1
|
Pedrazzoli S, Graziosi G, Salaroli R, Catelli E, Lupini C. Dynamic alterations in T-lymphocyte subsets assessed by flow cytometry in chickens following exposure to infectious bursal disease virus: A systematic review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105280. [PMID: 39396690 DOI: 10.1016/j.dci.2024.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Infectious bursal disease virus (IBDV) is a significant pathogen in poultry, causing acute immunosuppressive disease in young chickens. While B-lymphocyte involvement in IBDV pathogenesis is known, the role of T-cells is incompletely understood. This systematic review presents the alterations in chicken T-lymphocyte subsets after IBDV exposure, assessed by flow cytometry analysis. Four databases were queried for identifying eligible studies focused on experimental infections measuring T-lymphocyte changes in the bursa of Fabricius, spleen, thymus, and peripheral blood mononuclear cells. Of 488 studies found, 25 met the pre-established criteria and were included in the qualitative synthesis of results. Most studies analysed T-lymphocyte responses during the acute phase of IBDV infection, primarily focusing on CD4+ and CD8+ T-cells. Other subsets, such as γδ T-cells and double-positive CD4+CD8+ T-cells, were less frequently investigated. An increase in T-lymphocytes was noted in the bursa of Fabricius, suggesting their active role in viral clearance. In the spleen, CD4+ T-cells commonly increased, while CD8+ responses varied among studies. Increased levels in T-cells were also noted during the chronic infection in the bursa of Fabricius, possibly due to persistent viral antigens. Overall, variations in flow cytometry methods and T-cell output reporting were noted among studies. Based on the data collected, further investigation into diverse T-cell subpopulations beyond CD4+ and CD8+ is needed, as well as the standardization of flow cytometry assays in chickens.
Collapse
Affiliation(s)
- Sara Pedrazzoli
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia BO, Italy.
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia BO, Italy.
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia BO, Italy.
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia BO, Italy.
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia BO, Italy.
| |
Collapse
|
2
|
Chen J, Wang W, Li S, Wang Z, Zuo W, Nong T, Li Y, Liu H, Wei P, He X. RNA-seq reveals role of cell-cycle regulating genes in the pathogenicity of a field very virulent infectious bursal disease virus. Front Vet Sci 2024; 11:1334586. [PMID: 38362295 PMCID: PMC10867150 DOI: 10.3389/fvets.2024.1334586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes highly contagious and immunosuppressive disease in poultry. The thymus, serving as the primary organ for T cell maturation and differentiation, plays an important role in the pathogenicity of IBDV in the infected chickens. However, there are no reports on the molecular pathogenesis of IBDV in the thymus currently. The aim of the study was to elucidate the molecular mechanisms underlying the pathogenicity of a field very virulent (vv) IBDV strain NN1172 in the thymus of SPF chickens using integrative transcriptomic and proteomic analyses. Our results showed that a total of 4,972 Differentially expressed genes (DEGs) in the thymus of NN1172-infected chickens by transcriptomic analysis, with 2,796 up-regulated and 2,176 down-regulated. Meanwhile, the proteomic analysis identified 726 differentially expressed proteins (DEPs) in the infected thymus, with 289 up-regulated and 437 down-regulated. Overall, a total of 359 genes exhibited differentially expression at both mRNA and protein levels, with 134 consistently up-regulated and 198 genes consistently down-regulated, as confirmed through a comparison of the RNA-seq and the proteomic datasets. The gene ontology (GO) analysis unveiled the involvement of both DEGs and DEPs in diverse categories encompassing cellular components, biological processes, and molecular functions in the pathological changes in IBDV-infected thymus. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the host mainly displayed severely disruption of cell survival/repair, proliferation and metabolism pathway, meanwhile, the infection triggers antiviral immune activation with a potential emphasis on the MDA5 pathway. Network inference analysis identified seven core hub genes, which include CDK1, TYMS, MCM5, KIF11, CCNB2, MAD2L1, and MCM4. These genes are all associated with cell-cycle regulating pathway and are likely key mediators in the pathogenesis induced by NN1172 infection in the thymus. This study discovered dominant pathways and genes which enhanced our understanding of the molecular mechanisms underlying IBDV pathogenesis in the thymus.
Collapse
Affiliation(s)
- Jinnan Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Shangquan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Zhiyuan Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Wenbo Zuo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Tingbin Nong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yihai Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongquan Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
3
|
Zhang T, Wang S, Liu Y, Qi X, Gao Y. Advances on adaptive immune responses affected by infectious bursal disease virus in chicken. Front Immunol 2024; 14:1330576. [PMID: 38268928 PMCID: PMC10806451 DOI: 10.3389/fimmu.2023.1330576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly infectious, and immunosuppressive disease caused by the infectious bursal disease virus (IBDV), which interferes with the immune system, causes hypoimmunity and seriously threatens the healthy development of the poultry industry. Adaptive immune response, an important defense line of host resistance to pathogen infection, is the host-specific immune response mainly mediated by T and B lymphocytes. As an important immunosuppressive pathogen in poultry, IBDV infection is closely related to the injury of the adaptive immune system. In this review, we focus on recent advances in adaptive immune response influenced by IBDV infection, especially the damage on immune organs, as well as the effect on humoral immune response and cellular immune response, hoping to provide a theoretical basis for further exploration of the molecular mechanism of immunosuppression induced by IBDV infection and the establishment of novel prevention and control measures for IBD.
Collapse
Affiliation(s)
- Tao Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- World Organization for Animal Health (WOAH) Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- National Poultry Laboratory Animal Resource Center, Harbin, China
| |
Collapse
|
4
|
Sharma S, Kulkarni RR, Sharif S, Hassan H, Alizadeh M, Pratt S, Abdelaziz K. In ovo feeding of probiotic lactobacilli differentially alters expression of genes involved in the development and immunological maturation of bursa of Fabricius in pre-hatched chicks. Poult Sci 2024; 103:103237. [PMID: 38011819 PMCID: PMC10801656 DOI: 10.1016/j.psj.2023.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Compelling evidence indicates that immunological maturation of the gut-associated lymphoid tissues, including the bursa of Fabricius, is dependent upon antigenic stimulation post-hatch. In view of these data, the present study investigated the impact of exposing the immune system of chick embryos to antigenic stimuli, via in ovo delivery of poultry-specific lactobacilli, on the expression of genes associated with early bursal development and maturation. Broiler line embryonated eggs were inoculated with 106 and 107 colony-forming units (CFUs) of an individual or a mixture of Lactobacillus species, including L. crispatus (C25), L. animalis (P38), L. acidophilus (P42), and L. reuteri (P43), at embryonic day 18 (ED18). The bursa of Fabricius was collected from pre-hatched chicks (ED20) to measure the expression levels of various immune system genes. The results revealed that L. acidophilus and the mixture of Lactobacillus species at the dose of 106 CFU consistently elicited higher expression of genes responsible for B cell development, differentiation, and survival (B cell activating factor (BAFF), BAFF-receptor (BAFF-R)), and antibody production (interleukin (IL)-10) and diversification (TGF-β). Similar expression patterns were also noted in T helper (Th) cell-associated cytokine genes, including Th1-type cytokines (interferon (IFN)-γ and IL-12p40), Th2-type cytokines (IL-4 and IL-13) and Th17 cytokine (IL-17). Overall, these results suggest that the supplementation of poultry-specific lactobacilli to chick embryos might be beneficial for accelerating the development and immunological maturation of the bursa of Fabricius. However, further studies are required to determine if the changes in gene expression are associated with the developmental trajectory and phenotypes of bursal cells.
Collapse
Affiliation(s)
- Shreeya Sharma
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hosni Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Scott Pratt
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Khaled Abdelaziz
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
5
|
Molinet A, Courtillon C, Bougeard S, Keita A, Grasland B, Eterradossi N, Soubies S. Infectious bursal disease virus: predicting viral pathotype using machine learning models focused on early changes in total blood cell counts. Vet Res 2023; 54:101. [PMID: 37904195 PMCID: PMC10614337 DOI: 10.1186/s13567-023-01222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/27/2023] [Indexed: 11/01/2023] Open
Abstract
Infectious bursal disease (IBD) is an avian viral disease caused in chickens by infectious bursal disease virus (IBDV). IBDV strains (Avibirnavirus genus, Birnaviridae family) exhibit different pathotypes, for which no molecular marker is available yet. The different pathotypes, ranging from sub-clinical to inducing immunosuppression and high mortality, are currently determined through a 10-day-long animal experiment designed to compare mortality and clinical score of the uncharacterized strain with references strains. Limits of this protocol lie within standardization and the extensive use of animal experimentation. The aim of this study was to establish a predictive model of viral pathotype based on a minimum number of early parameters measured during infection, allowing faster pathotyping of IBDV strains with improved ethics. We thus measured, at 2 and 4 days post-infection (dpi), the blood concentrations of various immune and coagulation related cells, the uricemia and the infectious viral load in the bursa of Fabricius of chicken infected under standardized conditions with a panel of viruses encompassing the different pathotypes of IBDV. Machine learning algorithms allowed establishing a predictive model of the pathotype based on early changes of the blood cell formula, whose accuracy reached 84.1%. Its accuracy to predict the attenuated and strictly immunosuppressive pathotypes was above 90%. The key parameters for this model were the blood concentrations of B cells, T cells, monocytes, granulocytes, thrombocytes and erythrocytes of infected chickens at 4 dpi. This predictive model could be a second option to traditional IBDV pathotyping that is faster, and more ethical.
Collapse
Affiliation(s)
- Annonciade Molinet
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
| | - Céline Courtillon
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
| | - Stéphanie Bougeard
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
| | - Alassane Keita
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
| | - Béatrice Grasland
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France.
| | - Nicolas Eterradossi
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
| | - Sébastien Soubies
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement Et du Travail, 41 Rue de Beaucemaine, 22440, Ploufragan, France
- INRAE-ENVT, UMR 1225 IHAP, 23 Chemin Des Capelles, 31076, Toulouse CEDEX 3, France
| |
Collapse
|
6
|
Khalil NW, Elshorbagy MA, Elboraay EM, Helal AM. Live IBD vaccine exacerbates disease and pathological effects of Asian lineage H9N2 LPAIV in chickens. Avian Pathol 2023; 52:351-361. [PMID: 37439655 DOI: 10.1080/03079457.2023.2236994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Avian influenza H9N2 is one of the most commonly circulating viruses in numerous Egyptian poultry farms. The Asian lineage H9N2 exhibits an immunosuppressive effect, and its pathogenicity is amplified when it co-infects with other pathogens, especially with the immunosuppressive infectious bursal disease virus (IBDV), resulting in increased mortality rates. Both vaccines and field infection can exacerbate the pathogenicity of H9N2, particularly in the bursa of Fabricius, causing more significant lymphoid depletion. To comprehend the impact of the IBD vaccine on the viral and pathogenic effect of H9N2 infection in specific pathogen-free chicks (SPF), the experiment was designed as four groups; group 1 served as the negative control, group 2 received (228E) IBD vaccine, group 3 was challenged with H9N2, and group-4 was vaccinated by the IBD vaccine then challenged with H9N2. The clinical signs, relative immune organs weights and histopathological lesion scores were recorded. The tracheal and cloacal H9N2 viral shedding were also measured. Group 4 exhibited a significant decrease (P ≤ 0.05) in the relative bursal weight and an increase in the bursal lesion score when compared with groups 1 and 3 at 4 and 8 days post-challenge (dpc). The tracheal lesion score of group-4 recorded a significant increase when compared with groups 1 and 3. The renal lesion score of group 4 achieved a significant increase when compared with 1 and 3 at 8 dpc. Also, group 4 recorded a significant increase in H9N2 shedding in comparison with groups 1 and 3. Consequently, our study concluded that routine vaccination with the IBD intermediate plus vaccine exacerbates the silent infection of H9N2 resulting in outbreaks.
Collapse
Affiliation(s)
- N W Khalil
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - M A Elshorbagy
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - E M Elboraay
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - A M Helal
- Central Laboratory for Evaluation of Veterinary Biologics, Cairo, Egypt
| |
Collapse
|
7
|
Shahsavandi S, Torabi S, Ebrahimi MM, Ghadiri MB. Down-regulating CD19 surface markers expression correlates with infectious bursal disease virus replication. Vet Immunol Immunopathol 2023; 264:110658. [PMID: 37748249 DOI: 10.1016/j.vetimm.2023.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
The infectious bursal disease virus (IBDV) causes an acute and highly contagious immunosuppressive response in young chickens by targeting B lymphocytes in immune organs. Changes in regulatory T-cell ratio and apoptosis have been demonstrated during IBDV infection in these cells. The possible change in CD19 expression as the precursor of B cells after IBDV replication was detected in this study. Raji cells were infected with an IBDV isolate at MOIs of 1.0 and 3.0. The viral kinetics were determined using the characteristic virus-induced CPE, cell viability, and infectious titer. Induction of apoptosis and also changes in the CD19 expression within the virus infection were assessed by flow cytometry. The Raji cells were found to be susceptible to IBDV infection by producing marked CPEs dependent on MOI. The infectivity titers were determined in intra- and extracellular samples at the defined hours. The kinetics of early IBDV replication in Raji cells were nearly identical for both MOIs, but a significant difference in the infectivity titer was observed at 48 hpi. The quick apoptotic events were observed to be significantly higher in MOI 3.0, which was correlated with the lower virus titer. A significant CD19 expression change in the IBDV-infected Raji cells was revealed. The results suggested that Raji cells mimic the IBDV replication in lymphoid organs and the virus replication is related to CD19 expression frequencies in the lymphoid cells.
