1
|
Muñoz-Muela E, Trujillo-Rodríguez M, Serna-Gallego A, Saborido-Alconchel A, Ruiz-Mateos E, López-Cortés LF, Gutiérrez-Valencia A. HIV-1-specific T-cell responses and exhaustion profiles in people with HIV after switching to dual therapy vs. maintaining triple therapy based on integrase inhibitors. Biomed Pharmacother 2023; 168:115750. [PMID: 37871555 DOI: 10.1016/j.biopha.2023.115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Dual therapy (DT) has shown comparable results to triple therapy (TT) in efficacy and other immunological aspects. However, there are still some concerns about DT, including several immunological features. Therefore, we evaluated whether HIV-1-specific memory T-cell responses and exhaustion phenotypes are adversely influenced after simplification to DT. METHODS HIV-1-specific CD4+ and CD8+ T-cell responses were assessed by intracellular cytokine and degranulation marker staining, and polyfunctionality indexes after stimulation with a Gag peptide pool. Exhaustion phenotypes were evaluated by PD-1, TIM-3, and LAG-3 expression in CD4+ and CD8+ T cells. RESULTS Forty participants in the TRIDUAL trial (ClinicalTrials.gov: NCT03447873) who were randomized to continue integrase inhibitor-based TT (n = 20) or to switch to DT (dolutegravir or darunavir/cobicistat plus lamivudine) (n = 20). After 96 weeks, the magnitude of CD4+ and CD8+ T-cell responses was similar in both treatment arms (p = 0.221 and p = 0.602, respectively). The CD4+ polyfunctionality index decreased in the TT arm (p = 0.013) and remained stable in the DT arm, while the polyfunctionality of CD8+ T cells was unchanged in both arms. There was a significant decrease in the expression of PD-1, TIM-3, and the co-expression of PD-1+TIM-3+LAG-3+, and PD-1 +TIM-3 + in both CD4+ and CD8+ T cells. However, the decrease in the expression of exhaustion markers did not improve HIV-1-specific T-cell responses. CONCLUSIONS Our results suggest that simplification to DT does not negatively influence the HIV-1-specific T-cell response or the exhaustion phenotype after 96 weeks of follow-up.
Collapse
Affiliation(s)
- Esperanza Muñoz-Muela
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - María Trujillo-Rodríguez
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Ana Serna-Gallego
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Abraham Saborido-Alconchel
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Ezequiel Ruiz-Mateos
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Luis F López-Cortés
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - Alicia Gutiérrez-Valencia
- Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| |
Collapse
|
2
|
Kuse N, Gatanaga H, Zhang Y, Chikata T, Oka S, Takiguchi M. Epitope-dependent effect of long-term cART on maintenance and recovery of HIV-1-specific CD8 + T cells. J Virol 2023; 97:e0102423. [PMID: 37877716 PMCID: PMC10688310 DOI: 10.1128/jvi.01024-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE HIV-1-specific CD8+ T cells are anticipated to become effector cells for curative treatment using the "shock and kill" approach in people living with HIV-1 (PLWH) under combined antiretroviral therapy (cART). Previous studies demonstrated that the frequency of HIV-1-specific CD8+ T cells is reduced under cART and their functional ability remains impaired. These studies analyzed T-cell responses to a small number of HIV-1 epitopes or overlapping HIV-1 peptides. Therefore, the features of CD8+ T cells specific for HIV-1 epitopes under cART remain only partially clarified. Here, we analyzed CD8+ T cells specific for 63 well-characterized epitopes in 90 PLWH. We demonstrated that CD8+ T cells specific for large numbers of HIV-1 epitopes were maintained in an epitope-dependent fashion under long-term cART and that long-term cART enhanced or restored the ability of HIV-1-specific T cells to proliferate in vitro. This study implies that some HIV-1-specific T cells would be useful as effector cells for curative treatment.
