1
|
Chen S, Liu F, Yang A, Shang K. For better or worse: crosstalk of parvovirus and host DNA damage response. Front Immunol 2024; 15:1324531. [PMID: 38464523 PMCID: PMC10920228 DOI: 10.3389/fimmu.2024.1324531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Parvoviruses are a group of non-enveloped DNA viruses that have a broad spectrum of natural infections, making them important in public health. NS1 is the largest and most complex non-structural protein in the parvovirus genome, which is indispensable in the life cycle of parvovirus and is closely related to viral replication, induction of host cell apoptosis, cycle arrest, DNA damage response (DDR), and other processes. Parvovirus activates and utilizes the DDR pathway to promote viral replication through NS1, thereby increasing pathogenicity to the host cells. Here, we review the latest progress of parvovirus in regulating host cell DDR during the parvovirus lifecycle and discuss the potential of cellular consequences of regulating the DDR pathway, targeting to provide the theoretical basis for further elucidation of the pathogenesis of parvovirus and development of new antiviral drugs.
Collapse
Affiliation(s)
- Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Feifei Liu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Aofei Yang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Lettin L, Erbay B, Blair GE. Viruses and Cajal Bodies: A Critical Cellular Target in Virus Infection? Viruses 2023; 15:2311. [PMID: 38140552 PMCID: PMC10747631 DOI: 10.3390/v15122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Nuclear bodies (NBs) are dynamic structures present in eukaryotic cell nuclei. They are not bounded by membranes and are often considered biomolecular condensates, defined structurally and functionally by the localisation of core components. Nuclear architecture can be reorganised during normal cellular processes such as the cell cycle as well as in response to cellular stress. Many plant and animal viruses target their proteins to NBs, in some cases triggering their structural disruption and redistribution. Although not all such interactions have been well characterised, subversion of NBs and their functions may form a key part of the life cycle of eukaryotic viruses that require the nucleus for their replication. This review will focus on Cajal bodies (CBs) and the viruses that target them. Since CBs are dynamic structures, other NBs (principally nucleoli and promyelocytic leukaemia, PML and bodies), whose components interact with CBs, will also be considered. As well as providing important insights into key virus-host cell interactions, studies on Cajal and associated NBs may identify novel cellular targets for development of antiviral compounds.
Collapse
Affiliation(s)
- Lucy Lettin
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
- Moleküler Biyoloji ve Genetik Bölümü, Fen Fakültesi, Van Yuzuncu Yil University, Van 65140, Türkiye
| | - G. Eric Blair
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| |
Collapse
|
3
|
Rosemarie Q, Sugden B. Five families of diverse DNA viruses comprehensively restructure the nucleus. PLoS Biol 2023; 21:e3002347. [PMID: 37930945 PMCID: PMC10627436 DOI: 10.1371/journal.pbio.3002347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Many viruses have evolved ways to restructure their host cell's nucleus profoundly and unexpectedly upon infection. In particular, DNA viruses that need to commandeer their host's cellular synthetic functions to produce their progeny can induce the condensation and margination of host chromatin during productive infection, a phenomenon known as virus-induced reorganization of cellular chromatin (ROCC). These ROCC-inducing DNA viruses belong to 5 families (herpesviruses, baculoviruses, adenoviruses, parvoviruses, and geminiviruses) that infect a wide range of hosts and are important for human and ecosystem health, as well as for biotechnology. Although the study of virus-induced ROCC is in its infancy, investigations are already raising important questions, such as why only some DNA viruses that replicate their genomes in the nucleus elicit ROCC. Studying the shared and distinct properties of ROCC-inducing viruses will provide valuable insights into viral reorganization of host chromatin that could have implications for future therapies that target the viral life cycle.
Collapse
Affiliation(s)
- Quincy Rosemarie
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bill Sugden
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Armién AG, Polon R, Rejmanek D, Moeller RB, Crossley BM. Outbreak of densovirus with high mortality in a commercial mealworm ( Tenebrio molitor) farm: A molecular, bright-field, and electron microscopic characterization. Vet Pathol 2023; 60:689-703. [PMID: 37341069 PMCID: PMC10469485 DOI: 10.1177/03009858231180488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Mealworms are one of the most economically important insects in large-scale production for human and animal nutrition. Densoviruses are highly pathogenic for invertebrates and exhibit an extraordinary level of diversity which rivals that of their hosts. Molecular, clinical, histological, and electron microscopic characterization of novel densovirus infections is of utmost economic and ecological importance. Here, we describe an outbreak of densovirus with high mortality in a commercial mealworm (Tenebrio molitor) farm. Clinical signs included inability to prehend food, asymmetric locomotion evolving to nonambulation, dehydration, dark discoloration, and death. Upon gross examination, infected mealworms displayed underdevelopment, dark discoloration, larvae body curvature, and organ/tissue softness. Histologically, there was massive epithelial cell death, and cytomegaly and karyomegaly with intranuclear inclusion (InI) bodies in the epidermis, pharynx, esophagus, rectum, tracheae, and tracheoles. Ultrastructurally, these InIs represented a densovirus replication and assembly complex composed of virus particles ranging from 23.79 to 26.99 nm in diameter, as detected on transmission electron microscopy. Whole-genome sequencing identified a 5579-nucleotide-long densovirus containing 5 open reading frames. A phylogenetic analysis of the mealworm densovirus showed it to be closely related to several bird- and bat-associated densoviruses, sharing 97% to 98% identity. Meanwhile, the nucleotide similarity to a mosquito, cockroach, and cricket densovirus was 55%, 52%, and 41%, respectively. As this is the first described whole-genome characterization of a mealworm densovirus, we propose the name Tenebrio molitor densovirus (TmDNV). In contrast to polytropic densoviruses, this TmDNV is epitheliotropic, primarily affecting cuticle-producing cells.
Collapse
|
5
|
Bunke LE, Larsen CIS, Pita-Aquino JN, Jones IK, Majumder K. The DNA Damage Sensor MRE11 Regulates Efficient Replication of the Autonomous Parvovirus Minute Virus of Mice. J Virol 2023; 97:e0046123. [PMID: 37098896 PMCID: PMC10231137 DOI: 10.1128/jvi.00461-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/27/2023] Open
Abstract
Parvoviruses are single-stranded DNA viruses that utilize host proteins to vigorously replicate in the nuclei of host cells, leading to cell cycle arrest. The autonomous parvovirus, minute virus of mice (MVM), forms viral replication centers in the nucleus which are adjacent to cellular DNA damage response (DDR) sites, many of which are fragile genomic regions prone to undergoing DDR during the S phase. Since the cellular DDR machinery has evolved to transcriptionally suppress the host epigenome to maintain genomic fidelity, the successful expression and replication of MVM genomes at these cellular sites suggest that MVM interacts with DDR machinery distinctly. Here, we show that efficient replication of MVM requires binding of the host DNA repair protein MRE11 in a manner that is independent of the MRE11-RAD50-NBS1 (MRN) complex. MRE11 binds to the replicating MVM genome at the P4 promoter, remaining distinct from RAD50 and NBS1, which associate with cellular DNA break sites to generate DDR signals in the host genome. Ectopic expression of wild-type MRE11 in CRISPR knockout cells rescues virus replication, revealing a dependence on MRE11 for efficient MVM replication. Our findings suggest a new model utilized by autonomous parvoviruses to usurp local DDR proteins that are crucial for viral pathogenesis and distinct from those of dependoparvoviruses, like adeno-associated virus (AAV), which require a coinfected helper virus to inactivate the local host DDR. IMPORTANCE The cellular DNA damage response (DDR) machinery protects the host genome from the deleterious consequences of DNA breaks and recognizes invading viral pathogens. DNA viruses that replicate in the nucleus have evolved distinct strategies to evade or usurp these DDR proteins. We have discovered that the autonomous parvovirus, MVM, which is used to target cancer cells as an oncolytic agent, depends on the initial DDR sensor protein MRE11 to express and replicate efficiently in host cells. Our studies reveal that the host DDR interacts with replicating MVM molecules in ways that are distinct from viral genomes being recognized as simple broken DNA molecules. These findings suggest that autonomous parvoviruses have evolved distinct mechanisms to usurp DDR proteins, which can be used to design potent DDR-dependent oncolytic agents.
