1
|
Hysenaj L, de Laval B, Arce-Gorvel V, Bosilkovski M, González-Espinoza G, Debroas G, Sieweke MH, Sarrazin S, Gorvel JP. CD150-dependent hematopoietic stem cell sensing of Brucella instructs myeloid commitment. J Exp Med 2023; 220:e20210567. [PMID: 37067792 PMCID: PMC10114919 DOI: 10.1084/jem.20210567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/05/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
So far, hematopoietic stem cells (HSC) are considered the source of mature immune cells, the latter being the only ones capable of mounting an immune response. Recent evidence shows HSC can also directly sense cytokines released upon infection/inflammation and pathogen-associated molecular pattern interaction while keeping a long-term memory of previously encountered signals. Direct sensing of danger signals by HSC induces early myeloid commitment, increases myeloid effector cell numbers, and contributes to an efficient immune response. Here, by using specific genetic tools on both the host and pathogen sides, we show that HSC can directly sense B. abortus pathogenic bacteria within the bone marrow via the interaction of the cell surface protein CD150 with the bacterial outer membrane protein Omp25, inducing efficient functional commitment of HSC to the myeloid lineage. This is the first demonstration of direct recognition of a live pathogen by HSC via CD150, which attests to a very early contribution of HSC to immune response.
Collapse
Affiliation(s)
- Lisiena Hysenaj
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Bérengère de Laval
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Vilma Arce-Gorvel
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of North Macedonia
| | - Gabriela González-Espinoza
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Guilhaume Debroas
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Michael H. Sieweke
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Sandrine Sarrazin
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Jean-Pierre Gorvel
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
2
|
Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol 2023; 14:1174138. [PMID: 37251372 PMCID: PMC10213746 DOI: 10.3389/fimmu.2023.1174138] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family receptors were discovered in immune cells for the first time. The SLAM-family receptors are a significant player in cytotoxicity, humoral immune responses, autoimmune diseases, lymphocyte development, cell survival, and cell adhesion. There is growing evidence that SLAM-family receptors have been involved in cancer progression and heralded as a novel immune checkpoint on T cells. Previous studies have reported the role of SLAMs in tumor immunity in various cancers, including chronic lymphocytic leukemia, lymphoma, multiple myeloma, acute myeloid leukemia, hepatocellular carcinoma, head and neck squamous cell carcinoma, pancreas, lung, and melanoma. Evidence has deciphered that the SLAM-family receptors may be targeted for cancer immunotherapy. However, our understanding in this regard is not complete. This review will discuss the role of SLAM-family receptors in cancer immunotherapy. It will also provide an update on recent advances in SLAM-based targeted immunotherapies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shamim Mollazadeh Ghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shabnam Mollazadehghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Structure and supramolecular organization of the canine distemper virus attachment glycoprotein. Proc Natl Acad Sci U S A 2023; 120:e2208866120. [PMID: 36716368 PMCID: PMC9963377 DOI: 10.1073/pnas.2208866120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Canine distemper virus (CDV) is an enveloped RNA morbillivirus that triggers respiratory, enteric, and high incidence of severe neurological disorders. CDV induces devastating outbreaks in wild and endangered animals as well as in domestic dogs in countries associated with suboptimal vaccination programs. The receptor-binding tetrameric attachment (H)-protein is part of the morbilliviral cell entry machinery. Here, we present the cryo-electron microscopy (cryo-EM) structure and supramolecular organization of the tetrameric CDV H-protein ectodomain. The structure reveals that the morbilliviral H-protein is composed of three main domains: stalk, neck, and heads. The most unexpected feature was the inherent asymmetric architecture of the CDV H-tetramer being shaped by the neck, which folds into an almost 90° bent conformation with respect to the stalk. Consequently, two non-contacting receptor-binding H-head dimers, which are also tilted toward each other, are located on one side of an intertwined four helical bundle stalk domain. Positioning of the four protomer polypeptide chains within the neck domain is guided by a glycine residue (G158), which forms a hinge point exclusively in two protomer polypeptide chains. Molecular dynamics simulations validated the stability of the asymmetric structure under near physiological conditions and molecular docking showed that two receptor-binding sites are fully accessible. Thus, this spatial organization of the CDV H-tetramer would allow for concomitant protein interactions with the stalk and head domains without steric clashes. In summary, the structure of the CDV H-protein ectodomain provides new insights into the morbilliviral cell entry system and offers a blueprint for next-generation structure-based antiviral drug discovery.
Collapse
|
4
|
Abstract
Canine distemper virus (CDV) is a highly contagious pathogen and is known to enter the host via the respiratory tract and disseminate to various organs. Current hypotheses speculate that CDV uses the homologous cellular receptors of measles virus (MeV), SLAM and nectin-4, to initiate the infection process. For validation, here, we established the well-differentiated air-liquid interface (ALI) culture model from primary canine tracheal airway epithelial cells. By applying the green fluorescent protein (GFP)-expressing CDV vaccine strain and recombinant wild-type viruses, we show that cell-free virus infects the airway epithelium mainly via the paracellular route and only after prior disruption of tight junctions by pretreatment with EGTA; this infection was related to nectin-4 but not to SLAM. Remarkably, when CDV-preinfected DH82 cells were cocultured on the basolateral side of canine ALI cultures grown on filter supports with a 1.0-μm pore size, cell-associated CDV could be transmitted via cell-to-cell contact from immunocytes to airway epithelial cultures. Finally, we observed that canine ALI cultures formed syncytia and started to release cell-free infectious viral particles from the apical surface following treatment with an inhibitor of the JAK/STAT signaling pathway (ruxolitinib). Our findings show that CDV can overcome the epithelial barrier through different strategies, including infection via immunocyte-mediated transmission and direct infection via the paracellular route when tight junctions are disrupted. Our established model can be adapted to other animals for studying the transmission routes and the pathogenicity of other morbilliviruses. IMPORTANCE Canine distemper virus (CDV) is not only an important pathogen of carnivores, but it also serves as a model virus for analyzing measles virus pathogenesis. To get a better picture of the different stages of infection, we used air-liquid interface cultures to analyze the infection of well-differentiated airway epithelial cells by CDV. Applying a coculture approach with DH82 cells, we demonstrated that cell-mediated infection from the basolateral side of well-differentiated epithelial cells is more efficient than infection via cell-free virus. In fact, free virus was unable to infect intact polarized cells. When tight junctions were interrupted by treatment with EGTA, cells became susceptible to infection, with nectin-4 serving as a receptor. Another interesting feature of CDV infection is that infection of well-differentiated airway epithelial cells does not result in virus egress. Cell-free virions are released from the cells only in the presence of an inhibitor of the JAK/STAT signaling pathway. Our results provide new insights into how CDV can overcome the barrier of the airway epithelium and reveal similarities and some dissimilarities compared to measles virus.
Collapse
|
5
|
Satoh Y, Higuchi K, Nishikawa D, Wakimoto H, Konami M, Sakamoto K, Kitagawa Y, Gotoh B, Jiang DP, Hotta H, Itoh M. M protein of subacute sclerosing panencephalitis virus, synergistically with the F protein, plays a crucial role in viral neuropathogenicity. J Gen Virol 2021; 102. [PMID: 34643483 PMCID: PMC8604190 DOI: 10.1099/jgv.0.001682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a rare fatal neurodegenerative disease caused by a measles virus (MV) variant, SSPE virus, that accumulates mutations during long-term persistent infection of the central nervous system (CNS). Clusters of mutations identified around the matrix (M) protein in many SSPE viruses suppress productive infectious particle release and accelerate cell–cell fusion, which are features of SSPE viruses. It was reported, however, that these defects of M protein function might not be correlated directly with promotion of neurovirulence, although they might enable establishment of persistent infection. Neuropathogenicity is closely related to the character of the viral fusion (F) protein, and amino acid substitution(s) in the F protein of some SSPE viruses confers F protein hyperfusogenicity, facilitating viral propagation in the CNS through cell–cell fusion and leading to neurovirulence. The F protein of an SSPE virus Kobe-1 strain, however, displayed only moderately enhanced fusion activity and required additional mutations in the M protein for neuropathogenicity in mice. We demonstrated here the mechanism for the M protein of the Kobe-1 strain supporting the fusion activity of the F protein and cooperatively inducing neurovirulence, even though each protein, independently, has no effect on virulence. The occurrence of SSPE has been estimated recently as one in several thousand in children who acquired measles under the age of 5 years, markedly higher than reported previously. The probability of a specific mutation (or mutations) occurring in the F protein conferring hyperfusogenicity and neuropathogenicity might not be sufficient to explain the high frequency of SSPE. The induction of neurovirulence by M protein synergistically with moderately fusogenic F protein could account for the high frequency of SSPE.
