency virus (SIV) overlap about 80% of the U3 region of the 3' long terminal repeat (LTR) and contain several essential cis-acting elements (here referred to as the TPI region): a T-rich region, the polypurine tract, and attachment (att) sequences required for integration. We inactivated the TPI region in the nef reading frame of the pathogenic SIVmac239 clone (239wt) by 13 silent point mutations. To restore viral infectivity, intact cis-regulatory elements were inserted just downstream of the mutated nef gene. The resulting SIV genome contains U3 regions that are 384 bp shorter than the 517-bp 239wt U3 region. Overall, elimination of the duplicated Nef coding sequences truncates the proviral genome by 350 bp. Nonetheless, it contains all known coding sequences and cis-acting elements. The TPI mutant virus expressed functional Nef and replicated like 239wt in all cell culture assays and in vivo in rhesus macaques. Notably, these SIVmac constructs allow us to study Nef function in the context of replication-competent viruses without the restrictions of overlapping LTR sequences and important cis-acting elements. The genomes of all known primate lentiviruses contain a large overlap between nef and the U3 region. We demonstrate that this conserved genomic organization is not obligatory for efficient viral replication and pathogenicity.
Collapse
Affiliation(s)
- J Münch
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
SIV and HIV Nef proteins disrupt T-cell receptor machinery by down-modulating cell surface expression of CD4 and expression or signaling of CD3-TCR. Nef also down-modulates class I major histocompatibility complex (MHC) surface expression. We show that SIV and HIV-1 Nefs down-modulate CD28, a major co-stimulatory receptor that mediates effective T-cell activation, by accelerating CD28 endocytosis. The effects of Nef on CD28, CD4, CD3 and class I MHC expression are all genetically separable, indicating that all are selected independently. In cells expressing a Nef-green fluorescent protein (GFP) fusion, CD28 co-localizes with the AP-2 clathrin adaptor and Nef-GFP. Mutations that disrupt Nef interaction with AP-2 disrupt CD28 down-regulation. Furthermore, HIV and SIV Nefs use overlapping but distinct target sites in the membrane-proximal region of the CD28 cytoplasmic domain. Thus, Nef probably induces CD28 endocytosis via the AP-2 pathway, and this involves a ternary complex containing Nef, AP-2 and CD28. The likely consequence of the concerted down-regulation of CD28, CD4 and/or CD3 by Nef is disruption of antigen-specific signaling machineries in infected T cells following a productive antigen recognition event.
Collapse
Affiliation(s)
| | | | - Jacek Skowronski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
Corresponding author e-mail:
| |
Collapse
|
34
|
Alexander L, Denekamp L, Czajak S, Desrosiers RC. Suboptimal nucleotides in the infectious, pathogenic simian immunodeficiency virus clone SIVmac239. J Virol 2001; 75:4019-22. [PMID: 11264395 PMCID: PMC114897 DOI: 10.1128/jvi.75.8.4019-4022.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed virus sequences in two monkeys infected with SIVmac239 and two monkeys infected with SHIVnef that maintained high, persisting viral loads. Sequence changes were observed consistently at four loci in all four animals: a single nucleotide change in the Lys-tRNA primer binding site in the 5' long terminal repeat; two nucleotide changes that resulted in two amino acid changes in the pol gene product; and a single nucleotide change in the region of the simian immunodeficiency virus genome where the rev and env genes overlap, resulting in changes in the predicted amino acid sequences of both gene products. None of these mutations were seen in short-term cultures of CEMx174 cells infected with SIVmac239 or SHIVnef. At all four positions in all four animals, the new sequences represented consensus sequences for primate lentiviruses, whereas the inoculum sequences at these four loci have either never been or rarely been reported outside of SIVmac239. Thus, although cloned SIVmac239 is consistently pathogenic and consistently induces high viral load set points, it is clearly less than optimal at these four nucleotide positions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Consensus Sequence/genetics
- Evolution, Molecular
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, nef/physiology
- Gene Products, pol/chemistry
- Gene Products, pol/genetics
- Gene Products, rev/chemistry
- Gene Products, rev/genetics
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- HIV-1/genetics
- HIV-1/pathogenicity
- HIV-1/physiology
- Macaca mulatta/virology
- Molecular Sequence Data
- Mutation/genetics
- RNA, Transfer, Lys/genetics
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Alignment
- Simian Immunodeficiency Virus/classification
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/pathogenicity
- Simian Immunodeficiency Virus/physiology
- Terminal Repeat Sequences/genetics
- Viral Load
- nef Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- L Alexander
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
35
|
Carl S, Greenough TC, Krumbiegel M, Greenberg M, Skowronski J, Sullivan JL, Kirchhoff F. Modulation of different human immunodeficiency virus type 1 Nef functions during progression to AIDS. J Virol 2001; 75:3657-65. [PMID: 11264355 PMCID: PMC114857 DOI: 10.1128/jvi.75.8.3657-3665.2001] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Nef protein has several independent functions that might contribute to efficient viral replication in vivo. Since HIV-1 adapts rapidly to its host environment, we investigated if different Nef properties are associated with disease progression. Functional analysis revealed that nef alleles obtained during late stages of infection did not efficiently downmodulate class I major histocompatibility complex but were highly active in the stimulation of viral replication. In comparison, functional activity in downregulation of CD4 and enhancement of HIV-1 infectivity were maintained or enhanced after AIDS progression. Our results demonstrate that various Nef activities are modulated during the course of HIV-1 infection to maintain high viral loads at different stages of disease progression. These findings suggest that all in vitro Nef functions investigated contribute to AIDS pathogenesis and indicate that nef variants with increased pathogenicity emerge in a significant number of HIV-1-infected individuals.