Collapse
Affiliation(s)
| | - Clairine I. S. Larsen
- Institute for Molecular Virology, Madison, Wisconsin, USA
- Cell and Molecular Biology Graduate Program, Madison, Wisconsin, USA
| | - Jessica N. Pita-Aquino
- Institute for Molecular Virology, Madison, Wisconsin, USA
- Cell and Molecular Biology Graduate Program, Madison, Wisconsin, USA
| | | | - Kinjal Majumder
- Institute for Molecular Virology, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, Madison, Wisconsin, USA
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
6
|
López-Astacio RA, Adu OF, Goetschius DJ, Lee H, Weichert WS, Wasik BR, Frueh SP, Alford BK, Voorhees IE, Flint JF, Saddoris S, Goodman LB, Holmes EC, Hafenstein SL, Parrish CR. Viral capsid, antibody, and receptor interactions: experimental analysis of the antibody escape evolution of canine parvovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524668. [PMID: 36711712 PMCID: PMC9882321 DOI: 10.1101/2023.01.18.524668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Canine parvovirus (CPV) is a small non-enveloped single-stranded DNA virus that causes serious diseases in dogs worldwide. The original strain of the virus (CPV-2) emerged in dogs during the late-1970s due to a host range switch of a virus similar to the feline panleukopenia virus (FPV) that infected another host. The virus that emerged in dogs had altered capsid receptor- and antibody-binding sites, with some changes affecting both functions. Further receptor and antibody binding changes arose when the virus became better adapted to dogs or to other hosts. Here, we use in vitro selection and deep sequencing to reveal how two antibodies with known interactions select for escape mutations in CPV. The antibodies bind two distinct epitopes, and one largely overlaps the host receptor binding site. We also engineered antibody variants with altered binding structures. Viruses were passaged with the wild type or mutated antibodies, and their genomes deep sequenced during the selective process. A small number of mutations were detected only within the capsid protein gene during the first few passages of selection, and most sites remained polymorphic or were slow to go to fixation. Mutations arose both within and outside the antibody binding footprints on the capsids, and all avoided the TfR-binding footprint. Many selected mutations matched those that have arisen in the natural evolution of the virus. The patterns observed reveal the mechanisms by which these variants have been selected in nature and provide a better understanding of the interactions between antibody and receptor selections. IMPORTANCE Antibodies protect animals against infection by many different viruses and other pathogens, and we are gaining new information about the epitopes that induce antibody responses against viruses and the structures of the bound antibodies. However, less is known about the processes of antibody selection and antigenic escape and the constraints that apply in this system. Here, we use an in vitro model system and deep genome sequencing to reveal the mutations that arise in the virus genome during selection by each of two monoclonal antibodies or their engineered variants. High-resolution structures of each of the Fab: capsid complexes revealed their binding interactions. The engineered forms of the wild-type antibodies or mutant forms allowed us to examine how changes in antibody structure influence the mutational selection patterns seen in the virus. The results shed light on the processes of antibody binding, neutralization escape, and receptor binding, and likely have parallels for many other viruses.
Collapse
|
7
|
Knipe DM, Prichard A, Sharma S, Pogliano J. Replication Compartments of Eukaryotic and Bacterial DNA Viruses: Common Themes Between Different Domains of Host Cells. Annu Rev Virol 2022; 9:307-327. [PMID: 36173697 DOI: 10.1146/annurev-virology-012822-125828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Surendra Sharma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
8
|
Wu C, Holehouse AS, Leung DW, Amarasinghe GK, Dutch RE. Liquid Phase Partitioning in Virus Replication: Observations and Opportunities. Annu Rev Virol 2022; 9:285-306. [PMID: 35709511 PMCID: PMC11331907 DOI: 10.1146/annurev-virology-093020-013659] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses frequently carry out replication in specialized compartments within cells. The effect of these structures on virus replication is poorly understood. Recent research supports phase separation as a foundational principle for organization of cellular components with the potential to influence viral replication. In this review, phase separation is described in the context of formation of viral replication centers, with an emphasis on the nonsegmented negative-strand RNA viruses. Consideration is given to the interplay between phase separation and the critical processes of viral transcription and genome replication, and the role of these regions in pathogen-host interactions is discussed. Finally, critical questions that must be addressed to fully understand how phase separation influences viral replication and the viral life cycle are presented, along with information about new approaches that could be used to make important breakthroughs in this emerging field.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Science and Engineering Living Systems, Washington University, St. Louis, Missouri, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA;
| |
Collapse
|
9
|
Mattola S, Hakanen S, Salminen S, Aho V, Mäntylä E, Ihalainen TO, Kann M, Vihinen-Ranta M. Concepts to Reveal Parvovirus-Nucleus Interactions. Viruses 2021; 13:1306. [PMID: 34372512 PMCID: PMC8310053 DOI: 10.3390/v13071306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 01/23/2023] Open
Abstract
Parvoviruses are small single-stranded (ss) DNA viruses, which replicate in the nucleoplasm and affect both the structure and function of the nucleus. The nuclear stage of the parvovirus life cycle starts at the nuclear entry of incoming capsids and culminates in the successful passage of progeny capsids out of the nucleus. In this review, we will present past, current, and future microscopy and biochemical techniques and demonstrate their potential in revealing the dynamics and molecular interactions in the intranuclear processes of parvovirus infection. In particular, a number of advanced techniques will be presented for the detection of infection-induced changes, such as DNA modification and damage, as well as protein-chromatin interactions.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Satu Hakanen
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Sami Salminen
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Vesa Aho
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (E.M.); (T.O.I.)
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (E.M.); (T.O.I.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden;
- Department of Clinical Microbiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, University of Jyvaskyla, 40500 Jyvaskyla, Finland; (S.M.); (S.H.); (S.S.); (V.A.)
| |
Collapse
|
10
|
Non-viral gene delivery of the oncotoxic protein NS1 for treatment of hepatocellular carcinoma. J Control Release 2021; 334:138-152. [PMID: 33894304 DOI: 10.1016/j.jconrel.2021.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is related to increasing incidence rates and poor clinical outcomes due to lack of efficient treatment options and emerging resistance mechanisms. The aim of the present study is to exploit a non-viral gene therapy enabling the expression of the parvovirus-derived oncotoxic protein NS1 in HCC. This anticancer protein interacts with different cellular kinases mediating a multimodal host-cell death. Lipoplexes (LPX) designed to deliver a DNA expression plasmid encoding NS1 are characterized using a comprehensive set of in vitro assays. The mechanisms of cell death induction are assessed and phosphoinositide-dependent kinase 1 (PDK1) is identified as a potential predictive biomarker for a NS1-LPX-based gene therapy. In an HCC xenograft mouse model, NS1-LPX therapeutic approach results in a significant reduction in tumor growth and extended survival. Data provide convincing evidence for future studies using a targeted NS1 gene therapy for PDK1 overexpressing HCC.
Collapse
|
11
|
Majumder K, Boftsi M, Whittle FB, Wang J, Fuller MS, Joshi T, Pintel DJ. The NS1 protein of the parvovirus MVM Aids in the localization of the viral genome to cellular sites of DNA damage. PLoS Pathog 2020; 16:e1009002. [PMID: 33064772 PMCID: PMC7592911 DOI: 10.1371/journal.ppat.1009002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/28/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
The autonomous parvovirus Minute Virus of Mice (MVM) localizes to cellular DNA damage sites to establish and sustain viral replication centers, which can be visualized by focal deposition of the essential MVM non-structural phosphoprotein NS1. How such foci are established remains unknown. Here, we show that NS1 localized to cellular sites of DNA damage independently of its ability to covalently bind the 5’ end of the viral genome, or its consensus DNA binding sequence. Many of these sites were identical to those occupied by virus during infection. However, localization of the MVM genome to DNA damage sites occurred only when wild-type NS1, but not its DNA-binding mutant was expressed. Additionally, wild-type NS1, but not its DNA binding mutant, could localize a heterologous DNA molecule containing the NS1 binding sequence to DNA damage sites. These findings suggest that NS1 may function as a bridging molecule, helping the MVM genome localize to cellular DNA damage sites to facilitate ongoing virus replication. Parvoviruses are among the simplest of viruses, depending almost exclusively on host cell factors to successfully replicate. We have previously shown that the parvovirus Minute Virus of Mice (MVM) establishes replication centers at sites that are associated with cellular regions of DNA damage. These sites are primed to contain factors necessary to efficiently initiate vigorous virus lytic infection. The process by which viral proteins and viral DNA specifically localize to these sites has previously remained unknown. In this study we show that the essential viral protein NS1 possesses the intrinsic ability to localize to cellular sites of DNA damage. Additionally, wild-type NS1, but not its DNA binding mutant, could localize to sites of DNA damage both the MVM genome, or a heterologous DNA molecule engineered to contain NS1 binding sites. This work provides the first evidence that NS1 may function as a bridging molecule to localize the MVM genome to cellular sites of DNA damage to facilitate ongoing replication.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (KM); (DJP)
| | - Maria Boftsi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Pathobiology Area Graduate Program, University of Missouri, Columbia, Missouri, United States of America
| | - Fawn B. Whittle
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Juexin Wang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, United States of America
| | - Matthew S. Fuller
- Ultragenyx Gene Therapy, Cambridge, Massachusetts, United States of America
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Department of Health Management and Informatics, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, Missouri, United States of America
| | - David J. Pintel
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (KM); (DJP)
| |
Collapse
|
12
|
Replication Compartments of DNA Viruses in the Nucleus: Location, Location, Location. Viruses 2020; 12:v12020151. [PMID: 32013091 PMCID: PMC7077188 DOI: 10.3390/v12020151] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
DNA viruses that replicate in the nucleus encompass a range of ubiquitous and clinically important viruses, from acute pathogens to persistent tumor viruses. These viruses must co-opt nuclear processes for the benefit of the virus, whilst evading host processes that would otherwise attenuate viral replication. Accordingly, DNA viruses induce the formation of membraneless assemblies termed viral replication compartments (VRCs). These compartments facilitate the spatial organization of viral processes and regulate virus–host interactions. Here, we review advances in our understanding of VRCs. We cover their initiation and formation, their function as the sites of viral processes, and aspects of their composition and organization. In doing so, we highlight ongoing and emerging areas of research highly pertinent to our understanding of nuclear-replicating DNA viruses.