Collapse
Affiliation(s)
- Shahla Shahsavandi
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran.
| | - Samira Torabi
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Mohammad Majid Ebrahimi
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Mohammad Bagher Ghadiri
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| |
Collapse
|
8
|
Nazki S, Reddy VRAP, Kamble N, Sadeyen JR, Iqbal M, Behboudi S, Shelton H, Broadbent AJ. CD4 +TGFβ + cells infiltrated the bursa of Fabricius following IBDV infection, and correlated with a delayed viral clearance, but did not correlate with disease severity, or immunosuppression. Front Immunol 2023; 14:1197746. [PMID: 37744374 PMCID: PMC10515216 DOI: 10.3389/fimmu.2023.1197746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Infectious Bursal Disease Virus (IBDV) causes immunosuppression in chickens. While B-cell destruction is the main cause of humoral immunosuppression, bursal T cells from IBDV-infected birds have been reported to inhibit the mitogenic response of splenocytes, indicating that some T cell subsets in the infected bursa have immunomodulatory activities. CD4+CD25+TGFβ+ cells have been recently described in chickens that have immunoregulatory properties and play a role in the pathogenesis of Marek's Disease Virus. Methods To evaluate if CD4+CD25+TGFβ+ cells infiltrated the bursa of Fabricius (BF) following IBDV infection, and influenced the outcome of infection, birds were inoculated at either 2 days or 2 weeks of age with vaccine strain (228E), classic field strain (F52/70), or PBS (mock), and bursal cell populations were quantified by flow cytometry. Results Both 228E and F52/70 led to atrophy of the BF, a significant reduction of Bu1+-B cells, and a significant increase in CD4+ and CD8α+ T cells in the BF, but only F52/70 caused suppression of immune responses to a test antigen in younger birds, and clinical signs in older birds. Virus was cleared from the BF more rapidly in younger birds than older birds. An infiltration of CD4+CD25+T cells into the BF, and elevated expression of bursal TGFβ-1+ mRNA was observed at all time points following infection, irrespective of the strain or age of the birds, but CD4+TGFβ+cells and CD4+CD25+TGFβ+ cells only appeared in the BF at 28 dpi in younger birds. In older birds, CD4+TGFβ+ cells and CD4+CD25+TGFβ+ cells were present at earlier time points, from 7dpi following 228E infection, and from 14 and 28 dpi following F52/70 infection, respectively. Discussion Our data suggest that an earlier infiltration of CD4+TGFβ+ cells into the BF correlated with a delayed clearance of virus. However, the influx of CD4+TGFβ+ cells and CD4+CD25+TGFβ+ into the BF did not correlate with increased pathogenicity, or immunosuppression.
Collapse
Affiliation(s)
- Salik Nazki
- The Pirbright Institute, Woking, United Kingdom
- Nuffield Department of Medicine, Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Munir Iqbal
- The Pirbright Institute, Woking, United Kingdom
| | - Shahriar Behboudi
- The Pirbright Institute, Woking, United Kingdom
- Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | - Andrew J. Broadbent
- The Pirbright Institute, Woking, United Kingdom
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
9
|
Kajal S, Narang G, Jangir BL, Kundu P, Lather D, Chhabra R. Studies on immunopathological changes induced by commercial IBD live vaccines in poultry birds. Sci Rep 2023; 13:12379. [PMID: 37524771 PMCID: PMC10390494 DOI: 10.1038/s41598-023-39017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
Intermediate plus live strain infectious bursal disease virus (IBDV) vaccines are used to control IBDV endemic infections in India. In the present study, immunopathological changes induced by commercial infectious bursal disease live vaccines with different immunization regimes were compared. A total of days old 108 Cobb broiler chicks were randomly divided into five groups with 24 chicks each in groups I, II, III and 18 chicks each in group IV and V. Group I served as control I (no immunization) and group II and III chicks were immunized with a single dose of vaccines 1 and 2 on 17th day of age (DOA), respectively. The group IV and V chicks were immunized with vaccines 1 and 2, respectively with primary dose on 17th DOA followed by booster dose on 24th DOA. Both intermediate plus live vaccines produced gross and histopathological lesions in lymphoid organs (bursa of Fabricius, thymus, spleen and caecal tonsils). Increased CD4 + , CD8 + T cells in affected bursa of Fabricius was evidenced by immunohistochemistry. Further, up-regulation in relative mRNA expression of IFN-γ, IL-1β and IL-6 were observed in bursa of Fabricius of treated birds, with maximum alteration particularly on 14th day post single immunization and 7th day post booster immunization. The findings suggest that single immunization regime on the 17th day of age showed immunization equivalent to booster immunization with lesser lesions, therefore, may be practiced and promoted in the field conditions for the better economic returns and animal welfare.
Collapse
Affiliation(s)
- Sushma Kajal
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Gulshan Narang
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Babu Lal Jangir
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Pooja Kundu
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Deepika Lather
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Rajesh Chhabra
- College Central Laboratory, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| |
Collapse
|
10
|
Dascalu S, Preston SG, Dixon RJ, Flammer PG, Fiddaman S, Boyd A, Sealy JE, Sadeyen JR, Kaspers B, Velge P, Iqbal M, Bonsall MB, Smith AL. The influences of microbial colonisation and germ-free status on the chicken TCRβ repertoire. Front Immunol 2023; 13:1052297. [PMID: 36685492 PMCID: PMC9847582 DOI: 10.3389/fimmu.2022.1052297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Microbial colonisation is paramount to the normal development of the immune system, particularly at mucosal sites. However, the relationships between the microbiome and the adaptive immune repertoire have mostly been explored in rodents and humans. Here, we report a high-throughput sequencing analysis of the chicken TCRβ repertoire and the influences of microbial colonisation on tissue-resident TCRβ+ cells. The results reveal that the microbiome is an important driver of TCRβ diversity in both intestinal tissues and the bursa of Fabricius, but not in the spleen. Of note, public TCRβ sequences (shared across individuals) make a substantial contribution to the repertoire. Additionally, different tissues exhibit biases in terms of their V family and J gene usage, and these effects were influenced by the gut-associated microbiome. TCRβ clonal expansions were identified in both colonised and germ-free birds, but differences between the groups were indicative of an influence of the microbiota. Together, these findings provide an insight into the avian adaptive immune system and the influence of the microbiota on the TCRβ repertoire.
Collapse
Affiliation(s)
- Stefan Dascalu
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Avian Influenza Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Stephen G. Preston
- Department of Biology, University of Oxford, Oxford, United Kingdom
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Robert J. Dixon
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - Steven Fiddaman
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Amy Boyd
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Joshua E. Sealy
- Avian Influenza Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Jean-Remy Sadeyen
- Avian Influenza Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Bernd Kaspers
- Veterinary Faculty, Ludwig Maximillians University of Munich, Planegg, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique (INRAE), Université François Rabelais de Tours, Unités Mixtes de Recherche, Infectiologie et Santé Publique (ISP), Nouzilly, France
| | - Munir Iqbal
- Avian Influenza Research Group, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Adrian L. Smith
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Zhang S, Zheng S. Host Combats IBDV Infection at Both Protein and RNA Levels. Viruses 2022; 14:v14102309. [PMID: 36298864 PMCID: PMC9607458 DOI: 10.3390/v14102309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, with the emergence of IBDV variants and recombinant strains, IBDV still threatens the poultry industry worldwide. It seems that the battle between host and IBDV will never end. Thus, it is urgent to develop a more comprehensive and effective strategy for the control of this disease. A better understanding of the mechanisms underlying virus-host interactions would be of help in the development of novel vaccines. Recently, much progress has been made in the understanding of the host response against IBDV infection. If the battle between host and IBDV at the protein level is considered the front line, at the RNA level, it can be taken as a hidden line. The host combats IBDV infection at both the front and hidden lines. Therefore, this review focuses on our current understanding of the host response to IBDV infection at both the protein and RNA levels.
Collapse
Affiliation(s)
- Shujun Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-(10)-6273-4681
| |
Collapse
|
12
|
Dunislawska A, Pietrzak E, Bełdowska A, Siwek M. Health in poultry- immunity and microbiome with regard to a concept of one health. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
The overall concept of OneHealth focuses on health and infectious disease in the context of the relationship between humans, animals, and the environment. In poultry production, there are many opportunities to implement OneHealth by organizing work and introducing appropriate engineering solutions. It is recommended that future research directions include designing and testing solutions to improve air quality and the elimination of antibiotics in the poultry industry. For this to be possible, it is essential to understand the indigenous microbiota of poultry, which plays a crucial role in nutrients, but also restricts the growth of pathogenic organisms. In poultry production, the most important thing is disease control in the herd, high product quality, and product efficiency. Food safety is key for consumers, as some zoonoses are transmitted through the food chain. Moreover, antibiotic resistance of bacteria is becoming a growing threat. For this reason, it is essential to maintain the proper immune status in the herd. Virus disease control in poultry is based on vaccination programs and the maintenance of biosecurity. This chapter aims to present the current state of knowledge in the field of immunity and microbiome of poultry in the context of the OneHealth concept.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Elżbieta Pietrzak
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Aleksandra Bełdowska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| |
Collapse
|
13
|
Wang Q, Chu F, Zhang X, Hu H, Lu L, Wang F, Yu Y, Zhang Y, Ma J, Xu Z, Eldemery F, Ou C, Liu X. Infectious bursal disease virus replication is inhibited by avain T cell chemoattractant chemokine CCL19. Front Microbiol 2022; 13:912908. [PMID: 35935208 PMCID: PMC9355407 DOI: 10.3389/fmicb.2022.912908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chemokine CCL19, together with its receptor CCR7, is one of the most important factors recruiting immune cells into target organ during virus infection. Our previous study has shown that CCL19 played a vital role in the process of T cell trafficking into bursae during bursal disease virus (IBDV) infection. In this study, we hypothesized that CCL19 could exert direct influences on IBDV replication other than recruiting immune cells. A eukaryotic expression vector of pEGFP-N1/CCL19 was successfully constructed and identified by PCR, double enzymes digestion, and sequencing. Different concentrations of pEGFP-N1/CCL19 plasmids were transfected into DF1 cells and CCL19 protein was highly expressed. Then, DF1 cells were infected with IBDV B87 strain post-transfection. Based on PCR and Western blot results, CCL19 could obviously decrease the gene levels of VP1 and VP2 and the protein levels of VP2 and VP3. When CCL19 was knocked down, the gene levels of VP1 and VP2 were significantly upregulated. Moreover, indirect immunostaining revealed that the IBDV content was largely decreased after CCL19 overexpression. Additionally, CCL19 inhibitory effects might rely on activation of the JNK signal pathway. Taken together, chemokine CCL19 directly blocks IBDV replication in DF1 cells, indicating that CCL19 could play crucial functions other than recruiting T cells during the pathogenesis of IBDV.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Fuming Chu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xin Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Huilong Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Lang Lu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Fang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Changbo Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Changbo Ou
| | - Xingyou Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- College of Life Science, Xinxiang University, Xinxiang, China
- Xingyou Liu
| |
Collapse
|
14
|
Trapp J, Rautenschlein S. Infectious bursal disease virus' interferences with host immune cells: What do we know? Avian Pathol 2022; 51:303-316. [PMID: 35616498 DOI: 10.1080/03079457.2022.2080641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractInfectious bursal disease virus (IBDV) induces one of the most important immunosuppressive diseases in chickens leading to high economic losses due increased mortality and condemnation rates, secondary infections and the need for antibiotic treatment. Over 400 publications have been listed in PubMed.gov in the last five years pointing out the research interest in this disease and the development of improved preventive measures. While B cells are the main target cells of the virus, also other immune and non-immune cell populations are affected leading a multifaceted impact on the normally well orchestrated immune system in IBDV-infected birds. Recent studies clearly revealed the contribution of innate immune cells as well as T cells to a cytokine storm and subsequent death of affected birds in the acute phase of the disease. Transcriptomics identified differential regulation of immune related genes between different chicken genotypes as well as virus strains, which may be associated with a variable disease outcome. The recent availability of primary B cell culture systems allowed a closer look into virus-host interactions during IBDV-infection. The new emerging field of research with transgenic chickens will open up new opportunities to understand the impact of IBDV on the host also under in vivo conditions, which will help to understand the complex virus-host interactions further.