Collapse
Affiliation(s)
- Yuto Satoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kurara Higuchi
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Daichi Nishikawa
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Hiroshi Wakimoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Miho Konami
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kento Sakamoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Da-Peng Jiang
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Hak Hotta
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
- Present address: Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Hyogo, Japan
| | - Masae Itoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- *Correspondence: Masae Itoh,
| |
Collapse
|
6
|
Munoz FM, Cramer JP, Dekker CL, Dudley MZ, Graham BS, Gurwith M, Law B, Perlman S, Polack FP, Spergel JM, Van Braeckel E, Ward BJ, Didierlaurent AM, Lambert PH. Vaccine-associated enhanced disease: Case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2021; 39:3053-3066. [PMID: 33637387 PMCID: PMC7901381 DOI: 10.1016/j.vaccine.2021.01.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
This is a Brighton Collaboration Case Definition of the term "Vaccine Associated Enhanced Disease" to be utilized in the evaluation of adverse events following immunization. The Case Definition was developed by a group of experts convened by the Coalition for Epidemic Preparedness Innovations (CEPI) in the context of active development of vaccines for SARS-CoV-2 vaccines and other emerging pathogens. The case definition format of the Brighton Collaboration was followed to develop a consensus definition and defined levels of certainty, after an exhaustive review of the literature and expert consultation. The document underwent peer review by the Brighton Collaboration Network and by selected Expert Reviewers prior to submission.
Collapse
Affiliation(s)
- Flor M Munoz
- Departments of Pediatrics, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Jakob P Cramer
- Coalition for Epidemic Preparedness Innovations, CEPI, London, UK
| | - Cornelia L Dekker
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Matthew Z Dudley
- Institute for Vaccine Safety, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Marc Gurwith
- Safety Platform for Emergency Vaccines, Los Altos Hills, CA, USA
| | - Barbara Law
- Safety Platform for Emergency Vaccines, Manta, Ecuador
| | - Stanley Perlman
- Department of Microbiology and Immunology, Department of Pediatrics, University of Iowa, USA
| | | | - Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, PA, USA
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, and Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Brian J Ward
- Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | | | | |
Collapse
|
7
|
Griffin DE. Measles immunity and immunosuppression. Curr Opin Virol 2021; 46:9-14. [PMID: 32891958 PMCID: PMC7994291 DOI: 10.1016/j.coviro.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Effects of measles on the immune system are only partially understood. Lymphoid tissue is a primary site of measles virus (MeV) replication where CD150 is the receptor for infection of both B and T cells. Lymphocyte depletion occurs during the acute phase of infection, but initiation of the adaptive immune response leads to extensive lymphocyte proliferation, production of MeV-specific antibody and T cells, the rash and clearance of infectious virus. Viral RNA persists in lymphoid tissue accompanied by ongoing germinal center proliferation, production of antibody-secreting cells, functionally distinct populations of T cells and antibody avidity maturation to establish life-long immunity. However, at the same time diversity of pre-existing antibodies and numbers of memory and naive B cells are reduced and susceptibility to other infections is increased.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Haeryfar SMM. On invariant T cells and measles: A theory of "innate immune amnesia". PLoS Pathog 2020; 16:e1009071. [PMID: 33332470 PMCID: PMC7745983 DOI: 10.1371/journal.ppat.1009071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Division of Clinical Immunology & Allergy, Western University, London, Ontario, Canada
- Department of Surgery, Division of General Surgery, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
|
10
|
Grafen A, Schumacher F, Chithelen J, Kleuser B, Beyersdorf N, Schneider-Schaulies J. Use of Acid Ceramidase and Sphingosine Kinase Inhibitors as Antiviral Compounds Against Measles Virus Infection of Lymphocytes in vitro. Front Cell Dev Biol 2019; 7:218. [PMID: 31632969 PMCID: PMC6779704 DOI: 10.3389/fcell.2019.00218] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/18/2019] [Indexed: 11/13/2022] Open
Abstract
As structural membrane components and signaling effector molecules sphingolipids influence a plethora of host cell functions, and by doing so also the replication of viruses. Investigating the effects of various inhibitors of sphingolipid metabolism in primary human peripheral blood lymphocytes (PBL) and the human B cell line BJAB we found that not only the sphingosine kinase (SphK) inhibitor SKI-II, but also the acid ceramidase inhibitor ceranib-2 efficiently inhibited measles virus (MV) replication. Virus uptake into the target cells was not grossly altered by the two inhibitors, while titers of newly synthesized MV were reduced by approximately 1 log (90%) in PBL and 70-80% in BJAB cells. Lipidomic analyses revealed that in PBL SKI-II led to increased ceramide levels, whereas in BJAB cells ceranib-2 increased ceramides. SKI-II treatment decreased sphingosine-1-phosphate (S1P) levels in PBL and BJAB cells. Furthermore, we found that MV infection of lymphocytes induced a transient (0.5-6 h) increase in S1P, which was prevented by SKI-II. Investigating the effect of the inhibitors on the metabolic (mTORC1) activity we found that ceranib-2 reduced the phosphorylation of p70 S6K in PBL, and that both inhibitors, ceranib-2 and SKI-II, reduced the phosphorylation of p70 S6K in BJAB cells. As mTORC1 activity is required for efficient MV replication, this effect of the inhibitors is one possible antiviral mechanism. In addition, reduced intracellular S1P levels affect a number of signaling pathways and functions including Hsp90 activity, which was reported to be required for MV replication. Accordingly, we found that pharmacological inhibition of Hsp90 with the inhibitor 17-AAG strongly impaired MV replication in primary PBL. Thus, our data suggest that treatment of lymphocytes with both, acid ceramidase and SphK inhibitors, impair MV replication by affecting a number of cellular activities including mTORC1 and Hsp90, which alter the metabolic state of the cells causing a hostile environment for the virus.
Collapse
Affiliation(s)
- Anika Grafen
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Fabian Schumacher
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Janice Chithelen
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
11
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
12
|
Wani SA, Sahu AR, Khan RIN, Pandey A, Saxena S, Hosamani N, Malla WA, Chaudhary D, Kanchan S, Sah V, Rajak KK, Muthuchelvan D, Mishra B, Tiwari AK, Sahoo AP, Sajjanar B, Singh YP, Gandham RK, Mishra BP, Singh RK. Contrasting Gene Expression Profiles of Monocytes and Lymphocytes From Peste-Des-Petits-Ruminants Virus Infected Goats. Front Immunol 2019; 10:1463. [PMID: 31333643 PMCID: PMC6624447 DOI: 10.3389/fimmu.2019.01463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/10/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, transcriptome analysis of PPRV infected PBMC subsets-T helper cells, T cytotoxic cells, monocytes, and B lymphocytes was done to delineate their role in host response. PPRV was found to infect lymphocytes and not monocytes. The established receptor for PPRV-SLAM was found downregulated in lymphocytes and non-differentially expressed in monocytes. A profound deviation in the global gene expression profile with a large number of unique upregulated genes (851) and downregulated genes (605) was observed in monocytes in comparison to lymphocytes. ISGs-ISG15, Mx1, Mx2, RSAD2, IFIT3, and IFIT5 that play a role in antiviral response and the genes for viral sensors-MDA5, LGP2, and RIG1, were found to be upregulated in lymphocytes and downregulated in monocytes. The transcription factors-IRF-7 and STAT-1 that regulate expression of most of the ISGs were found activated in lymphocytes and not in monocytes. Interferon signaling pathway and RIG1 like receptor signaling pathway were found activated in lymphocytes and not in monocytes. This contrast in gene expression profiles and signaling pathways indicated the predominant role of lymphocytes in generating the antiviral response against PPRV in goats, thus, giving us new insights into host response to PPRV.
Collapse
Affiliation(s)
- Sajad Ahmad Wani
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, United States
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,Genomics and Computational Biology, DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Aruna Pandey
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Neelima Hosamani
- Genomics and Computational Biology, DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Dheeraj Chaudhary
- Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, India
| | - Sonam Kanchan
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Vaishali Sah
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - D Muthuchelvan
- Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, India
| | - Bina Mishra
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Kumar Tiwari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Aditya P Sahoo
- ICAR- Directorate of Foot and Mouth Disease, Mukteswar, India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Yash Pal Singh
- ARIS Cell, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India.,Genomics and Computational Biology, DBT-National Institute of Animal Biotechnology, Hyderabad, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India
| |
Collapse
|
13
|
Naaman H, Rabinski T, Yizhak A, Mizrahi S, Avni YS, Taube R, Rager B, Weinstein Y, Rall G, Gopas J, Ofir R. Measles Virus Persistent Infection of Human Induced Pluripotent Stem Cells. Cell Reprogram 2019; 20:17-26. [PMID: 29412740 DOI: 10.1089/cell.2017.0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this study, we found that the measles virus (MV) can infect human-induced pluripotent stem cells (hiPSCs). Wild-type MV strains generally use human signaling lymphocyte activation molecule (SLAM; CD150) as a cellular receptor, while vaccine strains such as the Edmonston strain can use both CD150 and CD46 as receptors. It is not yet known how early in the embryonal differentiation stages these receptors are expressed. We established two hiPSCs (BGU-iPSCs and EMF-iPSCs) which express CD46 and CD150. Both cell types can be infected by MV to form persistent, noncytopathic cell lines that release infectious MV particles. Following MV persistent infection, BGU-iPSCs and EMF-iPSCs remain pluripotent and can differentiate in vitro into the three germ layers. This includes cells expressing the neuronal differentiation markers: NF68 and miRNA-124. Since the MV does not integrate into the cell's genome, it can be utilized as a vehicle to systematically introduce genes into iPSC, to dissect and to define factors regulating lineage differentiation.