Collapse
|
13
|
Four-dimensional analyses show that replication compartments are clonal factories in which Epstein-Barr viral DNA amplification is coordinated. Proc Natl Acad Sci U S A 2019; 116:24630-24638. [PMID: 31744871 PMCID: PMC6900597 DOI: 10.1073/pnas.1913992116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple families of DNA viruses including herpesviruses amplify their genomes in nuclear sites termed replication compartments. What benefits the viruses gain by this spatial and temporal control is unclear. We have analyzed the replication compartments induced by Epstein–Barr virus (EBV) and its DNA amplification in detail to elucidate their functions and regulation in EBV’s productive cycle. We found that EBV uses its replication compartments to coordinate the amplification of its genomes: Each compartment is seeded by single viral DNAs, each compartment supports similar levels of viral DNA synthesis, and each completes this synthesis as the replication machinery declines within it. Thus, replication compartments not only exclude cellular DNA synthesis but are hubs for the coordination of viral DNA amplification. Herpesviruses must amplify their DNA to load viral particles and they do so in replication compartments. The development and functions of replication compartments during DNA amplification are poorly understood, though. Here we examine 2 functionally distinct replicons in the same cells to dissect DNA amplification within replication compartments. Using a combination of single-cell assays, computational modeling, and population approaches, we show that compartments initially were seeded by single genomes of Epstein–Barr virus (EBV). Their amplification subsequently took 13 to 14 h in individual cells during which their compartments occupied up to 30% of the nucleus and the nuclear volume grew by 50%. The compartmental volumes increased in proportion to the amount of DNA and viral replication proteins they contained. Each compartment synthesized similar levels of DNA, indicating that the total number of compartments determined the total levels of DNA amplification. Further, the amplification, which depended on the number of origins, was regulated differently early and late during the lytic phase; early during the lytic phase, the templates limited DNA synthesis, while later the templates were in excess, coinciding with a decline in levels of the viral replication protein, BMRF1, in the replication compartments. These findings show that replication compartments are factories in which EBV DNA amplification is both clonal and coordinated.
Collapse
|
14
|
Majumder K, Etingov I, Pintel DJ. Protoparvovirus Interactions with the Cellular DNA Damage Response. Viruses 2017; 9:v9110323. [PMID: 29088070 PMCID: PMC5707530 DOI: 10.3390/v9110323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Protoparvoviruses are simple single-stranded DNA viruses that infect many animal species. The protoparvovirus minute virus of mice (MVM) infects murine and transformed human cells provoking a sustained DNA damage response (DDR). This DDR is dependent on signaling by the ATM kinase and leads to a prolonged pre-mitotic cell cycle block that features the inactivation of ATR-kinase mediated signaling, proteasome-targeted degradation of p21, and inhibition of cyclin B1 expression. This review explores how protoparvoviruses, and specifically MVM, co-opt the common mechanisms regulating the DDR and cell cycle progression in order to prepare the host nuclear environment for productive infection.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Bond Life Sciences Center, Columbia, MO 65211, USA.
| | - Igor Etingov
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Bond Life Sciences Center, Columbia, MO 65211, USA.
| | - David J Pintel
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Bond Life Sciences Center, Columbia, MO 65211, USA.
| |
Collapse
|
15
|
Analysis of cis and trans Requirements for DNA Replication at the Right-End Hairpin of the Human Bocavirus 1 Genome. J Virol 2016; 90:7761-77. [PMID: 27334591 PMCID: PMC4988151 DOI: 10.1128/jvi.00708-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Parvoviruses are single-stranded DNA viruses that use the palindromic structures at the ends of the viral genome for their replication. The mechanism of parvovirus replication has been studied mostly in the dependoparvovirus adeno-associated virus 2 (AAV2) and the protoparvovirus minute virus of mice (MVM). Here, we used human bocavirus 1 (HBoV1) to understand the replication mechanism of bocaparvovirus. HBoV1 is pathogenic to humans, causing acute respiratory tract infections, especially in young children under 2 years old. By using the duplex replicative form of the HBoV1 genome in human embryonic kidney 293 (HEK293) cells, we identified the HBoV1 minimal replication origin at the right-end hairpin (OriR). Mutagenesis analyses confirmed the putative NS1 binding and nicking sites within the OriR. Of note, unlike the large nonstructural protein (Rep78/68 or NS1) of other parvoviruses, HBoV1 NS1 did not specifically bind OriR in vitro, indicating that other viral and cellular components or the oligomerization of NS1 is required for NS1 binding to the OriR. In vivo studies demonstrated that residues responsible for NS1 binding and nicking are within the origin-binding domain. Further analysis identified that the small nonstructural protein NP1 is required for HBoV1 DNA replication at OriR. NP1 and other viral nonstructural proteins (NS1 to NS4) colocalized within the viral DNA replication centers in both OriR-transfected cells and virus-infected cells, highlighting a direct involvement of NP1 in viral DNA replication at OriR. Overall, our study revealed the characteristics of HBoV1 DNA replication at OriR, suggesting novel characteristics of autonomous parvovirus DNA replication. IMPORTANCE Human bocavirus 1 (HBoV1) causes acute respiratory tract infections in young children. The duplex HBoV1 genome replicates in HEK293 cells and produces progeny virions that are infectious in well-differentiated airway epithelial cells. A recombinant AAV2 vector pseudotyped with an HBoV1 capsid has been developed to efficiently deliver the cystic fibrosis transmembrane conductance regulator gene to human airway epithelia. Here, we identified both cis-acting elements and trans-acting proteins that are required for HBoV1 DNA replication at the right-end hairpin in HEK293 cells. We localized the minimal replication origin, which contains both NS1 nicking and binding sites, to a 46-nucleotide sequence in the right-end hairpin. The identification of these essential elements of HBoV1 DNA replication acting both in cis and in trans will provide guidance to develop antiviral strategies targeting viral DNA replication at the right-end hairpin and to design next-generation recombinant HBoV1 vectors, a promising tool for gene therapy of lung diseases.
Collapse
|
16
|
Promoter-Targeted Histone Acetylation of Chromatinized Parvoviral Genome Is Essential for the Progress of Infection. J Virol 2016; 90:4059-4066. [PMID: 26842481 DOI: 10.1128/jvi.03160-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/31/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The association of host histones with parvoviral DNA is poorly understood. We analyzed the chromatinization and histone acetylation of canine parvovirus DNA during infection by confocal imaging andin situproximity ligation assay combined with chromatin immunoprecipitation and high-throughput sequencing. We found that during late infection, parvovirus replication bodies were rich in histones bearing modifications characteristic of transcriptionally active chromatin, i.e., histone H3 lysine 27 acetylation (H3K27ac). H3K27ac, in particular, was located in close proximity to the viral DNA-binding protein NS1. Importantly, our results show for the first time that in the chromatinized parvoviral genome, the two viral promoters in particular were rich in H3K27ac. Histone acetyltransferase (HAT) inhibitors efficiently interfered with the expression of viral proteins and infection progress. Altogether, our data suggest that the acetylation of histones on parvoviral DNA is essential for viral gene expression and the completion of the viral life cycle. IMPORTANCE Viral DNA introduced into cell nuclei is exposed to cellular responses to foreign DNA, including chromatinization and epigenetic silencing, both of which determine the outcome of infection. How the incoming parvovirus resists cellular epigenetic downregulation of its genes is not understood. Here, the critical role of epigenetic modifications in the regulation of parvovirus infection was demonstrated. We showed for the first time that a successful parvovirus infection is characterized by the deposition of nucleosomes with active histone acetylation on the viral promoter areas. The results provide new insights into the regulation of parvoviral gene expression, which is an important aspect of the development of parvovirus-based virotherapy.
Collapse
|
17
|
Mihaylov IS, Cotmore SF, Tattersall P. Complementation for an essential ancillary non-structural protein function across parvovirus genera. Virology 2014; 468-470:226-237. [PMID: 25194919 DOI: 10.1016/j.virol.2014.07.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
Abstract
Parvoviruses encode a small number of ancillary proteins that differ substantially between genera. Within the genus Protoparvovirus, minute virus of mice (MVM) encodes three isoforms of its ancillary protein NS2, while human bocavirus 1 (HBoV1), in the genus Bocaparvovirus, encodes an NP1 protein that is unrelated in primary sequence to MVM NS2. To search for functional overlap between NS2 and NP1, we generated murine A9 cell populations that inducibly express HBoV1 NP1. These were used to test whether NP1 expression could complement specific defects resulting from depletion of MVM NS2 isoforms. NP1 induction had little impact on cell viability or cell cycle progression in uninfected cells, and was unable to complement late defects in MVM virion production associated with low NS2 levels. However, NP1 did relocate to MVM replication centers, and supports both the normal expansion of these foci and overcomes the early paralysis of DNA replication in NS2-null infections.