Collapse
Affiliation(s)
- Nozomi Kuse
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yu Zhang
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takayuki Chikata
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masafumi Takiguchi
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Viguier M, Pérals C, Poirier B, Battistella M, Aubin F, Bachelez H, Prétet JL, Gheit T, Tommasino M, Touzé A, Gougeon ML, Fazilleau N. Human papilloma virus-16-specific CD8+ T-cell expansions characterize different clinical forms of lichen planus and not lichen sclerosus et atrophicus. Exp Dermatol 2023; 32:859-868. [PMID: 36922453 DOI: 10.1111/exd.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
Lichen planus (LP) is a cutaneomucosal chronic inflammatory disease characterized by a CD8+ cytotoxic T-lymphocytes (CTL) infiltrate. In erosive oral LP, we found HPV16-specific activated CTL in lesions, supporting a pathogenic contribution of HPV16. Here, we investigated whether a similar scenario occurs in other clinical forms of LP and in lichen sclerosus et atrophicus (LSA), another chronic disease also affecting the mucosa and/or the skin. Blood CTL from LP and LSA patients expressed significant higher levels of granzyme B, perforin and CD107a proteins than healthy donors. Expansions of TCRVß3+ CTL, with presence of TCR clonotypes identical to those previously detected in erosive oral LP, were found both in blood and mucosal/skin lesions of LP, and not of LSA patients. These expansions were enriched with HPV16-specific CD8+ T-cells as shown by their recognition of the E711-20 immunodominant epitope. In LSA patients, the peripheral repertoire of CTL was oligoclonal for TCRVß6+ CTL. Finally, although patients with LP and LSA have developed antibodies against HPV16 capsid L1, antibodies against HPV16 E6 were only observed in patients with LP. Overall, our data collectively suggest an involvement of HPV16-specific CTL in different clinical forms of LP, not only in erosive oral LP, while a different scenario operates in LSA.
Collapse
Affiliation(s)
- Manuelle Viguier
- Department of dermatology, Hôpital Robert-Debré, University of Reims Champagne-Ardenne (URCA), EA7509 IRMAIC, Reims, France
| | - Corine Pérals
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), CNRS U5051, INSERM U1291, University Toulouse III, Toulouse, France
| | | | - Maxime Battistella
- Sorbonne Paris Cité, Service d'Anatomo-Pathologie, Hôpital Saint-Louis, Paris, France
| | - François Aubin
- Service de Dermatologie, Centre Hospitalo-Universitaire (CHU) de Besançon, Université de Franche Comté, Besançon, France
| | - Hervé Bachelez
- Laboratory of Genetics of Skin Diseases, Imagine Institute for Human Genetic Diseases, INSERM U1163, Université de Paris, Paris, France
- Department of Dermatology, APHP Hôpital Saint-Louis, Paris, France
| | - Jean-Luc Prétet
- Centre National de Référence Papillomavirus, Laboratoire de Biologie Cellulaire et Moléculaire, CHU de Besançon, Université Bourgogne Franche Comté, Besançon, France
| | | | - Massimo Tommasino
- IARC, Lyon, France
- IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | | | - Nicolas Fazilleau
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), CNRS U5051, INSERM U1291, University Toulouse III, Toulouse, France
| |
Collapse
|
4
|
Williams DW, Flores BR, Xu Y, Wang Y, Yu D, Peters BA, Adedimeji A, Wilson TE, Merenstein D, Tien PC, Cohen MH, Weber KM, Adimora AA, Ofotokun I, Fischl M, Turan J, Turan B, Laumet G, Landay AL, Dastgheyb RM, Gange SJ, Weiser SD, Rubin LH. T-cell activation state differentially contributes to neuropsychiatric complications in women with HIV. Brain Behav Immun Health 2022; 25:100498. [PMID: 36097532 PMCID: PMC9463560 DOI: 10.1016/j.bbih.2022.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 08/13/2022] [Indexed: 02/02/2023] Open
Abstract
Neuropsychiatric complications are common among women with HIV (WWH). The pathophysiological mechanisms underlying these complications are not fully known but likely driven in part by immune modulation. We examined associations between T-cell activation states which are required to mount an effective immune response (activation, co-stimulation/normal function, exhaustion, senescence) and neuropsychiatric complications in WWH. 369 WWH (78% HIV RNA undetectable/<20cp/mL) enrolled in the Women's Interagency HIV Study completed neuropsychological testing and measures of depression (Center for Epidemiological Studies Depression Scale-CES-D), self-reported stress levels (Perceived Stress Scale-10), and post-traumatic stress (PTSD Checklist-Civilian Scale). Multiparametric flow cytometry evaluated T-cell activation state. Partial least squares regressions were used to examine T-cell phenotypes and neuropsychiatric outcome associations after confounder adjustment. In the total sample and among virally suppressed (VS)-WWH, CD4+ T-cell exhaustion was associated with poorer learning and attention/working memory (P's < 0.05). In the total sample, CD4+ T-cell activation was associated with better attention/working memory and CD8+ T-cell co-stimulation and senescence was associated with poorer executive function (P's < 0.05). For mental health outcomes, in the total sample, CD4+ T-cell activation was associated with more perceived stress and CD4+ T-cell exhaustion was associated with less depressive symptoms (P's < 0.05). Among VS-WWH, CD4+ senescence was associated with less perceive stress and CD8+ T-cell co-stimulation and senescence was associated with higher depression (P's < 0.05). Together, results suggest the contribution of peripheral CD4+ and CD8+ T-cell activation status to neuropsychiatric complications in WWH.
