1
|
Kuri PR, Goswami P. Unravelling aggregation propensity of rotavirus A VP6 expressed as E. coli inclusion bodies through in silico prediction. Sci Rep 2024; 14:21464. [PMID: 39271700 PMCID: PMC11399443 DOI: 10.1038/s41598-024-69896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
The inner capsid protein of rotavirus, VP6, emerges as a promising candidate for next-generation vaccines against rotaviruses owing to its abundance in virion particles and high conservation. However, the formation of inclusion bodies during prokaryotic VP6 expression poses a significant hurdle to rotavirus research and applications. Here, we employed experimental and computational approaches to investigate inclusion body formation and aggregation-prone regions (APRs). Heterologous recombinant VP6 expression in Escherichia coli BL21(DE3) cells resulted in inclusion body formation, confirmed by transmission electron microscopy revealing amorphous aggregates. Thioflavin T assay demonstrated incubation temperature-dependent aggregation of VP6 inclusion bodies. Computational predictions of APRs in rotavirus A VP6 protein were performed using sequence-based tools (TANGO, AGGRESCAN, Zyggregator, Waltz, FoldAmyloid, ANuPP, Camsol intrinsic) and structure-based tools (SolubiS, CamSol structurally corrected, Aggrescan3D). A total of 24 consensus APRs were identified, with 21 of them being surface-exposed in VP6. All identified APRs display a predominance of hydrophobic amino acids, ranging from 33 to 100%. Computational identification of these APRs corroborates our experimental observation of VP6 inclusion body or aggregate formation. Characterization of VP6's aggregation propensity facilitates understanding of its behaviour during prokaryotic expression and opens avenues for protein engineering of soluble variants, advancing research on rotavirus VP6 in pathology, therapy, and diagnostics.
Collapse
Affiliation(s)
- Pooja Rani Kuri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Wu L, Jing Z, Pan Y, Guo L, Li Z, Feng L, Tian J. Emergence of a novel pathogenic porcine G1P[7] rotavirus in China. Virology 2024; 598:110185. [PMID: 39096775 DOI: 10.1016/j.virol.2024.110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
Among group A rotaviruses (RVAs), the G1 genotype is the main genotype causing diarrhea in children, but it has rarely been reported in pigs. During our epidemiological investigation, we detected G1P[7] rotavirus infection in piglets across several provinces in China and then isolated a porcine G1P[7] rotavirus strain (CN1P7). Sequencing revealed that the virus constellation was G1-P[7]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Phylogenetic analyses revealed that CN1P7 most likely emerged due to genetic reassortment among porcine, human, giant panda and dog rotavirus strains. In vivo experiments were conducted on two-day-old piglets, which revealed that the CN1P7 strain was pathogenic to piglets. The virus was shed through the digestive tract and respiratory tract. In addition to the intestine, the CN1P7 strain displayed extraintestinal tropisms in piglets. Histopathological analysis revealed that the lung and small intestine were the targets of CN1P7. This study is the first to explore the molecular and pathogenic characterization of a pig-origin G1P[7] rotavirus.
Collapse
Affiliation(s)
- Ling Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhaoyang Jing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yudi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Longjun Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zixin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
| | - Jin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
| |
Collapse
|
3
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
4
|
Lin QF, Wong CXL, Eaton HE, Pang X, Shmulevitz M. Reovirus genomic diversity confers plasticity for protease utility during adaptation to intracellular uncoating. J Virol 2023; 97:e0082823. [PMID: 37747236 PMCID: PMC10617468 DOI: 10.1128/jvi.00828-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/27/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE Reoviruses infect many mammals and are widely studied as a model system for enteric viruses. However, most of our reovirus knowledge comes from laboratory strains maintained on immortalized L929 cells. Herein, we asked whether naturally circulating reoviruses possess the same genetic and phenotypic characteristics as laboratory strains. Naturally circulating reoviruses obtained from sewage were extremely diverse genetically. Moreover, sewage reoviruses exhibited poor fitness on L929 cells and relied heavily on gut proteases for viral uncoating and productive infection compared to laboratory strains. We then examined how naturally circulating reoviruses might adapt to cell culture conditions. Within three passages, virus isolates from the parental sewage population were selected, displaying improved fitness and intracellular uncoating in L929 cells. Remarkably, selected progeny clones were present at 0.01% of the parental population. Altogether, using reovirus as a model, our study demonstrates how the high genetic diversity of naturally circulating viruses results in rapid adaptation to new environments.
Collapse
Affiliation(s)
- Qi Feng Lin
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Casey X. L. Wong
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Heather E. Eaton
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratories (ProvLab), Alberta Precision Laboratories (APL), Edmonton, Alberta, Canada
| | - Maya Shmulevitz
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Jiang L, Tang A, Song L, Tong Y, Fan H. Advances in the development of antivirals for rotavirus infection. Front Immunol 2023; 14:1041149. [PMID: 37006293 PMCID: PMC10063883 DOI: 10.3389/fimmu.2023.1041149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Rotavirus (RV) causes 200,000 deaths per year and imposes a serious burden to public health and livestock farming worldwide. Currently, rehydration (oral and intravenous) remains the main strategy for the treatment of rotavirus gastroenteritis (RVGE), and no specific drugs are available. This review discusses the viral replication cycle in detail and outlines possible therapeutic approaches including immunotherapy, probiotic-assisted therapy, anti-enteric secretory drugs, Chinese medicine, and natural compounds. We present the latest advances in the field of rotavirus antivirals and highlights the potential use of Chinese medicine and natural compounds as therapeutic agents. This review provides an important reference for rotavirus prevention and treatment.
Collapse
Affiliation(s)
| | | | - Lihua Song
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Yigang Tong
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Huahao Fan
- *Correspondence: Huahao Fan, ; Yigang Tong, ; Lihua Song,
| |
Collapse
|
6
|
Kuri P, Goswami P. Current Update on Rotavirus in-Silico Multiepitope Vaccine Design. ACS OMEGA 2023; 8:190-207. [PMID: 36643547 PMCID: PMC9835168 DOI: 10.1021/acsomega.2c07213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 06/06/2023]
Abstract
Rotavirus gastroenteritis is one of the leading causes of pediatric morbidity and mortality worldwide in infants and under-five populations. The World Health Organization (WHO) recommended global incorporation of the rotavirus vaccine in national immunization programs to alleviate the burden of the disease. Implementation of the rotavirus vaccination in certain regions of the world brought about a significant and consistent reduction of rotavirus-associated hospitalizations. However, the efficacy of licensed vaccines remains suboptimal in low-income countries where the incidences of rotavirus gastroenteritis continue to happen unabated. The problem of low efficacy of currently licensed oral rotavirus vaccines in low-income countries necessitates continuous exploration, design, and development of new rotavirus vaccines. Traditional vaccine development is a complex, expensive, labor-intensive, and time-consuming process. Reverse vaccinology essentially utilizes the genome and proteome information on pathogens and has opened new avenues for in-silico multiepitope vaccine design for a plethora of pathogens, promising time reduction in the complete vaccine development pipeline by complementing the traditional vaccinology approach. A substantial number of reviews on licensed rotavirus vaccines and those under evaluation are already available in the literature. However, a collective account of rotavirus in-silico vaccines is lacking in the literature, and such an account may further fuel the interest of researchers to use reverse vaccinology to expedite the vaccine development process. Therefore, the main focus of this review is to summarize the research endeavors undertaken for the design and development of rotavirus vaccines by the reverse vaccinology approach utilizing the tools of immunoinformatics.