Collapse
Affiliation(s)
- Ivailo S Mihaylov
- Department of Laboratory Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Susan F Cotmore
- Department of Laboratory Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Peter Tattersall
- Department of Laboratory Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
Expression and prognostic role of SGTA in human breast carcinoma correlates with tumor cell proliferation. J Mol Histol 2014; 45:665-77. [PMID: 25027991 DOI: 10.1007/s10735-014-9586-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) was reported to be implicated in various cellular processes and involved in control of cell cycle regulation and transcription. It may play a critical role in oncogenesis. In this study, to investigate the potential roles of SGTA in breast cancer, expression patterns, interaction and the correlation with clinical/prognostic factors of SGTA and Ki-67 were examined among patients with breast cancer. Immunohistochemistry and Western blot analysis were performed for SGTA in 100 breast carcinoma samples. The data were correlated with clinicopathological features. The univariate and multivariate survival analyses were also performed to determine the prognostic significance. We found that SGTA was overexpressed in breast carcinoma compared with the adjacent normal tissues. High expression of SGTA was positively associated with histological grade (P = 0.002) and Ki-67 (P = 0.001). Univariate analysis showed that SGTA expression was associated with a poor prognosis (P = 0.002). Kaplan-Meier survival curves of the study population showed that high expression level of SGTA significantly correlated with short-term survival. While in vitro, SGTA depletion by small interfering RNA inhibited cell proliferation and cell cycle in breast cancer cell lines. Western blot analyses showed that SGTA depletion decreased cyclin A, cyclin B and CDK2, whereas increased p27 levels. Additionally, treatment of phosphatidylinositol 3-kinase inhibitor LY294002 could arrest cells growth and diminish SGTA expression. These results suggested that SGTA overexpression was involved in the pathogenesis of breast cancer which might serve as a future target for novel treatment in breast cancer.
Collapse
|
19
|
The ATR signaling pathway is disabled during infection with the parvovirus minute virus of mice. J Virol 2014; 88:10189-99. [PMID: 24965470 DOI: 10.1128/jvi.01412-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The ATR kinase has essential functions in maintenance of genome integrity in response to replication stress. ATR is recruited to RPA-coated single-stranded DNA at DNA damage sites via its interacting partner, ATRIP, which binds to the large subunit of RPA. ATR activation typically leads to activation of the Chk1 kinase among other substrates. We show here that, together with a number of other DNA repair proteins, both ATR and its associated protein, ATRIP, were recruited to viral nuclear replication compartments (autonomous parvovirus-associated replication [APAR] bodies) during replication of the single-stranded parvovirus minute virus of mice (MVM). Chk1, however, was not activated during MVM infection even though viral genomes bearing bound RPA, normally a potent trigger of ATR activation, accumulate in APAR bodies. Failure to activate Chk1 in response to MVM infection was likely due to our observation that Rad9 failed to associate with chromatin at MVM APAR bodies. Additionally, early in infection, prior to the onset of the virus-induced DNA damage response (DDR), stalling of the replication of MVM genomes with hydroxyurea (HU) resulted in Chk1 phosphorylation in a virus dose-dependent manner. However, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to HU and various other drug treatments. Finally, ATR phosphorylation became undetectable upon MVM infection, and although virus infection induced RPA32 phosphorylation on serine 33, an ATR-associated phosphorylation site, this phosphorylation event could not be prevented by ATR depletion or inhibition. Together our results suggest that MVM infection disables the ATR signaling pathway. IMPORTANCE Upon infection, the parvovirus MVM activates a cellular DNA damage response that governs virus-induced cell cycle arrest and is required for efficient virus replication. ATM and ATR are major cellular kinases that coordinate the DNA damage response to diverse DNA damage stimuli. Although a significant amount has been discovered about ATM activation during parvovirus infection, involvement of the ATR pathway has been less studied. During MVM infection, Chk1, a major downstream target of ATR, is not detectably phosphorylated even though viral genomes bearing the bound cellular single-strand binding protein RPA, normally a potent trigger of ATR activation, accumulate in viral replication centers. ATR phosphorylation also became undetectable. In addition, upon establishment of full viral replication, MVM infection prevented activation of Chk1 in response to hydroxyurea and various other drug treatments. Our results suggest that MVM infection disables this important cellular signaling pathway.
Collapse
|
20
|
Efficient parvovirus replication requires CRL4Cdt2-targeted depletion of p21 to prevent its inhibitory interaction with PCNA. PLoS Pathog 2014; 10:e1004055. [PMID: 24699724 PMCID: PMC3974872 DOI: 10.1371/journal.ppat.1004055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
Infection by the autonomous parvovirus minute virus of mice (MVM) induces a vigorous DNA damage response in host cells which it utilizes for its efficient replication. Although p53 remains activated, p21 protein levels remain low throughout the course of infection. We show here that efficient MVM replication required the targeting for degradation of p21 during this time by the CRL4Cdt2 E3-ubiquitin ligase which became re-localized to MVM replication centers. PCNA provides a molecular platform for substrate recognition by the CRL4Cdt2 E3-ubiquitin ligase and p21 targeting during MVM infection required its interaction both with Cdt2 and PCNA. PCNA is also an important co-factor for MVM replication which can be antagonized by p21 in vitro. Expression of a stable p21 mutant that retained interaction with PCNA inhibited MVM replication, while a stable p21 mutant which lacked this interaction did not. Thus, while interaction with PCNA was important for targeting p21 to the CRL4Cdt2 ligase re-localized to MVM replication centers, efficient viral replication required subsequent depletion of p21 to abrogate its inhibition of PCNA.
Collapse
|
21
|
Adeyemi RO, Pintel DJ. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells. PLoS Pathog 2014; 10:e1003891. [PMID: 24415942 PMCID: PMC3887112 DOI: 10.1371/journal.ppat.1003891] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/04/2013] [Indexed: 12/14/2022] Open
Abstract
Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication. DNA viruses induce cellular DNA damage responses that can present a block to infection that must be overcome, or alternatively, can be utilized to viral advantage. Parvoviruses, the only known viruses of vertebrates that contain single-stranded linear DNA genomes, induce a robust DNA damage response (DDR) that features a cell cycle arrest that facilitates their replication. We show that the autonomous parvovirus MVM-induced cell cycle arrest is caused by a novel two-step mechanism that ensures a pseudo S phase, pre-mitotic, nuclear environment for sustained viral replication. A feature of this arrest is virally-induced depletion of the critical cell cycle regulator cyclin B1. Parvoviruses are important infectious agents that infect many vertebrate species including humans, and our study makes an important contribution to how these viruses achieve productive infection in host cells.
Collapse
Affiliation(s)
- Richard O. Adeyemi
- University of Missouri-Columbia, School of Medicine, Columbia, Missouri, United States of America
| | - David J. Pintel
- University of Missouri-Columbia, School of Medicine, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication.
Collapse
|
23
|
Xue Q, Lv L, Wan C, Chen B, Li M, Ni T, Liu Y, Liu Y, Cong X, Zhou Y, Ni R, Mao G. Expression and clinical role of small glutamine-rich tetratricopeptide repeat (TPR)-containing protein alpha (SGTA) as a novel cell cycle protein in NSCLC. J Cancer Res Clin Oncol 2013; 139:1539-49. [PMID: 23857189 DOI: 10.1007/s00432-013-1474-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/04/2013] [Indexed: 11/24/2022]
Abstract
PURPOSE A small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) is a 35 kDa protein involved in a number of biological processes. However, the role of SGTA in non-small-cell lung cancer (NSCLC) tumorigenesis has never been elucidated. The purpose of this study was to determine whether SGTA could serve as a biomarker for stratification and prediction of prognosis in NSCLC. METHODS Small glutamine-rich tetratricopeptide repeat-containing protein alpha expression was evaluated by Western blot in 8 paired fresh lung cancer tissues and immunohistochemistry on 83 paraffin-embedded sections. The effect of SGTA was assessed by RNA interference in A549 cells. Serum starvation and refeeding, flow cytometry, CCK-8, and tunnel assays were performed. RESULTS Small glutamine-rich tetratricopeptide repeat-containing protein alpha was highly expressed in NSCLC and significantly correlated with NSCLC histological differentiation, clinical stage, and Ki-67. Multivariate analysis indicated that SGTA was an independent prognostic factor for NSCLC patients' survival. The present investigation demonstrated that suppression of SGTA expression resulted in a significant decline of proliferation in A549 cells. Besides, SGTA could abolish the toxicity of cisplatin in A549 cells. CONCLUSIONS These findings suggested that SGTA might play an important role in promoting the tumorigenesis of NSCLC, and thus be a promising therapeutic target to prevent NSCLC progression.