Collapse
Affiliation(s)
- Dionna W. Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bianca R. Flores
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yanxun Xu
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
- Division of Biostatistics and Bioinformatics at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuezhe Wang
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Danyang Yu
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adebola Adedimeji
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tracey E. Wilson
- Department of Community Health Sciences, State University of New York Downstate Health Science University, School of Public Health, Brooklyn, NY, USA
| | - Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Phyllis C. Tien
- Department of Medicine, UCSF and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA, USA
| | | | | | - Adaora A. Adimora
- Division of Infectious Disease, University of North Carolina at Chapel Hill, NC, USA
| | - Igho Ofotokun
- Department of Medicine, Emory University and Grady Healthcare System, Atlanta, Georgia Mailman School of Public Health, Columbia University, NY, NY, USA
| | - Margaret Fischl
- Department of Medicine, University of Miami Health System, Miami, FL, USA
| | - Janet Turan
- Departments of Health Policy and Organization, School of Public Health, University of Alabama at Birmingham, USA
| | - Bülent Turan
- Department of Psychology, Koc University, Istanbul, Turkey
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Alan L. Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Raha M. Dastgheyb
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen J. Gange
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sheri D. Weiser
- Department of Medicine, UCSF and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA, USA
- Division of HIV, ID and Global Medicine, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Leah H. Rubin
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Rosás-Umbert M, Gunst JD, Pahus MH, Olesen R, Schleimann M, Denton PW, Ramos V, Ward A, Kinloch NN, Copertino DC, Escribà T, Llano A, Brumme ZL, Brad Jones R, Mothe B, Brander C, Fox J, Nussenzweig MC, Fidler S, Caskey M, Tolstrup M, Søgaard OS. Administration of broadly neutralizing anti-HIV-1 antibodies at ART initiation maintains long-term CD8 + T cell immunity. Nat Commun 2022; 13:6473. [PMID: 36309514 PMCID: PMC9617872 DOI: 10.1038/s41467-022-34171-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
In simian-human immunodeficiency virus (SHIV)-infected non-human primates, broadly neutralizing antibodies (bNAbs) against the virus appear to stimulate T cell immunity. To determine whether this phenomenon also occurs in humans we measured HIV-1-specific cellular immunity longitudinally in individuals with HIV-1 starting antiviral therapy (ART) with or without adjunctive bNAb 3BNC117 treatment. Using the activation-induced marker (AIM) assay and interferon-γ release, we observe that frequencies of Pol- and Gag-specific CD8+ T cells, as well as Gag-induced interferon-γ responses, are significantly higher among individuals that received adjunctive 3BNC117 compared to ART-alone at 3 and 12 months after starting ART. The observed changes in cellular immunity were directly correlated to pre-treatment 3BNC117-sensitivity. Notably, increased HIV-1-specific immunity is associated with partial or complete ART-free virologic control during treatment interruption for up to 4 years. Our findings suggest that bNAb treatment at the time of ART initiation maintains HIV-1-specific CD8+ T cell responses that are associated with ART-free virologic control.