Collapse
Affiliation(s)
- Hila Naaman
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva, Israel
| | - Tatiana Rabinski
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva, Israel .,2 Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev , Beer Sheva, Israel
| | - Avi Yizhak
- 3 Department of Surgery A, Soroka University Medical Center , Beer Sheva, Israel
| | - Solly Mizrahi
- 3 Department of Surgery A, Soroka University Medical Center , Beer Sheva, Israel
| | - Yonat Shemer Avni
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva, Israel .,4 Department of Clinical Virology, Soroka University Medical Center , Beer Sheva, Israel
| | - Ran Taube
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva, Israel
| | - Bracha Rager
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva, Israel
| | - Yacov Weinstein
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva, Israel
| | - Glenn Rall
- 5 Fox Chase Cancer Center , Blood Cell Development and Function, Philadelphia, Pennsylvania, USA
| | - Jacob Gopas
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva, Israel .,6 Department of Oncology, Soroka University Medical Center , Beer Sheva, Israel
| | - Rivka Ofir
- 1 The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev , Beer Sheva, Israel .,2 Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev , Beer Sheva, Israel
| |
Collapse
|
14
|
Miller LA, Royer CM, Pinkerton KE, Schelegle ES. Nonhuman Primate Models of Respiratory Disease: Past, Present, and Future. ILAR J 2018; 58:269-280. [PMID: 29216343 PMCID: PMC5886323 DOI: 10.1093/ilar/ilx030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
The respiratory system consists of an integrated network of organs and structures that primarily function for gas exchange. In mammals, oxygen and carbon dioxide are transmitted through a complex respiratory tract, consisting of the nasal passages, pharynx, larynx, and lung. Exposure to ambient air throughout the lifespan imposes vulnerability of the respiratory system to environmental challenges that can contribute toward development of disease. The importance of the respiratory system to human health is supported by statistics from the Centers for Disease Control and Prevention; in 2015, chronic lower respiratory diseases were the third leading cause of death in the United States. In light of the significant mortality associated with respiratory conditions that afflict all ages of the human population, this review will focus on basic and preclinical research conducted in nonhuman primate models of respiratory disease. In comparison with other laboratory animals, the nonhuman primate lung most closely resembles the human lung in structure, physiology, and mucosal immune mechanisms. Studies defining the influence of inhaled microbes, pollutants, or allergens on the nonhuman primate lung have provided insight on disease pathogenesis, with the potential for elucidation of molecular targets leading to new treatment modalities. Vaccine trials in nonhuman primates have been crucial for confirmation of safety and protective efficacy against infectious diseases of the lung in a laboratory animal model that recapitulates pathology observed in humans. In looking to the future, nonhuman primate models of respiratory diseases will continue to be instrumental for translating biomedical research for improvement of human health.
Collapse
Affiliation(s)
- Lisa A Miller
- Department of Anatomy, Physiology & Cell Biology, UC Davis School of Veterinary Medicine, University of California, Davis, California
| | - Christopher M Royer
- California National Primate Research Center, University of California, Davis, California
| | - Kent E Pinkerton
- Department of Anatomy, Physiology & Cell Biology, UC Davis School of Veterinary Medicine and Department of Pediatrics, UC Davis School of Medicine, University of California, Davis, California
| | - Edward S Schelegle
- Department of Anatomy, Physiology & Cell Biology, UC Davis School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
15
|
Cosby SL, Weir L. Measles vaccination: Threat from related veterinary viruses and need for continued vaccination post measles eradication. Hum Vaccin Immunother 2018; 14:229-233. [PMID: 29173050 PMCID: PMC5791572 DOI: 10.1080/21645515.2017.1403677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Measles virus (MV) is the only human virus within the morbillivirus genus of the Paramyxoviridae. The veterinary members are canine distemper virus (CDV), peste des petits ruminants virus (PPRV), Rinderpest Virus (RPV) as well as the marine morbilliviruses phocine distemper virus (PDV), dolphin morbillivirus (DMV) and porpoise morbillivirus (PMV). Morbilliviruses have a severe impact on humans and animal species. They confer diseases which have contributed to morbidity and mortality of the population on a global scale. There is substantial evidence from both natural and experimental infections that morbilliviruses can readily cross species barriers. Of most concern with regard to zoonosis is the more recently reported fatal infection of primates in Japan and China with strains of CDV which have adapted to this host. The close genetic relationship, shared cell entry receptors and similar pathogenesis between the morbilliviruses highlights the potential consequences of complete withdrawal of MV vaccination after eradication. Therefore, it would be prudent to continue the current MV vaccination. Ultimately development of novel, safe vaccines which have higher efficacy against the veterinary morbilliviruses is a priority. These would to protect the human population long term against the threat of zoonosis by these veterinary viruses.
Collapse
Affiliation(s)
- Sara Louise Cosby
- Agri-Food and Biosciences Institute, Veterinary Sciences Division, Stormont, Belfast, UK
- Queen's University Belfast, Centre for Experimental Medicine, Belfast, UK
| | - Leanne Weir
- Queen's University Belfast, Centre for Experimental Medicine, Belfast, UK
| |
Collapse
|
16
|
Geekiyanage H, Galanis E. MiR-31 and miR-128 regulates poliovirus receptor-related 4 mediated measles virus infectivity in tumors. Mol Oncol 2016; 10:1387-1403. [PMID: 27507538 PMCID: PMC5100694 DOI: 10.1016/j.molonc.2016.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023] Open
Abstract
Oncolytic measles virus strains are currently being evaluated in several clinical trials, as a promising novel oncolytic platform. Poliovirus receptor-related 4 (PVRL4) was recently identified as a potent measles virus (MV) receptor; however, its regulation is not yet understood. Increased levels of PVRL4 protein were observed in cell membrane, cytoplasm and nuclei of glioblastoma, breast and ovarian tumor clinical samples with no significant change in PVRL4 mRNA levels in glioblastoma and breast cancer compared with their corresponding control samples, suggesting that PVRL4 is likely post-transcriptionally regulated. Therefore, we sought to investigate the potential role of miRNAs in PVRL4 regulation and thus MV infectivity. We demonstrated that miR-31 and miR-128 can bind to the 3'UTR of PVRL4 and decrease PVRL4 levels while anti-miR-31/128 increase PVRL4 levels suggesting that PVRL4 is miRNA targeted. Furthermore, miR-31/128 expression levels were down-regulated in glioblastoma and breast tumor samples and showed significant negative correlations with PVRL4 levels. Infection with an MV strain that exclusively utilizes PVRL4 as its receptor showed that over-expression of miR-31/128 decreases MV infectivity while inhibition of the respective miRNAs via anti-miRs increase MV infectivity and reduce tumor size in mouse xenograft models of glioblastoma, breast and ovarian cancer. Additionally, miR-128 levels showed significant correlations with MV infection and in vivo anti-tumor effect, while MV infection increased miR-31 expression and thereby contributed to the observed decrease in PVRL4 levels. This study suggests that PVRL4 is post-transcriptionally regulated by miR-128 and miR-31 and harbors possible miRNA targets that could modulate MV infectivity and in turn enhance MV based oncolytic therapeutic strategies.
Collapse
Affiliation(s)
- Hirosha Geekiyanage
- Department of Molecular Medicine, Division of Medical Oncology, Mayo Clinic, Rochester, MN 55902, USA.
| | - Evanthia Galanis
- Department of Molecular Medicine, Division of Medical Oncology, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
17
|
Adu-Gyamfi E, Kim LS, Jardetzky TS, Lamb RA. Flexibility of the Head-Stalk Linker Domain of Paramyxovirus HN Glycoprotein Is Essential for Triggering Virus Fusion. J Virol 2016; 90:9172-81. [PMID: 27489276 PMCID: PMC5044854 DOI: 10.1128/jvi.01187-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED The Paramyxoviridae comprise a large family of enveloped, negative-sense, single-stranded RNA viruses with significant economic and public health implications. For nearly all paramyxoviruses, infection is initiated by fusion of the viral and host cell plasma membranes in a pH-independent fashion. Fusion is orchestrated by the receptor binding protein hemagglutinin-neuraminidase (HN; also called H or G depending on the virus type) protein and a fusion (F) protein, the latter undergoing a major refolding process to merge the two membranes. Mechanistic details regarding the coupling of receptor binding to F activation are not fully understood. Here, we have identified the flexible loop region connecting the bulky enzymatically active head and the four-helix bundle stalk to be essential for fusion promotion. Proline substitution in this region of HN of parainfluenza virus 5 (PIV5) and Newcastle disease virus HN abolishes cell-cell fusion, whereas HN retains receptor binding and neuraminidase activity. By using reverse genetics, we engineered recombinant PIV5-EGFP viruses with mutations in the head-stalk linker region of HN. Mutations in this region abolished virus recovery and infectivity. In sum, our data suggest that the loop region acts as a "hinge" around which the bulky head of HN swings to-and-fro to facilitate timely HN-mediate F-triggering, a notion consistent with the stalk-mediated activation model of paramyxovirus fusion. IMPORTANCE Paramyxovirus fusion with the host cell plasma membrane is essential for virus infection. Membrane fusion is orchestrated via interaction of the receptor binding protein (HN, H, or G) with the viral fusion glycoprotein (F). Two distinct models have been suggested to describe the mechanism of fusion: these include "the clamp" and the "provocateur" model of activation. By using biochemical and reverse genetics tools, we have obtained strong evidence in favor of the HN stalk-mediated activation of paramyxovirus fusion. Specifically, our data strongly support the notion that the short linker between the head and stalk plays a role in "conformational switching" of the head group to facilitate F-HN interaction and triggering.