Collapse
Affiliation(s)
- Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Trotta AP, Need EF, Selth LA, Chopra S, Pinnock CB, Leach DA, Coetzee GA, Butler LM, Tilley WD, Buchanan G. Knockdown of the cochaperone SGTA results in the suppression of androgen and PI3K/Akt signaling and inhibition of prostate cancer cell proliferation. Int J Cancer 2013; 133:2812-23. [PMID: 23740762 DOI: 10.1002/ijc.28310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/14/2013] [Indexed: 01/22/2023]
Abstract
Solid tumors have an increased reliance on Hsp70/Hsp90 molecular chaperones for proliferation, survival and maintenance of intracellular signaling systems. An underinvestigated component of the chaperone system is the tetratricopeptide repeat (TPR)-containing cochaperone, which coordinates Hsp70/Hsp90 involvement on client proteins as well as having diverse individual actions. A potentially important cochaperone in prostate cancer (PCa) is small glutamine-rich TPR-containing protein alpha (SGTA), which interacts with the androgen receptor (AR) and other critical cancer-related client proteins. In this study, the authors used small interfering RNA coupled with genome-wide expression profiling to investigate the biological significance of SGTA in PCa and its influence on AR signaling. Knockdown of SGTA for 72 hr in PCa C4-2B cells significantly altered expression of >1,900 genes (58% decreased) and reduced cell proliferation (p < 0.05). The regulation of 35% of 5α-dihydrotestosterone (DHT) target genes was affected by SGTA knockdown, with gene-specific effects on basal or DHT-induced expression or both. Pathway analysis revealed a role for SGTA in p53, generic PCa and phosphoinositol kinase (PI3K) signaling pathways; the latter evident by a reduction in PI3K subunit p100β levels and decreased phosphorylated Akt. Immunohistochemical analysis of 64 primary advanced PCa samples showed a significant increase in the AR:SGTA ratio in cancerous lesions compared to patient-matched benign prostatic hyperplasia tissue (p < 0.02). This study not only provides insight into the biological actions of SGTA and its effect on genome-wide AR transcriptional activity and other therapeutically targeted intracellular signaling pathways but also provides evidence for PCa-specific alterations in SGTA expression.
Collapse
Affiliation(s)
- Andrew P Trotta
- Cancer Biology Group, Freemasons Foundation Centre for Men's Health, Basil Hetzel Institute for Translational Health Research, Department of Medicine, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Philp LK, Butler MS, Hickey TE, Butler LM, Tilley WD, Day TK. SGTA: a new player in the molecular co-chaperone game. Discov Oncol 2013; 4:343-57. [PMID: 23818240 PMCID: PMC7091355 DOI: 10.1007/s12672-013-0151-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/12/2013] [Indexed: 12/25/2022] Open
Abstract
Small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) is a steroid receptor molecular co-chaperone that may substantially influence hormone action and, consequently, hormone-mediated carcinogenesis. To date, published studies describe SGTA as a protein that is potentially critical in a range of biological processes, including viral infection, cell division, mitosis, and cell cycle checkpoint activation. SGTA interacts with the molecular chaperones, heat shock protein 70 (HSP70) and HSP90, and with steroid receptor complexes, including those containing the androgen receptor. Steroid receptors are critical for maintaining cell growth and differentiation in hormonally regulated tissues, such as male and female reproductive tissues, and also play a role in disease states involving these tissues. There is growing evidence that, through its interactions with chaperones and steroid receptors, SGTA may be a key player in the pathogenesis of hormonally influenced disease states, including prostate cancer and polycystic ovary syndrome. Research into the function of SGTA has been conducted in several model organisms and cell types, with these studies showing that SGTA functionality is cell-specific and tissue-specific. However, very few studies have been replicated in multiple cell types or experimental systems. Although a broad range of functions have been attributed to SGTA, there is a serious lack of mechanistic information to describe how SGTA acts. In this review, published evidence linking SGTA with hormonally regulated disease states is summarized and discussed, highlighting the need for future research to more clearly define the biological function(s) of this potentially important co-chaperone.
Collapse
Affiliation(s)
- Lisa K. Philp
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| | - Miriam S. Butler
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| | - Lisa M. Butler
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| | - Wayne D. Tilley
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| | - Tanya K. Day
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Level 4, Hanson Institute Building, DX Number 650 801, Adelaide, South Australia 5000 Australia
| |
Collapse
|
26
|
Cotmore SF, Tattersall P. Parvovirus diversity and DNA damage responses. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012989. [PMID: 23293137 DOI: 10.1101/cshperspect.a012989] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Parvoviruses have a linear single-stranded DNA genome, around 5 kb in length, with short imperfect terminal palindromes that fold back on themselves to form duplex hairpin telomeres. These contain most of the cis-acting information required for viral "rolling hairpin" DNA replication, an evolutionary adaptation of rolling-circle synthesis in which the hairpins create duplex replication origins, prime complementary strand synthesis, and act as hinges to reverse the direction of the unidirectional cellular fork. Genomes are packaged vectorially into small, rugged protein capsids ~260 Å in diameter, which mediate their delivery directly into the cell nucleus, where they await their host cell's entry into S phase under its own cell cycle control. Here we focus on genus-specific variations in genome structure and replication, and review host cell responses that modulate the nuclear environment.
Collapse
Affiliation(s)
- Susan F Cotmore
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
27
|
Abstract
Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and to recruit cellular DNA replication factors for viral DNA replication. The intra-S-phase arrest is regulated by ATM (ataxia telangiectasia-mutated kinase) signaling in a p53-independent manner. Moreover, we demonstrate that SMC1 (structural maintenance of chromosomes 1) is the key regulator of the intra-S-phase arrest induced during infection. Either knockdown of SMC1 or complementation with a dominant negative SMC1 mutant blocks both the intra-S-phase arrest and viral DNA replication. Finally, we show that the intra-S-phase arrest induced during MVC infection was caused neither by damaged host cellular DNA nor by viral proteins but by replicating viral genomes physically associated with the DNA damage sensor, the Mre11-Rad50-Nbs1 (MRN) complex. In conclusion, the feedback loop between MVC DNA replication and the intra-S-phase arrest is mediated by ATM-SMC1 signaling and plays a critical role in MVC DNA replication. Thus, our findings unravel the mechanism underlying DDR signaling-facilitated MVC DNA replication and demonstrate a novel strategy of DNA virus-host interaction.
Collapse
|
28
|
Ihalainen TO, Willman SF, Niskanen EA, Paloheimo O, Smolander H, Laurila JP, Kaikkonen MU, Vihinen-Ranta M. Distribution and dynamics of transcription-associated proteins during parvovirus infection. J Virol 2012; 86:13779-84. [PMID: 23035221 PMCID: PMC3503060 DOI: 10.1128/jvi.01625-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/24/2012] [Indexed: 12/23/2022] Open
Abstract
Canine parvovirus (CPV) infection leads to reorganization of nuclear proteinaceous subcompartments. Our studies showed that virus infection causes a time-dependent increase in the amount of viral nonstructural protein NS1 mRNA. Fluorescence recovery after photobleaching showed that the recovery kinetics of nuclear transcription-associated proteins, TATA binding protein (TBP), transcription factor IIB (TFIIB), and poly(A) binding protein nuclear 1 (PABPN1) were different in infected and noninfected cells, pointing to virus-induced alterations in binding dynamics of these proteins.
Collapse
Affiliation(s)
- Teemu O. Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Department of Health Sciences and Technology, Laboratory for Biologically Oriented Materials, ETH Zurich, Zurich, Switzerland
| | - Sami F. Willman
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Einari A. Niskanen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Department of Biochemistry, Medical Genetics Cluster, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Outi Paloheimo
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Hanna Smolander
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Juha P. Laurila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- University of Turku, Turku, Finland
| | - Minna U. Kaikkonen
- AI Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maija Vihinen-Ranta
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
| |
Collapse
|
29
|
Trotta AP, Need EF, Butler LM, Selth LA, O'Loughlin MA, Coetzee GA, Tilley WD, Buchanan G. Subdomain structure of the co-chaperone SGTA and activity of its androgen receptor client. J Mol Endocrinol 2012; 49:57-68. [PMID: 22693264 DOI: 10.1530/jme-11-0152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ligand-dependent activity of steroid receptors is affected by tetratricopeptide repeat (TPR)-containing co-chaperones, such as small glutamine-rich tetratricopeptide repeat-containing alpha (SGTA). However, the precise mechanisms by which the predominantly cytoplasmic TPR proteins affect downstream transcriptional outcomes of steroid signaling remain unclear. In this study, we assessed how SGTA affects ligand sensitivity and action of the androgen receptor (AR) using a transactivation profiling approach. Deletion mapping coupled with structural prediction, transcriptional assays, and in vivo regulation of AR-responsive promoters were used to assess the role of SGTA domains in AR responses. At subsaturating ligand concentrations of ≤ 0.1 nM 5α-dihydrotestosterone, SGTA overexpression constricted AR activity by an average of 32% (P<0.002) across the majority of androgen-responsive loci tested, as well as on endogenous promoters in vivo. The strength of the SGTA effect was associated with the presence or absence of bioinformatically predicated transcription factor motifs at each site. Homodimerizaion of SGTA, which is thought to be necessary for chaperone complex formation, was found to be dependent on the structural integrity of amino acids 1-80, and a core evolutionary conserved peptide within this region (amino acids 21-40) necessary for an effect of SGTA on the activity of both exogenous and endogenous AR. This study provides new insights into the subdomain structure of SGTA and how SGTA acts as a regulator of AR ligand sensitivity. A change in AR:SGTA ratio will impact the cellular and molecular response of prostate cancer cells to maintain androgenic signals, which may influence tumor progression.