Collapse
Affiliation(s)
| | - Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mariane Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Adam Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tuixent Escribà
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias I Pujol, Badalona, Spain
| | - Anuska Llano
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias I Pujol, Badalona, Spain
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Beatriz Mothe
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias I Pujol, Badalona, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Christian Brander
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias I Pujol, Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' National Health Service Trust, London, UK
- Department of Genitourinary Medicine and Infectious Disease, The National Institute for Health Research Biomedical Research Centre, King's College London, London, UK
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Sarah Fidler
- Department of Infectious Diseases, Imperial College London, London, UK
- The National Institute for Health Research, Imperial Biomedical Research Centre, London, UK
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
6
|
Rasmussen TA, Zerbato JM, Rhodes A, Tumpach C, Dantanarayana A, McMahon JH, Lau JS, Chang JJ, Gubser C, Brown W, Hoh R, Krone M, Pascoe R, Chiu CY, Bramhall M, Lee HJ, Haque A, Fromentin R, Chomont N, Milush J, Van der Sluis RM, Palmer S, Deeks SG, Cameron PU, Evans V, Lewin SR. Memory CD4 + T cells that co-express PD1 and CTLA4 have reduced response to activating stimuli facilitating HIV latency. Cell Rep Med 2022; 3:100766. [PMID: 36198308 PMCID: PMC9589005 DOI: 10.1016/j.xcrm.2022.100766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/03/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022]
Abstract
Programmed cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) suppress CD4+ T cell activation and may promote latent HIV infection. By performing leukapheresis (n = 21) and lymph node biopsies (n = 8) in people with HIV on antiretroviral therapy (ART) and sorting memory CD4+ T cells into subsets based on PD1/CTLA4 expression, we investigate the role of PD1 and CTLA 4 in HIV persistence. We show that double-positive (PD1+CTLA4+) cells in blood contain more HIV DNA compared with double-negative (PD1−CTLA4−) cells but still have a lower proportion of cells producing multiply spliced HIV RNA after stimulation as well as reduced upregulation of T cell activation and proliferation markers. Transcriptomics analyses identify differential expression of key genes regulating T cell activation and proliferation with MAF, KLRB1, and TIGIT being upregulated in double-positive compared with double-negative cells, whereas FOS is downregulated. We conclude that, in addition to being enriched for HIV DNA, double-positive cells are characterized by negative signaling and a reduced capacity to respond to stimulation, favoring HIV latency. CD4+ T cells co-expressing PD1 and CTLA4 (double positive [DP]) are enriched for HIV DNA DP cells contain virus that is more resistant to stimulation DP cells display differential expression of genes regulating T cell activation These features favor persistence of HIV latency in cells co-expressing PD1 and CTLA4
Collapse
Affiliation(s)
- Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jennifer M. Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia
| | - Jillian S.Y. Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - J. Judy Chang
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Celine Gubser
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Wendy Brown
- Monash University Department of Surgery, Alfred Health, Melbourne, VIC, Australia
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Michael Bramhall
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rèmi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renee M. Van der Sluis
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Aarhus Institute of Advanced Studies and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul U. Cameron
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Vanessa Evans
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,School of Medicine and Dentistry, Griffith University, Sunshine Coast, QLD, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia,Corresponding author
| |
Collapse
|
7
|
Salido J, Czernikier A, Trifone C, Polo ML, Figueroa MI, Urioste A, Cahn P, Sued O, Salomon H, Laufer N, Ghiglione Y, Turk G. Pre-cART Immune Parameters in People Living With HIV Might Help Predict CD8+ T-Cell Characteristics, Inflammation Levels, and Reservoir Composition After Effective cART. Pathog Immun 2022; 6:60-89. [PMID: 34988339 PMCID: PMC8714178 DOI: 10.20411/pai.v6i2.447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background Combined antiretroviral treatment (cART) for HIV infection is highly effective in controlling viral replication. However, it cannot achieve a sterilizing cure. Several strategies have been proposed to achieve a functional cure, some of them based on immune-mediated clearing of persistently infected cells. Here, we aimed at identifying factors related to CD8TC and CD4TC quality before cART initiation that associate with the persistence of CD8TC antiviral response after cART, inflammation levels, and the size of the viral reservoir. Methods Samples from 25 persons living with HIV were obtained before and after (15 months) cART initiation. Phenotype and functionality of bulk and HIV-specific T cells were assayed by flow cytometry ex vivo or after expansion in pre-cART or post-cART samples, respectively. Cell-Associated (CA) HIV DNA (total and integrated) and RNA (unspliced [US] and multiple spliced [MS]) were quantitated by real-time PCR on post-cART samples. Post-cART plasma levels of CXCL10 (IP-10), soluble CD14 (sCD14) and soluble CD163 (sCD163) were measured by ELISA. Results Pre-cART phenotype of CD8TCs and magnitude and phenotype of HIV-specific response correlated with the phenotype and functionality of CD8TCs post-cART. Moreover, the phenotype of the CD8TCs pre-cART correlated with markers of HIV persistence and inflammation post-cART. Finally, exhaustion and differentiation of CD4TCs pre-cART were associated with the composition of the HIV reservoir post-cART and the level of inflammation. Conclusions Overall, this work provides data to help understand and identify parameters that could be used as markers in the development of immune-based functional HIV cure strategies.