Collapse
Affiliation(s)
- Johanna Trapp
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
15
|
Chicken Mesenchymal Stem Cells and Their Applications: A Mini Review. Animals (Basel) 2021; 11:ani11071883. [PMID: 34202772 PMCID: PMC8300106 DOI: 10.3390/ani11071883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Mesenchymal stem cells (MSCs) are multipotent stem cells that are capable of differentiation into bone, muscle, fat, and closely related lineages and express unique and specific cell surface markers. They can be used as an avian culture model to better understand osteogenic, adipogenic, and myogenic pathways. Moreover, MSCs could also be used as a model to study various developmental and physiological processes in avian and other species. To obtain a comprehensive overview of this topic, the keywords “mesenchymal stem cells”, “chicken”, “disease”, “chicken dermatitis”, “viral infections in chicken”, and “antibiotics in chicken” were searched in WOS and PUBMED databases to obtain relevant information. Abstract Mesenchymal stem cells (MSCs) are multipotent progenitor cells that adhere to plastic; express the specific markers CD29, CD44, CD73, CD90, and CD105; and produce cytokines and growth factors supporting and regulating hematopoiesis. MSCs have capacity for differentiating into osteocytes, chondrocytes, adipocytes, and myocytes. They are useful for research toward better understanding the pathogenic potential of the infectious bursal disease virus, mineralization during osteogenesis, and interactions between MSCs as a feeder layer to other cells. MSCs are also important for immunomodulatory cell therapy, can provide a suitable strategy model for coculture with pathogens causing dermatitis disorders in chickens, can be cultured in vitro with probiotics and prebiotics with a view to eliminate the feeding of antibiotic growth promoters, and offer cell-based meat production. Moreover, bone marrow-derived MSCs (BM-MSCs) in coculture with hematopoietic progenitor/stem cells (HPCs/HSCs) can support expansion and regulation of the hematopoiesis process using the 3D-culture system in future research in chickens. MSCs’ several advantages, including ready availability, strong proliferation, and immune modulatory properties make them a suitable model in the field of stem cell research. This review summarizes current knowledge about the general characterization of MSCs and their application in chicken as a model organism.
Collapse
|
16
|
Asfor AS, Nazki S, Reddy VR, Campbell E, Dulwich KL, Giotis ES, Skinner MA, Broadbent AJ. Transcriptomic Analysis of Inbred Chicken Lines Reveals Infectious Bursal Disease Severity Is Associated with Greater Bursal Inflammation In Vivo and More Rapid Induction of Pro-Inflammatory Responses in Primary Bursal Cells Stimulated Ex Vivo. Viruses 2021; 13:v13050933. [PMID: 34069965 PMCID: PMC8157851 DOI: 10.3390/v13050933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 01/26/2023] Open
Abstract
In order to better understand differences in the outcome of infectious bursal disease virus (IBDV) infection, we inoculated a very virulent (vv) strain into White Leghorn chickens of inbred line W that was previously reported to experience over 24% flock mortality, and three inbred lines (15I, C.B4 and 0) that were previously reported to display no mortality. Within each experimental group, some individuals experienced more severe disease than others but line 15I birds experienced milder disease based on average clinical scores, percentage of birds with gross pathology, average bursal lesion scores and average peak bursal virus titre. RNA-Seq analysis revealed that more severe disease in line W was associated with significant up-regulation of pathways involved in inflammation, cytoskeletal regulation by Rho GTPases, nicotinic acetylcholine receptor signaling, and Wnt signaling in the bursa compared to line 15I. Primary bursal cell populations isolated from uninfected line W birds contained a significantly greater percentage of KUL01+ macrophages than cells isolated from line 15I birds (p < 0.01) and, when stimulated ex vivo with LPS, showed more rapid up-regulation of pro-inflammatory gene expression than those from line 15I birds. We hypothesize that a more rapid induction of pro-inflammatory cytokine responses in bursal cells following IBDV infection leads to more severe disease in line W birds than in line 15I.
Collapse
Affiliation(s)
- Amin S. Asfor
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford GU2 7AL, UK
| | - Salik Nazki
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
| | - Vishwanatha R.A.P. Reddy
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
| | - Elle Campbell
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
| | - Katherine L. Dulwich
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
| | - Efstathios S. Giotis
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, UK; (E.S.G.); (M.A.S.)
- School of Life Sciences, University of Essex, Colchester C04 3SQ, UK
| | - Michael A. Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, UK; (E.S.G.); (M.A.S.)
| | - Andrew J. Broadbent
- Birnaviruses Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.A.); (S.N.); (V.R.A.P.R.); (E.C.); (K.L.D.)
- Department of Pathology and Infectious Diseases, Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford GU2 7AL, UK
- Department of Animal and Avian Sciences, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
- Correspondence: ; Tel.: +1-3-014-050-376
| |
Collapse
|
17
|
The Novel Genetic Background of Infectious Bursal Disease Virus Strains Emerging from the Action of Positive Selection. Viruses 2021; 13:v13030396. [PMID: 33801413 PMCID: PMC7998436 DOI: 10.3390/v13030396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
The circulation in Europe of novel reassortant strains of infectious bursal disease virus (IBDV), containing a unique genetic background composition, represents a serious problem for animal health. Since the emergence of this novel IBDV mosaic was first described in Poland, this scenario has become particularly attractive to uncover the evolutionary forces driving the genetic diversity of IBDV populations. This study additionally addressed the phenotypic characterization of these emergent strains, as well as the main features affecting the viral fitness during the competition process of IBDV lineages in the field. Our results showed how different evolutionary mechanisms modulate the genetic diversity of co-existent IBDV lineages, leading to the error catastrophe effect, Muller ratchet effect, or prevalence, depending on their genetic compositions. We also determined that the action of the positive selection pressure, depending on the genomic segment on which it is acting, can drive two main phenotypes for IBDV: immune-escaping strains from the selection on segment A or strains with functional advantages from the selection on segment B. This last group seems to possess an increased fitness landscape in the viral quasispecies composition, presenting better adaptability to dissimilar environmental conditions and likely becoming the dominant population. The reassortant strains also exhibited a lower mortality rate compared with the well-known vvIBDV strains, which can facilitate their spreading.
Collapse
|
18
|
Yu Y, Xu Z, Ou C, Wang Q, Zhang Y, Guo F, Gao P, Ma J. The effect of ghrelin on the fibrosis of chicken bursa of fabricius infected with infectious bursal disease virus. Gen Comp Endocrinol 2021; 303:113705. [PMID: 33359665 DOI: 10.1016/j.ygcen.2020.113705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 01/09/2023]
Abstract
The present study aimed to investigate the effect of ghrelin on the degree of bursa of Fabricius (BF) fibrosis in infectious bursal disease virus-infected chickens. Specific pathogen free (SPF) chicks were divided into four groups. One group was used as the control ("C"). The other three groups were inoculated with IBDV on the 19th day, of which two were injected intraperitoneally with 0.5 nmol ("LG") or 1.0 nmol ("HG") ghrelin/100 g weight from the 18th day to the 22nd day, and one was injected intraperitoneally with PBS ("I"). Hematoxylin-eosin staining, Masson's staining, and quantitative real-time PCR were used to determine the effects of ghrelin on the degree of inflammatory cell infiltration, the bursal fibrosis degree, and the expression of TGF-β and MMP-9 mRNA in IBDV-infected SPF chicks. The results showed that ghrelin administration reduced the number of infiltrated inflammatory cells in BF from 5 dpi and significantly attenuated the degree of fibrosis induced by IBDV from 2 dpi to 7 dpi (P < 0.05). Moreover, the TGF-β expression in the LG and HG groups were significantly or highly significantly lower (P < 0.05 or P < 0.01) than those of I group from 2 dpi to 5 dpi. In addition, ghrelin administration downregulated MMP-9 expression evoked by IBDV from 2 dpi to 7 dpi (P < 0.05 or P < 0.01). These results suggested that ghrelin attenuated the bursal fibrosis degree of IBDV-infected SPF chicks by reducing the number of inflammatory cells and by decreasing the expression of TGF-β and MMP-9, which shortened the process of bursa recovery.
Collapse
Affiliation(s)
- Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Changbo Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Feng Guo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
19
|
Kuang J, Xu P, Shi Y, Yang Y, Liu P, Chen S, Zhou C, Li G, Zhuang Y, Hu R, Hu G, Guo X. Nephropathogenic Infectious Bronchitis Virus Infection Altered the Metabolome Profile and Immune Function of the Bursa of Fabricius in Chicken. Front Vet Sci 2021; 7:628270. [PMID: 33553290 PMCID: PMC7858655 DOI: 10.3389/fvets.2020.628270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Infectious bronchitis is a highly contagious, acute viral respiratory disease of chickens, regardless of the strain, and its infection may lead to considerable economic losses to the poultry industry. New nephropathogenic infectious bronchitis virus (NIBV) strains have increasingly emerged in recent years; hence, evaluating their infection-influenced immune function changes and the alteration of metabolite profiling is important. Initially, chickens were randomly distributed into two groups: the control group (Con) and the disease group (Dis). Here, the partial cytokines were examined, and the metabolome alterations of the bursa of Fabricius (BF) in NIBV infections in chickens were profiled by gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS). The results revealed that the NIBV infection promotes the mRNA expression of inflammatory cytokines. Metabolic profile analysis indicated that clustering differed between the two groups and there were 75 significantly different metabolites detected between the two groups, suggesting that the host metabolism was significantly changed by NIBV infection. Notably, the following 12 metabolites were identified as the potential biomarkers: 3-phenyllactic acid, 2-deoxytetronic acid, aminomalonic acid, malonamide 5, uric acid, arachidonic acid, 2-methylglutaric acid, linoleic acid, ethanolamine, stearic acid, N-alpha-acetyl-l-ornithine, and O-acetylserine. Furthermore, the results of the correlation analysis showed that a strong correlation existed between metabolic biomarkers and inflammatory cytokines. Our results describe an immune and metabolic profile for the BF of chickens when infected with NIBV and provide new biomarkers of NIBV infection as potential targets and indicators of indicating therapeutic efficacy.
Collapse
Affiliation(s)
- Jun Kuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Puzhi Xu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yitian Yang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shupeng Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
20
|
A Comparative Study of Pathology and Host Immune Response Induced by Very Virulent Infectious Bursal Disease Virus in Experimentally Infected Chickens of Aseel and White Leghorn Breeds. Vaccines (Basel) 2020; 8:vaccines8040627. [PMID: 33114776 PMCID: PMC7711558 DOI: 10.3390/vaccines8040627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Indigenous breeds of young chickens in India are believed to be resistant to the classical strain of infectious bursal disease virus (IBDV). However, the mechanism underlying this resistance is obscure. Innate immunity is a key factor in defining the clinical course and pathology of microbial infections. The present study is aimed to compare the pathology of very virulent IBDV (vvIBDV) and immunological host response in experimentally infected - vaccinated and unvaccinated indigenous Aseel and commercial White Leghorn chickens. The viral loads and innate immune gene expression profiles of MDA-5, Mx, IFN-α, and IFN-β in different lymphoid organs were analyzed by quantitative PCR. The histopathological scores in Aseel birds were lower than in White Leghorns despite comparable viral loads. The degrees of histopathological lesions were fewer in vaccinated birds than in unvaccinated birds of both breeds. Analysis of innate immune response genes revealed that the cytoplasmic pattern recognition receptor MDA-5 gene was overexpressed mainly in the cecal tonsils of both vaccinated and nonvaccinated White Leghorn chickens. An increase in the expression of the IFN-α gene was seen in the cecal tonsils of Aseels, and an increase in IFN-β gene expression was seen in the thymuses of White Leghorns following vvIBDV challenge both in vaccinated and nonvaccinated birds. In addition, we observed that the Mx gene plays a minimal role, if any, in vvIBDV infection of the breeds under study. It remains interesting and important that although vvIBDV causes disease in indigenous Aseel birds, the faster clearance and reduced pathology of the virus in Aseel birds compared to White Leghorn chicken indicate some unidentified innate immune factors that are limiting IBDV in this breed. Further studies will be required to correlate kinetics of humoral and cellular immune response in relation to the virus load in different organs to illuminate the mechanism of genetic resistance in native breeds of chicken.
Collapse
|
21
|
T cell subset profile and inflammatory cytokine properties in the gut-associated lymphoid tissues of chickens during infectious bursal disease virus (IBDV) infection. Arch Virol 2020; 165:2249-2258. [PMID: 32696270 DOI: 10.1007/s00705-020-04735-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/12/2020] [Indexed: 12/23/2022]
Abstract
While infectious bursal disease virus (IBDV) mainly targets immature B cells and causes T cell infiltration in the bursa of Fabricius (BF) of chickens, the effect of IBDV infection on the properties of T cells and relevant cytokine production in avian gut-associated lymphoid tissues (GALTs) remains unknown. Here, we show that while the CD8+ T cell subset is not affected, IBDV infection decreases the percentage of CD4+ T cells in the cecal tonsil (CT), but not in esophagus tonsil, pylorus tonsil, and Meckel's diverticulum of GALTs, in contrast to BF and spleen, in which the proportion of CD4+ cells increases upon IBDV infection. Further, IBDV infection upregulates IFN-γ, IL-10, and the T cell checkpoint receptor LAG-3 mRNA expression in BF. In contrast, in CTs, IBDV infection significantly increases the production of IFN-β and CTLA-4 mRNA, while no significant effect is seen in the case of IFN-γ, IL-10 and LAG-3. Together, our data reveal differential modulation of T cell subsets and proinflammatory cytokine production in different lymphoid tissues during the course of IBDV infection.