Collapse
|
7
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
8
|
Diebold O, Gonzalez V, Venditti L, Sharp C, Blake RA, Tan WS, Stevens J, Caddy S, Digard P, Borodavka A, Gaunt E. Using Species a Rotavirus Reverse Genetics to Engineer Chimeric Viruses Expressing SARS-CoV-2 Spike Epitopes. J Virol 2022; 96:e0048822. [PMID: 35758692 PMCID: PMC9327695 DOI: 10.1128/jvi.00488-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
Species A rotavirus (RVA) vaccines based on live attenuated viruses are used worldwide in humans. The recent establishment of a reverse genetics system for rotoviruses (RVs) has opened the possibility of engineering chimeric viruses expressing heterologous peptides from other viral or microbial species in order to develop polyvalent vaccines. We tested the feasibility of this concept by two approaches. First, we inserted short SARS-CoV-2 spike peptides into the hypervariable region of the simian RV SA11 strain viral protein (VP) 4. Second, we fused the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, or the shorter receptor binding motif (RBM) nested within the RBD, to the C terminus of nonstructural protein (NSP) 3 of the bovine RV RF strain, with or without an intervening Thosea asigna virus 2A (T2A) peptide. Mutating the hypervariable region of SA11 VP4 impeded viral replication, and for these mutants, no cross-reactivity with spike antibodies was detected. To rescue NSP3 mutants, we established a plasmid-based reverse genetics system for the bovine RV RF strain. Except for the RBD mutant that demonstrated a rescue defect, all NSP3 mutants delivered endpoint infectivity titers and exhibited replication kinetics comparable to that of the wild-type virus. In ELISAs, cell lysates of an NSP3 mutant expressing the RBD peptide showed cross-reactivity with a SARS-CoV-2 RBD antibody. 3D bovine gut enteroids were susceptible to infection by all NSP3 mutants, but cross-reactivity with SARS-CoV-2 RBD antibody was only detected for the RBM mutant. The tolerance of large SARS-CoV-2 peptide insertions at the C terminus of NSP3 in the presence of T2A element highlights the potential of this approach for the development of vaccine vectors targeting multiple enteric pathogens simultaneously. IMPORTANCE We explored the use of rotaviruses (RVs) to express heterologous peptides, using SARS-CoV-2 as an example. Small SARS-CoV-2 peptide insertions (<34 amino acids) into the hypervariable region of the viral protein 4 (VP4) of RV SA11 strain resulted in reduced viral titer and replication, demonstrating a limited tolerance for peptide insertions at this site. To test the RV RF strain for its tolerance for peptide insertions, we constructed a reverse genetics system. NSP3 was C-terminally tagged with SARS-CoV-2 spike peptides of up to 193 amino acids in length. With a T2A-separated 193 amino acid tag on NSP3, there was no significant effect on the viral rescue efficiency, endpoint titer, and replication kinetics. Tagged NSP3 elicited cross-reactivity with SARS-CoV-2 spike antibodies in ELISA. We highlight the potential for development of RV vaccine vectors targeting multiple enteric pathogens simultaneously.
Collapse
Affiliation(s)
- Ola Diebold
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Victoria Gonzalez
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Luca Venditti
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Colin Sharp
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Rosemary A. Blake
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Wenfang S. Tan
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Joanne Stevens
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Sarah Caddy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul Digard
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Gaunt
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
9
|
Liu H, Cheng L. Viral Capsid and Polymerase in Reoviridae. Subcell Biochem 2022; 99:525-552. [PMID: 36151388 DOI: 10.1007/978-3-031-00793-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The members of the family Reoviridae (reoviruses) consist of 9-12 discrete double-stranded RNA (dsRNA) segments enclosed by single, double, or triple capsid layers. The outer capsid proteins of reoviruses exhibit the highest diversity in both sequence and structural organization. By contrast, the conserved RNA-dependent RNA polymerase (RdRp) structure in the conserved innermost shell in all reoviruses suggests that they share common transcriptional regulatory mechanisms. After reoviruses are delivered into the cytoplasm of a host cell, their inner capsid particles (ICPs) remain intact and serve as a stable nanoscale machine for RNA transcription and capping performed using enzymes in ICPs. Advances in cryo-electron microscopy have enabled the reconstruction at near-atomic resolution of not only the icosahedral capsid, including capping enzymes, but also the nonicosahedrally distributed complexes of RdRps within the capsid at different transcriptional stages. These near-atomic resolution structures allow us to visualize highly coordinated structural changes in the related enzymes, genomic RNA, and capsid protein during reovirus transcription. In addition, reoviruses encode their own enzymes for nascent RNA capping before RNA releasing from their ICPs.
Collapse
Affiliation(s)
- Hongrong Liu
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China.
| | - Lingpeng Cheng
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Amimo JO, Raev SA, Chepngeno J, Mainga AO, Guo Y, Saif L, Vlasova AN. Rotavirus Interactions With Host Intestinal Epithelial Cells. Front Immunol 2021; 12:793841. [PMID: 35003114 PMCID: PMC8727603 DOI: 10.3389/fimmu.2021.793841] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Rotavirus (RV) is the foremost enteric pathogen associated with severe diarrheal illness in young children (<5years) and animals worldwide. RV primarily infects mature enterocytes in the intestinal epithelium causing villus atrophy, enhanced epithelial cell turnover and apoptosis. Intestinal epithelial cells (IECs) being the first physical barrier against RV infection employs a range of innate immune strategies to counteract RVs invasion, including mucus production, toll-like receptor signaling and cytokine/chemokine production. Conversely, RVs have evolved numerous mechanisms to escape/subvert host immunity, seizing translation machinery of the host for effective replication and transmission. RV cell entry process involve penetration through the outer mucus layer, interaction with cell surface molecules and intestinal microbiota before reaching the IECs. For successful cell attachment and entry, RVs use sialic acid, histo-blood group antigens, heat shock cognate protein 70 and cell-surface integrins as attachment factors and/or (co)-receptors. In this review, a comprehensive summary of the existing knowledge of mechanisms underlying RV-IECs interactions, including the role of gut microbiota, during RV infection is presented. Understanding these mechanisms is imperative for developing efficacious strategies to control RV infections, including development of antiviral therapies and vaccines that target specific immune system antagonists within IECs.
Collapse
Affiliation(s)
- Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Sergei Alekseevich Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Alfred Omwando Mainga
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Yusheng Guo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
11
|
Abstract
Human noroviruses (HuNoVs) are acute viral gastroenteritis pathogens that affect all age groups, yet no approved vaccines and drugs to treat HuNoV infection are available. In this study, we screened an antiviral compound library to identify compound(s) showing anti-HuNoV activity using a human intestinal enteroid (HIE) culture system in which HuNoVs are able to replicate reproducibly. Dasabuvir (DSB), which has been developed as an anti-hepatitis C virus agent, was found to inhibit HuNoV infection in HIEs at micromolar concentrations. Dasabuvir also inhibited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human rotavirus A (RVA) infection in HIEs. To our knowledge, this is the first study to screen an antiviral compound library for HuNoV using HIEs, and we successfully identified dasabuvir as a novel anti-HuNoV inhibitor that warrants further investigation. IMPORTANCE Although there is an urgent need to develop effective antiviral therapy directed against HuNoV infection, compound screening to identify anti-HuNoV drug candidates has not been reported so far. Using a human HIE culture system, our compound screening successfully identified dasabuvir as a novel anti-HuNoV inhibitor. Dasabuvir's inhibitory effect was also demonstrated in the cases of SARS-CoV-2 and RVA infection, highlighting the usefulness of the HIE platform for screening antiviral agents against various viruses that target the intestines.
Collapse
|
12
|
Yang J, Park J, Koehler M, Simpson J, Luque D, Rodríguez JM, Alsteens D. Rotavirus Binding to Cell Surface Receptors Directly Recruiting α
2
Integrin. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology Université Catholique de Louvain Louvain-la-Neuve 1348 Belgium
| | | | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology Université Catholique de Louvain Louvain-la-Neuve 1348 Belgium
| | - Joshua Simpson
- Louvain Institute of Biomolecular Science and Technology Université Catholique de Louvain Louvain-la-Neuve 1348 Belgium
| | - Daniel Luque
- Centro Nacional de Microbiología/ISCIII Madrid 28220 Spain
| | | | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology Université Catholique de Louvain Louvain-la-Neuve 1348 Belgium
| |
Collapse
|
13
|
Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch Virol 2021; 166:2369-2386. [PMID: 34216267 PMCID: PMC8254061 DOI: 10.1007/s00705-021-05142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.
Collapse
|
14
|
Host serine proteases TMPRSS2 and TMPRSS11D mediate proteolytic activation and trypsin-independent infection in group A rotaviruses. J Virol 2021; 95:JVI.00398-21. [PMID: 33762412 PMCID: PMC8139689 DOI: 10.1128/jvi.00398-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Group A rotaviruses (RVAs) are representative enteric virus species and major causes of diarrhea in humans and animals. The RVA virion is a triple-layered particle, and the outermost layer consists of the glycoprotein VP7 and spike protein VP4. To increase the infectivity of RVA, VP4 is proteolytically cleaved into VP5* and VP8* subunits by trypsin; and these subunits form a rigid spike structure on the virion surface. In this study, we investigated the growth of RVAs in cells transduced with type II transmembrane serine proteases (TTSPs), which cleave fusion proteins and promote infection by respiratory viruses, such as influenza viruses, paramyxoviruses, and coronaviruses. We identified TMPRSS2 and TMPRSS11D as host TTSPs that mediate trypsin-independent and multi-cycle infection by human and animal RVA strains. In vitro cleavage assays revealed that recombinant TMPRSS11D cleaved RVA VP4. We also found that TMPRSS2 and TMPRSS11D promote the infectious entry of immature RVA virions, but they could not activate nascent progeny virions in the late phase of infection. This observation differed from the TTSP-mediated activation process of paramyxoviruses, revealing the existence of virus species-specific activation processes in TTSPs. Our study provides new insights into the interaction between RVAs and host factors, and TTSP-transduced cells offer potential advantages for RVA research and development.ImportanceProteolytic cleavage of the viral VP4 protein is essential for virion maturation and infectivity in group A rotaviruses (RVAs). In cell culture, RVAs are propagated in culture medium supplemented with the exogenous protease trypsin, which cleaves VP4 and induces the maturation of progeny RVA virions. In this study, we demonstrated that the host proteases TMPRSS2 and TMPRSS11D mediate the trypsin-independent infection and growth of RVA. Our data revealed that the proteolytic activation of RVAs by TMPRSS2 and TMPRSS11D occurs at the viral entry step. Because TMPRSS2 and TMPRSS11D gene expression induced similar or higher levels of RVA growth as trypsin-supplemented culture, this approach offers potential advantages for RVA research and development.