Collapse
Affiliation(s)
- Emmanuel Adu-Gyamfi
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Lori S Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Theodore S Jardetzky
- Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, USA
| | - Robert A Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA Department of Structural Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
18
|
Abstract
Measles is an infectious disease in humans caused by the measles virus (MeV). Before the introduction of an effective measles vaccine, virtually everyone experienced measles during childhood. Symptoms of measles include fever and maculopapular skin rash accompanied by cough, coryza and/or conjunctivitis. MeV causes immunosuppression, and severe sequelae of measles include pneumonia, gastroenteritis, blindness, measles inclusion body encephalitis and subacute sclerosing panencephalitis. Case confirmation depends on clinical presentation and results of laboratory tests, including the detection of anti-MeV IgM antibodies and/or viral RNA. All current measles vaccines contain a live attenuated strain of MeV, and great progress has been made to increase global vaccination coverage to drive down the incidence of measles. However, endemic transmission continues in many parts of the world. Measles remains a considerable cause of childhood mortality worldwide, with estimates that >100,000 fatal cases occur each year. Case fatality ratio estimates vary from <0.01% in industrialized countries to >5% in developing countries. All six WHO regions have set goals to eliminate endemic transmission of MeV by achieving and maintaining high levels of vaccination coverage accompanied by a sensitive surveillance system. Because of the availability of a highly effective and relatively inexpensive vaccine, the monotypic nature of the virus and the lack of an animal reservoir, measles is considered a candidate for eradication.
Collapse
|
19
|
Nambulli S, Sharp CR, Acciardo AS, Drexler JF, Duprex WP. Mapping the evolutionary trajectories of morbilliviruses: what, where and whither. Curr Opin Virol 2016; 16:95-105. [PMID: 26921570 PMCID: PMC7102722 DOI: 10.1016/j.coviro.2016.01.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022]
Abstract
Morbilliviruses are important human and animal pathogens. Measles virus is the prototype and is the most infectious human pathogen on earth. Live attenuated vaccines have been used to control the infections. Rinderpest virus is the second virus to be eradicated from earth. New morbilliviruses have been identified in cats and vampire bats.
Morbilliviruses are pathogens of humans and other animals. Live attenuated morbillivirus vaccines have been used to end endemic transmission of measles virus (MV) in many parts of the developed world and to eradicate rinderpest virus. Entry is mediated by two different receptors which govern virus lymphotropism and epitheliotropism. Morbillivirus transmissibility is unparalleled and MV represents the most infectious human pathogen on earth. Their evolutionary origins remain obscure and their potential for adaption to new hosts is poorly understood. It has been suggested that MV could be eradicated. Therefore it is imperative to dissect barriers which restrict cross species infections. This is important as ecological studies identify novel morbilliviruses in a vast number of small mammals and carnivorous predators.
Collapse
Affiliation(s)
- Sham Nambulli
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Claire R Sharp
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Andrew S Acciardo
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - J Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, 53127, Germany; German Centre for Infection Research, Bonn-Cologne, Germany
| | - W Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
20
|
Logan N, McMonagle E, Drew AA, Takahashi E, McDonald M, Baron MD, Gilbert M, Cleaveland S, Haydon DT, Hosie MJ, Willett BJ. Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies. Vaccine 2015; 34:814-22. [PMID: 26706278 PMCID: PMC4742518 DOI: 10.1016/j.vaccine.2015.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/20/2015] [Accepted: 12/06/2015] [Indexed: 12/18/2022]
Abstract
Morbillivirus neutralising antibodies are traditionally measured using either plaque reduction neutralisation tests (PRNTs) or live virus microneutralisation tests (micro-NTs). While both test formats provide a reliable assessment of the strength and specificity of the humoral response, they are restricted by the limited number of viral strains that can be studied and often present significant biological safety concerns to the operator. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVΔG) based pseudotyping system for the measurement of morbillivirus neutralising antibodies. By expressing the haemagglutinin (H) and fusion (F) proteins of canine distemper virus (CDV) on VSVΔG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Further, by exchanging the glycoprotein expression construct, responses against distinct viral strains or species may be measured. Using this technique, we demonstrate cross neutralisation between CDV and peste des petits ruminants virus (PPRV). As an example of the value of the technique, we demonstrate that UK dogs vary in the breadth of immunity induced by CDV vaccination; in some dogs the neutralising response is CDV-specific while, in others, the neutralising response extends to the ruminant morbillivirus PPRV. This technique will facilitate a comprehensive comparison of cross-neutralisation to be conducted across the morbilliviruses.
Collapse
Affiliation(s)
- Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Elizabeth McMonagle
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Angharad A Drew
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Emi Takahashi
- Royal Veterinary College, University of London, London NW1 0TU, United Kingdom.
| | - Michael McDonald
- Veterinary Diagnostic Services, University of Glasgow, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Michael D Baron
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, United Kingdom.
| | - Martin Gilbert
- Wildlife Conservation Society, Bronx, NY, USA; Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Sarah Cleaveland
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Daniel T Haydon
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| |
Collapse
|
21
|
Ayata M, Tanaka M, Kameoka K, Kuwamura M, Takeuchi K, Takeda M, Kanou K, Ogura H. Amino acid substitutions in the heptad repeat A and C regions of the F protein responsible for neurovirulence of measles virus Osaka-1 strain from a patient with subacute sclerosing panencephalitis. Virology 2015; 487:141-9. [PMID: 26524513 DOI: 10.1016/j.virol.2015.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/17/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022]
Abstract
Measles virus (MV) is the causative agent of subacute sclerosing panencephalitis (SSPE). We previously reported that the F gene of the SSPE Osaka-2 strain is the major determinant of MV neurovirulence. Because the sites and extents of mutations differ among SSPE strains, it is necessary to determine the mutations responsible for the SSPE-specific phenotypes of individual viral strain. In this study, recombinant viruses containing the envelope-associated genes from the SSPE Osaka-1 strain were generated in the IC323 wild-type MV background. Hamsters inoculated with MV containing the H gene of the Osaka-1 strain displayed hyperactivity and seizures, but usually recovered and survived. Hamsters inoculated with MV containing the F gene of the Osaka-1 strain displayed severe neurologic signs and died. Amino acid substitutions in the heptad repeat A and C regions of the F protein, including a methionine-to-valine substitution at amino acid 94, play major roles in neurovirulence.
Collapse
Affiliation(s)
- Minoru Ayata
- Department of Virology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Kazuo Kameoka
- Department of Virology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Kazuhiko Kanou
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hisashi Ogura
- Department of Virology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| |
Collapse
|
22
|
Mueller N, Avota E, Collenburg L, Grassmé H, Schneider-Schaulies S. Neutral sphingomyelinase in physiological and measles virus induced T cell suppression. PLoS Pathog 2014; 10:e1004574. [PMID: 25521388 PMCID: PMC4270778 DOI: 10.1371/journal.ppat.1004574] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022] Open
Abstract
T cell paralysis is a main feature of measles virus (MV) induced immunosuppression. MV contact mediated activation of sphingomyelinases was found to contribute to MV interference with T cell actin reorganization. The role of these enzymes in MV-induced inhibition of T cell activation remained equally undefined as their general role in regulating immune synapse (IS) activity which relies on spatiotemporal membrane patterning. Our study for the first time reveals that transient activation of the neutral sphingomyelinase 2 (NSM2) occurs in physiological co-stimulation of primary T cells where ceramide accumulation is confined to the lamellum (where also NSM2 can be detected) and excluded from IS areas of high actin turnover. Genetic ablation of the enzyme is associated with T cell hyper-responsiveness as revealed by actin dynamics, tyrosine phosphorylation, Ca2+-mobilization and expansion indicating that NSM2 acts to suppress overshooting T cell responses. In line with its suppressive activity, exaggerated, prolonged NSM2 activation as occurring in co-stimulated T cells following MV exposure was associated with aberrant compartmentalization of ceramides, loss of spreading responses, interference with accumulation of tyrosine phosphorylated protein species and expansion. Altogether, this study for the first time reveals a role of NSM2 in physiological T cell stimulation which is dampening and can be abused by a virus, which promotes enhanced and prolonged NSM2 activation to cause pathological T cell suppression. Though the ability of measles virus (MV) to impair T cell activation has long been known, it is mechanistically not well understood. We have shown earlier that MV can contact dependently trigger activation of sphingomyelinases which is known to affect compartmentalization of membrane lipids and proteins. Because these are particularly important in the activity of the immune synapse (IS), we investigated whether MV-induced sphingomyelinase activity would interfere at that level with T cell activation. Our study for the first time revealed that the neutral sphingomyelinase 2 (NSM2) is transiently activated in primary T cells by co-stimulation through CD3 and CD28, and that this does occur to dampen early T cell responses. The virus appears to exploit this inhibitory activity of the enzyme to suppress T cell activation by promoting an enhanced and prolonged NSM2 activation. These findings do not only assign a hitherto novel role of the NSM2 in regulating T cell responses, but also reveal a novel strategy for viral T cell suppression.