Collapse
|
22
|
Lupini C, Quaglia G, Mescolini G, Russo E, Salaroli R, Forni M, Boldini S, Catelli E. Alteration of immunological parameters in infectious bronchitis vaccinated-specific pathogen-free broilers after the use of different infectious bursal disease vaccines. Poult Sci 2020; 99:4351-4359. [PMID: 32867979 PMCID: PMC7318956 DOI: 10.1016/j.psj.2020.05.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 12/28/2022] Open
Abstract
The vaccines currently available to control infectious bursal disease (IBD) include live-attenuated and inactivated vaccines, immune-complex vaccines, and vaccines consisting of viral constructs of herpesvirus of turkeys genetically engineered to express VP2 surface protein. To evaluate the impact of vaccines on the chicken immune system, 2 animal trials were performed in specific pathogen-free broiler chickens. In trial 1, birds were either vaccinated when they are one-day old with a dual recombinant herpes virus of turkey construct vaccine, expressing VP2 protein of (IBDV) and F protein of Newcastle disease virus, or an immune-complex IBDV vaccine or birds were not vaccinated. At 14, 28, and 35 D, the bursa of Fabricius was collected for bursa:body weight (B:BW) ratio calculation. In trial 2, birds were vaccinated when they were 1-day old according to the same protocol as trial 1, but at day 14, all groups also received a live infectious bronchitis (IB) vaccine. At 0, 7, 14, 21, and 28 days after IB vaccination, birds were tested by ELISA for IB serology and, soon after the last blood sampling, they were euthanized for collection of Harderian glands, trachea, and spleen and testing by flow cytometry for characterization of mononuclear cells. The immune-complex vaccine groups showed significantly lower B:BW ratio, lower IBV antibody titers, and higher mean percentage of CD8+ T cells in the spleen, trachea, and Harderian glands than those in the other experimental groups. The results of the in vivo trials coupled with a depth analysis of the repertoire of parameters involved in the immune response to IBD and IB vaccinations show one vaccine may influence the immune response of other vaccines included in the vaccination program.
Collapse
Affiliation(s)
- Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Elisa Russo
- MSD Animal Health Srl, 20090 Segrate, MI, Italy
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy
| | | | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
23
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
24
|
Mohd Isa F, Ahmed Al-Haj N, Mat Isa N, Ideris A, Powers C, Oladapo O, Nair V, Omar AR. Differential expression of immune-related genes in the bursa of Fabricius of two inbred chicken lines following infection with very virulent infectious bursal disease virus. Comp Immunol Microbiol Infect Dis 2020; 68:101399. [PMID: 31837598 DOI: 10.1016/j.cimid.2019.101399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Among different inbred chickens' lines, we previously showed that lines P and N of Institute for Animal Health, Compton, UK are the most susceptible and the least affected lines, respectively, following infection with very virulent infectious bursal disease virus (vvIBDV). In this study, the differential expressions of 29 different immune-related genes were characterized. Although, birds from both lines succumbed to infection, line P showed greater bursal lesion scores and higher viral copy numbers compared to line N. Interestingly, line N showed greater down-regulation of B cell related genes (BLNK, TNFSF13B and CD72) compared to line P. While up-regulation of T-cell related genes (CD86 and CTLA4) and Th1 associated cytokines (IFNG, IL2, IL12A and IL15) were documented in both lines, the expression levels of these genes were different in the two lines. Meanwhile, the expression of IFN-related genes IFNB, STAT1, and IRF10, but not IRF5, were up-regulated in both lines. The expression of pro-inflammatory cytokines (IL1B, IL6, IL18, and IL17) and chemokines (CXCLi2, CCL4, CCL5 and CCR5) were up-regulated in both lines with greater increase documented in line P compared to line N. Strikingly, the expression of IL12B was detected only in line P whilst the expression of IL15RA was detected only in line N. In conclusion, the bursal immunopathology of IBDV correlates more with expression of proinflammatory response related genes and does not related to expression of B-cell related genes.
Collapse
Affiliation(s)
- Farhanah Mohd Isa
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nagi Ahmed Al-Haj
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Aini Ideris
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Claire Powers
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Woking, UK; The Jenner Institute, The Centre for Cellular and Molecular Physiology, Roosevelt Drive, Oxford, United Kingdom
| | | | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Woking, UK
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
25
|
Dobner M, Auerbach M, Mundt E, Icken W, Rautenschlein S. Genotype-associated differences in bursal recovery after infectious bursal disease virus (IBDV) inoculation. Vet Immunol Immunopathol 2019; 220:109993. [PMID: 31901750 DOI: 10.1016/j.vetimm.2019.109993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
T-cell immune responses were shown to play an important role in the regulation of infectious bursal disease virus (IBDV) replication and development of lesions in the bursa of Fabricius (BF) (bursal lesions) but also in the recovery from the infection. Studies suggested that the host-genotype influences T-cell responses during the acute phase of infection. Genotype-related differences in the recovery phase were not investigated so far. The present study used commercial broiler- (BT), layer- (LT), dual-purpose type (DT) chicken lines as well as a specific pathogen free (SPF) LT chicken as a reference for comparison of T-cell related differences in IBDV-immunopathogenesis not only in the early phase post inoculation (pi) but also in the recovery phase. The Deventer formula was used to determine the optimal time point of inoculation with an intermediate plus IBDV strain when maternally derived antibody (MDA) titers were below the calculated breakthrough level of the virus for all genotypes. Differences in the bursal lesion development, intrabursal CD4+ and CD8+ T-cell accumulation and numbers of IBDV-positive cells were determined. In addition, anti-IBDV antibody development and the relative amount of anti-inflammatory cytokine mRNA were recorded until 28 days post IBDV inoculation. Differences between the genotypes were observed in the duration and magnitude of bursal lesions, CD4+ and CD8+ T-cell infiltration as well as the presence of anti-inflammatory Interleukin (IL)-10 and Transforming growth factor (TGF) β4 cytokine mRNA (P < 0.05). While the investigated immune parameters were comparable between the genotypes at seven days pi, during 14, 21 and 28 days pi a delayed recovery process in LT and DT chickens compared to BT chickens was observed (P < 0.05). Furthermore, the age and residual MDA levels had a genotype-dependent influence on the onset of the anti-IBDV specific humoral and T-cell mediated immune responses. This study suggests, that the impact of T-cell immunity on the recovery process after IBDV infection may need to be considered further for the development of new breeding programs for disease resistant chicken lines.
Collapse
Affiliation(s)
- Marina Dobner
- Clinic for Poultry, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| | - Monika Auerbach
- Clinic for Poultry, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| | - Egbert Mundt
- Boehringer Ingelheim, Veterinary Research Center GmbH Co. KG, Bemeroderstr. 31, 30559 Hannover, Germany.
| | - Wiebke Icken
- Lohmann Tierzucht GmbH, Am Seedeich 9-11, 27472 Cuxhaven, Germany.
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
26
|
Wang Q, Ou C, Wei X, Yu Y, Jiang J, Zhang Y, Ma J, Liu X, Zhang G. CC chemokine ligand 19 might act as the main bursal T cell chemoattractant factor during IBDV infection. Poult Sci 2019; 98:688-694. [PMID: 30239915 DOI: 10.3382/ps/pey435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022] Open
Abstract
Infectious bursa disease virus (IBDV) pathogenesis is characterized by increased numbers of T cells and decreased numbers of B cells in the bursa. Currently, little is about the key factor that affects T migration into bursa. In humans, CC chemokine ligand 19 (CCL19) recruits monocytes and neutrophils and is usually involved in various inflammatory disorders. The aim of this study was to assess the roles of CCL19 in driving peripheral blood cells infiltration into bursa of Fabricius of chickens infected with IBDV. Bursal samples were collected from chickens of the infection group and the control group on day 1, 3, 5, and 7 post infection (dpi) with IBDV. The mRNA or protein levels of ccl19 and ccr7 genes in bursae were determined by real-time PCR and immunohistochemistry (IHC) methods. Moreover, an in vitro chemotaxis assay was performed to evaluate the chemotaxis ability of CCL19 and bursal total protein. The results have displayed that the mRNA levels of ccl19 were significantly increased on 1, 3, 5, and 7 dpi in the infection group. The highest value amounted to 73.4-fold of the control group. Also, the mRNA levels of CCR7, the receptor of CCL19, began to increase on 3 dpi and reached to the highest value of 206.3-fold on 5 dpi after IBDV infection. Then the gene expression of CCR7 in bursae of the infection group returned to the normal level. IHC results of CCL19 protein level accorded with the mRNA levels of CCL19, with the highest value on 5 dpi. Then, in vitro chemotaxis test demonstrated that the total bursal protein had the ability of recruiting peripheral white blood cells (PWBC) and the migration percentage was a little higher than that of the blank control with only basal medium (P < 0.05). Taken together, these data suggest that CCL19 acts as a chicken PWBC chemotactic factor and facilitate the infiltration of PWBC (especially T cells) into the bursae after IBDV infection.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 451000, Henan, China.,Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Changbo Ou
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Xingyou Liu
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 451000, Henan, China
| |
Collapse
|
27
|
Yu Y, Zhang YH, Xu ZY, Liu TY, Wang QX, Ou CB, Ma JY. Effects of IBDV infection on expression of ghrelin and ghrelin-related genes in chicken. Poult Sci 2019; 98:119-127. [PMID: 30107600 DOI: 10.3382/ps/pey328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a peptide hormone that plays a modulatory role in the immune system. Studies have demonstrated that mammal ghrelin level is influenced by pathological status. However, it has not been reported whether chicken ghrelin level changes during pathogen infection. This study was designed to investigate changes of ghrelin levels in chickens infected with infectious bursal disease virus (IBDV) and to explore the relationship between ghrelin changes and bursal damage, and inflammatory cells infiltration induced by IBDV. The results showed that (1) plasma ghrelin concentration increased after IBDV infection. It reached a peak at 10443.6 ± 2612.9 pg/mL on 2 dpi, which was about 100-fold as high as that of the control. Then it decreased sharply on 3 dpi, which was only 31.7% as that of 2 dpi, and remained stable until 5 dpi. Meanwhile, ghrelin and ghrelin-related gene, ghrelin-o-acyltransferase (GOAT), and growth hormone secretagogue receptor (GHSR) mRNA expression levels in bursa were also increased after IBDV infection, and reached the peak on 2 dpi at 149, 28.8, and 117.2-fold higher than that of the control, respectively. Then they decreased and remained at a higher status. Correlation analysis showed that plasma ghrelin concentration and ghrelin, GOAT, and GHSR mRNA expressions in bursa were strongly associated with IBDV VP2 mRNA expression in bursa. (2) The damage of bursa was the most severe on 5 dpi with a histopathological score of 12. It had no direct correlation with plasma ghrelin level and ghrelin, GOAT, and GHSR mRNA expressions in bursa. However, the number of inflammatory cells infiltrating into bursa, which was the highest on 2 and 3 dpi, showed significant a positive correlation with the ghrelin and GHSR mRNA expression. Presumably chicken ghrelin may function as an anti-inflammatory factor. In conclusion, IBDV infection upregulates the expression of ghrelin and ghrelin-related gene in chickens, and chicken ghrelin may play an important regulatory role during pathogen infection.
Collapse
Affiliation(s)
- Y Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Y H Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Z Y Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - T Y Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Q X Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - C B Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - J Y Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| |
Collapse
|
28
|
Prakoso YA, Puspitasari, Rini CS, Aliviameita A, Salasia SIO, Kurniasih, Ikram AFD, Walalangi B, Utama KP, Al Huda MF, Su'udiyah NA. The Role of Sauropus androgynus (L.) Merr. Leaf Powder in the Broiler Chickens Fed a Diet Naturally Contaminated with Aflatoxin. J Toxicol 2018; 2018:2069073. [PMID: 30364039 PMCID: PMC6188729 DOI: 10.1155/2018/2069073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/12/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
Aflatoxin (AF) is the secondary metabolite of Aspergillus flavus and commonly contaminates feed during storage. AF causes lowered growth rate, stress, and increased mortality in the poultry, especially for broiler industries. The aims of this study are to determine the effects of Sauropus androgynus (L.) Merr. leaf powder (SAP) in the chickens fed a diet naturally contaminated with AF. A total of 108 chickens are divided into 6 group: group I fed with basal diet (AF not detectable); group II fed with basal diet (AF not detectable) + 5% SAP; group III with AF (>1 ppb <50 ppb); group IV with AF (>1 ppb <50 ppb) + 5% SAP; group V with AF (>51 ppb <100 ppb) + 5% SAP; group VI with AF (>101 ppb <150 ppb) + 5% SAP. The data of the body weight, feed intake and efficiency, the relative weight of liver, kidney, spleen, bursa of Fabricius (BF), histopathology, haematological profile, haemagglutination inhibition (HI) titer, AF residue, and immunohistochemistry are collected on days 7, 14, and 21. All the data were analysed using SPSS 16. The supplementation of 5% SAP in the chickens fed a diet naturally contaminated with AF showed the potential effects of the body weight performance, haematological profile protection, increase in the cellular and humoral immune responses, reduction of AF residue in the organ, protection of liver, kidney, spleen, and BF histopathology, and increase in the immune-expression of CD4+/CD8+ lymphocytes ratio (P < 0.05). It shows that 5% SAP can be used as the alternative herbal supplementation to depress the impacts of aflatoxicosis in the broiler chickens.