Collapse
Affiliation(s)
- Andrew P Trotta
- Cancer Biology Group, Level 1 Basil Hetzel Institute for Translational Health Research, Freemasons Foundation Centre for Men's Health, Queen Elizabeth Hospital, University of Adelaide, 28 Woodville Road, Woodville South, Adelaide, South Australia 5011, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Nüesch JPF, Lacroix J, Marchini A, Rommelaere J. Molecular pathways: rodent parvoviruses--mechanisms of oncolysis and prospects for clinical cancer treatment. Clin Cancer Res 2012; 18:3516-23. [PMID: 22566376 DOI: 10.1158/1078-0432.ccr-11-2325] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rodent parvoviruses (PV) are recognized for their intrinsic oncotropism and oncolytic activity, which contribute to their natural oncosuppressive effects. Although PV uptake occurs in most host cells, some of the subsequent steps leading to expression and amplification of the viral genome and production of progeny particles are upregulated in malignantly transformed cells. By usurping cellular processes such as DNA replication, DNA damage response, and gene expression, and/or by interfering with cellular signaling cascades involved in cytoskeleton dynamics, vesicular integrity, cell survival, and death, PVs can induce cytostasis and cytotoxicity. Although productive PV infections normally culminate in cytolysis, virus spread to neighboring cells and secondary rounds of infection, even abortive infection or the sole expression of the PV nonstructural protein NS1, is sufficient to cause significant tumor cell death, either directly or indirectly (through activation of host immune responses). This review highlights the molecular pathways involved in tumor cell targeting by PVs and in PV-induced cell death. It concludes with a discussion of the relevance of these pathways to the application of PVs in cancer therapy, linking basic knowledge of PV-host cell interactions to preclinical assessment of PV oncosuppression.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Infection and Cancer Program, Division F010, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
31
|
Jiang M, Imperiale MJ. Design stars: how small DNA viruses remodel the host nucleus. Future Virol 2012; 7:445-459. [PMID: 22754587 DOI: 10.2217/fvl.12.38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous host components are encountered by viruses during the infection process. While some of these host structures are left unchanged, others may go through dramatic remodeling processes. In this review, we summarize these host changes that occur during small DNA virus infections, with a focus on host nuclear components and pathways. Although these viruses differ significantly in their genome structures and infectious pathways, there are common nuclear targets that are altered by various viral factors. Accumulating evidence suggests that these nuclear remodeling processes are often essential for productive viral infections and/or viral-induced transformation. Understanding the complex interactions between viruses and these host structures and pathways will help to build a more integrated network of how the virus completes its life cycle and point toward the design of novel therapeutic regimens that either prevent harmful viral infections or employ viruses as nontraditional treatment options or molecular tools.
Collapse
Affiliation(s)
- Mengxi Jiang
- Department of Microbiology & Immunology, & Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
32
|
Poole BD, Kivovich V, Gilbert L, Naides SJ. Parvovirus B19 nonstructural protein-induced damage of cellular DNA and resultant apoptosis. Int J Med Sci 2011; 8:88-96. [PMID: 21278893 PMCID: PMC3030141 DOI: 10.7150/ijms.8.88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/13/2011] [Indexed: 12/19/2022] Open
Abstract
Parvovirus B19 is a widespread virus with diverse clinical presentations. The viral nonstructural protein, NS1, binds to and cleaves the viral genome, and induces apoptosis when transfected into nonpermissive cells, such as hepatocytes. We hypothesized that the cytotoxicity of NS1 in such cells results from chromosomal DNA damage caused by the DNA-nicking and DNA-attaching activities of NS1. Upon testing this hypothesis, we found that NS1 covalently binds to cellular DNA and is modified by PARP, an enzyme involved in repairing single-stranded DNA nicks. We furthermore discovered that the DNA nick repair pathway initiated by poly(ADPribose)polymerase and the DNA repair pathways initiated by ATM/ATR are necessary for efficient apoptosis resulting from NS1 expression.
Collapse
Affiliation(s)
- Brian D Poole
- Huck Institute for Life Sciences, Pennsylvania State University College of Medicine/Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | |
Collapse
|
33
|
Ruiz Z, Mihaylov IS, Cotmore SF, Tattersall P. Recruitment of DNA replication and damage response proteins to viral replication centers during infection with NS2 mutants of Minute Virus of Mice (MVM). Virology 2010; 410:375-84. [PMID: 21193212 DOI: 10.1016/j.virol.2010.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/09/2010] [Accepted: 12/06/2010] [Indexed: 11/27/2022]
Abstract
MVM NS2 is essential for viral DNA amplification, but its mechanism of action is unknown. A classification scheme for autonomous parvovirus-associated replication (APAR) center development, based on NS1 distribution, was used to characterize abnormal APAR body maturation in NS2null mutant infections, and their organization examined for defects in host protein recruitment. Since acquisition of known replication factors appeared normal, we looked for differences in invoked DNA damage responses. We observed widespread association of H2AX/MDC1 damage response foci with viral replication centers, and sequestration and complex hyperphosphorylation of RPA(32), which occurred in wildtype and mutant infections. Quantifying these responses by western transfer indicated that both wildtype and NS2 mutant MVM elicited ATM activation, while phosphorylation of ATR, already basally activated in asynchronous A9 cells, was downregulated. We conclude that MVM infection invokes multiple damage responses that influence the APAR environment, but that NS2 does not modify the recruitment of cellular proteins.
Collapse
Affiliation(s)
- Zandra Ruiz
- Department of Laboratory Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
34
|
Adeyemi RO, Landry S, Davis ME, Weitzman MD, Pintel DJ. Parvovirus minute virus of mice induces a DNA damage response that facilitates viral replication. PLoS Pathog 2010; 6:e1001141. [PMID: 20949077 PMCID: PMC2951379 DOI: 10.1371/journal.ppat.1001141] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/08/2010] [Indexed: 01/04/2023] Open
Abstract
Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells.
Collapse
Affiliation(s)
- Richard O. Adeyemi
- University of Missouri-Columbia, School of Medicine, Columbia, Missouri, United States of America
| | | | - Meredith E. Davis
- University of Missouri-Columbia, School of Medicine, Columbia, Missouri, United States of America
| | | | - David J. Pintel
- University of Missouri-Columbia, School of Medicine, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
35
|
Through its nonstructural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species. J Virol 2010; 84:5909-22. [PMID: 20375165 DOI: 10.1128/jvi.01797-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The rat parvovirus H-1 (H-1PV) attracts high attention as an anticancer agent, because it is not pathogenic for humans and has oncotropic and oncosuppressive properties. The viral nonstructural NS1 protein is thought to mediate H-1PV cytotoxicity, but its exact contribution to this process remains undefined. In this study, we analyzed the effects of the H-1PV NS1 protein on human cell proliferation and cell viability. We show that NS1 expression is sufficient to induce the accumulation of cells in G(2) phase, apoptosis via caspase 9 and 3 activation, and cell lysis. Similarly, cells infected with wild-type H-1PV arrest in G(2) phase and undergo apoptosis. Furthermore, we also show that both expression of NS1 and H-1PV infection lead to higher levels of intracellular reactive oxygen species (ROS), associated with DNA double-strand breaks. Antioxidant treatment reduces ROS levels and strongly decreases NS1- and virus-induced DNA damage, cell cycle arrest, and apoptosis, indicating that NS1-induced ROS are important mediators of H-1PV cytotoxicity.
Collapse
|
36
|
Abstract
The replication protein NS1 is essential for genome replication and protein production in parvoviral infection. Many of its functions, including recognition and site-specific nicking of the viral genome, helicase activity, and transactivation of the viral capsid promoter, are dependent on ATP. An ATP-binding pocket resides in the middle of the modular NS1 protein in a superfamily 3 helicase domain. Here we have identified key ATP-binding amino acid residues in canine parvovirus (CPV) NS1 protein and mutated amino acids from the conserved A motif (K406), B motif (E444 and E445), and positively charged region (R508 and R510). All mutations prevented the formation of infectious viruses. When provided in trans, all except the R508A mutation reduced infectivity in a dominant-negative manner, possibly by hindering genome replication. These results suggest that the conserved R510 residue, but not R508, is the arginine finger sensory element of CPV NS1. Moreover, fluorescence recovery after photobleaching (FRAP), complemented by computer simulations, was used to assess the binding properties of mutated fluorescent fusion proteins. These experiments identified ATP-dependent and -independent binding modes for NS1 in living cells. Only the K406M mutant had a single binding site, which was concluded to indicate ATP-independent binding. Furthermore, our data suggest that DNA binding of NS1 is dependent on its ability to both bind and hydrolyze ATP.
Collapse
|
37
|
Ihalainen TO, Niskanen EA, Jylhävä J, Paloheimo O, Dross N, Smolander H, Langowski J, Timonen J, Vihinen-Ranta M. Parvovirus induced alterations in nuclear architecture and dynamics. PLoS One 2009; 4:e5948. [PMID: 19536327 PMCID: PMC2694274 DOI: 10.1371/journal.pone.0005948] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/07/2009] [Indexed: 01/19/2023] Open
Abstract
The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications.