Collapse
Affiliation(s)
- S Carl
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Hirsch VM, Lifson JD. Simian immunodeficiency virus infection of monkeys as a model system for the study of AIDS pathogenesis, treatment, and prevention. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:437-77. [PMID: 11013771 DOI: 10.1016/s1054-3589(00)49034-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As presented in this review, there are a number of different models of both natural and experimental infection of monkeys with primate lentiviruses. There are numerous different viruses and multiple different monkey species, making for a potentially large number of different combinations. The fact that each different combination of virus isolate and host macaque species may show different behavior underscores the need to understand the different models and their key features. On the one hand, this diversity of systems underscores the need to provide some standardization of the systems used for certain kinds of studies, such as vaccine evaluations, in order to facilitate the comparison of results obtained in different experiments, but in essentially the same experimental system. On the other hand, the rich diversity of different systems, with different features and behaviors, represents a tremendous resource, among other things allowing the investigator to select the system that best recapitulates particular aspects of human HIV infection for study in a relevant nonhuman primate model. Such studies have provided, and may be expected to continue to provide, important insights to guide HIV treatment and vaccine development in the future.
Collapse
Affiliation(s)
- V M Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, Maryland 20852, USA
| | | |
Collapse
|
37
|
Arora VK, Molina RP, Foster JL, Blakemore JL, Chernoff J, Fredericksen BL, Garcia JV. Lentivirus Nef specifically activates Pak2. J Virol 2000; 74:11081-7. [PMID: 11070003 PMCID: PMC113188 DOI: 10.1128/jvi.74.23.11081-11087.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef proteins from human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) have been found to associate with an active cellular serine/threonine kinase designated Nef-associated kinase (Nak). The exact identity of Nak remains controversial, with two recent studies indicating that Nak may be either Pak1 or Pak2. In this study, we investigated the hypothesis that such discrepancies arise from the use of different Nef alleles or different cell types by individual investigators. We first confirm that Pak2 but not Pak1 is cleaved by caspase 3 in vitro and then demonstrate that Nak is caspase 3 sensitive, regardless of Nef allele or cell type used. We tested nef alleles from three lentiviruses (HIV-1 SF2, HIV-1 NL4-3, and SIVmac239) and used multiple cell lines of myeloid, lymphoid, and nonhematopoietic origin to evaluate the identity of Nak. We demonstrate that ectopically expressed Pak2 can substitute for Nak, while ectopically expressed Pak1 cannot. We then show that Nef specifically mediates the robust activation of ectopically expressed Pak2, directly demonstrating that Nef regulates Pak2 activity and does not merely associate with activated Pak2. We report that most of the active Pak2 is found bound to Nef, although a fraction is not. In contrast, only a small amount of Nef is found associated with Pak2. We conclude that Nak is Pak2 and that Nef specifically mediates Pak2 activation in a low-abundance complex. These results will facilitate both the elucidation of the role of Nef in pathogenesis and the development of specific inhibitors of this highly conserved function of Nef.