Collapse
Affiliation(s)
- Yos Adi Prakoso
- Faculty of Veterinary Medicine, University of Wijaya Kusuma Surabaya, East Java, Indonesia
| | - Puspitasari
- Integrated Laboratory, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Chylen Setiyo Rini
- Integrated Laboratory, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Andika Aliviameita
- Integrated Laboratory, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Siti Isrina Oktavia Salasia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Kurniasih
- Department of Pathology, Faculty of Veterinary Medicine, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Ahmad Fadhli Dzil Ikram
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Baristha Walalangi
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Kukuh Priya Utama
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Muhammad Fajar Al Huda
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Neneng Ayu Su'udiyah
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| |
Collapse
|
29
|
Maqsood I, Shi W, Wang L, Wang X, Han B, Zhao H, Nadeem A, Moshin B, Saima K, Jamal S, Din M, Xu Y, Tang L, Li Y. Immunogenicity and protective efficacy of orally administered recombinant Lactobacillus plantarum expressing VP2 protein against IBDV in chicken. J Appl Microbiol 2018; 125:1670-1681. [PMID: 30118165 PMCID: PMC7166448 DOI: 10.1111/jam.14073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022]
Abstract
AIM To develop an effective oral vaccine against the very virulent infectious bursal disease virus (vvIBDV), we generated two recombinant Lactobacillus plantarum strains (pPG612-VP2/LP and pPG612-T7g10-VP2/LP, which carried the T7g10 translational enhancer) that displayed the VP2 protein on the surface, and compared the humoral and cellular immune responses against vvIBDV in chickens. METHODS AND RESULTS We genetically engineered the L. plantarum strains pPG612-VP2/LP and pPG612-T7g10-VP2/LP constitutively expressing the VP2 protein of vvIBDV. We found that the T7g10 enhancer efficiently upregulates VP2 expression in pPG612-T7g10-VP2/LP. Orally administered, pPG612-T7g10-VP2/LP exhibited significant levels of protection (87·5%) against vvIBDV in chickens, indicating improved immunogenicity. Chickens in the pPG612-T7g10-VP2/LP group produced higher levels of interferons (IFN-γ) and interleukins (IL-2 and IL-4) than those in the pPG612-VP2/LP group. CD8+ and CD4+ lymphocyte counts indicated greater stimulation in the pPG612-T7g10-VP2/LP group (13·3 and 21·0% respectively) than in the pPG612-VP2/LP group (10·4 and 14·0% respectively). Thus, pPG612-T7g10-VP2/LP could induce strong humoral and cellular immune responses against vvIBDV. CONCLUSIONS The recombinant L. plantarum that expresses pPG612-T7g10-VP2 is a promising candidate for oral vaccine development against vvIBDV. SIGNIFICANCE AND IMPACT OF THE STUDY The recombinant Lactobacillus delivery system provides a promising strategy for vaccine development against vvIBDV in chickens.
Collapse
Affiliation(s)
- I. Maqsood
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - W. Shi
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - L. Wang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - X. Wang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - B. Han
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - H. Zhao
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - A.M. Nadeem
- College of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - B.S. Moshin
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - K. Saima
- College of Life SciencesAnhui Agricultural UniversityHefeiChina
| | - S.S. Jamal
- Department of ManagementHarbin Institute of TechnologyHarbinChina
| | - M.F. Din
- Department of Molecular GeneticsChinese Academy of Science (CAS)University of Science and Technology (USTC)HefeiChina
| | - Y. Xu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - L. Tang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Y. Li
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
30
|
Bwana MO, Njagi LW, Nyaga PN, Mbuthia PG, Bebora LC, Wahome MW, Mutinda WU, Kitala PM. Stinging nettle and neem enhance antibody response to local killed and imported live infectious bursal disease vaccines in indigenous chicken in Kenya. Poult Sci 2018; 97:447-454. [PMID: 29211914 DOI: 10.3382/ps/pex329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/07/2017] [Indexed: 11/20/2022] Open
Abstract
Immune responses are critical for protection of chickens from infectious bursal disease (IBD). In this study, the antibody response-enhancing effect of drinking water supplementation of 1% stinging nettle and neem on different IBD vaccines and vaccination regimes was evaluated, using 36 (n = 36) specific antibody negative indigenous chicks. The birds were allocated into 3 groups as follows: 1A-C, 2A-C, and 3A-B, while group 3C acted as the unvaccinated non-supplemented control. A local inactivated K1 and imported live attenuated D78 IBD vaccines were given to groups 1A-C and 3A-B at 14 and 28 d of age, respectively. A combination of K1 and D78 vaccines was given 30 d apart to groups 2A and 2B (D78 at 14 and 21 d and K1 at 44 d of age) and on the same d to group 2C at 14 and 28 d of age. Stinging nettle was given in water to groups 1B, 2B, and 2C, and neem to groups 1C, 2A, and 3B. Birds were bled weekly and immune responses monitored using indirect ELISA. Both neem and stinging nettle had antibody response-enhancing effects in groups 1B and 1C, receiving the local inactivated K1 vaccine. There were significant differences (P < 0.05) in antibody titers between groups 1A and 2C. Stinging nettle induced earlier onset of high antibody responses in group 2C and persistent titers (>3.8 log10) from the third week in group 2B. Imported live D78 vaccine induced higher antibody titers compared to the local inactivated K1 vaccine. Groups 2B and 2C receiving a combination of the local K1 and imported live attenuated D78 vaccines had the highest antibody titers. Adoption of stinging nettle supplementation and a prime-boost program involving use of a local virus isolates-derived vaccine is recommended.
Collapse
Affiliation(s)
- M O Bwana
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi P. O. Box 29053, Nairobi, Kenya
| | - L W Njagi
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi P. O. Box 29053, Nairobi, Kenya
| | - P N Nyaga
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi P. O. Box 29053, Nairobi, Kenya
| | - P G Mbuthia
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi P. O. Box 29053, Nairobi, Kenya
| | - L C Bebora
- Department of Veterinary Pathology, Microbiology and Parasitology, University of Nairobi P. O. Box 29053, Nairobi, Kenya
| | - M W Wahome
- Department of Animal Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya
| | - W U Mutinda
- Department of Animal Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya
| | - P M Kitala
- Department of Veterinary Public Health, Pharmacology and Toxicology, University of Nairobi, P. O. Box 29053, Nairobi, Kenya
| |
Collapse
|
31
|
Farhanah MI, Yasmin AR, Khanh NP, Yeap SK, Hair-Bejo M, Omar AR. Bursal immunopathology responses of specific-pathogen-free chickens and red jungle fowl infected with very virulent infectious bursal disease virus. Arch Virol 2018; 163:2085-2097. [PMID: 29626271 DOI: 10.1007/s00705-018-3841-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
Abstract
Very virulent infectious bursal disease virus (vvIBDV) targets B lymphocytes in the bursa of Fabricius (BF), causing immunosuppression and increased mortality rates in young birds. There have been few studies on the host immune response following vvIBDV infection at different inoculum doses in chickens with different genetic backgrounds. In this study, we characterized the immune responses of specific-pathogen-free (SPF) chickens and Malaysian red jungle fowl following infection with vvIBDV strain UPM0081 at 103.8 and 106.8 times the 50% embryo infectious dose (EID50). The viral burden, histopathological changes, immune cell populations, and expression of immune-related genes were measured and compared between infected and uninfected bursa at specific intervals. The populations of KUL1+, CD3+CD4+ and CD3+CD8+ cells were significantly increased in both types of chickens at 3 dpi, and there was significant early depletion of IgM+ B cells at 1 dpi in the red jungle fowl. vvIBDV infection also induced differential expression of genes that are involved in Th1 and pro-inflammatory responses, with groups receiving the higher dose (106.8 EID50) showing earlier expression of IFNG, IL12B, IL15, IL6, CXCLi2, IL28B, and TLR3 at 1 dpi. Although both chicken types showed equal susceptibility to infection, the red jungle fowl were clinically healthier than the SPF chickens despite showing more depletion of IgM+ B cells and failure to induce IFNB activation. In conclusion, high-dose vvIBDV infection caused an intense early host immune response in the infected bursa, with depletion of IgM+ B cells, bursal lesions, and cytokine expression as a response to mitigate the severity of the infection.
Collapse
Affiliation(s)
- Mohd Isa Farhanah
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abdul Rahaman Yasmin
- Department of Veterinary Laboratory Diagnostic, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nguyen Phuc Khanh
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Hair-Bejo
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
32
|
Mwenda R, Changula K, Hang'ombe BM, Chidumayo N, Mangani AS, Kaira T, Takada A, Mweene AS, Simulundu E. Characterization of field infectious bursal disease viruses in Zambia: evidence of co-circulation of multiple genotypes with predominance of very virulent strains. Avian Pathol 2018. [PMID: 29517272 DOI: 10.1080/03079457.2018.1449941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Infectious bursal disease (IBD) is a highly contagious, immunosuppressive disease of chickens and causes substantial economic losses to the poultry industry globally. This study investigated the genetic characteristics and pathological lesions induced by IBD viruses (IBDVs) that were associated with 60 suspected outbreaks in chickens during 2015-2016 in Lusaka Province, Zambia. Nucleotide sequences of VP2 hypervariable region (VP2-HVR) (n = 38) and part of VP1 (n = 37) of Zambian IBDVs were phylogenetically analysed. Phylogenetic analysis of the VP2-HVR and VP1 revealed that most viruses (n = 31 of each genome segment) clustered with the very virulent (vv) strains. The rest of the viruses clustered with the classical strains, with two of the viruses being closely related to attenuated vaccine isolates. Two of the viruses that belonged to the vv genotype had a unique amino acid (aa) substitution Q324L whereas one virus had two unique changes, N280S and E300A in the VP2-HVR aa sequence. Although Zambian strains with a vv genotype possessed virulence marker aa within VP1 at 145T, 146D and 147N, two viruses showed unique substitutions, with one virus having 147T while the other had 147H. Pathologically, it was noted that only viruses with a vv genotype appeared to be associated with inducing pathological lesions in non-lymphoid organs (proventriculus and gizzard). Whilst documenting for the first time the presence of classical virulent IBDVs, this study demonstrates the involvement of multiple genotypes, with predominance of vvIBDVs in the epidemiology of IBD in Zambia.
Collapse
Affiliation(s)
- Racheal Mwenda
- a Department of Para Clinical Studies , School of Veterinary Medicine, The University of Zambia , Lusaka , Zambia
| | - Katendi Changula
- a Department of Para Clinical Studies , School of Veterinary Medicine, The University of Zambia , Lusaka , Zambia
| | - Bernard M Hang'ombe
- a Department of Para Clinical Studies , School of Veterinary Medicine, The University of Zambia , Lusaka , Zambia
| | - Nozyechi Chidumayo
- b Department of Clinical Studies , School of Veterinary Medicine, The University of Zambia , Lusaka , Zambia
| | - Alfred S Mangani
- a Department of Para Clinical Studies , School of Veterinary Medicine, The University of Zambia , Lusaka , Zambia
| | - Titus Kaira
- a Department of Para Clinical Studies , School of Veterinary Medicine, The University of Zambia , Lusaka , Zambia
| | - Ayato Takada
- c Department of Disease Control , School of Veterinary Medicine, The University of Zambia , Lusaka , Zambia.,d Division of Global Epidemiology , Hokkaido University Research Centre for Zoonosis Control , Sapporo , Japan
| | - Aaron S Mweene
- c Department of Disease Control , School of Veterinary Medicine, The University of Zambia , Lusaka , Zambia
| | - Edgar Simulundu
- c Department of Disease Control , School of Veterinary Medicine, The University of Zambia , Lusaka , Zambia
| |
Collapse
|
33
|
Ciccone NA, Smith LP, Mwangi W, Boyd A, Broadbent AJ, Smith AL, Nair V. Early pathogenesis during infectious bursal disease in susceptible chickens is associated with changes in B cell genomic methylation and loss of genome integrity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:169-174. [PMID: 28322935 PMCID: PMC5421744 DOI: 10.1016/j.dci.2017.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
We propose a model by which an increase in the genomic modification, 5-hydroxymethylcytosine (5hmC), contributes to B cell death within the chicken bursa of Fabricus (BF) infected with infectious bursal disease virus (IBDV). Our findings indicate that, following an IBDV infection, Rhode Island Red (RIR) chickens have fewer surviving B cells and higher levels of 5hmC in the BF than the more resistant 15l line of birds. Elevated genomic 5hmC levels within the RIR BF are associated with markers of immune responses: infiltrating T cells and increased expression of CD40L, FasL and iNOS. Such changes correlate with genomic fragmentation and the presence of IBDV capsid protein, VP2. To explore the effects of CD40L, the immature B cell line, DT40, was exposed to recombinant chicken CD40L that resulted in changes in nuclear 5hmC distribution. Collectively, our observations suggest that T cell infiltration exacerbates early immunopathology within the BF during an IBDV infection contributing to B cell genomic instability and death to facilitate viral egress and immunosuppression.