Collapse
Affiliation(s)
- Nora Mueller
- University of Würzburg, Institute for Virology and Immunobiology, Wuerzburg, Germany
| | - Elita Avota
- University of Würzburg, Institute for Virology and Immunobiology, Wuerzburg, Germany
| | - Lena Collenburg
- University of Würzburg, Institute for Virology and Immunobiology, Wuerzburg, Germany
| | | | | |
Collapse
|
23
|
Measles virus mutants possessing the fusion protein with enhanced fusion activity spread effectively in neuronal cells, but not in other cells, without causing strong cytopathology. J Virol 2014; 89:2710-7. [PMID: 25520515 DOI: 10.1128/jvi.03346-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Subacute sclerosing panencephalitis (SSPE) is caused by persistent measles virus (MV) infection in the central nervous system (CNS). Since human neurons, its main target cells, do not express known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), it remains to be understood how MV infects and spreads in them. We have recently reported that fusion-enhancing substitutions in the extracellular domain of the MV fusion (F) protein (T461I and S103I/N462S/N465S), which are found in multiple SSPE virus isolates, promote MV spread in human neuroblastoma cell lines and brains of suckling hamsters. In this study, we show that hyperfusogenic viruses with these substitutions also spread efficiently in human primary neuron cultures without inducing syncytia. These substitutions were found to destabilize the prefusion conformation of the F protein trimer, thereby enhancing fusion activity. However, these hyperfusogenic viruses exhibited stronger cytopathology and produced lower titers at later time points in SLAM- or nectin 4-expressing cells compared to the wild-type MV. Although these viruses spread efficiently in the brains of SLAM knock-in mice, they did not in the spleens. Taken together, the results suggest that enhanced fusion activity is beneficial for MV to spread in neuronal cells where no cytopathology occurs, but detrimental to other types of cells due to strong cytopathology. Acquisition of enhanced fusion activity through substitutions in the extracellular domain of the F protein may be crucial for MV's extensive spread in the CNS and development of SSPE. IMPORTANCE Subacute sclerosing panencephalitis (SSPE) is a fatal disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). Its cause is not well understood, and no effective therapy is currently available. Recently, we have reported that enhanced fusion activity of MV through the mutations in its fusion protein is a major determinant of efficient virus spread in human neuronal cells and brains of suckling hamsters. In this study, we show that those mutations render the conformation of the fusion protein less stable, thereby making it hyperfusogenic. Our results also show that enhanced fusion activity is beneficial for MV to spread in the CNS but detrimental to other types of cells in peripheral tissues, which are strongly damaged by the virus. Our findings provide important insight into the mechanism for the development of SSPE after MV infection.
Collapse
|
24
|
Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Unity in diversity: shared mechanism of entry among paramyxoviruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:1-32. [PMID: 25595799 DOI: 10.1016/bs.pmbts.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus, and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus-encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral "fusion machinery." The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here, we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Biology, Ecole Normale Supérieure, Lyon, France
| | - Eric M Jurgens
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA
| | - Anne Moscona
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA.
| | - Laura M Palermo
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| |
Collapse
|
25
|
Otani S, Ayata M, Takeuchi K, Takeda M, Shintaku H, Ogura H. Biased hypermutation occurred frequently in a gene inserted into the IC323 recombinant measles virus during its persistence in the brains of nude mice. Virology 2014; 462-463:91-7. [PMID: 24967743 DOI: 10.1016/j.virol.2014.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/03/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023]
Abstract
Measles virus (MV) is the causative agent of measles and its neurological complications, subacute sclerosing panencephalitis (SSPE) and measles inclusion body encephalitis (MIBE). Biased hypermutation in the M gene is a characteristic feature of SSPE and MIBE. To determine whether the M gene is the preferred target of hypermutation, an additional transcriptional unit containing a humanized Renilla reniformis green fluorescent protein (hrGFP) gene was introduced into the IC323 MV genome, and nude mice were inoculated intracerebrally with the virus. Biased hypermutation occurred in the M gene and also in the hrGFP gene when it was inserted between the leader and the N gene, but not between the H and L gene. These results indicate that biased hypermutation is usually found in a gene whose function is not essential for viral proliferation in the brain and that the location of a gene in the MV genome can affect its mutational frequency.
Collapse
Affiliation(s)
- Sanae Otani
- Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Minoru Ayata
- Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hisashi Ogura
- Department of Virology and Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
26
|
Viral oncolysis - can insights from measles be transferred to canine distemper virus? Viruses 2014; 6:2340-75. [PMID: 24921409 PMCID: PMC4074931 DOI: 10.3390/v6062340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV) and canine distemper virus (CDV), both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly suitable translational animal model for the benefit of humans and dogs.
Collapse
|
27
|
Ludlow M, Rennick LJ, Nambulli S, de Swart RL, Duprex WP. Using the ferret model to study morbillivirus entry, spread, transmission and cross-species infection. Curr Opin Virol 2013; 4:15-23. [PMID: 24525290 DOI: 10.1016/j.coviro.2013.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/26/2023]
Abstract
Canine distemper virus (CDV) is an animal morbillivirus with a worldwide circulation that infects carnivores, including domestic dogs and an assortment of wildlife hosts. The development of reverse genetics systems for wild-type strains of CDV and the use of the resulting recombinant (r) viruses to infect ferrets by a natural route has shed new light on the temporal pathogenesis of distemper. Combining fluorescent protein expressing recombinant viruses and multimodal, macroscopic and microscopic imaging modalities has highlighted the differential role of the cellular receptors CD150 and PVRL4 in disease progression. This in turn has enabled pathways of viral spread, including multiple routes of entry into the central nervous system, to be mapped with unparalleled sensitivity.
Collapse
Affiliation(s)
- Martin Ludlow
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Linda J Rennick
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Sham Nambulli
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - W Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA; School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
28
|
Ishida H, Ayata M, Shingai M, Matsunaga I, Seto Y, Katayama Y, Iritani N, Seya T, Yanagi Y, Matsuoka O, Yamano T, Ogura H. Infection of Different Cell Lines of Neural Origin with Subacute Sclerosing Panencephalitis (SSPE) Virus. Microbiol Immunol 2013; 48:277-87. [PMID: 15107538 DOI: 10.1111/j.1348-0421.2004.tb03524.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Measles virus is the causative agent of subacute sclerosing panencephalitis (SSPE). The viruses isolated from brain cells of patients with SSPE (called SSPE viruses) are defective in cell-free virus production in vitro. To investigate the cell tropism of three strains of SSPE virus (Osaka-1, Osaka-2, Osaka-3), SSPE virus-infected cell cultures were treated with cytochalasin D to prepare virus-like particles (CD-VLPs). All CD-VLPs formed syncytia after infection in CHO cells expressing CD150 but not in those expressing CD46. In addition, an antibody to CD46 did not block the infection of Vero cells by SSPE CDVLPs. The results were consistent with our previous suggestion that one or more unidentified receptors might be involved in the entry process. Infection with the CD-VLPs from three SSPE strains was further examined in different human cell lines, including those of neural origin, and was found to induce syncytia in epithelial cells (HeLa and 293T) as well as neuroblastoma cells (IMR-32 and SK-N-SH) with varying efficiency. SSPE CD-VLPs also infected glioblastoma cells (A172) and astrocytoma cells (U-251) but syncytial formation was rarely induced. These epithelial and neural cell lines were not permissive for the replication of wild-type MV. Together with our previous observations, these results suggest that the cell entry receptor is the major factor determining the cell tropism of SSPE viruses. Further studies are necessary to identify other viral and/or cellular factors that might be involved in the replication of SSPE virus in specific neural cells and in the brain.