Collapse
Affiliation(s)
- Jimena Salido
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Alejandro Czernikier
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - César Trifone
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - María Laura Polo
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | | | - Alejandra Urioste
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomon
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Hospital General de Agudos "Dr. JA Fernández" Buenos Aires, Argentina
| | - Yanina Ghiglione
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Gabriela Turk
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
8
|
Okoye AA, Duell DD, Fukazawa Y, Varco-Merth B, Marenco A, Behrens H, Chaunzwa M, Selseth AN, Gilbride RM, Shao J, Edlefsen PT, Geleziunas R, Pinkevych M, Davenport MP, Busman-Sahay K, Nekorchuk M, Park H, Smedley J, Axthelm MK, Estes JD, Hansen SG, Keele BF, Lifson JD, Picker LJ. CD8+ T cells fail to limit SIV reactivation following ART withdrawal until after viral amplification. J Clin Invest 2021; 131:141677. [PMID: 33630764 PMCID: PMC8262469 DOI: 10.1172/jci141677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
To define the contribution of CD8+ T cell responses to control of SIV reactivation during and following antiretroviral therapy (ART), we determined the effect of long-term CD8+ T cell depletion using a rhesusized anti-CD8β monoclonal antibody on barcoded SIVmac239 dynamics on stable ART and after ART cessation in rhesus macaques (RMs). Among the RMs with full CD8+ T cell depletion in both blood and tissue, there were no significant differences in the frequency of viral blips in plasma, the number of SIV RNA+ cells and the average number of RNA copies/infected cell in tissue, and levels of cell-associated SIV RNA and DNA in blood and tissue relative to control-treated RMs during ART. Upon ART cessation, both CD8+ T cell-depleted and control RMs rebounded in fewer than 12 days, with no difference in the time to viral rebound or in either the number or growth rate of rebounding SIVmac239M barcode clonotypes. However, effectively CD8+ T cell-depleted RMs showed a stable, approximately 2-log increase in post-ART plasma viremia relative to controls. These results indicate that while potent antiviral CD8+ T cell responses can develop during ART-suppressed SIV infection, these responses effectively intercept post-ART SIV rebound only after systemic viral replication, too late to limit reactivation frequency or the early spread of reactivating SIV reservoirs.
Collapse
Affiliation(s)
- Afam A. Okoye
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Derick D. Duell
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Alejandra Marenco
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Hannah Behrens
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Morgan Chaunzwa
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jason Shao
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Mykola Pinkevych
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | - Miles P. Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jeffery D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
9
|
Immunologic Control of HIV-1: What Have We Learned and Can We Induce It? Curr HIV/AIDS Rep 2021; 18:211-220. [PMID: 33709324 DOI: 10.1007/s11904-021-00545-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW A large amount of data now exists on the virus-specific immune response associated with spontaneous or induced immunologic control of lentiviruses. This review focuses on how the current understanding of HIV-specific immunity might be leveraged into induction of immunologic control and what further research is needed to accomplish this goal. RECENT FINDINGS During chronic infection, the function most robustly associated with immunologic control of HIV-1 is CD8+ T cell cytotoxic capacity. This function has proven difficult to restore in HIV-specific CD8+ T cells of chronically infected progressors in vitro and in vivo. However, progress has been made in inducing an effective CD8+ T cell response prior to lentiviral infection in the macaque model and during acute lentiviral infection in non-human primates. Further study will likely accelerate the ability to induce an effective CD8+ T cell response as part of prophylactic or therapeutic strategies.