Collapse
|
15
|
Reslan L, Mishra N, Finianos M, Zakka K, Azakir A, Guo C, Thakka R, Dbaibo G, Lipkin WI, Zaraket H. The origins of G12P[6] rotavirus strains detected in Lebanon. J Gen Virol 2020; 102. [PMID: 33331815 DOI: 10.1099/jgv.0.001535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The G12 rotaviruses are an increasingly important cause of severe diarrhoea in infants and young children worldwide. Seven human G12P[6] rotavirus strains were detected in stool samples from children hospitalized with gastroenteritis in Lebanon during a 2011-2013 surveillance study. Complete genomes of these strains were sequenced using VirCapSeq-VERT, a capture-based high-throughput viral-sequencing method, and further characterized based on phylogenetic analyses with global RVA and vaccine strains. Based on the complete genomic analysis, all Lebanese G12 strains were found to have Wa-like genetic backbone G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Phylogenetically, these strains fell into two clusters where one of them might have emerged from Southeast Asian strains and the second one seems to have a mixed backbone between North American and Southeast Asian strains. Further analysis of these strains revealed high antigenic variability compared to available vaccine strains. To our knowledge, this is the first report on the complete genome-based characterization of G12P[6] emerging in Lebanon. Additional studies will provide important insights into the evolutionary dynamics of G12 rotaviruses spreading in Asia.
Collapse
Affiliation(s)
- Lina Reslan
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Nischay Mishra
- Center for Infection and the Immunity, Mailman School of Public Health, Columbia University, NY 10032, New York
| | - Marc Finianos
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Kimberley Zakka
- Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Amanda Azakir
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Cheng Guo
- Center for Infection and the Immunity, Mailman School of Public Health, Columbia University, NY 10032, New York
| | - Riddhi Thakka
- Center for Infection and the Immunity, Mailman School of Public Health, Columbia University, NY 10032, New York
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - W Ian Lipkin
- Center for Infection and the Immunity, Mailman School of Public Health, Columbia University, NY 10032, New York
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
16
|
Katwal P, Uprety T, Okda F, Antony L, Thomas M, Chase C, Diel DG, Nelson E, Young A, Li F, Scaria J, Kaushik RS. Characterization of bovine ileal epithelial cell line for lectin binding, susceptibility to enteric pathogens, and TLR mediated immune responses. Comp Immunol Microbiol Infect Dis 2020; 74:101581. [PMID: 33260019 DOI: 10.1016/j.cimid.2020.101581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
In this study, primary and immortalized bovine intestinal epithelial cells (BIECs) were characterized for the expression of surface carbohydrate moieties. Primary BIEC-c4 cells showed staining greater than 90 % for 16 lectins but less than 50 % staining for four lectins. Immortalized BIECs showed significantly different lectin binding profile for few lectins compared to BIEC-c4 cells. BIEC-c4 cells were studied for infectivity to E. coli, Salmonella enterica, bovine rotavirus, bovine coronavirus, and bovine viral diarrhea virus. Bovine strain E. coli B41 adhered to BIEC-c4 cells and Salmonella strains S. Dublin and S. Mbandaka showed strong cell invasion. BIEC-c4 cells were susceptible to bovine rotavirus. LPS stimulation upregulated IL-10, IL-8, and IL-6 expression and Poly I:C upregulated TLR 8 and TLR 9 expression. This study provides important knowledge on the glycoconjugate expression profile of primary and immortalized BIECs and infectivity and immune responses of primary BIECs to bacterial and viral pathogens or ligands.
Collapse
Affiliation(s)
- Pratik Katwal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Tirth Uprety
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Faten Okda
- Dept of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA; Dept. of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA; National Research Center, Giza, Egypt
| | - Linto Antony
- Dept of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Milton Thomas
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Christopher Chase
- Dept of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Diego G Diel
- Dept of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA; Department of Population Medicine and Diagnostic Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Eric Nelson
- Dept of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Alan Young
- Dept of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA; Department of Veterinary Science, M.H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Joy Scaria
- Dept of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
17
|
Role of Porcine Aminopeptidase N and Sialic Acids in Porcine Coronavirus Infections in Primary Porcine Enterocytes. Viruses 2020; 12:v12040402. [PMID: 32260595 PMCID: PMC7232180 DOI: 10.3390/v12040402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) have been reported to use aminopeptidase N (APN) as a cellular receptor. Recently, the role of APN as a receptor for PEDV has been questioned. In our study, the role of APN in PEDV and TGEV infections was studied in primary porcine enterocytes. After seven days of cultivation, 89% of enterocytes presented microvilli and showed a two- to five-fold higher susceptibility to PEDV and TGEV. A significant increase of PEDV and TGEV infection was correlated with a higher expression of APN, which was indicative that APN plays an important role in porcine coronavirus infections. However, PEDV and TGEV infected both APN positive and negative enterocytes. PEDV and TGEV Miller showed a higher infectivity in APN positive cells than in APN negative cells. In contrast, TGEV Purdue replicated better in APN negative cells. These results show that an additional receptor exists, different from APN for porcine coronaviruses. Subsequently, treatment of enterocytes with neuraminidase (NA) had no effect on infection efficiency of TGEV, implying that terminal cellular sialic acids (SAs) are no receptor determinants for TGEV. Treatment of TGEV with NA significantly enhanced the infection which shows that TGEV is masked by SAs.
Collapse
|
18
|
Kumar D, Singh A, Kumar P, Uversky VN, Rao CD, Giri R. Understanding the penetrance of intrinsic protein disorder in rotavirus proteome. Int J Biol Macromol 2020; 144:892-908. [PMID: 31739058 PMCID: PMC7112477 DOI: 10.1016/j.ijbiomac.2019.09.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major cause of severe acute gastroenteritis in the infants and young children. The past decade has evidenced the role of intrinsically disordered proteins/regions (IDPs)/(IDPRs) in viral and other diseases. In general, (IDPs)/(IDPRs) are considered as dynamic conformational ensembles that devoid of a specific 3D structure, being associated with various important biological phenomena. Viruses utilize IDPs/IDPRs to survive in harsh environments, to evade the host immune system, and to highjack and manipulate host cellular proteins. The role of IDPs/IDPRs in Rotavirus biology and pathogenicity are not assessed so far, therefore, we have designed this study to deeply look at the penetrance of intrinsic disorder in rotavirus proteome consisting 12 proteins encoded by 11 segments of viral genome. Also, for all human rotaviral proteins, we have deciphered molecular recognition features (MoRFs), which are disorder based binding sites in proteins. Our study shows the wide spread of intrinsic disorder in several rotavirus proteins, primarily the nonstructural proteins NSP3, NSP4, and NSP5 that are involved in viral replication, translation, viroplasm formation and/or maturation. This study may serve as a primer for understanding the role of IDPs/MoRFs in rotavirus biology, design of alternative therapeutic strategies, and development of disorder-based drugs.
Collapse
Affiliation(s)
- Deepak Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Ankur Singh
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Prateek Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - C Durga Rao
- SRM University, AP - Amaravati, Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522502, India.
| | - Rajanish Giri
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
19
|
The Guanine Nucleotide Exchange Factor GBF1 Participates in Rotavirus Replication. J Virol 2019; 93:JVI.01062-19. [PMID: 31270230 DOI: 10.1128/jvi.01062-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023] Open
Abstract
Cellular and viral factors participate in the replication cycle of rotavirus. We report that the guanine nucleotide exchange factor GBF1, which activates the small GTPase Arf1 to induce COPI transport processes, is required for rotavirus replication since knocking down GBF1 expression by RNA interference or inhibiting its activity by treatment with brefeldin A (BFA) or Golgicide A (GCA) significantly reduces the yield of infectious viral progeny. This reduction in virus yield was related to a block in virus assembly, since in the presence of either BFA or GCA, the assembly of infectious mature triple-layered virions was significantly prevented and only double-layered particles were detected. We report that the catalytic activity of GBF1, but not the activation of Arf1, is essential for the assembly of the outer capsid of rotavirus. We show that both BFA and GCA, as well as interfering with the synthesis of GBF1, alter the electrophoretic mobility of glycoproteins VP7 and NSP4 and block the trimerization of the virus surface protein VP7, a step required for its incorporation into virus particles. Although a posttranslational modification of VP7 (other than glycosylation) could be related to the lack of trimerization, we found that NSP4 might also be involved in this process, since knocking down its expression reduces VP7 trimerization. In support, recombinant VP7 protein overexpressed in transfected cells formed trimers only when cotransfected with NSP4.IMPORTANCE Rotavirus, a member of the family Reoviridae, is the major cause of severe diarrhea in children and young animals worldwide. Despite significant advances in the characterization of the biology of this virus, the mechanisms involved in morphogenesis of the virus particle are still poorly understood. In this work, we show that the guanine nucleotide exchange factor GBF1, relevant for COPI/Arf1-mediated cellular vesicular transport, participates in the replication cycle of the virus, influencing the correct processing of viral glycoproteins VP7 and NSP4 and the assembly of the virus surface proteins VP7 and VP4.