Collapse
Affiliation(s)
- Hiroshi Ishida
- Department of Virology, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bieringer M, Han JW, Kendl S, Khosravi M, Plattet P, Schneider-Schaulies J. Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150. PLoS One 2013; 8:e57488. [PMID: 23554862 PMCID: PMC3595274 DOI: 10.1371/journal.pone.0057488] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
Canine distemper virus (CDV), a close relative of measles virus (MV), is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM) and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17(red) adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F) genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (10(2) pfu/ml) in Vero cells expressing human CD150 (Vero-hSLAM). After three passages using these cells virus was adapted to human CD150 and replicated to high titres (10(5) pfu/ml). Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G) was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L) and Gly to Glu (G71E), and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Amino Acid Substitution
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Chlorocebus aethiops
- Communicable Diseases, Emerging/genetics
- Communicable Diseases, Emerging/metabolism
- Communicable Diseases, Emerging/transmission
- Distemper/genetics
- Distemper/metabolism
- Distemper/transmission
- Distemper Virus, Canine/physiology
- Dogs
- Humans
- Mutation, Missense
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signaling Lymphocytic Activation Molecule Family Member 1
- Vero Cells
- Virus Replication
Collapse
Affiliation(s)
- Maria Bieringer
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jung Woo Han
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Sabine Kendl
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Mojtaba Khosravi
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Philippe Plattet
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | |
Collapse
|
30
|
|
31
|
Delpeut S, Noyce RS, Siu RWC, Richardson CD. Host factors and measles virus replication. Curr Opin Virol 2012; 2:773-83. [PMID: 23146309 DOI: 10.1016/j.coviro.2012.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 12/19/2022]
Abstract
This review takes a general approach to describing host cell factors that facilitate measles virus (MeV) infection and replication. It relates our current understanding of MeV entry receptors, with emphasis on how these host cell surface proteins contribute to pathogenesis within its host. The roles of SLAM/CD150 lymphocyte receptor and the newly discovered epithelial receptor PVRL4/nectin-4 are highlighted. Host cell factors such as HSP72, Prdx1, tubulin, casein kinase, and actin, which are known to impact viral RNA synthesis and virion assembly, are also discussed. Finally the review describes strategies used by measles virus to circumvent innate immunity and confound the effects of interferon within the host cell. Proteomic studies and genome wide RNAi screens will undoubtedly advance our knowledge in the future.
Collapse
Affiliation(s)
- Sebastien Delpeut
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
32
|
Abstract
The WHO has set regional elimination goals for measles eradication to be achieved by 2020 or earlier. A major question is whether an opportunity for veterinary virus infection of humans may arise when measles is eradicated and if vaccination is discontinued. Lessons have been learned from animal to human virus transmission i.e., HIV and more recently from severe acute respiratory syndrome and avian influenza virus infections. We are therefore alerted to the risk of zoonosis from the veterinary morbilliviruses. In this review the evidence from viral genomics, animal studies and cell culture experiments will be explored to evaluate the possibility of cross-infection of humans with these viruses.
Collapse
Affiliation(s)
- S Louise Cosby
- Queen’s University, Belfast, School of Medicine, Dentistry & Biomedical Sciences, Centre for Infection & Immunity, 4th Floor, Medical Biology Centre, Lisburn Road, Belfast, BT9 7BL
| |
Collapse
|
33
|
Zhao D, Chen P, Yang H, Wu Y, Zeng X, Zhao Y, Wen Y, Zhao X, Liu X, Wei Y, Li Y. Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung cancer. Oncol Rep 2012; 29:199-204. [PMID: 23129111 DOI: 10.3892/or.2012.2109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/22/2012] [Indexed: 02/05/2023] Open
Abstract
Although the treatment of lung carcinoma has improved, at least 65% of patients with this tumor succumb to progressive disease. Measles virus oncolytic therapy has been reported to be effective in reducing tumor burden in immunocompetent or nude mice; however, its potential to reduce tumor burden in lung carcinoma remains to be determined. Herein, we report the potent antitumor effects of a live attenuated measles vaccine virus Hu-191 strain (MV) against lung carcinoma. Immunocompetent C57BL/6 mice bearing Lewis lung carcinoma (LLC) cells were treated with MV (1x104 to 1x106 CCID50/ml) once every other day for 10 days. Our results showed that treatment with MV effectively suppressed tumor growth and significantly prolonged the survival time of tumor-bearing animals. Histological examination revealed that the antitumor effects of MV therapy may result from increased induction of apoptosis, tumor necrosis and elevated lymphocyte infiltration. Our data suggest that MV, one of the widely used vaccines in China, has the ability to inhibit the growth of mouse lung carcinoma and may prove useful in the further exploration of the application of this approach in the treatment of human advanced lung cancer.
Collapse
Affiliation(s)
- Danhua Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Okamoto Y, Vricella LA, Moss WJ, Griffin DE. Immature CD4+CD8+ thymocytes are preferentially infected by measles virus in human thymic organ cultures. PLoS One 2012; 7:e45999. [PMID: 23029357 PMCID: PMC3454364 DOI: 10.1371/journal.pone.0045999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/27/2012] [Indexed: 01/07/2023] Open
Abstract
Cells of the human immune system are important target cells for measles virus (MeV) infection and infection of these cells may contribute to the immunologic abnormalities and immune suppression that characterize measles. The thymus is the site for production of naïve T lymphocytes and is infected during measles. To determine which populations of thymocytes are susceptible to MeV infection and whether strains of MeV differ in their ability to infect thymocytes, we used ex vivo human thymus organ cultures to assess the relative susceptibility of different subpopulations of thymocytes to infection with wild type and vaccine strains of MeV. Thymocytes were susceptible to MeV infection with the most replication in immature CD4+CD8+ double positive cells. Susceptibility correlated with the level of expression of the MeV receptor CD150. Wild type strains of MeV infected thymocytes more efficiently than the Edmonston vaccine strain. Thymus cultures from children ≥3 years of age were less susceptible to MeV infection than cultures from children 5 to 15 months of age. Resistance in one 7 year-old child was associated with production of interferon-gamma suggesting that vaccination may result in MeV-specific memory T cells in the thymus. We conclude that immature thymocytes are susceptible to MeV infection and thymocyte infection may contribute to the immunologic abnormalities associated with measles.
Collapse
Affiliation(s)
- Yukari Okamoto
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Luca A. Vricella
- Department of Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William J. Moss
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Noyce RS, Richardson CD. Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol 2012; 20:429-39. [PMID: 22721863 DOI: 10.1016/j.tim.2012.05.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/14/2012] [Accepted: 05/23/2012] [Indexed: 01/06/2023]
Abstract
Measles virus (MV) causes acute respiratory disease, infects lymphocytes and multiple organs, and produces immune suppression leading to secondary infections. In rare instances it can also cause persistent infections in the brain and central nervous system. Vaccine and laboratory-adapted strains of MV use CD46 as a receptor, whereas wild-type strains of MV (wtMV) cannot. Both vaccine and wtMV strains infect lymphocytes, monocytes, and dendritic cells (DCs) using the signaling lymphocyte activation molecule (CD150/SLAM). In addition, MV can infect the airway epithelial cells of the host. Nectin 4 (PVRL4) was recently identified as the epithelial cell receptor for MV. Coupled with recent observations made in MV-infected macaques, this discovery has led to a new paradigm for how the virus accesses the respiratory tract and exits the host. Nectin 4 is also a tumor cell marker which is highly expressed on the apical surface of many adenocarcinoma cell lines, making it a potential target for MV oncolytic therapy.
Collapse
Affiliation(s)
- Ryan S Noyce
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | |
Collapse
|
36
|
Gregory AD, Hale P, Perlmutter DH, Houghton AM. Clathrin pit-mediated endocytosis of neutrophil elastase and cathepsin G by cancer cells. J Biol Chem 2012; 287:35341-35350. [PMID: 22915586 DOI: 10.1074/jbc.m112.385617] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophil elastase (NE) is a neutrophil-derived serine proteinase with broad substrate specificity. We have recently demonstrated that NE is capable of entering tumor cell endosomes and processing novel intracellular substrates. In the current study, we sought to determine the mechanism by which NE enters tumor cells. Our results show that NE enters into early endosomal antigen-1(+) endosomes in a dynamin- and clathrin-dependent but flotillin-1- and caveolin-1-independent fashion. Cathepsin G (but not proteinase-3) also enters tumor endosomes via the same mechanism. We utilized (125)I-labeled NE to demonstrate that NE binds to the surface of cancer cells. Incubation of radiolabeled NE with lung cancer cells displays a dissociation constant (K(d)) of 284 nm. Because NE is known to bind to heparan sulfate- and chondroitin sulfate-containing proteoglycans, we treated cells with glycanases to remove these confounding factors, which did not significantly diminish cell surface binding or endosomal entry. Thus, NE and CG bind to the surface of cancer cells, presumably to a cell surface receptor, and subsequently undergo clathrin pit-mediated endocytosis.