Collapse
Affiliation(s)
- V K Arora
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Barber SA, Maughan MF, Roos JW, Clements JE. Two amino acid substitutions in the SIV Nef protein mediate associations with distinct cellular kinases. Virology 2000; 276:329-38. [PMID: 11040124 DOI: 10.1006/viro.2000.0558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A functional Nef protein is crucial in vivo for viral replication leading to pathogenesis in SIV-infected macaques. Moreover, a full-length Nef protein is required for optimal virus replication in primary cells, and both HIV and SIV Nef proteins enhance virion infectivity. Enhanced infectivity may result in part from the ability of Nef to incorporate cellular kinases into virions. In two previous reports, we compared in vitro kinase profiles of SIV recombinant clones that express nef genes derived either from the prototypic lymphocyte-tropic SIVmac239, clone SIV/Fr-2, or from our neurovirulent clone SIV/17E-Fr. While the SIV/Fr-2 Nef protein associated with the previously described PAK-related kinase and an unidentified serine kinase present in a Nef-associated kinase complex (NAKC), SIV/17E-Fr Nef was found to associate with a novel serine kinase activity that was biochemically distinct from both PAK and NAKC. Interestingly, while both Nef proteins were incorporated into virus particles, Nef-associated kinase activity was detected only in virions containing the SIV/17E-Fr Nef protein. Because sequence analysis identified only five amino acids that differed between the Nef proteins of SIV/Fr-2 and SIV/17E-Fr, we were able to evaluate the contribution of each amino acid to Nef-associated kinase activity as well as virus infectivity by constructing a panel of SIV clones containing individual reversions of each differing amino acid in SIV/17E-Fr Nef to the corresponding amino acid in SIV/Fr-2 Nef. In this report, we identify previously uncharacterized amino acids in the N terminus and the conserved core domain of Nef that are essential for the detection of Nef/kinase interactions as well as Nef phosphorylation during SIV infection. Further, via a novel infectivity assay recently developed in our laboratory that utilizes CEMX174 reporter cells stably expressing an SIV/LTR-luciferase construct, we find no direct correlation between specific Nef kinase associations and enhanced virion infectivity.
Collapse
Affiliation(s)
- S A Barber
- Division of Comparative Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland, 21205, USA
| | | | | | | |
Collapse
|
39
|
Schibeci SD, Clegg AO, Biti RA, Sagawa K, Stewart GJ, Williamson P. HIV-Nef enhances interleukin-2 production and phosphatidylinositol 3-kinase activity in a human T cell line. AIDS 2000; 14:1701-7. [PMID: 10985305 DOI: 10.1097/00002030-200008180-00003] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The Nef protein has a major influence on disease pathogenesis in HIV-infected individuals. The objective of the present study was to examine the effects of Nef on T lymphocyte activation and associated signalling events. DESIGN A recombinant vaccinia expression system was used to express Nef in a human T cell line. Stimulation of these cells with anti-CD28 antibody, and either phorbol 12-myristate 13-acetate (PMA) or anti-CD3, activates signal transduction pathways and results in IL-2 production and IL-2 receptor alpha-chain (CD25) expression. Cellular responses were examined in cells expressing either Nef or an irrelevant control protein. METHODS Activation of signalling was assessed by immunoblot analysis, or by in-vitro phosphatidylinositol 3-kinase (PI3K) assays. IL-2 production was measured by enzyme-linked immunosorbent assay, and CD25 cell surface expression was examined using flow cytometry. RESULTS Infection of cells with recombinant vaccinia expressing HIV-nef resulted in a marked increase in the production of IL-2 when cells were activated. The enhanced IL-2 response was accompanied by an increase in the level of PI3K activity. IL-2 production remained sensitive to inhibition with the PI3K competitive inhibitor Ly294002, and to the fungal macrolide, rapamycin. In contrast, CD25 expression was not affected, and there were no measurable changes to nuclear factor kappaB (NFkappaB) activation pathways. CONCLUSION Enhanced IL-2 production in stimulated T cells expressing HIV-Nef is associated with increased activation of PI3K-dependent signalling pathways. The results support a model in which Nef affects HIV disease progression by distorting T cell responses.