Collapse
|
20
|
Bhar S, Jones MK. In Vitro Replication of Human Norovirus. Viruses 2019; 11:v11060547. [PMID: 31212759 PMCID: PMC6630950 DOI: 10.3390/v11060547] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022] Open
Abstract
Human norovirus (HuNoV) infection is a major cause of gastroenteritis all over the world. Despite this, these non-enveloped RNA viruses are poorly characterized due to the lack of robust and widely available HuNoV culture systems. The two published systems (B cell line and stem cell-derived enteroids) support replication of HuNoVs but the levels of replication are not sufficient for the generation of highly purified virus stocks or the development of culture-based quantification assays. Therefore, improvement of HuNoV in vitro replication is still needed. Murine norovirus and other caliciviruses have provided insights into norovirus replication that paved the way for the development of the current HuNoV culture systems and may also aid in the improvement of these systems. This review will highlight ways in which previous research guided and impacted the development of HuNoV culture systems and discuss ways in which more recent discoveries might be utilized to improve the quality of the HuNoV in vitro replication.
Collapse
Affiliation(s)
- Sutonuka Bhar
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL 32611, USA.
| | - Melissa K Jones
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
21
|
Kanai Y, Kawagishi T, Sakai Y, Nouda R, Shimojima M, Saijo M, Matsuura Y, Kobayashi T. Cell-cell fusion induced by reovirus FAST proteins enhances replication and pathogenicity of non-enveloped dsRNA viruses. PLoS Pathog 2019; 15:e1007675. [PMID: 31022290 PMCID: PMC6504114 DOI: 10.1371/journal.ppat.1007675] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/07/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
Fusogenic reoviruses encode fusion-associated small transmembrane (FAST) protein, which induces cell-cell fusion. FAST protein is the only known fusogenic protein in non-enveloped viruses, and its role in virus replication is not yet known. We generated replication-competent, FAST protein-deficient pteropine orthoreovirus and demonstrated that FAST protein was not essential for viral replication, but enhanced viral replication in the early phase of infection. Addition of recombinant FAST protein enhanced replication of FAST-deficient virus and other non-fusogenic viruses in a fusion-dependent and FAST-species-independent manner. In a mouse model, replication and pathogenicity of FAST-deficient virus were severely impaired relative to wild-type virus, indicating that FAST protein is a major determinant of the high pathogenicity of fusogenic reovirus. FAST-deficient virus also conferred effective protection against challenge with lethal homologous virus strains in mice. Our results demonstrate a novel role of a viral fusogenic protein and the existence of a cell-cell fusion-dependent replication system in non-enveloped viruses.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahiro Kawagishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Vesicle-Cloaked Virus Clusters Are Optimal Units for Inter-organismal Viral Transmission. Cell Host Microbe 2019; 24:208-220.e8. [PMID: 30092198 DOI: 10.1016/j.chom.2018.07.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/11/2018] [Accepted: 07/13/2018] [Indexed: 01/29/2023]
Abstract
In enteric viral infections, such as those with rotavirus and norovirus, individual viral particles shed in stool are considered the optimal units of fecal-oral transmission. We reveal that rotaviruses and noroviruses are also shed in stool as viral clusters enclosed within vesicles that deliver a high inoculum to the receiving host. Cultured cells non-lytically release rotaviruses and noroviruses inside extracellular vesicles. In addition, stools of infected hosts contain norovirus and rotavirus within vesicles of exosomal or plasma membrane origin. These vesicles remain intact during fecal-oral transmission and thereby transport multiple viral particles collectively to the next host, enhancing both the MOI and disease severity. Vesicle-cloaked viruses are non-negligible populations in stool and have a disproportionately larger contribution to infectivity than free viruses. Our findings indicate that vesicle-cloaked viruses are highly virulent units of fecal-oral transmission and highlight a need for antivirals targeting vesicles and virus clustering.
Collapse
|
23
|
Rodríguez JM, Luque D. Structural Insights into Rotavirus Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:45-68. [PMID: 31317495 DOI: 10.1007/978-3-030-14741-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Visualization of Calcium Ion Loss from Rotavirus during Cell Entry. J Virol 2018; 92:JVI.01327-18. [PMID: 30258012 PMCID: PMC6258952 DOI: 10.1128/jvi.01327-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/14/2018] [Indexed: 01/02/2023] Open
Abstract
Nonenveloped viruses penetrate into the cytosol of the cells that they infect by disrupting the membrane of an intracellular compartment. The molecular mechanisms of membrane disruption remain largely undefined. Functional reconstitution of infectious rotavirus particles (TLPs) from RNA-containing core particles (DLPs) and the outer layer proteins that deliver them into a cell makes these important pediatric pathogens particularly good models for studying nonenveloped virus entry. We report here how the use of a fluorescent Ca2+ sensor, covalently linked to one of the viral proteins, allows us to establish, using live-cell imaging, the timing of Ca2+ loss from an entering particle and other molecular events in the entry pathway. Specific Ca2+ binding stabilizes many other viruses of eukaryotes, and Ca2+ loss appears to be a trigger for steps in penetration or uncoating. The experimental design that we describe may be useful for studying entry of other viral pathogens. Bound calcium ions stabilize many nonenveloped virions. Loss of Ca2+ from these particles appears to be a regulated part of entry or uncoating. The outer layer of an infectious rotavirus triple-layered particle (TLP) comprises a membrane-interacting protein (VP4) anchored by a Ca2+-stabilized protein (VP7). Membrane-coupled conformational changes in VP4 (cleaved to VP8* and VP5*) and dissociation of VP4 and VP7 accompany penetration of the double-layered inner capsid particle (DLP) into the cytosol. Removal of Ca2+in vitro strips away both outer layer proteins; we and others have postulated that the loss of Ca2+ triggers molecular events in viral penetration. We have now investigated, with the aid of a fluorescent Ca2+ sensor, the timing of Ca2+ loss from entering virions with respect to the dissociation of VP4 and VP7. In live-cell imaging experiments, distinct fluorescent markers on the DLP and on VP7 report on outer layer dissociation and DLP release. The Ca2+ sensor, placed on VP5*, monitors the Ca2+ concentration within the membrane-bound vesicle enclosing the entering particle. Slow (1-min duration) loss of Ca2+ precedes the onset of VP7 dissociation by about 2 min and DLP release by about 7 min. Coupled with our previous results showing that VP7 loss follows tight binding to the cell surface by about 5 min, these data indicate that Ca2+ loss begins as soon as the particle has become fully engulfed within the uptake vesicle. We discuss the implications of these findings for the molecular mechanism of membrane disruption during viral entry. IMPORTANCE Nonenveloped viruses penetrate into the cytosol of the cells that they infect by disrupting the membrane of an intracellular compartment. The molecular mechanisms of membrane disruption remain largely undefined. Functional reconstitution of infectious rotavirus particles (TLPs) from RNA-containing core particles (DLPs) and the outer layer proteins that deliver them into a cell makes these important pediatric pathogens particularly good models for studying nonenveloped virus entry. We report here how the use of a fluorescent Ca2+ sensor, covalently linked to one of the viral proteins, allows us to establish, using live-cell imaging, the timing of Ca2+ loss from an entering particle and other molecular events in the entry pathway. Specific Ca2+ binding stabilizes many other viruses of eukaryotes, and Ca2+ loss appears to be a trigger for steps in penetration or uncoating. The experimental design that we describe may be useful for studying entry of other viral pathogens.