Collapse
Affiliation(s)
- Alyssa D Gregory
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Pamela Hale
- Department of Pediatrics, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - David H Perlmutter
- Department of Pediatrics, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - A McGarry Houghton
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109; Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
37
|
Mitsuki YY, Terahara K, Shibusawa K, Yamamoto T, Tsuchiya T, Mizukoshi F, Ishige M, Okada S, Kobayashi K, Morikawa Y, Nakayama T, Takeda M, Yanagi Y, Tsunetsugu-Yokota Y. HIV-1 infection ex vivo accelerates measles virus infection by upregulating signaling lymphocytic activation molecule (SLAM) in CD4+ T cells. J Virol 2012; 86:7227-7234. [PMID: 22532682 PMCID: PMC3416328 DOI: 10.1128/jvi.06681-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/10/2012] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MV) infection in children harboring human immunodeficiency virus type 1 (HIV-1) is often fatal, even in the presence of neutralizing antibodies; however, the underlying mechanisms are unclear. Therefore, the aim of the present study was to examine the interaction between HIV-1 and wild-type MV (MVwt) or an MV vaccine strain (MVvac) during dual infection. The results showed that the frequencies of MVwt- and MVvac-infected CD4(+) T cells within the resting peripheral blood mononuclear cells (PBMCs) were increased 3- to 4-fold after HIV-1 infection, and this was associated with a marked upregulation of signaling lymphocytic activation molecule (SLAM) expression on CD4(+) T cells but not on CD8(+) T cells. SLAM upregulation was induced by infection with a replication-competent HIV-1 isolate comprising both the X4 and R5 types and to a lesser extent by a pseudotyped HIV-1 infection. Notably, SLAM upregulation was observed in HIV-infected as well as -uninfected CD4(+) T cells and was abrogated by the removal of HLA-DR(+) cells from the PBMC culture. Furthermore, SLAM upregulation did not occur in uninfected PBMCs cultured together with HIV-infected PBMCs in compartments separated by a permeable membrane, indicating that no soluble factors were involved. Rather, CD4(+) T cell activation mediated through direct contact with dendritic cells via leukocyte function-associated molecule 1 (LFA-1)/intercellular adhesion molecule 1 (ICAM-1) and LFA-3/CD2 was critical. Thus, HIV-1 infection induces a high level of SLAM expression on CD4(+) T cells, which may enhance their susceptibility to MV and exacerbate measles in coinfected individuals.
Collapse
Affiliation(s)
- Yu-ya Mitsuki
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kentaro Shibusawa
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takuya Yamamoto
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Takatsugu Tsuchiya
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Fuminori Mizukoshi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Masayuki Ishige
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Kazuo Kobayashi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yuko Morikawa
- Laboratory of Viral Infection II, Kitasato Institute for Life Science, Kitasato University, Tokyo, Japan
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Science, Kitasato University, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
38
|
Rima BK, Duprex WP. New concepts in measles virus replication: Getting in and out in vivo and modulating the host cell environment. Virus Res 2011; 162:47-62. [DOI: 10.1016/j.virusres.2011.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 12/24/2022]
|
39
|
van der Vlist M, de Witte L, de Vries RD, Litjens M, de Jong MAWP, Fluitsma D, de Swart RL, Geijtenbeek TBH. Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4⁺ T cells but are incapable of cross-presentation. Eur J Immunol 2011; 41:2619-31. [PMID: 21739428 DOI: 10.1002/eji.201041305] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 05/17/2011] [Accepted: 07/05/2011] [Indexed: 11/11/2022]
Abstract
Langerhans cells (LCs) are a subset of DCs that reside in the upper respiratory tract and are ideally suited to sense respiratory virus infections. Measles virus (MV) is a highly infectious lymphotropic and myelotropic virus that enters the host via the respiratory tract. Here, we show that human primary LCs are capable of capturing MV through the C-type lectin Langerin. Both immature and mature LCs presented MV-derived antigens in the context of HLA class II to MV-specific CD4(+) T cells. Immature LCs were not susceptible to productive infection by MV and did not present endogenous viral antigens in the context of HLA class I. In contrast, mature LCs could be infected by MV and presented de novo synthesized viral antigens to MV-specific CD8(+) T cells. Notably, neither immature nor mature LCs were able to cross-present exogenous UV-inactivated MV or MV-infected apoptotic cells. The lack of direct infection of immature LCs, and the inability of both immature and mature LCs to cross-present MV antigens, suggest that human LCs may not be directly involved in priming MV-specific CD8(+) T cells. Immune activation of LCs seems a prerequisite for MV infection of LCs and subsequent CD8(+) T-cell priming via the endogenous antigen presentation pathway.
Collapse
Affiliation(s)
- Michiel van der Vlist
- Center of Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Noyce RS, Bondre DG, Ha MN, Lin LT, Sisson G, Tsao MS, Richardson CD. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog 2011; 7:e1002240. [PMID: 21901103 PMCID: PMC3161989 DOI: 10.1371/journal.ppat.1002240] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/20/2011] [Indexed: 01/18/2023] Open
Abstract
Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4) rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a property that is characteristic of receptor-associated viral infections.
Collapse
Affiliation(s)
- Ryan S. Noyce
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- IWK Health Sciences Centre, Canadian Center for Vaccinology, Halifax, Nova Scotia, Canada
| | - Daniel G. Bondre
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- IWK Health Sciences Centre, Canadian Center for Vaccinology, Halifax, Nova Scotia, Canada
| | - Michael N. Ha
- IWK Health Sciences Centre, Canadian Center for Vaccinology, Halifax, Nova Scotia, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- IWK Health Sciences Centre, Canadian Center for Vaccinology, Halifax, Nova Scotia, Canada
| | - Gary Sisson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- IWK Health Sciences Centre, Canadian Center for Vaccinology, Halifax, Nova Scotia, Canada
| | - Ming-Sound Tsao
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Cancer Institute and Princess Margaret Hospital, Toronto, Canada
| | - Christopher D. Richardson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- IWK Health Sciences Centre, Canadian Center for Vaccinology, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
41
|
Resting lymphocyte transduction with measles virus glycoprotein pseudotyped lentiviral vectors relies on CD46 and SLAM. Virology 2011; 413:149-52. [DOI: 10.1016/j.virol.2011.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/05/2011] [Accepted: 02/09/2011] [Indexed: 11/19/2022]
|
42
|
Adombi CM, Lelenta M, Lamien CE, Shamaki D, Koffi YM, Traoré A, Silber R, Couacy-Hymann E, Bodjo SC, Djaman JA, Luckins AG, Diallo A. Monkey CV1 cell line expressing the sheep-goat SLAM protein: a highly sensitive cell line for the isolation of peste des petits ruminants virus from pathological specimens. J Virol Methods 2011; 173:306-13. [PMID: 21371505 PMCID: PMC3166437 DOI: 10.1016/j.jviromet.2011.02.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 11/29/2022]
Abstract
Peste des petits ruminants (PPR) is an important economically transboundary disease of sheep and goats caused by a virus which belongs to the genus Morbillivirus. This genus, in the family Paramyxoviridae, also includes the measles virus (MV), canine distemper virus (CDV), rinderpest virus (RPV), and marine mammal viruses. One of the main features of these viruses is the severe transient lymphopaenia and immunosuppression they induce in their respective hosts, thereby favouring secondary bacterial and parasitic infections. This lymphopaenia is probably accounted for by the fact that lymphoid cells are the main targets of the morbilliviruses. In early 2000, it was demonstrated that a transmembrane glycoprotein of the immunoglobulin superfamily which is present on the surface of lymphoid cells, the signalling lymphocyte activation molecule (SLAM), is used as cellular receptor by MV, CDV and RPV. Wild-type strains of these viruses can be isolated and propagated efficiently in non-lymphoid cells expressing this protein. The present study has demonstrated that monkey CV1 cells expressing goat SLAM are also highly efficient for isolating PPRV from pathological samples. This finding suggests that SLAM, as is in the case for MV, CDV and RPV, is also a receptor for PPRV.
Collapse
Affiliation(s)
- Caroline Mélanie Adombi
- Animal Production and Health Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Wagramer Strasse 5, P.O. Box 100, A1400 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cytoskeletal dynamics: concepts in measles virus replication and immunomodulation. Viruses 2011; 3:102-117. [PMID: 22049305 PMCID: PMC3206598 DOI: 10.3390/v3020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 12/17/2022] Open
Abstract
In common with most viruses, measles virus (MV) relies on the integrity of the cytoskeleton of its host cells both with regard to efficient replication in these cells, but also retention of their motility which favors viral dissemination. It is, however, the surface interaction of the viral glycoprotein (gp) complex with receptors present on lymphocytes and dendritic cells (DCs), that signals effective initiation of host cell cytoskeletal dynamics. For DCs, these may act to regulate processes as diverse as viral uptake and sorting, but also the ability of these cells to successfully establish and maintain functional immune synapses (IS) with T cells. In T cells, MV signaling causes actin cytoskeletal paralysis associated with a loss of polarization, adhesion and motility, which has been linked to activation of sphingomyelinases and subsequent accumulation of membrane ceramides. MV modulation of both DC and T cell cytoskeletal dynamics may be important for the understanding of MV immunosuppression at the cellular level.