Collapse
Affiliation(s)
- Nick A Ciccone
- The Pirbright Institute, Woking, GU24 0NF Surrey, United Kingdom.
| | - Lorraine P Smith
- The Pirbright Institute, Woking, GU24 0NF Surrey, United Kingdom
| | - William Mwangi
- The Pirbright Institute, Woking, GU24 0NF Surrey, United Kingdom
| | - Amy Boyd
- Department of Zoology, University of Oxford, OX1 3PS Oxfordshire, United Kingdom
| | | | - Adrian L Smith
- Department of Zoology, University of Oxford, OX1 3PS Oxfordshire, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute, Woking, GU24 0NF Surrey, United Kingdom
| |
Collapse
|
34
|
Kristeen-Teo YW, Yeap SK, Tan SW, Omar AR, Ideris A, Tan SG, Alitheen NB. The effects of different velogenic NDV infections on the chicken bursa of Fabricius. BMC Vet Res 2017; 13:151. [PMID: 28569155 PMCID: PMC5452610 DOI: 10.1186/s12917-017-1071-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/23/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Virulent Newcastle disease virus (NDV) was reported to cause rapid depletion of chicken bursa of Fabricius. Severe pathological condition of the organ is commonly associated with high levels of virus replication, intense inflammatory response and also the degree of apoptosis. In this study, the responses of chicken bursa of Fabricius infected with two different strains of velogenic NDV, namely AF2240 and IBS002, were investigated by observing cell population changes, oxidative stress, viral replication and cytokine expression in the organ. Subsequently, apoptosis of enriched bursal IgM+ cells was determined to help us elucidate possible host pathogen relationships between the chicken bursa of Fabricius and NDV infection. RESULTS The depletion of IgM+ cells and infiltration of macrophages were observed to be higher in bursa infected with AF2240 as compared to IBS002. In line with the increment of the macrophage population, higher nitric oxide (NO) and malondialdehyde (MDA) contents which indicated higher oxidative stress were also detected in bursa infected with NDV AF2240. In addition, higher pro-inflammatory cytokines and chemokine gene expression such as chicken CXCLi2, IL-18 and IFN-γ were observed in AF2240 infected bursa. Depletion of IgM+ cells was further confirmed with increased cell death and apoptosis of the cells in AF2240 infected bursa as compared to IBS002. However, it was found that the viral load for NDV strain IBS002 was comparatively higher than AF2240 although the magnitude of the pro- inflammatory cytokines expression and cell apoptosis was lower than AF2240. CONCLUSION The results of our study demonstrated that infection of NDV strains AF2240 and IBS002 caused apoptosis in bursa IgM+ cells and its severity was associated with increased expression of pro-inflammatory cytokines/chemokine, macrophage infiltration and oxidative stress as the infection duration was prolonged. However, of the two viruses, we observed that NDV AF2240 induced a greater magnitude of apoptosis in chicken bursa IgM+ cells in comparison to IBS002. This might be due to the high level of oxidative stress and inflammatory cytokines/chemokine as well as lower IL10 expression which subsequently led to a high rate of apoptosis in the chicken bursa of Fabricius although the detected viral load of AF2240 was lower than IBS002.
Collapse
Affiliation(s)
- Y W Kristeen-Teo
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - S K Yeap
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - S W Tan
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - A R Omar
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - A Ideris
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - S G Tan
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - N B Alitheen
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
35
|
Ou C, Wang Q, Zhang Y, Kong W, Zhang S, Yu Y, Ma J, Liu X, Kong X. Transcription profiles of the responses of chicken bursae of Fabricius to IBDV in different timing phases. Virol J 2017; 14:93. [PMID: 28486945 PMCID: PMC5424287 DOI: 10.1186/s12985-017-0757-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Background Infectious bursal disease virus (IBDV) infection causes immunosuppression in chickens and increases their susceptibility to secondary infections. To explore the interaction between host and IBDV, RNA-Seq was applied to analyse the transcriptional profiles of the responses of chickens’ bursas of Fabricius in the early stage of IBDV infection. Results The results displayed that a total of 15546 genes were identified in the chicken bursa libraries. Among the annotated genes, there were 2006 and 4668 differentially expressed genes in the infection group compared with the mock group on day 1 and day 3 post inoculation (1 and 3 dpi), respectively. Moreover, there were 676 common up-regulated and 83 common down-regulated genes in the bursae taken from the chickens infected with IBDV on both 1 and 3 dpi. Meanwhile, there were also some characteristic differentially expressed genes on 1 and 3 dpi. On day 1 after inoculation with IBDV, host responses mainly displayed immune response processes, while metabolic pathways played an important role on day three post infection. Six genes were confirmed by quantitative reverse transcription-PCR. Conclusions In conclusion, the differential gene expression profile demonstrated with RNA-Seq might offer a better understanding of the molecular interactions between host and IBDV during the early stage of infection. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0757-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changbo Ou
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.,Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.,College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Qiuxia Wang
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.,College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Yanhong Zhang
- College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Weili Kong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shouping Zhang
- College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Yan Yu
- College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Xingyou Liu
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China. .,College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
36
|
He X, Chen G, Yang L, Xuan J, Long H, Wei P. Role of naturally occurring genome segment reassortment in the pathogenicity of IBDV field isolates in Three-Yellow chickens. Avian Pathol 2017; 45:178-86. [PMID: 27100151 DOI: 10.1080/03079457.2016.1139687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Reassortment among genome segments of infectious bursal disease virus (IBDV) field isolates was reported frequently worldwide, however the pathogenicity of the reassortant field IBDV is poorly understood. In this paper, a pathogenicity study on four representative IBDV field strains isolated from Southern China between 2005 and 2011 was conducted. Twenty-eight-day-old Three-Yellow chickens were divided into four groups and were inoculated intraocularly with one of the four field IBDV strains, namely NN1172, NN1005, GD10111 and JS7, respectively. The mortality and relative weight of bursa and thymus were subsequently determined in the acute phase of infection. In addition, B cells, T cells (CD4(+) and CD8(+)) and virus were quantified in the bursa of Fabricius and thymus, respectively, by flow cytometry and real-time reverse transcription-polymerase chain reaction. The results showed that isolate NN1172, of which parts of segment A and B encoding the hypervariable (v) region of viral protein (VP2) and VP1, respectively, derived from vvIBDV strains, showed the most severe pathogenicity, and caused the most severe bursal B cell depletion as well as CD4(+) and CD8(+) T cell infiltration in the bursa of Fabricius. However, the virus induced the strongest decrease in CD4(+) and CD8(+) T cells in the thymus and exhibited the most efficient viral replication in the target organs. Isolate NN1005, whose vVP2 derived from vvIBDV and VP1 from unidentified origin, exhibited relatively lower pathogenicity compared to NN1172. The other two isolates, JS7 and GD10111, of which the vVP2 derived from vvIBDV and intermediate IBDV, and VP1 from 002-73 and attenuated IBDV, respectively, showed the lowest level of virulence. Our results suggest that various IBDV field isolates with different natural segment reassortments exhibit differential pathogenicity after infection of commercial Three-Yellow chickens.
Collapse
Affiliation(s)
- Xiumiao He
- a School of Marine Sciences and Biotechnology/Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources , Guangxi University for Nationalities , Nanning , Guangxi , People's Republic of China.,b Institute for Poultry Science and Health , Guangxi University , Nanning , Guangxi , People's Republic of China.,c Guangxi Key Laboratory of Chemistry and Engineering of Forest Products , Guangxi University for Nationalities , Nanning , Guangxi , People's Republic of China
| | - Guo Chen
- b Institute for Poultry Science and Health , Guangxi University , Nanning , Guangxi , People's Republic of China
| | - Lin Yang
- a School of Marine Sciences and Biotechnology/Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources , Guangxi University for Nationalities , Nanning , Guangxi , People's Republic of China
| | - Jincai Xuan
- a School of Marine Sciences and Biotechnology/Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources , Guangxi University for Nationalities , Nanning , Guangxi , People's Republic of China
| | - Han Long
- a School of Marine Sciences and Biotechnology/Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources , Guangxi University for Nationalities , Nanning , Guangxi , People's Republic of China
| | - Ping Wei
- b Institute for Poultry Science and Health , Guangxi University , Nanning , Guangxi , People's Republic of China
| |
Collapse
|
37
|
Ou C, Wang Q, Yu Y, Zhang Y, Ma J, Kong X, Liu X. Chemokine receptor CCR5 and CXCR4 might influence virus replication during IBDV infection. Microb Pathog 2017; 107:122-128. [PMID: 28351707 DOI: 10.1016/j.micpath.2017.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Both CCR5 and CXCR4 are important chemokine receptors and take vital role in migration, development and distribution of T cells, however, whether they will influence the process of T cell infiltration into bursa of Fabricius during infectious bursal disease virus (IBDV) infection is unclear. In the current study, CCR5 and CXCR4 antagonists, Maraviroc and AMD3100, were administrated into chickens inoculated with IBDV, and the gene levels of IBDV VP2, CCR5, CXCR4 and related cytokines were determined by real-time PCR. The results showed that large number of T cells began to migrate into the bursae on Day 3 post infection with IBDV and the mRNA of chemokine receptors CCR5 and CXCR4 began to increase on Day 1. Moreover, antagonist treatments have increased the VP2, CCR5 and CXCR4 gene transcriptions and influenced on the gene levels of IL-2, IL-6, IL-8, IFN-γ, TGF-β4, MHC-I and MDA5. In conclusion, the chemokine receptors CCR5 and CXCR4 might influence virus replication during IBDV infection and further study would focus on the interaction between chemokine receptors and their ligands.
Collapse
Affiliation(s)
- Changbo Ou
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Qiuxia Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xingyou Liu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.
| |
Collapse
|
38
|
Chou WK, Park J, Carey JB, McIntyre DR, Berghman LR. Immunomodulatory Effects of Saccharomyces cerevisiae Fermentation Product Supplementation on Immune Gene Expression and Lymphocyte Distribution in Immune Organs in Broilers. Front Vet Sci 2017; 4:37. [PMID: 28349053 PMCID: PMC5346889 DOI: 10.3389/fvets.2017.00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
A study was conducted to evaluate the molecular and cellular immunomodulatory effects of a Saccharomyces cerevisiae fermentation product (Original XPC, Diamond V) in broilers. Our lab has previously demonstrated that broilers fed XPC generate faster and stronger antigen-specific humoral immune responses to Newcastle disease virus (NDV) vaccination. This study aims at investigating the mechanism behind this increased immunocompetence. One-day-old broilers were randomly assigned to one of two treatments: 1.25 kg/ton S. cerevisiae fermentation product (XPC treatment group) or control diet. Birds were vaccinated against NDV on day 1 (B1 strain) and day 21 (LaSota strain) post-hatch. Innate and adaptive immune-related gene expression profiles in central (thymus and bursa of Fabricius) and peripheral (spleen) immune organs were investigated at 14 and 28 days of age by qPCR array. Fold changes larger than 1.2 (P < 0.05) between treated and control were considered significant. Lymphocyte subpopulations in central and peripheral immune organs and blood leukocytes were analyzed by flow cytometry at 14, 21, 28, and 42 days of age. In the spleen, Th1 immune responses and antiviral genes, such as IFN-γ, and its downstream genes signal transducer and activator of transcription (STAT4) and NFκB, were significantly upregulated in the treated group by 14 days of age. In the thymus, genes belonging to different functional groups were influenced at different time points. Cytokine genes associated with lymphocyte maturation, differentiation, and proliferation, such as IL-1R, IL-2, and IL-15 were significantly upregulated in the treated group by 28 days of age. Genes preferentially expressed in the medulla of the thymus and mature thymocytes, such as Myxovirus resistance gene 1, interferon regulatory factor-1, interferon regulatory factor-7, and STAT1, were upregulated in the birds supplemented with XPC. Birds supplemented with XPC had significantly higher percentages of CD3+, CD4+, and CD8+ T-cells in the thymus at day 28 of age, indicating production of more mature T-cells, which was consistent with gene expression results. Results suggest that XPC supplementation primes broilers to become more immunocompetent, without compromising growth performance.