Collapse
|
10
|
Stevenson EM, Ward AR, Truong R, Thomas AS, Huang SH, Dilling TR, Terry S, Bui JK, Mota TM, Danesh A, Lee GQ, Gramatica A, Khadka P, Alberto WDC, Gandhi RT, McMahon DK, Lalama CM, Bosch RJ, Macatangay B, Cyktor JC, Eron JJ, Mellors JW, Jones RB. HIV-specific T cell responses reflect substantive in vivo interactions with antigen despite long-term therapy. JCI Insight 2021; 6:142640. [PMID: 33400687 PMCID: PMC7934865 DOI: 10.1172/jci.insight.142640] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapies (ARTs) abrogate HIV replication; however, infection persists as long-lived reservoirs of infected cells with integrated proviruses, which reseed replication if ART is interrupted. A central tenet of our current understanding of this persistence is that infected cells are shielded from immune recognition and elimination through a lack of antigen expression from proviruses. Efforts to cure HIV infection have therefore focused on reactivating latent proviruses to enable immune-mediated clearance, but these have yet to succeed in reducing viral reservoirs. Here, we revisited the question of whether HIV reservoirs are predominately immunologically silent from a new angle: by querying the dynamics of HIV-specific T cell responses over long-term ART for evidence of ongoing recognition of HIV-infected cells. In longitudinal assessments, we show that the rates of change in persisting HIV Nef-specific responses, but not responses to other HIV gene products, were associated with residual frequencies of infected cells. These Nef-specific responses were highly stable over time and disproportionately exhibited a cytotoxic, effector functional profile, indicative of recent in vivo recognition of HIV antigens. These results indicate substantial visibility of the HIV-infected cells to T cells on stable ART, presenting both opportunities and challenges for the development of therapeutic approaches to curing infection.
Collapse
Affiliation(s)
- Eva M. Stevenson
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Adam R. Ward
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, and
- PhD Program in Epidemiology, Department of Epidemiology, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Ronald Truong
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, and
| | - Allison S. Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Szu-Han Huang
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, and
| | - Thomas R. Dilling
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sandra Terry
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - John K. Bui
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Talia M. Mota
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ali Danesh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Guinevere Q. Lee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Andrea Gramatica
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Pragya Khadka
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Winiffer D. Conce Alberto
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Rajesh T. Gandhi
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christina M. Lalama
- Center for Biostatistics in AIDS Research, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bernard Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joshua C. Cyktor
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine & Health Sciences, and
| | | |
Collapse
|
11
|
Uruena A, Cassetti I, Kashyap N, Deleage C, Estes JD, Trindade C, Hammoud DA, Burbelo PD, Natarajan V, Dewar R, Imamichi H, Ward AJ, Poole A, Ober A, Rehm C, Jones S, Liang CJ, Chun TW, Nath A, Lane HC, Smith BR, Connors M, Migueles SA. Prolonged Posttreatment Virologic Control and Complete Seroreversion After Advanced Human Immunodeficiency Virus-1 Infection. Open Forum Infect Dis 2020; 8:ofaa613. [PMID: 33511235 DOI: 10.1093/ofid/ofaa613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Background Possible human immunodeficiency virus (HIV)-1 clearance has rarely been reported. In this study, we describe a unique case of an HIV-positive, combination antiretroviral therapy (cART)-experienced woman with prior acquired immunodeficiency syndrome (AIDS) who has not experienced viral rebound for over 12 years since discontinuing cART. Methods Leukapheresis, colonoscopy, and lymph node excision were performed for detailed examination of virologic (including HIV reservoir) and immunologic features. Comparisons were made with chronically infected patients and healthy controls. Results No HIV-specific antibodies were detected in serum. Plasma HIV ribonucleic acid (RNA) levels were <0.2 copies/mL, and, except for low-frequency HIV deoxyribonucleic acid (DNA)+ cells in lymph node tissue (1 copy/3 × 106 cells), HIV antigen could not be detected by quantitative virus outgrowth (<0.0025 infectious units/106 CD4+ T cells) or by most measurements of HIV RNA or DNA in blood, lymph node, or gut-associated mononuclear cells. Human immunodeficiency virus-specific T-cell responses were detectable but low. Brain imaging revealed a prior biopsy site and persistent white matter disease since 1996. Human immunodeficiency virus DNA+ cells in the 1996 brain biopsy specimen confirmed her identity and initial HIV diagnosis. Conclusions This represents the first report of complete seroreversion, prolonged posttreatment virus suppression, a profoundly small HIV reservoir, and persistent HIV-specific T cells in an adult with prior AIDS.