Collapse
Affiliation(s)
- Teemu O. Ihalainen
- NanoScience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Einari A. Niskanen
- NanoScience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Juulia Jylhävä
- NanoScience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Microbiology and Immunology, Medical School, University of Tampere, Tampere, Finland
| | - Outi Paloheimo
- NanoScience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Nicolas Dross
- Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hanna Smolander
- NanoScience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jussi Timonen
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - Maija Vihinen-Ranta
- NanoScience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| |
Collapse
|
38
|
Sieben M, Herzer K, Zeidler M, Heinrichs V, Leuchs B, Schuler M, Cornelis JJ, Galle PR, Rommelaere J, Moehler M. Killing of p53-deficient hepatoma cells by parvovirus H-1 and chemotherapeutics requires promyelocytic leukemia protein. World J Gastroenterol 2008; 14:3819-28. [PMID: 18609705 PMCID: PMC2721438 DOI: 10.3748/wjg.14.3819] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the synergistic targeting and killing of human hepatocellular carcinoma (HCC) cells lacking p53 by the oncolytic autonomous parvovirus (PV) H-1 and chemotherapeutic agents and its dependence on functional promyelocytic leukemia protein (PML).
METHODS: The role of p53 and PML in regulating cytotoxicity and gene transfer mediated by wild-type (wt) PV H-1 were explored in two pairs of isogenic human hepatoma cell lines with different p53 status. Furthermore, H-1 PV infection was combined with cytostatic drug treatment.
RESULTS: While the HCC cells with different p53 status studied were all susceptible to H-1 PV-induced apoptosis, the cytotoxicity of H-1 PV was more pronounced in p53-negative than in p53-positive cells. Apoptosis rates in p53-negative cell lines treated by genotoxic drugs were further enhanced by a treatment with H-1 PV. In flow cytometric analyses, H-1 PV infection resulted in a reduction of the mitochondrial transmembrane potential. In addition, H-1 PV cells showed a significant increase in PML expression. Knocking down PML expression resulted in a striking reduction of the level of H-1 PV infected tumor cell death.
CONCLUSION: H-1 PV is a suitable agent to circumvent the resistance of p53-negative HCC cells to genotoxic agents, and it enhances the apoptotic process which is dependent on functional PML. Thus, H-1 PV and its oncolytic vector derivatives may be considered as therapeutic options for HCC, particularly for p53-negative tumors.
Collapse
|
39
|
Worrall LJ, Wear MA, Page AP, Walkinshaw MD. Cloning, purification and characterization of the Caenorhabditis elegans small glutamine-rich tetratricopeptide repeat-containing protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:496-503. [DOI: 10.1016/j.bbapap.2007.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/27/2007] [Accepted: 12/10/2007] [Indexed: 11/15/2022]
|
40
|
Cotmore SF, Gottlieb RL, Tattersall P. Replication initiator protein NS1 of the parvovirus minute virus of mice binds to modular divergent sites distributed throughout duplex viral DNA. J Virol 2007; 81:13015-27. [PMID: 17898054 PMCID: PMC2169109 DOI: 10.1128/jvi.01703-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than approximately 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced approximately 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.
Collapse
Affiliation(s)
- Susan F Cotmore
- Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
41
|
Severe acute respiratory syndrome coronavirus gene 7 products contribute to virus-induced apoptosis. J Virol 2007. [PMID: 17686858 DOI: 10.1128/jvi.01266‐07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The proteins encoded by gene 7 of the severe acute respiratory syndrome coronavirus (SARS-CoV) have been demonstrated to have proapoptotic activity when expressed from cDNA but appear to be dispensable for virus replication. Recombinant SARS-CoVs bearing deletions in gene 7 were used to assess the contribution of gene 7 to virus replication and apoptosis in several transformed cell lines, as well as to replication and pathogenesis in golden Syrian hamsters. Deletion of gene 7 had no effect on SARS-CoV replication in transformed cell lines, nor did it alter the induction of early apoptosis markers such as annexin V binding and activation of caspase 3. However, viruses with gene 7 disruptions were not as efficient as wild-type virus in inducing DNA fragmentation, as judged by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, indicating that the gene 7 products do contribute to virus-induced apoptosis. Disruption of gene 7 did not affect virus replication or morbidity in golden Syrian hamsters, suggesting that the gene 7 products are not required for acute infection in vivo. The data indicate that open reading frames 7a and 7b contribute to but are not solely responsible for the apoptosis seen in SARS-CoV-infected cells.
Collapse
|
42
|
Schaecher SR, Touchette E, Schriewer J, Buller RM, Pekosz A. Severe acute respiratory syndrome coronavirus gene 7 products contribute to virus-induced apoptosis. J Virol 2007; 81:11054-68. [PMID: 17686858 PMCID: PMC2045523 DOI: 10.1128/jvi.01266-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The proteins encoded by gene 7 of the severe acute respiratory syndrome coronavirus (SARS-CoV) have been demonstrated to have proapoptotic activity when expressed from cDNA but appear to be dispensable for virus replication. Recombinant SARS-CoVs bearing deletions in gene 7 were used to assess the contribution of gene 7 to virus replication and apoptosis in several transformed cell lines, as well as to replication and pathogenesis in golden Syrian hamsters. Deletion of gene 7 had no effect on SARS-CoV replication in transformed cell lines, nor did it alter the induction of early apoptosis markers such as annexin V binding and activation of caspase 3. However, viruses with gene 7 disruptions were not as efficient as wild-type virus in inducing DNA fragmentation, as judged by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, indicating that the gene 7 products do contribute to virus-induced apoptosis. Disruption of gene 7 did not affect virus replication or morbidity in golden Syrian hamsters, suggesting that the gene 7 products are not required for acute infection in vivo. The data indicate that open reading frames 7a and 7b contribute to but are not solely responsible for the apoptosis seen in SARS-CoV-infected cells.
Collapse
Affiliation(s)
- Scott R Schaecher
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave., Campus Box 8230, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
43
|
Ihalainen TO, Niskanen EA, Jylhävä J, Turpeinen T, Rinne J, Timonen J, Vihinen-Ranta M. Dynamics and interactions of parvoviral NS1 protein in the nucleus. Cell Microbiol 2007; 9:1946-59. [PMID: 17419720 DOI: 10.1111/j.1462-5822.2007.00926.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nuclear positioning and dynamic interactions of viral proteins with nuclear substructures play essential roles during infection with DNA viruses. Visualization of the intranuclear interactions and motility of the parvovirus replication protein (NS1) in living cells gives insight into specific parvovirus protein-cellular structure interactions. Confocal analysis of highly synchronized infected Norden Laboratory Feline Kidney cells showed accumulation of nuclear NS1 in discrete interchromosomal foci. NS1 fused with enhanced yellow fluorescence protein (NS1-EYFP) provided a marker in live cells for dynamics of NS1 traced by photobleaching techniques. Fluorescence Recovery after Photobleaching suggested that the NS1 protein is not freely diffusing but undergoes transient interactions with nuclear compartments. Fluorescence Loss in Photobleaching demonstrated for the first time the shuttling of a parvoviral protein between the nucleus and the cytoplasm as assayed with NS1-EYFP. Finally, time-lapse imaging of infected cells revealed that the intranuclear distribution of NS1-EYFP evolves dramatically starting from the formation of NS1 foci and proceeding to a homogenous distribution extending throughout the nucleus.
Collapse
Affiliation(s)
- Teemu O Ihalainen
- Department of Biological and Environmental Science, NanoScience Center, University of Jyväskylä, Survontie 9, FI-40014 Jyväskylä, Finland
| | | | | | | | | | | | | |
Collapse
|
44
|
Nüesch JPF, Rommelaere J. NS1 interaction with CKII alpha: novel protein complex mediating parvovirus-induced cytotoxicity. J Virol 2006; 80:4729-39. [PMID: 16641266 PMCID: PMC1472057 DOI: 10.1128/jvi.80.10.4729-4739.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During a productive infection, the prototype strain of the parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations in permissive A9 fibroblasts, culminating in cell lysis at the end of infection. These cytopathic effects (CPE) result from rearrangements and destruction of the cytoskeletal micro- and intermediate filaments, while other structures such as the nuclear lamina and particularly the microtubule network remain protected throughout the infection (J. P. F. Nüesch et al., Virology 331:159-174, 2005). In order to unravel the mechanism(s) by which parvoviruses trigger CPE, we searched for NS1 interaction partners by differential affinity chromatography, using distinct NS1 mutants debilitated specifically for this function. Thereby, we isolated an NS1 partner polypeptide, whose interaction with NS1 correlated with the competence of the viral product for CPE induction, and further identified it by tandem mass spectrometry and Western blotting analyses to consist of the catalytic subunit of casein kinase II, CKIIalpha. This interaction of NS1 with CKIIalpha suggested interference by the viral protein with intracellular signaling. Using permanent cell lines expressing dominant-negative CKIIalpha mutants, we were able to show that this kinase activity was indeed specifically involved in parvoviral CPE and progeny particle release. Furthermore, the NS1/CKIIalpha complex proved to be able to specifically phosphorylate viral capsids, indicating a mediator function of NS1 for CKII activity and specificity, at least in vitro. Altogether our data suggest that parvovirus-induced CPE is mediated by NS1 interference with intracellular CKII signaling.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program Infection and Cancer, Abt. F010 and INSERM U701, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | |
Collapse
|
45
|
Yin H, Wang H, Zong H, Chen X, Wang Y, Yun X, Wu Y, Wang J, Gu J. SGT, a Hsp90β binding partner, is accumulated in the nucleus during cell apoptosis. Biochem Biophys Res Commun 2006; 343:1153-8. [PMID: 16580629 DOI: 10.1016/j.bbrc.2006.03.090] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/15/2006] [Indexed: 11/16/2022]
Abstract
In this study, we reported that small glutamine-rich TPR-containing protein (SGT) interacted with not only Hsp90alpha but also Hsp90beta. Confocal analysis showed that treatment of cells with Hsp90-specific inhibitor geldanamycin (GA) disrupted the interaction of SGT with Hsp90beta and this contributed to the increase of nuclear localization of SGT in HeLa cells. The increased nuclear localization of SGT was further confirmed by the Western blotting in GA-treated HeLa cells and H1299 cells. In our previous study, SGT was found to be a new pro-apoptotic factor, so we wondered whether the sub-cellular localization of SGT was related with cell apoptosis. By confocal analysis we found that the nuclear import of SGT was significantly increased in STS-induced apoptotic HeLa cells, which implied that the sub-cellular localization of SGT was closely associated with Hsp90beta and apoptosis.