Collapse
Affiliation(s)
- Wen K. Chou
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Jungwoo Park
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - John B. Carey
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | | | - Luc R. Berghman
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
39
|
Kurukulasuriya S, Ahmed KA, Ojkic D, Gunawardana T, Goonewardene K, Gupta A, Chow-Lockerbie B, Popowich S, Willson P, Tikoo SK, Gomis S. Modified live infectious bursal disease virus (IBDV) vaccine delays infection of neonatal broiler chickens with variant IBDV compared to turkey herpesvirus (HVT)-IBDV vectored vaccine. Vaccine 2017; 35:882-888. [PMID: 28089549 DOI: 10.1016/j.vaccine.2017.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022]
Abstract
Chickens are commonly processed around 35-45days of age in broiler chicken industry hence; diseases that occur at a young age are of paramount economic importance. Early age infection with infectious bursal disease virus (IBDV) results in long-lasting immunosuppression and profound economic losses. To our knowledge, this is the first study comparing the protection efficacy of modified live (MdLV) IBDV and herpesvirus turkey (HVT)-IBDV vaccines against early age variant IBDV (varIBDV) infection in chicks. Experiments were carried out in IBDV maternal antibody (MtAb) positive chicks (n=330), divided into 6 groups (n=50-60/group), namely Group 1 (saline), Group 2 (saline+varIBDV), Group 3 (HVT-IBDV), Group 4 (HVT-IBDV+varIBDV), Group 5 (MdLV) and Group 6 (MdLV+varIBDV). HVT-IBDV vaccination was given via the in ovo route to 18-day-old embryonated eggs. MdLV was administered via the subcutaneous route in day-old broilers. Group 2, Group 4 and Group 6 were orally challenged with varIBDV (SK-09, 3×103 EID50) at day 6 post-hatch. IBDV seroconversion, bursal weight to body weight ratio (BBW) and bursal histopathology were assessed at 19 and 35days of age. Histopathological examination at day 19 revealed that varIBDV-SK09 challenge caused severe bursal atrophy and lower BBW in HVT-IBDV but not in MdLV vaccinated chicks. However by day 35, all challenged groups showed bursal atrophy and seroconversion. Interestingly, RT-qPCR analysis after varIBDV-SK09 challenge demonstrated an early (9days of age) and significantly high viral load (∼5744 folds) in HVT-IBDV vaccinated group vs unvaccinated challenged group (∼2.25 folds). Furthermore, flow cytometry analysis revealed inhibition of cytotoxic CD8+ T-cell response (CD44-downregulation) and decreased splenic lymphocytes counts in chicks after HVT-IBDV vaccination. Overall, our data suggest that MdLV delays varIBDV pathogenesis, whereas, HVT-IBDV vaccine is potentially immunosuppressive, which may increase the risk of early age varIBDV infection in broilers.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Viral/biosynthesis
- Birnaviridae Infections/immunology
- Birnaviridae Infections/pathology
- Birnaviridae Infections/prevention & control
- Birnaviridae Infections/virology
- Bursa of Fabricius/drug effects
- Bursa of Fabricius/immunology
- Bursa of Fabricius/pathology
- Bursa of Fabricius/virology
- Chick Embryo
- Chickens/immunology
- Chickens/virology
- Herpesvirus 1, Meleagrid/drug effects
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 1, Meleagrid/pathogenicity
- Infectious bursal disease virus/drug effects
- Infectious bursal disease virus/immunology
- Infectious bursal disease virus/pathogenicity
- Marek Disease/immunology
- Marek Disease/pathology
- Marek Disease/prevention & control
- Marek Disease/virology
- Organ Size/drug effects
- Poultry Diseases/immunology
- Poultry Diseases/pathology
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Time Factors
- Vaccination
- Vaccines, Live, Unattenuated
- Viral Vaccines/administration & dosage
- Zygote/drug effects
Collapse
Affiliation(s)
- Shanika Kurukulasuriya
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, P.O. Box 3612, Guelph, ON N1H 6R8, Canada
| | - Thushari Gunawardana
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Kalhari Goonewardene
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ashish Gupta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Betty Chow-Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Philip Willson
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Suresh K Tikoo
- Vaccinology and Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
40
|
Richetta M, Gómez E, Lucero MS, Chimeno Zoth S, Gravisaco MJ, Calamante G, Berinstein A. Comparison of homologous and heterologous prime-boost immunizations combining MVA-vectored and plant-derived VP2 as a strategy against IBDV. Vaccine 2017; 35:142-148. [PMID: 27876199 DOI: 10.1016/j.vaccine.2016.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/17/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022]
Abstract
Different immunogens such as subunit, DNA or live viral-vectored vaccines against Infectious Bursal Disease virus (IBDV) have been evaluated in the last years. However, the heterologous prime-boost approach using recombinant modified vaccinia Ankara virus (rMVA), which has shown promising results in both mammals and chickens, has not been tried against this pathogen yet. IBD is a highly contagious and immunosuppressive disease of poultry that affects mainly young chicks. It is caused by IBDV, a double-stranded RNA virus carrying its main antigenic epitopes on the capsid protein VP2. Our objective was to evaluate the immune response elicited by two heterologous prime-boost schemes combining an rMVA carrying the VP2 mature gene (rVP2) and a recombinant VP2 protein produced in Nicotiana benthamiana (pVP2), and to compare them with the performance of the homologous pVP2-pVP2 scheme usually used in our laboratory. The SPF chickens immunized with the three evaluated schemes elicited significantly higher anti-VP2 antibody titers (p<0.001) and seroneutralizing titers (p<0.05) and had less T-cell infiltration (p<0.001), histological damage (p<0.001) and IBDV particles (p<0.001) in their bursae of Fabricius when compared with control groups. No significant differences were found between both heterologous schemes and the homologous one. However, the rVP2-pVP2 scheme showed significantly higher anti-VP2 antibody titers than pVP2-rVP2 and a similar tendency was found in the seroneutralization assay. Conversely, pVP2-rVP2 had the best performance when evaluated through bursal parameters despite having a less potent humoral immune response. These findings suggest that the order in which rVP2 and pVP2 are combined can influence the immune response obtained. Besides, the lack of a strong humoral immune response did not lessen the ability to protect from IBDV challenge. Therefore, further research is needed to evaluate the mechanisms by which these immunogens are working in order to define the combination that performs better against IBDV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Bursa of Fabricius/pathology
- Chickens
- Drug Carriers/administration & dosage
- Infectious bursal disease virus/genetics
- Infectious bursal disease virus/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- T-Lymphocytes/immunology
- Nicotiana
- Vaccination/methods
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/metabolism
- Vaccinia virus/genetics
- Viral Structural Proteins/administration & dosage
- Viral Structural Proteins/genetics
- Viral Structural Proteins/immunology
- Viral Structural Proteins/isolation & purification
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/metabolism
Collapse
Affiliation(s)
- Matías Richetta
- Instituto de Biotecnología, CICVyA, INTA, Castelar, CC 25 B1712WAA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, C1033AAV Ciudad de Buenos Aires, Argentina.
| | - Evangelina Gómez
- Instituto de Biotecnología, CICVyA, INTA, Castelar, CC 25 B1712WAA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, C1033AAV Ciudad de Buenos Aires, Argentina.
| | - María Soledad Lucero
- Instituto de Biotecnología, CICVyA, INTA, Castelar, CC 25 B1712WAA, Buenos Aires, Argentina.
| | - Silvina Chimeno Zoth
- Instituto de Biotecnología, CICVyA, INTA, Castelar, CC 25 B1712WAA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, C1033AAV Ciudad de Buenos Aires, Argentina.
| | - María José Gravisaco
- Instituto de Biotecnología, CICVyA, INTA, Castelar, CC 25 B1712WAA, Buenos Aires, Argentina.
| | - Gabriela Calamante
- Instituto de Biotecnología, CICVyA, INTA, Castelar, CC 25 B1712WAA, Buenos Aires, Argentina.
| | - Analía Berinstein
- Instituto de Biotecnología, CICVyA, INTA, Castelar, CC 25 B1712WAA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, C1033AAV Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
41
|
Chimeno Zoth S, Carballeda JM, Gravisaco MJ, Lucero MS, Richetta M, Gómez E, Berinstein A. Immunomodulatory effect of baculovirus in chickens: How it modifies the immune response against infectious bursal disease virus. Antiviral Res 2016; 131:35-9. [PMID: 27063861 DOI: 10.1016/j.antiviral.2016.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 11/29/2022]
Abstract
Several reports have shown that baculoviruses (BVs) have strong adjuvant properties on the mammalian immune system. Recent studies of our group demonstrated the ability of BV to stimulate the innate immunity in chickens. In this investigation, we aimed to assess the potential antiviral effect of BV given both, before and after infectious bursal disease virus (IBDV). In the first case, specific pathogen free chickens were intravenously inoculated with 5 × 10(7) pfu of Autographa californica nuclear polyhedrosis virus and 3 h later were orally administered 2.5 × 10(5) egg infectious doses 50 of IBDV. In the second case, chickens received IBDV 3 h before BV inoculation. Five days later, chickens were bled and euthanized. RNA from the bursa was analyzed for cytokine production. Also, bursae were used for virus recovery, and processed for lymphocyte isolation. The results showed that the administration of BV 3 h after the inoculation with IBDV produced important changes in the effect that IBDV causes in the bursa. BV reduced the infiltration of T lymphocytes, decreased the expression pattern of IL-6 and IFN-γ and inhibited IBDV replication. The results herein presented demonstrate that this Lepidopteran virus shows antiviral activity in chickens under experimental conditions. Investigations under field conditions have to be done to probe this strategy as a valuable sanitary tool for the treatment and prevention of chicken diseases.
Collapse
Affiliation(s)
- Silvina Chimeno Zoth
- Instituto de Biotecnología, CICVyA, INTA, Castelar, Cc 25, B1712WAA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia, 1917, C1033AAJ, Ciudad de Buenos Aires, Argentina.
| | - Juan Manuel Carballeda
- Instituto de Biotecnología, CICVyA, INTA, Castelar, Cc 25, B1712WAA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia, 1917, C1033AAJ, Ciudad de Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Biotecnología, CICVyA, INTA, Castelar, Cc 25, B1712WAA, Buenos Aires, Argentina
| | - María Soledad Lucero
- Instituto de Biotecnología, CICVyA, INTA, Castelar, Cc 25, B1712WAA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia, 1917, C1033AAJ, Ciudad de Buenos Aires, Argentina
| | - Matías Richetta
- Instituto de Biotecnología, CICVyA, INTA, Castelar, Cc 25, B1712WAA, Buenos Aires, Argentina; Agencia Nacional de Promoción Científica y Técnica (ANPCyT), Godoy Cruz, 2370, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Evangelina Gómez
- Instituto de Biotecnología, CICVyA, INTA, Castelar, Cc 25, B1712WAA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia, 1917, C1033AAJ, Ciudad de Buenos Aires, Argentina
| | - Analía Berinstein
- Instituto de Biotecnología, CICVyA, INTA, Castelar, Cc 25, B1712WAA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia, 1917, C1033AAJ, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
42
|
Aihara N, Horiuchi N, Hikichi N, Ochiai M, Hosoda Y, Ishikawa Y, Shimazaki Y, Oishi K. Immunoreactivity and morphological changes of bursal follicles in chickens infected with vaccine or wild-type strains of the infectious bursal disease virus. J Vet Med Sci 2015; 77:913-8. [PMID: 25866403 PMCID: PMC4565812 DOI: 10.1292/jvms.14-0599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infectious bursal disease (IBD) is characterized by immunosuppression due to the depletion of lymphocytes in the atrophied bursa of Fabricius (BF). We have sometimes encountered contradictory findings: chickens infected with the vaccine IBD virus (IBDV) strain have sometimes exhibited a highly atrophied BF, but not immunosuppression. In this study, chickens administered vaccine or wild-type strains of IBDV were later vaccinated with the B1 strain of the Newcastle disease virus (NDV). Bursal changes were examined histologically with a focus on the bursal follicle. The immunoreactivity to NDV was also evaluated with the hemagglutination inhibition test. In gross examination, we observed a few chickens with a severely atrophied BF in vaccine strain-administered groups (vaccine groups), and the level of severity was the same as that in the wild-type strain-administered group (wild-type group). However, these chickens retained humoral antibody responses to NDV and were revealed to possess a higher number of bursal follicles than those of the wild-type group. These results indicated that macroscopic evaluation dose not accurately reflect the immunoreactivity and degree of bursal damage in IBDV-administered chickens. We also found non-immunosuppressed chickens in the wild-type group. These non-immunosuppressed chickens retained a significantly higher number of normal follicles and total follicles according to our statistical analysis. Furthermore, a high correlation coefficient between the NDV-HI titer and the number of normal follicles was found in the wild-type group. These results implied that the retained number of normal follicles is important for the immunoreactivity of chickens infected with IBDV.