Collapse
|
25
|
Rotavirus-Induced Early Activation of the RhoA/ROCK/MLC Signaling Pathway Mediates the Disruption of Tight Junctions in Polarized MDCK Cells. Sci Rep 2018; 8:13931. [PMID: 30224682 PMCID: PMC6141481 DOI: 10.1038/s41598-018-32352-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/06/2018] [Indexed: 02/02/2023] Open
Abstract
Intestinal epithelial tight junctions (TJ) are a major barrier restricting the entry of various harmful factors including pathogens; however, they also represent an important entry portal for pathogens. Although the rotavirus-induced early disruption of TJ integrity and targeting of TJ proteins as coreceptors are well-defined, the precise molecular mechanisms involved remain unknown. In the present study, infection of polarized MDCK cells with the species A rotavirus (RVA) strains human DS-1 and bovine NCDV induced a redistribution of TJ proteins into the cytoplasm, a reversible decrease in transepithelial resistance, and an increase in paracellular permeability. RhoA/ROCK/MLC signaling was identified as activated at an early stage of infection, while inhibition of this pathway prevented the rotavirus-induced early disruption of TJ integrity and alteration of TJ protein distribution. Activation of pMYPT, PKC, or MLCK, which are known to participate in TJ dissociation, was not observed in MDCK cells infected with either rotavirus strain. Our data demonstrated that binding of RVA virions or cogent VP8* proteins to cellular receptors activates RhoA/ROCK/MLC signaling, which alters TJ protein distribution and disrupts TJ integrity via contraction of the perijunctional actomyosin ring, facilitating virion access to coreceptors and entry into cells.
Collapse
|
26
|
Mishra R, Yu X, Kishor C, Holloway G, Lau K, von Itzstein M, Coulson BS, Blanchard H. Specificity and affinity of neuraminic acid exhibited by canine rotavirus strain K9 carbohydrate-binding domain (VP8*). J Mol Recognit 2018; 31:e2718. [PMID: 29687510 DOI: 10.1002/jmr.2718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 12/23/2022]
Abstract
The outer capsid spike protein VP4 of rotaviruses is a major determinant of infectivity and serotype specificity. Proteolytic cleavage of VP4 into 2 domains, VP8* and VP5*, enhances rotaviral infectivity. Interactions between the VP4 carbohydrate-binding domain (VP8*) and cell surface glycoconjugates facilitate initial virus-cell attachment and subsequent cell entry. Our saturation transfer difference nuclear magnetic resonance (STD NMR) and isothermal titration calorimetry (ITC) studies demonstrated that VP8*64-224 of canine rotavirus strain K9 interacts with N-acetylneuraminic and N-glycolylneuraminic acid derivatives, exhibiting comparable binding epitopes to VP8* from other neuraminidase-sensitive animal rotaviruses from pigs (CRW-8), cattle (bovine Nebraska calf diarrhoea virus, NCDV), and Rhesus monkeys (Simian rhesus rotavirus, RRV). Importantly, evidence was obtained for a preference by K9 rotavirus for the N-glycolyl- over the N-acetylneuraminic acid derivative. This indicates that a VP4 serotype 5A rotavirus (such as K9) can exhibit a neuraminic acid receptor preference that differs from that of a serotype 5B rotavirus (such as RRV) and the receptor preference of rotaviruses can vary within a particular VP4 genotype.
Collapse
Affiliation(s)
- Rahul Mishra
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Xing Yu
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Chandan Kishor
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Gavan Holloway
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kam Lau
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Barbara S Coulson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
27
|
Arnold MM. Rotavirus vaccines: why continued investment in research is necessary. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:73-81. [PMID: 29805958 PMCID: PMC5967271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW Rotavirus vaccines were first introduced more than a decade ago and have had a tremendous impact on reducing the number of hospitalizations and deaths due to rotavirus-associated diarrhea. This review will discuss current rotavirus vaccines, post-licensure surveillance, progress in non-replicating vaccine development, and why continued research is important for understanding a virus that remains a globally leading cause of death due to diarrhea. RECENT FINDINGS Research advances have enhanced our understanding of how vaccines induce protection against subsequent severe disease, how the virus replicates and spreads in the face of the host immune system, and basic mechanisms governing the viral life cycle. SUMMARY Much remains to be learned about how to improve vaccine success, what are the molecular determinants of host range and virulence, and what are the interactions of the virus with the host that drive its replicative success, among many other important questions.
Collapse
Affiliation(s)
- Michelle M. Arnold
- Corresponding author: Michelle M. Arnold, , Telephone: 318-675-4731, ORCID: 0000-0001-9219-3097
| |
Collapse
|
28
|
Arnold MM. Rotavirus Vaccines: Why Continued Investment in Research Is Necessary. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0079-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Single-Particle Detection of Transcription following Rotavirus Entry. J Virol 2017; 91:JVI.00651-17. [PMID: 28701394 PMCID: PMC5571246 DOI: 10.1128/jvi.00651-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
Infectious rotavirus particles are triple-layered, icosahedral assemblies. The outer layer proteins, VP4 (cleaved to VP8* and VP5*) and VP7, surround a transcriptionally competent, double-layer particle (DLP), which they deliver into the cytosol. During entry of rhesus rotavirus, VP8* interacts with cell surface gangliosides, allowing engulfment into a membrane vesicle by a clathrin-independent process. Escape into the cytosol and outer-layer shedding depend on interaction of a hydrophobic surface on VP5* with the membrane bilayer and on a large-scale conformational change. We report here experiments that detect the fate of released DLPs and their efficiency in initiating RNA synthesis. By replacing the outer layer with fluorescently tagged, recombinant proteins and also tagging the DLP, we distinguished particles that have lost their outer layer and entered the cytosol (uncoated) from those still within membrane vesicles. We used fluorescent in situ hybridization with probes for nascent transcripts to determine how soon after uncoating transcription began and what fraction of the uncoated particles were active in initiating RNA synthesis. We detected RNA synthesis by uncoated particles as early as 15 min after adding virus. The uncoating efficiency was 20 to 50%; of the uncoated particles, about 10 to 15% synthesized detectable RNA. In the format of our experiments, about 10% of the added particles attached to the cell surface, giving an overall ratio of added particles to RNA-synthesizing particles of between 250:1 and 500:1, in good agreement with the ratio of particles to focus-forming units determined by infectivity assays. Thus, RNA synthesis by even a single, uncoated particle can initiate infection in a cell.IMPORTANCE The pathways by which a virus enters a cell transform its packaged genome into an active one. Contemporary fluorescence microscopy can detect individual virus particles as they enter cells, allowing us to map their multistep entry pathways. Rotaviruses, like most viruses that lack membranes of their own, disrupt or perforate the intracellular, membrane-enclosed compartment into which they become engulfed following attachment to a cell surface, in order to gain access to the cell interior. The properties of rotavirus particles make it possible to determine molecular mechanisms for these entry steps. In the work described here, we have asked the following question: what fraction of the rotavirus particles that penetrate into the cell make new viral RNA? We find that of the cell-attached particles, between 20 and 50% ultimately penetrate, and of these, about 10% make RNA. RNA synthesis by even a single virus particle can initiate a productive infection.
Collapse
|
30
|
Saxena K, Simon LM, Zeng XL, Blutt SE, Crawford SE, Sastri NP, Karandikar UC, Ajami NJ, Zachos NC, Kovbasnjuk O, Donowitz M, Conner ME, Shaw CA, Estes MK. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proc Natl Acad Sci U S A 2017; 114:E570-E579. [PMID: 28069942 PMCID: PMC5278484 DOI: 10.1073/pnas.1615422114] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.
Collapse
Affiliation(s)
- Kapil Saxena
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Lukas M Simon
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Narayan P Sastri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Nadim J Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Nicholas C Zachos
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Olga Kovbasnjuk
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark Donowitz
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Chad A Shaw
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
31
|
Yuan J, Zhang X, Shi H, Chen J, Han X, Wei P, Feng L. The interaction of Rotavirus A pig/China/NMTL/2008/G9P[23] VP6 with cellular beta-actin is required for optimal RV replication and infectivity. Vet Microbiol 2016; 197:111-121. [PMID: 27938672 DOI: 10.1016/j.vetmic.2016.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 10/22/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022]
Abstract
VP6 forms the intermediate layer of the rotavirus (RV) capsid, and it plays important roles after RV penetration and uncoating. These functions rely on its ability to interact with host cell proteins. To gain further insights into the role of VP6 in porcine RV (PoRV) infection, a glutathione S-transferase pull-down assay was utilized to find unknown cellular factors that interact with VP6. In this study, beta-actin, tropomyosin 1, and 40S ribosomal protein S16 were identified as interaction partners of VP6 by mass spectrometry and co-immunoprecipitation. The interaction with beta-actin was further studied. By immunoelectron microscopy, we observed VP6 proteins that labeled with colloidal gold localized on the actin microfilaments at the early stage of PoRV infection, we also found VP6 distributed in the ribosome, mitochondria, endoplasmic reticulum and nucleus in the infected cells. Actin binding protein spin-down assays verified PoRV double-layered particles (DLPs) bound to F-actin in vitro, but didn't have actin polymerization enhancement activity. After a small interfering RNA (siACTB) was used to knock down beta-actin expression, PoRV VP6 expression and the infection rates of newly synthesized virions releasing into culture supernatants decreased dramatically. Our results confirm and extend previous reports indicating that the interaction between PoRV VP6 and beta-actin plays vital roles in the PoRV lifecycle.