Collapse
Affiliation(s)
- Hongyan Yin
- Key Laboratory of Medical Molecular Virology Ministry of Education and Health, Gene Research Center, Shanghai Medical College and Institutes of Biomedical Sciences of Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Poole BD, Zhou J, Grote A, Schiffenbauer A, Naides SJ. Apoptosis of liver-derived cells induced by parvovirus B19 nonstructural protein. J Virol 2006; 80:4114-21. [PMID: 16571827 PMCID: PMC1440431 DOI: 10.1128/jvi.80.8.4114-4121.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Parvovirus B19 has been implicated in some cases of acute fulminant non-A, non-B, non-C, non-G liver failure. Our laboratory previously demonstrated that B19 infection of hepatocytes induces apoptosis and that the B19 viral nonstructural protein, NS1, may play a critical role. To study the involvement of NS1 in apoptosis of liver cells, we generated a fusion protein of NS1 with enhanced green fluorescent protein (eGFP) in a system allowing for inducible gene expression. Transfection of the liver-derived cell line HepG2 with the eGFP/NS1 vector allowed expression of the fusion protein, which was visualized by fluorescence microscopy and demonstrated by immunoblotting. The fusion protein localized to discrete domains in the nucleus. Transfection of HepG2 cells with the eGFP/NS1 vector led to apoptosis of 35% of transfected cells, a sevenfold increase over cells transfected with the parent eGFP expression vector. Mutation of the eGFP/NS1 vector to eliminate the nucleoside triphosphate-binding site of NS1 significantly decreased apoptosis, as did treatment of transfected cells with inhibitors of caspase 3 or 9. Neutralization of tumor necrosis factor alpha or Fas ligand had no effect on apoptosis. These results demonstrate that NS1 is sufficient to induce apoptosis in liver-derived cells and that it does so through the initiation of an intrinsic caspase pathway.
Collapse
Affiliation(s)
- Brian D Poole
- Huck Institutes for Life Sciences, Department of Medicine, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
47
|
Ruiz Z, D'Abramo A, Tattersall P. Differential roles for the C-terminal hexapeptide domains of NS2 splice variants during MVM infection of murine cells. Virology 2006; 349:382-95. [PMID: 16504232 DOI: 10.1016/j.virol.2006.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/22/2005] [Accepted: 01/26/2006] [Indexed: 11/18/2022]
Abstract
The MVM NS2 proteins are required for viral replication in cells of its normal murine host, but are dispensable in transformed human 324K cells. Alternate splicing at the minor intron controls synthesis of three forms of this protein, which differ in their C-terminal hexapeptides and in their relative abundance, with NS2P and NS2Y, the predominant isoforms, being expressed at a 5:1 ratio. Mutant genomes were constructed with premature termination codons in the C-terminal exons of either NS2P or NS2Y, which resulted in their failure to accumulate in vivo. To modulate their expression levels, we also introduced a mutation at the putative splice branch point of the large intron, dubbed NS2(lo), that reduced total NS2 expression in murine A9 cells such that NS2P accumulated to approximately half the level normally seen for NS2Y. All mutants replicated productively in human 324K cells. In A9 cells, NS2Y(-) mutants replicated like wildtype, and the NS2(lo) mutants expressed NS1 and replicated duplex viral DNA like wildtype, although their progeny single-strand DNA synthesis was reduced. However, while NS2P(-) and NS2-null viruses initiated infection efficiently in A9 cells, they gave diminished NS1 levels, and viral macromolecular synthesis appeared to become paralyzed shortly after the onset of viral duplex DNA amplification, such that no progeny single-strand DNA could be detected. Thus, the NS2P isoform, even when expressed at a level lower than that of NS2Y, performs a critical role in infection of A9 cells that cannot be accomplished by the NS2Y isoform alone.
Collapse
Affiliation(s)
- Zandra Ruiz
- Graduate Program in Microbiology, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
48
|
Boschetti N, Stucki M, Späth PJ, Kempf C. Virus safety of intravenous immunoglobulin: future challenges. Clin Rev Allergy Immunol 2005; 29:333-44. [PMID: 16391410 PMCID: PMC7090396 DOI: 10.1385/criai:29:3:333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients with immunodeficiencies or some types of autoimmune diseases are dependent on safe therapy with intravenous immunoglobulins. State-of-the-art manufacturing processes provide a high safety standard by incorporating virus elimination procedures into the manufacturing process. Based on their mechanism, these procedures are grouped into three classes: partitioning, inactivation, and removal based on size. Because of current socioeconomic and ecological changes, emerging pathogens continue to be expected. Such pathogens may spread very quickly because of increased intercontinental traffic. Severe acute respiratory syndrome-coronavirus and the West Nile virus are recent examples. Currently, it is not possible to predict the impact such a pathogen will have on blood safety because the capacity for a globally coordinated reaction to such a threat is also evolving. The worst-case scenario would be the emergence of a transmissible, small, nonenveloped virus in the blood donor population. Examples of small nonenveloped viruses, which change host and tissue tropism, are discussed, with focus on parvoviridae. Although today's immunoglobulins are safer than ever, in preparation for future challenges it is a high priority for the plasma industry to proactively investigate such viruses on a molecular and cellular level to identify their vulnerabilities.
Collapse
|
49
|
Liou ST, Wang C. Small glutamine-rich tetratricopeptide repeat-containing protein is composed of three structural units with distinct functions. Arch Biochem Biophys 2005; 435:253-63. [PMID: 15708368 DOI: 10.1016/j.abb.2004.12.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 12/18/2004] [Indexed: 11/23/2022]
Abstract
Previously, we identified the human small glutamine-rich tetratricopeptide repeat-containing protein (SGT) as a co-chaperone. The tetratricopeptide repeat (TPR) domain in SGT is responsible for interacting with Hsc70. In this study, we demonstrated that the TPR domain of SGT also interacted with Hsp90. Moreover, we investigated the functional significance of regions of SGT outside the TPR domain. Evidently, the N-terminal domain of SGT is necessary and sufficient for its self-association; and, SGT may be a dimer elongated in shape. The C-terminal glutamine-rich region has the capacity to interact with short peptide segments composed of consecutive non-polar amino acids. The C-terminal fragment of SGT indeed plays a role in the association of SGT with in vitro translated rat type 1 glucose transporter, an integral membrane protein folded in a non-physiological state. Moreover, in the presence of SGT, the degradation of the transporter in reticulocyte lysates is inhibited. Taking together, SGT can be separated into three structural units with distinct functions.
Collapse
Affiliation(s)
- Shen-Ting Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | | |
Collapse
|
50
|
Young PJ, Newman A, Jensen KT, Burger LR, Pintel DJ, Lorson CL. Minute virus of mice small non-structural protein NS2 localizes within, but is not required for the formation of, Smn-associated autonomous parvovirus-associated replication bodies. J Gen Virol 2005; 86:1009-1014. [PMID: 15784894 DOI: 10.1099/vir.0.80564-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The non-structural proteins NS1 and NS2 of the parvovirus minute virus of mice (MVM) are required for efficient virus replication. It has previously been shown that NS1 and NS2 interact and colocalize with the survival motor neuron (Smn) gene product in novel nuclear structures that are formed late in infection, termed Smn-associated APAR (autonomous parvovirus-associated replication) bodies (SAABs). It is not clear what molecular viral intermediate(s) contribute to SAAB formation. The current results address the role of NS2 in SAAB formation. In highly synchronized wild-type MVM infection of murine A9(2L) cells, NS2 colocalizes with Smn and other SAAB constituents. An MVM mutant that does not produce NS2 still generates SAABS, albeit with a temporal delay. The lag in SAAB formation seen in the absence of NS2 is probably related to the temporal delay in virus replication, suggesting that, whilst NS2 is required for efficient viral infection, it is dispensable for SAAB formation.
Collapse
Affiliation(s)
- Philip J Young
- Department of Veterinary Pathobiology, Life Sciences Center 471G, University of Missouri, Columbia, MO 65211-7310, USA
| | - Ann Newman
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | | | - Lisa R Burger
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - David J Pintel
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Life Sciences Center 471G, University of Missouri, Columbia, MO 65211-7310, USA
| |
Collapse
|