Collapse
Affiliation(s)
- S D Schibeci
- Department of Clinical Immunology, Westmead Hospital, NSW, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Swigut T, Iafrate AJ, Muench J, Kirchhoff F, Skowronski J. Simian and human immunodeficiency virus Nef proteins use different surfaces to downregulate class I major histocompatibility complex antigen expression. J Virol 2000; 74:5691-701. [PMID: 10823877 PMCID: PMC112057 DOI: 10.1128/jvi.74.12.5691-5701.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) Nef proteins are related regulatory proteins that share several functions, including the ability to downregulate class I major histocompatibility complex (MHC) and CD4 expression on the cell surface and to alter T-cell-receptor-initiated signal transduction in T cells. We compared the mechanisms used by SIV mac239 Nef and HIV-1 Nef to downregulate class I MHC and found that the ability of SIV Nef to downregulate class I MHC requires a unique C-terminal region of the SIV mac239 Nef molecule which is not found in HIV-1 Nef. Interestingly, mutation of the PxxP motif in SIV Nef, unlike in HIV-1 Nef, does not affect class I MHC downregulation. We also found that downregulation of class I MHC by SIV Nef requires a conserved tyrosine in the cytoplasmic domain of the class I MHC heavy chain and involves accelerated endocytosis of class I complexes, as previously found with HIV-1 Nef. Thus, while SIV and HIV-1 Nef proteins use a similar mechanism to downregulate class I MHC expression, they have evolved different surfaces for molecular interactions with cell factors that regulate class I MHC traffic. Mutations in the C-terminal domain of SIV mac239 Nef selectively disrupt class I MHC downregulation, having no detectable effect on other functions of Nef, such as the downregulation of CD4 and CD3 surface expression, the stimulation of SIV virion infectivity, and the induction of SIV replication from T cells infected in the absence of stimulation. The resulting mutants will be useful reagents for studying the importance of class I MHC downregulation for SIV replication and AIDS pathogenesis in infected rhesus macaques.
Collapse
Affiliation(s)
- T Swigut
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
41
|
Alexander L, Weiskopf E, Greenough TC, Gaddis NC, Auerbach MR, Malim MH, O'Brien SJ, Walker BD, Sullivan JL, Desrosiers RC. Unusual polymorphisms in human immunodeficiency virus type 1 associated with nonprogressive infection. J Virol 2000; 74:4361-76. [PMID: 10756051 PMCID: PMC111953 DOI: 10.1128/jvi.74.9.4361-4376.2000] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Factors accounting for long-term nonprogression may include infection with an attenuated strain of human immunodeficiency virus type 1 (HIV-1), genetic polymorphisms in the host, and virus-specific immune responses. In this study, we examined eight individuals with nonprogressing or slowly progressing HIV-1 infection, none of whom were homozygous for host-specific polymorphisms (CCR5-Delta32, CCR2-64I, and SDF-1-3'A) which have been associated with slower disease progression. HIV-1 was recovered from seven of the eight, and recovered virus was used for sequencing the full-length HIV-1 genome; full-length HIV-1 genome sequences from the eighth were determined following amplification of viral sequences directly from peripheral blood mononuclear cells (PBMC). Longitudinal studies of one individual with HIV-1 that consistently exhibited a slow/low growth phenotype revealed a single amino acid deletion in a conserved region of the gp41 transmembrane protein that was not seen in any of 131 envelope sequences in the Los Alamos HIV-1 sequence database. Genetic analysis also revealed that five of the eight individuals harbored HIV-1 with unusual 1- or 2-amino-acid deletions in the Gag sequence compared to subgroup B Gag consensus sequences. These deletions in Gag have either never been observed previously or are extremely rare in the database. Three individuals had deletions in Nef, and one had a 4-amino-acid insertion in Vpu. The unusual polymorphisms in Gag, Env, and Nef described here were also found in stored PBMC samples taken 3 to 11 years prior to, or in one case 4 years subsequent to, the time of sampling for the original sequencing. In all, seven of the eight individuals exhibited one or more unusual polymorphisms; a total of 13 unusual polymorphisms were documented in these seven individuals. These polymorphisms may have been present from the time of initial infection or may have appeared in response to immune surveillance or other selective pressures. Our results indicate that unusual, difficult-to-revert polymorphisms in HIV-1 can be found associated with slow progression or nonprogression in a majority of such cases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cells, Cultured
- Chemokine CXCL12
- Chemokines, CXC/genetics
- Disease Progression
- Gene Products, gag/metabolism
- Gene Products, nef/genetics
- Gene Products, nef/physiology
- Gene Products, vpr/metabolism
- Genotype
- HIV Infections/physiopathology
- HIV Infections/virology