Collapse
Affiliation(s)
- Jing Yuan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiao Han
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ping Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
32
|
Huo Y, Wang W, Ling T, Wan X, Ding L, Shen S, Huo J, Zhang S, Wang M, Wang Y, Liu Y. Chimeric VLPs with GII.3 P2 domain in a backbone of GII.4 VP1 confers novel HBGA binding ability. Virus Res 2016; 224:1-5. [PMID: 27521750 DOI: 10.1016/j.virusres.2016.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Yuqi Huo
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, PR China.
| | - Wenhui Wang
- Wuhan Institute of Biological Products, Wuhan, PR China
| | - Tong Ling
- Wuhan Institute of Biological Products, Wuhan, PR China
| | - Xin Wan
- Wuhan Institute of Biological Products, Wuhan, PR China
| | - Li Ding
- Wuhan Institute of Biological Products, Wuhan, PR China
| | - Shuo Shen
- Wuhan Institute of Biological Products, Wuhan, PR China.
| | | | | | | | - Yumei Wang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yubing Liu
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, PR China
| |
Collapse
|
33
|
Eren E, Zamuda K, Patton JT. Modeling of the rotavirus group C capsid predicts a surface topology distinct from other rotavirus species. Virology 2016; 487:150-62. [PMID: 26524514 PMCID: PMC4679652 DOI: 10.1016/j.virol.2015.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022]
Abstract
Rotavirus C (RVC) causes sporadic gastroenteritis in adults and is an established enteric pathogen of swine. Because RVC strains grow poorly in cell culture, which hinders generation of virion-derived RVC triple-layered-particle (TLP) structures, we used the known Rotavirus A (RVA) capsid structure to model the human RVC (Bristol) capsid. Comparative analysis of RVA and RVC capsid proteins showed major differences at the VP7 layer, an important target region for vaccine development due to its antigenic properties. Our model predicted the presence of a surface extended loop in RVC, which could form a major antigenic site on the capsid. We analyzed variations in the glycosylation patterns among RV capsids and identified group specific conserved sites. In addition, our results showed a smaller RVC VP4 foot, which protrudes toward the intermediate VP6 layer, in comparison to that of RVA. Finally, our results showed major structural differences at the VP8* glycan recognition sites.
Collapse
Affiliation(s)
- Elif Eren
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kimberly Zamuda
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
|
35
|
Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology. J Virol 2015; 90:43-56. [PMID: 26446608 DOI: 10.1128/jvi.01930-15] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures.
Collapse
|
36
|
Abstract
ABSTRACT Viruses are a diverse class of nanoparticles. However, they have evolved a few common mechanisms that enable successful infection of their host cells. The first stage of this process involves entry into the cell. For enveloped viruses this process has been well characterized. For nonenveloped viruses, the focus of this review, the entry mechanisms are less well understood. For these viruses, a typical pathway involves receptor attachment followed by internalization into cellular vesicles and subsequent viral escape to the cytosol and transport to the site of genome replication. Significantly, these viruses have evolved numerous mechanisms to fulfill this seemingly simple infection scheme. We focus on the latest observations for several families of nonenveloped viruses and highlight specific members for eukaryotic families: Adenoviridae, Papillomaviridae, Parvoviridae, Picornaviridae, Polyomaviridae and Reoviridae; and prokaryotic families: Microviridae, Myoviridae, Podoviridae and Siphoviridae.
Collapse
Affiliation(s)
- Bridget Lins
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
37
|
Abdelhakim AH, Salgado EN, Fu X, Pasham M, Nicastro D, Kirchhausen T, Harrison SC. Structural correlates of rotavirus cell entry. PLoS Pathog 2014; 10:e1004355. [PMID: 25211455 PMCID: PMC4161437 DOI: 10.1371/journal.ppat.1004355] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 07/24/2014] [Indexed: 01/06/2023] Open
Abstract
Cell entry by non-enveloped viruses requires translocation into the cytosol of a macromolecular complex--for double-strand RNA viruses, a complete subviral particle. We have used live-cell fluorescence imaging to follow rotavirus entry and penetration into the cytosol of its ∼ 700 Å inner capsid particle ("double-layered particle", DLP). We label with distinct fluorescent tags the DLP and each of the two outer-layer proteins and track the fates of each species as the particles bind and enter BSC-1 cells. Virions attach to their glycolipid receptors in the host cell membrane and rapidly become inaccessible to externally added agents; most particles that release their DLP into the cytosol have done so by ∼ 10 minutes, as detected by rapid diffusional motion of the DLP away from residual outer-layer proteins. Electron microscopy shows images of particles at various stages of engulfment into tightly fitting membrane invaginations, consistent with the interpretation that rotavirus particles drive their own uptake. Electron cryotomography of membrane-bound virions also shows closely wrapped membrane. Combined with high resolution structural information about the viral components, these observations suggest a molecular model for membrane disruption and DLP penetration.
Collapse
Affiliation(s)
- Aliaa H. Abdelhakim
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric N. Salgado
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaofeng Fu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mithun Pasham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniela Nicastro
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Tomas Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Desselberger U. Rotaviruses. Virus Res 2014; 190:75-96. [PMID: 25016036 DOI: 10.1016/j.virusres.2014.06.016] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/12/2023]
|
39
|
New insights into rotavirus entry machinery: stabilization of rotavirus spike conformation is independent of trypsin cleavage. PLoS Pathog 2014; 10:e1004157. [PMID: 24873828 PMCID: PMC4038622 DOI: 10.1371/journal.ppat.1004157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/16/2014] [Indexed: 12/31/2022] Open
Abstract
The infectivity of rotavirus, the main causative agent of childhood diarrhea, is dependent on activation of the extracellular viral particles by trypsin-like proteases in the host intestinal lumen. This step entails proteolytic cleavage of the VP4 spike protein into its mature products, VP8* and VP5*. Previous cryo-electron microscopy (cryo-EM) analysis of trypsin-activated particles showed well-resolved spikes, although no density was identified for the spikes in uncleaved particles; these data suggested that trypsin activation triggers important conformational changes that give rise to the rigid, entry-competent spike. The nature of these structural changes is not well understood, due to lack of data relative to the uncleaved spike structure. Here we used cryo-EM and cryo-electron tomography (cryo-ET) to characterize the structure of the uncleaved virion in two model rotavirus strains. Cryo-EM three-dimensional reconstruction of uncleaved virions showed spikes with a structure compatible with the atomic model of the cleaved spike, and indistinguishable from that of digested particles. Cryo-ET and subvolume average, combined with classification methods, resolved the presence of non-icosahedral structures, providing a model for the complete structure of the uncleaved spike. Despite the similar rigid structure observed for uncleaved and cleaved particles, trypsin activation is necessary for successful infection. These observations suggest that the spike precursor protein must be proteolytically processed, not to achieve a rigid conformation, but to allow the conformational changes that drive virus entry. Rotavirus is responsible for more than 400,000 annual infant deaths worldwide. Its viral particle bears 60 protuberant spikes that constitute the machinery responsible for virus binding to and entry into the host cell. For efficient infection, the protein molecules that build the spike must be cleaved. Despite the importance of this activation step, the nature of the changes induced in the spike structure is unknown. According to the current hypothesis, the uncleaved spike is very flexible, and activation stabilizes the spike in an entry-competent conformation. Here we used distinct electron microscopy techniques to determine the structure of the uncleaved particle in two model rotavirus strains. Our results provide a complete structure of the uncleaved spike and demonstrate that cleaved and uncleaved spikes have similar conformations, indicating that proteolytic processing is not involved in stabilization of the spike. We suggest that spike processing is important for infection since it is necessary to allow the spike domain movements involved in rotavirus entry.