Collapse
|
44
|
Ayata M, Takeuchi K, Takeda M, Ohgimoto S, Kato S, Sharma LB, Tanaka M, Kuwamura M, Ishida H, Ogura H. The F gene of the Osaka-2 strain of measles virus derived from a case of subacute sclerosing panencephalitis is a major determinant of neurovirulence. J Virol 2010; 84:11189-99. [PMID: 20719945 PMCID: PMC2953189 DOI: 10.1128/jvi.01075-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/11/2010] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MV) is the causative agent for acute measles and subacute sclerosing panencephalitis (SSPE). Although numerous mutations have been found in the MV genome of SSPE strains, the mutations responsible for the neurovirulence have not been determined. We previously reported that the SSPE Osaka-2 strain but not the wild-type strains of MV induced acute encephalopathy when they were inoculated intracerebrally into 3-week-old hamsters. The recombinant MV system was adapted for the current study to identify the gene(s) responsible for neurovirulence in our hamster model. Recombinant viruses that contained envelope-associated genes from the Osaka-2 strain were generated on the IC323 wild-type MV background. The recombinant virus containing the M gene alone did not induce neurological disease, whereas the H gene partially contributed to neurovirulence. In sharp contrast, the recombinant virus containing the F gene alone induced lethal encephalopathy. This phenotype was related to the ability of the F protein to induce syncytium formation in Vero cells. Further study indicated that a single T461I substitution in the F protein was sufficient to transform the nonneuropathogenic wild-type MV into a lethal virus for hamsters.
Collapse
Affiliation(s)
- Minoru Ayata
- Department of Virology, Osaka City University Medical School, and Department of Pediatrics, Izumi Municipal Hospital, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Measles is an important cause of child mortality that has a seemingly paradoxical interaction with the immune system. In most individuals, the immune response is successful in eventually clearing measles virus (MV) infection and in establishing life-long immunity. However, infection is also associated with persistence of viral RNA and several weeks of immune suppression, including loss of delayed type hypersensitivity responses and increased susceptibility to secondary infections. The initial T-cell response includes CD8+ and T-helper 1 CD4+ T cells important for control of infectious virus. As viral RNA persists, there is a shift to a T-helper 2 CD4+ T-cell response that likely promotes B-cell maturation and durable antibody responses but may suppress macrophage activation and T-helper 1 responses to new infections. Suppression of mitogen-induced lymphocyte proliferation can be induced by lymphocyte infection with MV or by lymphocyte exposure to a complex of the hemagglutinin and fusion surface glycoproteins without infection. Dendritic cells (DCs) are susceptible to infection and can transmit infection to lymphocytes. MV-infected DCs are unable to stimulate a mixed lymphocyte reaction and can induce lymphocyte unresponsiveness through expression of MV glycoproteins. Thus, multiple factors may contribute both to measles-induced immune suppression and to the establishment of durable protective immunity.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Measles virus infection of the CNS: human disease, animal models, and approaches to therapy. Med Microbiol Immunol 2010; 199:261-71. [PMID: 20390298 DOI: 10.1007/s00430-010-0153-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Indexed: 01/13/2023]
Abstract
Viral infections of the central nervous system(CNS) mostly represent clinically important, often life-threatening complications of systemic viral infections. After acute measles, CNS complications may occur early (acute postinfectious measles encephalitis, APME) or after years of viral persistence (subacute sclerosing panencephalitis, SSPE). In spite of a presumably functional cell-mediated immunity and high antiviral antibody titers, an immunological control of the CNS infection is not achieved in patients suffering from SSPE. There is still no specific therapy for acute complications and persistent MV infections of the CNS. Hamsters, rats, and (genetically unmodified and modified) mice have been used as model systems to study mechanisms of MV-induced CNS infections. Functional CD4+ and CD8+ T cells together with IFN-gamma are required to overcome the infection. With the help of recombinant measles viruses and mice expressing endogenous or transgenic receptors, interesting aspects such as receptor-dependent viral spread and viral determinants of virulence have been investigated. However, many questions concerning the lack of efficient immune control in the CNS are still open. Recent research opened new perspectives using specific antivirals such as short interfering RNA (siRNA) or small molecule inhibitors. Inspite of obvious hurdles, these treatments are the most promising approaches to future therapies.
Collapse
|
47
|
Singethan K, Hiltensperger G, Kendl S, Wohlfahrt J, Plattet P, Holzgrabe U, Schneider-Schaulies J. N-(3-Cyanophenyl)-2-phenylacetamide, an effective inhibitor of morbillivirus-induced membrane fusion with low cytotoxicity. J Gen Virol 2010; 91:2762-72. [PMID: 20685931 DOI: 10.1099/vir.0.025650-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the structural similarity of viral fusion proteins within the family Paramyxoviridae, we tested recently described and newly synthesized acetanilide derivatives for their capacity to inhibit measles virus (MV)-, canine distemper virus (CDV)- and Nipah virus (NiV)-induced membrane fusion. We found that N-(3-cyanophenyl)-2-phenylacetamide (compound 1) has a high capacity to inhibit MV- and CDV-induced (IC(50) μM), but not NiV-induced, membrane fusion. This compound is of outstanding interest because it can be easily synthesized and its cytotoxicity is low [50 % cytotoxic concentration (CC(50)) ≥ 300 μM], leading to a CC(50)/IC(50) ratio of approximately 100. In addition, primary human peripheral blood lymphocytes and primary dog brain cell cultures (DBC) also tolerate high concentrations of compound 1. Infection of human PBMC with recombinant wild-type MV is inhibited by an IC(50) of approximately 20 μM. The cell-to-cell spread of recombinant wild-type CDV in persistently infected DBC can be nearly completely inhibited by compound 1 at 50 μM, indicating that the virus spread between brain cells is dependent on the activity of the viral fusion protein. Our findings demonstrate that this compound is a most applicable inhibitor of morbillivirus-induced membrane fusion in tissue culture experiments including highly sensitive primary cells.
Collapse
Affiliation(s)
- K Singethan
- Institut für Virologie und Immunbiologie, University of Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Measles virus-induced immunosuppression: from effectors to mechanisms. Med Microbiol Immunol 2010; 199:227-37. [DOI: 10.1007/s00430-010-0152-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Indexed: 12/11/2022]
|
49
|
Measles virus selectively blind to signaling lymphocytic activation molecule (SLAM; CD150) is attenuated and induces strong adaptive immune responses in rhesus monkeys. J Virol 2010; 84:3413-20. [PMID: 20071568 DOI: 10.1128/jvi.02304-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signaling lymphocytic activation molecule (SLAM; CD150) is the immune cell receptor for measles virus (MV). To assess the importance of the SLAM-MV interactions for virus spread and pathogenesis, we generated a wild-type IC-B MV selectively unable to recognize human SLAM (SLAM-blind). This virus differs from the fully virulent wild-type IC-B strain by a single arginine-to-alanine substitution at amino acid 533 of the attachment protein hemagglutinin and infects cells through SLAM about 40 times less efficiently than the isogenic wild-type strain. Ex vivo, this virus infects primary lymphocytes at low levels regardless of SLAM expression. When a group of six rhesus monkeys (Macaca mulatta) was inoculated intranasally with the SLAM-blind virus, no clinical symptoms were documented. Only one monkey had low-level viremia early after infection, whereas all the hosts in the control group had high viremia levels. Despite minimal, if any, viremia, all six hosts generated neutralizing antibody titers close to those of the control monkeys while MV-directed cellular immunity reached levels at least as high as in wild-type-infected monkeys. These findings prove formally that efficient SLAM recognition is necessary for MV virulence and pathogenesis. They also suggest that the selectively SLAM-blind wild-type MV can be developed into a vaccine vector.
Collapse
|
50
|
Measles virus infection of alveolar macrophages and dendritic cells precedes spread to lymphatic organs in transgenic mice expressing human signaling lymphocytic activation molecule (SLAM, CD150). J Virol 2009; 84:3033-42. [PMID: 20042501 DOI: 10.1128/jvi.01559-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent studies of primate models suggest that wild-type measles virus (MV) infects immune cells located in the airways before spreading systemically, but the identity of these cells is unknown. To identify cells supporting primary MV infection, we took advantage of mice expressing the MV receptor human signaling lymphocyte activation molecule (SLAM, CD150) with human-like tissue specificity. We infected these mice intranasally (IN) with a wild-type MV expressing green fluorescent protein. One, two, or three days after inoculation, nasal-associated lymphoid tissue (NALT), the lungs, several lymph nodes (LNs), the spleen, and the thymus were collected and analyzed by microscopy and flow cytometry, and virus isolation was attempted. One day after inoculation, MV replication was documented only in the airways, in about 2.5% of alveolar macrophages (AM) and 0.5% of dendritic cells (DC). These cells expressed human SLAM, and it was observed that MV infection temporarily enhanced SLAM expression. Later, MV infected other immune cell types, including B and T lymphocytes. Virus was isolated from lymphatic tissue as early as 2 days post-IN inoculation; the mediastinal lymph node was an early site of replication and supported high levels of infection. Three days after intraperitoneal inoculation, 1 to 8% of the mediastinal LN cells were infected. Thus, MV infection of alveolar macrophages and subepithelial dendritic cells in the airways precedes infection of lymphocytes in lymphatic organs of mice expressing human SLAM with human-like tissue specificity.
Collapse
|