Collapse
Affiliation(s)
- Naoyuki Aihara
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rasoli M, Yeap SK, Tan SW, Roohani K, Kristeen-Teo YW, Alitheen NB, Rahaman YA, Aini I, Bejo MH, Kaiser P, Omar AR. Differential modulation of immune response and cytokine profiles in the bursae and spleen of chickens infected with very virulent infectious bursal disease virus. BMC Vet Res 2015; 11:75. [PMID: 25884204 PMCID: PMC4395976 DOI: 10.1186/s12917-015-0377-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Background Very virulent infectious bursal disease virus (vvIBDV) induces immunosuppression and inflammation in young birds, which subsequently leads to high mortality. In addition, infectious bursal disease (IBD) is one of the leading causes of vaccine failure on farms. Therefore, understanding the immunopathogenesis of IBDV in both the spleen and the bursae could help effective vaccine development. However, previous studies only profiled the differential expression of a limited number of cytokines, in either the spleen or the bursae of Fabricius of IBDV-infected chickens. Thus, this study aims to evaluate the in vitro and in vivo immunoregulatory effects of vvIBDV infection on macrophage-like cells, spleen and bursae of Fabricius. Results The viral load was increased during the progression of the in vitro infection in the HD11 macrophage cell line and in vivo, but no significant difference was observed between the spleen and the bursae tissue. vvIBDV infection induced the expression of pro-inflammatory and Th1 cytokines, and chemokines from HD11 cells in a time- and dosage-dependent manner. Furthermore, alterations in the lymphocyte populations, cytokine and chemokine expression, were observed in the vvIBDV-infected spleens and bursae. A drastic rise was detected in numbers of macrophages and pro-inflammatory cytokine expression in the spleen, as early as 2 days post-infection (dpi). On 4 dpi, macrophage and T lymphocyte infiltration, associated with the peak expression of pro-inflammatory cytokines in the bursae tissues of infected chickens were observed. The majority of the significantly regulated pro-inflammatory cytokines and chemokines, in vvIBDV-infected spleens and bursae, were also detected in vvIBDV-infected HD11 cells. This cellular infiltration subsequently resulted in a sharp rise in nitric oxide (NO) and lipid peroxidation levels. Conclusion This study suggests that macrophage may play an important role in regulating the early expression of pro-inflammatory cytokines, first in the spleen and then in the bursae, the latter tissue undergoing macrophage infiltration at 4 dpi.
Collapse
Affiliation(s)
- Mehdi Rasoli
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Sheau Wei Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Kiarash Roohani
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Ye Wen Kristeen-Teo
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Noorjahan Banu Alitheen
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia. .,Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Yasmin Abd Rahaman
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia. .,Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Ideris Aini
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia. .,Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Mohd Hair Bejo
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia. .,Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Pete Kaiser
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia. .,Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
44
|
Yu X, Rui L, Shao Q, Liu H, Lu Y, Zhang Y, Li Z. Changes of CD4+CD25+ cells ratio in immune organs from chickens challenged with infectious bursal disease virus strains with varying virulences. Viruses 2015; 7:1357-72. [PMID: 25803101 PMCID: PMC4379575 DOI: 10.3390/v7031357] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/08/2015] [Accepted: 02/16/2015] [Indexed: 12/21/2022] Open
Abstract
In the current study, we investigate changes in CD4+CD25+ cells in chickens during infectious bursal disease virus (IBDV) infection. The percentage of CD4+CD25+ cells in lymph organs, e.g., the thymus, spleen, bursa of Fabricius and peripheral blood, during the first 1-5 days post infection (dpi) was assessed by flow cytometry. The data revealed a remarkable decrease in the percentage of CD4+CD25+ cells in the thymus from 1 to 5 dpi and in the spleen during early infection. An increase of the percentage of CD4+CD25+ cells among peripheral blood lymphocytes was observed during the first two days of IBDV infection. Additionally, CD4+CD25+ cells infiltrated the bursa along with CD4+ cells after IBDV infection. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the mRNA levels of immune-related cytokines in IBDV-infected thymus and bursa of Fabricius tissues. The data revealed that IBDV caused a significant increase in interleukin (IL)-10 mRNA levels, with the Harbin-1 strain (vvIBDV) inducing higher IL-10 expression than the Ts strain. Taken together, our data suggest that chicken CD4+CD25+ cells may participate in IBDV pathogenicity by migrating from their sites of origin and storage, the thymus and spleen, to the virally targeted bursa of Fabricius during IBDV infection.
Collapse
Affiliation(s)
- Xiaoxue Yu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Lei Rui
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Qiang Shao
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Haiwen Liu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Yanan Lu
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Yongchao Zhang
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Science, China Agricultural University, Beijing 100193, China.
| | - Zandong Li
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
45
|
A Preventive Cytokine Treatment of the Viral Infectious Bursal Disease (IBD) of Chickens. J Poult Sci 2015. [DOI: 10.2141/jpsa.0140074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Lee CC, Kim BS, Wu CC, Lin TL. Bursal transcriptome of chickens protected by DNA vaccination versus those challenged with infectious bursal disease virus. Arch Virol 2014; 160:69-80. [PMID: 25267176 DOI: 10.1007/s00705-014-2232-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/09/2014] [Indexed: 11/26/2022]
Abstract
Infectious bursal disease virus (IBDV) infection destroys the bursa of Fabricius, causing immunosuppression and rendering chickens susceptible to secondary bacterial or viral infections. IBDV large-segment-protein-expressing DNA has been shown to confer complete protection of chickens from infectious bursal disease (IBD). The purpose of the present study was to compare DNA-vaccinated chickens and unvaccinated chickens upon IBDV challenge by transcriptomic analysis of bursa regarding innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport. One-day-old specific-pathogen-free chickens were vaccinated intramuscularly three times at weekly intervals with IBDV large-segment-protein-expressing DNA. Chickens were challenged orally with 8.2 × 10(2) times the egg infective dose (EID)50 of IBDV strain variant E (VE) one week after the last vaccination. Bursae collected at 0.5, 1, 3, 5, 7, and 10 days post-challenge (dpc) were subjected to real-time RT-PCR quantification of bursal transcripts related to innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport. The expression levels of granzyme K and CD8 in DNA-vaccinated chickens were significantly (p < 0.05) higher than those in unvaccinated chickens upon IBDV challenge at 0.5 or 1 dpc. The expression levels of other genes involved in innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport were not upregulated or downregulated in DNA-vaccinated chickens during IBDV challenge. Bursal transcripts related to innate immunity and inflammation, including TLR3, MDA5, IFN-α, IFN-β, IRF-1, IRF-10, IL-1β, IL-6, IL-8, iNOS, granzyme A, granzyme K and IL-10, were upregulated or significantly (p < 0.05) upregulated at 3 dpc and later in unvaccinated chickens challenged with IBDV. The expression levels of genes related to immune cell regulation, apoptosis and glucose transport, including CD4, CD8, IL-2, IFN-γ, IL-12(p40), IL-18, GM-CSF, GATA-3, p53, glucose transporter-2 and glucose transporter-3, were upregulated or significantly (p < 0.05) upregulated at 3 dpc and later in unvaccinated chickens challenged with IBDV. Taken together, the results indicate that the bursal transcriptome involved in innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport, except for granzyme K and CD8, was not differentially expressed in DNA-vaccinated chickens protected from IBDV challenge.
Collapse
Affiliation(s)
- Chih-Chun Lee
- Department of Comparative Pathobiology, Purdue University, 406 S. University St, West Lafayette, IN, 47907, USA
| | | | | | | |
Collapse
|
47
|
Dobrosavljević I, Vidanović D, Velhner M, Miljković B, Lako B. Simultaneous detection of vaccinal and field infectious bursal disease viruses in layer chickens challenged with a very virulent strain after vaccination. Acta Vet Hung 2014; 62:264-73. [PMID: 24659712 DOI: 10.1556/avet.2014.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infectious bursal disease virus is an important poultry pathogen. It is distributed worldwide and causes significant economic losses. In this study, a system was adopted for the simultaneous monitoring of vaccine and virulent strains using reverse transcription polymerase chain reaction (RT-PCR). After the decay of maternal antibodies, chickens were vaccinated at the age of 37 days with a virus of intermediate virulence and challenged at 5, 10 and 14 days post vaccination (dpv). The challenge was done with IBDV strain CH/99. Sequencing of the hypervariable region of VP2 has shown that CH/99 belongs to the very virulent group of viruses. The vaccine virus could be found in the bursa of Fabricius, spleen, thymus and bone marrow until 24 dpv. The CH/99 challenge virus was found in the bursa and lymphoid organs when chickens were challenged at 5 and 10 dpv. When challenge was performed at 14 dpv, the pathogenic virus could not be found in the bursa and other lymphoid organs.
Collapse
Affiliation(s)
| | | | - Maja Velhner
- 3 Scientific Veterinary Institute ‘Novi Sad’ Rumenački put 20 Novi Sad Serbia
| | | | - Branislav Lako
- 5 University of Novi Sad Faculty of Agriculture, Department for Veterinary Medicine Novi Sad Novi Sad Serbia
| |
Collapse
|
48
|
Abdul Mutalib NE, Mat Isa N, Alitheen NB, Song AAL, Rahim RA. IRES-incorporated lactococcal bicistronic vector for target gene expression in a eukaryotic system. Plasmid 2014; 73:26-33. [PMID: 24780699 DOI: 10.1016/j.plasmid.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 11/29/2022]
Abstract
Plasmid DNAs isolated from lactic acid bacteria (LAB) such as Lactococcus lactis (L. lactis) has been gaining more interests for its positive prospects in genetic engineering-related applications. In this study, the lactococcal plasmid, pNZ8048 was modified so as to be able to express multiple genes in the eukaryotic system. Therefore, a cassette containing an internal ribosome entry site (IRES) was cloned between VP2 gene of a very virulent infectious bursal disease (vvIBDV) UPM 04190 of Malaysian local isolates and the reporter gene, green fluorescent protein (GFP) into pNZ:CA, a newly constructed derivative of pNZ8048 harboring the cytomegalovirus promoter (Pcmv) and polyadenylation signal. The new bicistronic vector, denoted as pNZ:vig was subjected to in vitro transcription/translation system followed by SDS-PAGE and Western blot analysis to rapidly verify its functionality. Immunoblotting profiles showed the presence of 49 and 29kDa bands that corresponds to the sizes of the VP2 and GFP proteins respectively. This preliminary result shows that the newly constructed lactococcal bicistronic vector can co-express multiple genes in a eukaryotic system via the IRES element thus suggesting its feasibility to be used for transfection of in vitro cell cultures and vaccine delivery.
Collapse
Affiliation(s)
- Nur Elina Abdul Mutalib
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Adelene Ai-Lian Song
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
49
|
Vaziry A, Silim A, Bleau C, Frenette D, Lamontagne L. Dual infections with low virulent chicken infectious anaemia virus (lvCIAV) and intermediate infectious bursal disease virus (iIBDV) in young chicks increase lvCIAV in thymus and bursa while decreasing lymphocyte disorders induced by iIBDV. Avian Pathol 2013; 42:88-99. [PMID: 23581435 DOI: 10.1080/03079457.2013.766306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The use of attenuated vaccines or the occurrence of low virulent T-lymphotropic or B-lymphotropic viruses in flocks may alter the immune responses of young chicks in spite of the absence of clinical signs. Infections with a low virulent T-lymphotropic chicken infectious anaemia virus (lvCIAV) followed by infection with an intermediate B-lymphotropic infectious bursal disease virus (iIBDV) were conducted in specific pathogen free chicks. Thirty-six 1-day-old chicks were infected with the lvCIAV strain (CAV-VAC®) and a similar number of chicks were inoculated with phosphate-buffered saline. At 14 days after lvCIAV infection, one group of 18 lvCIAV-infected chicks and one group of 18 uninfected chicks were infected with an iIBDV strain. At 4, 7 and 14 days post infection with iIBDV, six chicks from each group were euthanized and lymphoid organs were collected. Detection of lvCIAV and iIBDV genomes was conducted by polymerase chain reaction and reverse transcriptase-polymerase chain reaction, respectively. Double-labelled lymphoid subsets from the thymus, spleen and bursa were studied by cytofluorometric analysis. The results reveal that previous infection with lvCIAV increases the occurrence of the lvCIAV and iIBDV genome in thymus and/or bursa without the occurrence of clinical signs in dually lvCIAV/iIBDV-infected chicks. However, the decreases of B cells in spleen and bursa and increases of T-cell subsets in bursa observed in chicks infected with iIBDV did not occur in chicks previously infected with lvCIAV. Taken together, these results suggest that previous infection of young chicks with lvCIAV decreases lymphoid disorders induced by iIBDV while subsequent iIBDV infection increases the lvCIAV genome in lymphoid organs.
Collapse
Affiliation(s)
- Asaad Vaziry
- Département de Pathologie & Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | | | | | | | | |
Collapse
|
50
|
Madej JP, Chrząstek K, Piasecki T, Wieliczko A. New insight into the structure, development, functions and popular disorders of bursa Fabricii. Anat Histol Embryol 2013; 42:321-31. [PMID: 23438192 DOI: 10.1111/ahe.12026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 12/01/2012] [Indexed: 01/28/2023]
Abstract
Humoral immune responses in birds, contrary to mammals, depend on the normal functioning of bursa Fabricii. Recent studies have delivered new information about the structure, development and origin of cells that compose the bursa environment. Several viral infections affect bursa, causing lymphocyte depletion or excessive proliferation. This review summarizes data on the development and histology of healthy bursa and introduces some common disorders that affect this organ.
Collapse
Affiliation(s)
- J P Madej
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, ul. Norwida 25/27, 50-375, Wrocław, Poland
| | | | | | | |
Collapse
|