Collapse
|
40
|
Magagula NB, Esona MD, Nyaga MM, Stucker KM, Halpin RA, Stockwell TB, Seheri ML, Steele AD, Wentworth DE, Mphahlele MJ. Whole genome analyses of G1P[8] rotavirus strains from vaccinated and non-vaccinated South African children presenting with diarrhea. J Med Virol 2014; 87:79-101. [PMID: 24841697 DOI: 10.1002/jmv.23971] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2014] [Indexed: 12/18/2022]
Abstract
Group A rotaviruses (RVAs) are the leading cause of severe gastroenteritis and eventually death among infants and young children worldwide, and disease prevention and management through vaccination is a public health priority. In August 2009, Rotarix™ was introduced in the South African Expanded Programme on Immunisation. As a result, substantial reductions in RVA disease burden have been reported among children younger than 5 years old. Rotavirus strain surveillance post-vaccination is crucial to, inter alia, monitor and study the evolution of vaccine escape strains. Here, full-genome sequence data for the 11 gene segments from 11 South African G1P[8] rotavirus strains were generated, including 5 strains collected from non-vaccinated children during the 2004-2009 rotavirus seasons and 6 strains collected from vaccinated children during the 2010 rotavirus season. These data were analyzed to gain insights into the overall genetic makeup and evolution of South African G1P[8] rotavirus strains and to compare their genetic backbones with those of common human Wa-like RVAs from other countries, as well as with the Rotarix™ and RotaTeq™ G1P[8] vaccine components. All 11 South African G1P[8] strains revealed a complete Wa-like genotype constellation of G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. On the basis of sequence similarities, the South African G1P[8] strains (with the exception of strain RVA/Human-wt/ZAF/1262/2004/G1P[8]) were closely related to each other (96-100% identity in all gene segments). Comparison to the Rotarix™ and RotaTeq™ G1P[8] vaccine components revealed a moderate nucleotide identity of 89-96% and 93-95%, respectively. The results indicated that none of the gene segments of these 11 South African G1P[8] strains were vaccine-derived. This study illustrates that large-scale next generation sequencing will provide crucial information on the influence of the vaccination program on evolution of rotavirus strains. This is the first report to describe full genomic analyses of G1P[8] RVA strains collected from both non-vaccinated and vaccinated children in South Africa.
Collapse
Affiliation(s)
- Nonkululeko B Magagula
- Medical Research Council/Diarrhoeal Pathogens Research Unit, Department of Virology, University of Limpopo, Medunsa Campus/National Health Laboratory Service, Pretoria, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Trask SD, Wetzel JD, Dermody TS, Patton JT. Mutations in the rotavirus spike protein VP4 reduce trypsin sensitivity but not viral spread. J Gen Virol 2013; 94:1296-1300. [PMID: 23426355 DOI: 10.1099/vir.0.050674-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infectious entry of the nonenveloped rotavirus virion requires proteolysis of the spike protein VP4 to mediate conformational changes associated with membrane penetration. We sequenced and characterized an isolate that was cultured in the absence of trypsin and found that it is more resistant to proteolysis than WT virus. A substitution mutation abrogates one of the defined trypsin-cleavage sites, suggesting that blocking proteolysis at this site reduces the overall kinetics of proteolysis. Kinetic analysis of the membrane penetration-associated conformational change indicated that the 'fold-back' of the mutant spike protein is slower than that of WT. Despite these apparent biochemical defects, the mutant virus replicates in an identical manner to the WT virus. These findings enhance an understanding of VP4 functions and establish new strategies to interrogate rotavirus cell entry.
Collapse
Affiliation(s)
- Shane D Trask
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-8026, USA
| | - J Denise Wetzel
- Department of Pediatrics and the Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2581, USA
| | - Terence S Dermody
- Departments of Pediatrics and Pathology, Microbiology and Immunology and the Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2581, USA
| | - John T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-8026, USA
| |
Collapse
|
42
|
Santana AY, Guerrero CA, Acosta O. Implication of Hsc70, PDI and integrin αvβ3 involvement during entry of the murine rotavirus ECwt into small-intestinal villi of suckling mice. Arch Virol 2013; 158:1323-36. [PMID: 23404461 DOI: 10.1007/s00705-013-1626-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/23/2012] [Indexed: 11/25/2022]
Abstract
In the present study, a homologous rotavirus, ECwt, infecting small intestinal villi isolated from ICR and BALB/c mice were used as a model for identifying cell-surface molecules involved in rotavirus entry. Small-intestinal villi were treated with anti-Hsc70, anti-PDI, anti-integrin β3 or anti-ERp57 antibodies or their corresponding F(ab')2 fragments before inoculation with rotavirus ECwt, RRV or Wa. Pretreatment of villi decreased virus infectivity by about 50-100 % depending of the rotavirus strain, antibody structure and detection assay used. Similar results were obtained by treating viral inocula with purified proteins Hsc70, PDI or integrin β3 before inoculation of untreated villi. Rotavirus infection of villi proved to be sensitive to membrane-impermeant thiol/disulfide inhibitors such as DTNB and bacitracin, suggesting the involvement of a redox reaction in infection. The present results suggest that PDI, Hsc70 and integrin β3 are used by both homologous and heterologous rotaviruses during infection of isolated mouse villi.
Collapse
Affiliation(s)
- Ana Y Santana
- Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | |
Collapse
|
43
|
Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-β signaling is required for rotavirus replication. Proc Natl Acad Sci U S A 2012. [PMID: 23184977 DOI: 10.1073/pnas.1216539109] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a cellular degradation process involving an intracellular membrane trafficking pathway that recycles cellular components or eliminates intracellular microbes in lysosomes. Many pathogens subvert autophagy to enhance their replication, but the mechanisms these pathogens use to initiate the autophagy process have not been elucidated. This study identifies rotavirus as a pathogen that encodes a viroporin, nonstructural protein 4, which releases endoplasmic reticulum calcium into the cytoplasm, thereby activating a calcium/calmodulin-dependent kinase kinase-β and 5' adenosine monophosphate-activated protein kinase-dependent signaling pathway to initiate autophagy. Rotavirus hijacks this membrane trafficking pathway to transport viral proteins from the endoplasmic reticulum to sites of viral replication to produce infectious virus. This process requires PI3K activity and autophagy-initiation proteins Atg3 and Atg5, and it is abrogated by chelating cytoplasmic calcium or inhibiting calcium/calmodulin-dependent kinase kinase-β. Although the early stages of autophagy are initiated, rotavirus infection also blocks autophagy maturation. These studies identify a unique mechanism of virus-mediated, calcium-activated signaling that initiates autophagy and hijacks this membrane trafficking pathway to transport viral proteins to sites of viral assembly.
Collapse
|
44
|
Structural basis of rotavirus strain preference toward N-acetyl- or N-glycolylneuraminic acid-containing receptors. J Virol 2012; 86:13456-66. [PMID: 23035213 DOI: 10.1128/jvi.06975-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rotavirus spike protein domain VP8* is essential for recognition of cell surface carbohydrate receptors, notably those incorporating N-acylneuraminic acids (members of the sialic acid family). N-Acetylneuraminic acids occur naturally in both animals and humans, whereas N-glycolylneuraminic acids are acquired only through dietary uptake in normal human tissues. The preference of animal rotaviruses for these natural N-acylneuraminic acids has not been comprehensively established, and detailed structural information regarding the interactions of different rotaviruses with N-glycolylneuraminic acids is lacking. In this study, distinct specificities of VP8* for N-acetyl- and N-glycolylneuraminic acids were revealed using biophysical techniques. VP8* protein from the porcine rotavirus CRW-8 and the bovine rotavirus Nebraska calf diarrhea virus (NCDV) showed a preference for N-glycolyl- over N-acetylneuraminic acids, in contrast to results obtained with rhesus rotavirus (RRV). Crystallographic structures of VP8* from CRW-8 and RRV with bound methyl-N-glycolylneuraminide revealed the atomic details of their interactions. We examined the influence of amino acid type at position 157, which is proximal to the ligand's N-acetyl or N-glycolyl moiety and can mutate upon cell culture adaptation. A structure-based hypothesis derived from these results could account for rotavirus discrimination between the N-acylneuraminic acid forms. Infectivity blockade experiments demonstrated that the determined carbohydrate specificities of these VP8* domains directly correlate with those of the corresponding infectious virus. This includes an association between CRW-8 adaption to cell culture, decreased competition by N-glycolylneuraminic acid for CRW-8 infectivity, and a Pro157-to-Ser157 mutation in VP8* that reduces binding affinity for N-glycolylneuraminic acid.