- HIV-1/classification
- HIV-1/genetics
- HIV-1/growth & development
- HIV-1/immunology
- HLA Antigens/classification
- HLA Antigens/genetics
- Haplotypes
- Humans
- Macaca mulatta
- Molecular Sequence Data
- Polymorphism, Genetic
- Receptors, CCR2
- Receptors, CCR5/genetics
- Receptors, Chemokine
- Receptors, Cytokine/genetics
- Sequence Homology, Amino Acid
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/physiology
- gag Gene Products, Human Immunodeficiency Virus
- nef Gene Products, Human Immunodeficiency Virus
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- L Alexander
- New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Messmer D, Ignatius R, Santisteban C, Steinman RM, Pope M. The decreased replicative capacity of simian immunodeficiency virus SIVmac239Delta(nef) is manifest in cultures of immature dendritic cellsand T cells. J Virol 2000; 74:2406-13. [PMID: 10666271 PMCID: PMC111722 DOI: 10.1128/jvi.74.5.2406-2413.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of simian immunodeficiency virus SIVmac239Delta(nef) (Delta(nef)) to macaques results in attenuated replication of the virus in most animals and ultimately induces protection against challenge with some pathogenic, wild-type SIV strains. It has been difficult, however, to identify a culture system in which the replication of Delta(nef) is severely reduced relative to that of the wild type. We have utilized a primary culture system consisting of blood-derived dendritic cells (DCs) and autologous T cells. When the DCs were fully differentiated or mature, the DC-CD4(+) T-cell mixtures supported replication of both the parental SIV strain, 239 (the wild type), and its mutant with nef deleted (Delta(nef)), irrespective of virus dose and the cell type introducing the virus to the coculture. In contrast, when immature DCs were exposed to Delta(nef) and cocultured with T cells, virus replication was significantly lower than that of the wild type. Activation of the cultures with a superantigen allowed both Delta(nef) and the wild type to replicate comparably in immature DC-T-cell cultures. Immature DCs, which, it has been hypothesized, capture and transmit SIV in vivo, are deficient in supporting replication of Delta(nef) in vitro and may contribute to the reduced pathogenicity of Delta(nef) in vivo.
Collapse
Affiliation(s)
- D Messmer
- Laboratory of Cellular Immunology and Physiology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
43
|
Mandell CP, Reyes RA, Cho K, Sawai ET, Fang AL, Schmidt KA, Luciw PA. SIV/HIV Nef recombinant virus (SHIVnef) produces simian AIDS in rhesus macaques. Virology 1999; 265:235-51. [PMID: 10600596 DOI: 10.1006/viro.1999.0051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The simian immunodeficiency virus (SIV) nef gene is an important determinant of viral load and acquired immunodeficiency syndrome (AIDS) in macaques. A role(s) for the HIV-1 nef gene in infection and pathogenesis was investigated by constructing recombinant viruses in which the nef gene of the pathogenic molecular clone SIVmac239 nef was replaced with either HIV-1sf2nef or HIV-1sf33nef. These chimeras, designated SHIV-2nef and SHIV-33nef, expressed HIV-1 Nef protein and replicated efficiently in cultures of rhesus macaque lymphoid cells. In two SHIV-2nef-infected juvenile rhesus macaques and in one of two SHIV-33nef-infected juvenile macaques, virus loads remained at low levels in both peripheral blood and lymph nodes in acute and chronic phases of infection (for >83 weeks). In striking contrast, the second SHIV-33nef-infected macaque showed high virus loads during the chronic stage of infection (after 24 weeks). CD4+ T-cell numbers declined dramatically in this latter animal, which developed simian AIDS (SAIDS) at 47-53 weeks after inoculation; virus was recovered at necropsy at 53 weeks and designated SHIV-33Anef. Sequence analysis of the HIV-1sf33 nef gene in SHIV-33Anef revealed four consistent amino acid changes acquired during passage in vivo. Interestingly, one of these consensus mutations generated a tyr-x-x-leu (Y-X-X-L) motif in the HIV-1sf33 Nef protein. This motif is characteristic of certain endocytic targeting sequences and also resembles a src-homology region-2 (SH-2) motif found in many cellular signaling proteins. Four additional macaques infected with SHIV-33Anef contained high virus loads, and three of these animals progressed to fatal SAIDS. Several of the consensus amino acid changes in Nef, including Y-X-X-L motif, were retained in these recipient animals exhibiting high virus load and disease. In summary, these findings indicate that the SHIV-33Anef chimera is pathogenic in rhesus macaques and that this approach, i.e., construction of chimeric viruses, will be important for analyzing the function(s) of HIV-1 nef genes in immunodeficiency in vivo, testing antiviral therapies aimed at inhibiting AIDS, and investigating adaptation of this HIV-1 accessory gene to the macaque host.
Collapse
Affiliation(s)
- C P Mandell
- Department of Medical Pathology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|