Collapse
|
45
|
Knipping K, Garssen J, van't Land B. An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virol J 2012; 9:137. [PMID: 22834653 PMCID: PMC3439294 DOI: 10.1186/1743-422x-9-137] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/04/2012] [Indexed: 12/18/2022] Open
Abstract
Background Rotaviruses are the single most important cause of severe diarrhea in young children worldwide. The developments of specific, potent and accessible antiviral treatments that restrain rotavirus infection remain important to control rotavirus disease. Methods 150 plant extracts with nutritional applications were screened in vitro on MA-104 cells for their antiviral activity against rhesus rotavirus (RRV). One extract (Aspalathus linearis (Burm.f.) R.Dahlgren) was also tested for its effect on the loss of transepithelial resistance (TER) of Caco-2 cells caused by simian rotavirus (SA-11) infection. Results Aqueous extracts of Nelumbo nucifera Gaertn. fruit, Urtica dioica L. root, Aspalathus linearis (Burm.f.) R.Dahlgren leaves, Glycyrrhiza glabra L. root and Olea europaea L. leaves were found to have strong significant antiviral activity with a 50% inhibitory concentration (IC50) < 300 μg/ml. The pure compound 18ß-glycyrrhetinic acid from Glycyrrhiza glabra was found to have the strongest antiviral activity (IC50 46 μM), followed by luteolin and vitexin from Aspalathus linearis (IC50 respectively 116 μM and 129 μM) and apigenin-7-O-glucoside from Melissa officinalis (IC50 150 μM). A combination of Glycyrrhiza glabra L. + Nelumbo nucifera Gaertn. and Urtica dioica L. + Nelumbo nucifera Gaertn. showed synergy in their anti-viral activities. Aspalathus linearis (Burm.f.) R.Dahlgren showed no positive effect on the maintenance of the TER. Conclusions These results indicate that nutritional intervention with extracts of Nelumbo nucifera Gaertn., Aspalathus linearis (Burm.f.) R.Dahlgren, Urtica dioica L., Glycyrrhiza glabra L. and Olea europaea L. might be useful in the treatment of diarrhea caused by rotavirus infection.
Collapse
Affiliation(s)
- Karen Knipping
- Danone Research, Centre for Specialised Nutrition, PO Box 7005, 6700 CA, Wageningen, The Netherlands.
| | | | | |
Collapse
|
46
|
Trask SD, Ogden KM, Patton JT. Interactions among capsid proteins orchestrate rotavirus particle functions. Curr Opin Virol 2012; 2:373-9. [PMID: 22595300 DOI: 10.1016/j.coviro.2012.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 11/16/2022]
Abstract
Rotaviruses are members of the Reoviridae family of non-enveloped viruses and important etiologic agents of acute gastroenteritis in infants and young children. In recent years, high-resolution structures of triple-layered rotavirus virions and the constituent proteins have provided valuable insights into functions. Of note, structural studies have revealed the position of the viral RNA-dependent RNA polymerase, VP1, within the inner capsid, which in turn provides clues about the location of the viral capping machinery and the route of viral transcript egress. Mechanisms by which the viral spike protein, VP4, mediates receptor binding and membrane penetration have also been aided by high-resolution structural studies. Future work may serve to fill the remaining gaps in understanding of rotavirus particle structure and function.
Collapse
Affiliation(s)
- Shane D Trask
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8026, USA
| | | | | |
Collapse
|
47
|
Calderon MN, Guerrero CA, Acosta O, Lopez S, Arias CF. Inhibiting rotavirus infection by membrane-impermeant thiol/disulfide exchange blockers and antibodies against protein disulfide isomerase. Intervirology 2012; 55:451-64. [PMID: 22398681 DOI: 10.1159/000335262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 11/21/2011] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Determining the effect of membrane-impermeant thiol/disulfide exchange inhibitors on rhesus rotavirus infectivity in MA104 cells and investigating protein disulfide isomerase (PDI) as a potential target for these inhibitors. METHODS Cells were treated with DTNB [5,5-dithio-bis-(2-nitrobenzoic acid)], bacitracin or anti-PDI antibodies and then infected with virus. Triple-layered particles (TLPs) were also pretreated with inhibitors before inoculation. The effects of these inhibitors on α-sarcin co-entry, virus binding to cells and PDI-TLP interaction were also examined. FACS analysis, cell-surface protein biotin-labeling, lipid-raft isolation and ELISA were performed to determine cell-surface PDI expression. RESULTS Infectivity became reduced by 50% when cells or TLPs were treated with 1 or 6 mM DTNB, respectively; infectivity became reduced by 50% by 20 mM bacitracin treatment of cells whereas TLPs were insensitive to bacitracin treatment; anti-PDI antibodies decreased viral infectivity by about 45%. The presence of DTNB (2.5 mM) or bacitracin (20 mM) was unable to prevent virus binding to cells and rotavirus-induced α-sarcin co-entry. CONCLUSIONS It was concluded that thiol/disulfide exchange was involved in rotavirus entry process and that cell-surface PDI was at least a potential target for DTNB and bacitracin-induced infectivity inhibition.
Collapse
Affiliation(s)
- Martha N Calderon
- Chemistry Department, Science Faculty, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
48
|
Structural insights into the coupling of virion assembly and rotavirus replication. Nat Rev Microbiol 2012; 10:165-77. [PMID: 22266782 DOI: 10.1038/nrmicro2673] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viral replication is rapid and robust, but it is far from a chaotic process. Instead, successful production of infectious progeny requires that events occur in the correct place and at the correct time. Rotaviruses (segmented double-stranded RNA viruses of the Reoviridae family) seem to govern their replication through ordered disassembly and assembly of a triple-layered icosahedral capsid. In recent years, high-resolution structural data have provided unprecedented insight into these events. In this Review, we explore the current understanding of rotavirus replication and how it compares to replication of other Reoviridae family members.
Collapse
|
49
|
Jere KC, Mlera L, O'Neill HG, Potgieter AC, Page NA, Seheri ML, van Dijk AA. Whole genome analyses of African G2, G8, G9, and G12 rotavirus strains using sequence-independent amplification and 454® pyrosequencing. J Med Virol 2012; 83:2018-42. [PMID: 21915879 DOI: 10.1002/jmv.22207] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High mortality rates caused by rotaviruses are associated with several strains such as G2, G8, G9, and G12 rotaviruses. Rotaviruses with G9 and G12 genotypes emerged worldwide in the past two decades. G2 and G8 rotaviruses are however also characterized frequently across Africa. To understand the genetic constellation of African G2, G8, G9, and G12 rotavirus strains and their possible origin, sequence-independent cDNA synthesis, amplification, and 454(®) pyrosequencing of the whole genomes of five human African rotavirus strains were performed. RotaC and phylogenetic analysis were used to assign and confirm the genotypes of the strains. Strains RVA/Human-wt/MWI/1473/2001/G8P[4], RVA/Human-wt/ZAF/3203WC/2009/G2P[4], RVA/Human-wt/ZAF/3133WC/2009/G12P[4], RVA/Human-wt/ZAF/3176WC/2009/G12P[6], and RVA/Human-wt/ZAF/GR10924/1999/G9P[6] were assigned G8-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2, G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2, G12-P[4]-I1-R1-C1-M1-A1-N1-T1-E1-H1, G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1, and G9-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2 genotypes, respectively. The detection of both Wa- and DS-1-like genotypes in strain RVA/Human-wt/ZAF/3133WC/2009/G12P[4] and Wa-like, DS-1-like and P[6] genotypes in strain RVA/Human-wt/ZAF/GR10924/1999/G9P[6] implies that these two strains were generated through intergenogroup genome reassortment. The close similarity of the genome segments of strain RVA/Human-wt/MWI/1473/2001/G8P[4] to artiodactyl-like, human-bovine reassortant strains and human rotavirus strains suggests that it originated from or shares a common origin with bovine strains. It is therefore possible that this strain might have emerged through interspecies genome reassortment between human and artiodactyl rotaviruses. This study illustrates the swift characterization of all the 11 rotavirus genome segments by using a single set of universal primers for cDNA synthesis followed by 454(®) pyrosequencing and RotaC analysis.
Collapse
Affiliation(s)
- Khuzwayo C Jere
- Biochemistry Division, North-West University, Potchefstroom, South Africa
| | | | | | | | | | | | | |
Collapse
|
50
|
Schultz-Cherry S. Astrovirus Structure and Assembly. ASTROVIRUS RESEARCH 2012. [PMCID: PMC7120587 DOI: 10.1007/978-1-4614-4735-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent structural studies on the astrovirus virion and viral proteins have yielded exciting new insights into the molecular mechanisms of the astrovirus life cycle. The 25 Å-resolution cryo-electron microscopy (Cryo-EM) reconstructions of the astrovirus virion reveal a solid capsid shell studded with spikes. Proteolytic maturation of the virus particle results in capsid conformational changes, most prominently at the spikes. High-resolution crystal structures of the human and avian astrovirus capsid spike domains have shed light on potential host receptors and species specificity. Together, both the structural studies on the astrovirus virion and capsid spike domains have revealed similarities to hepatitis E virus, suggesting an evolutionary relationship. The only other structural information on astrovirus is from the high-resolution crystal structure of the protease that is involved in nonstructural polyprotein processing. Overall, these structural studies have led a better understanding of the astrovirus life cycle, including astrovirus assembly, virus release, maturation, receptor binding, antibody neutralization, and nonstructural polyprotein processing.
Collapse
Affiliation(s)
- Stacey Schultz-Cherry
- , Infectious Diseases, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, 38105 Tennessee USA
| |
Collapse
|