Collapse
Affiliation(s)
- Analia Uruena
- Helios Salud, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Isabel Cassetti
- Helios Salud, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Neena Kashyap
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Claire Deleage
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Christopher Trindade
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Peter D Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Ven Natarajan
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Robin Dewar
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Addison J Ward
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - April Poole
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Ober
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine Rehm
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Jones
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - H Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bryan R Smith
- Section of Infections of the Nervous System, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Behrens NE, Wertheimer A, Love MB, Klotz SA, Ahmad N. Evaluation of HIV-specific T-cell responses in HIV-infected older patients with controlled viremia on long-term antiretroviral therapy. PLoS One 2020; 15:e0236320. [PMID: 32941433 PMCID: PMC7498024 DOI: 10.1371/journal.pone.0236320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-infected older individuals may have a diminished immune response because of exhaustion/immune aging of T-cells. Therefore, we have investigated HIV-specific CD4 and CD8 T-cell responses in 100 HIV-infected patients (HIV+) who have aged on long-term antiretroviral therapy (ART) and achieved controlled viremia (mostly undetectable viral load; 92 patients with <20 to <40 HIV RNA copies/mL and 8 <60 to <100) and improved CD4 T-cell counts. We show that the median frequencies of HIV-specific CD4+ and CD8+ IFN-γ T-cells were higher in HIV+ than uninfected individuals (HIV-), including increasing levels of IFN-γproduced by CD4+ T-cells and decreasing levels by CD8+ T-cells with increasing CD4 T-cell counts in HIV+. No correlation was found between T-cell responses and varying levels of undetectable viremia. HIV-specific TNF-α made by CD8+ T-cells was higher in HIV+ than HIV-, including decreasing levels with increasing CD4 T-cell counts in HIV+. Furthermore, the CD8+ T-cell mediators, CD107a and Granzyme-B, were higher in HIV+ than HIV-, and decreased with increasing CD4 T-cell counts in HIV+. Remarkably, HIV-specific CD8 T-cells produced decreasing levels of IFN-γwith increasing age of HIV+, including decreased levels of CD107a and Granzyme-B in older HIV+. However, HIV-specific CD8+ T-cells produced increasing levels of TNF-α with increasing age of the HIV+, suggesting continued inflammation. In conclusion, HIV+ with controlled viremia on long-term ART and with higher CD4 T-cell counts showed reduced HIV-specific CD8 T-cell responses as compared to those with lower CD4 T-cell counts, and older HIV+ exhibited decreasing levels of CD8 T-cell responses with increasing age.
Collapse
Affiliation(s)
- Nicole E. Behrens
- Department of Immunobiology, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
| | - Anne Wertheimer
- Department of Immunobiology, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
- Department of Medicine, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
- College of Medicine, and Bio5 Institute, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
| | - Maria B. Love
- Department of Immunobiology, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
| | - Stephen A. Klotz
- Department of Medicine, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
| | - Nafees Ahmad
- Department of Immunobiology, The University of Arizona Health Sciences Center, Tucson, AZ, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kumar S, Batra H, Singh S, Chawla H, Singh R, Katpara S, Hussain AW, Das BK, Lodha R, Kabra SK, Luthra K. Effect of combination antiretroviral therapy on human immunodeficiency virus 1 specific antibody responses in subtype-C infected children. J Gen Virol 2020; 101:1289-1299. [PMID: 32915123 DOI: 10.1099/jgv.0.001480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protective antibody responses to human immunodeficiency virus (HIV)-1 infection evolve only in a fraction of infected individuals by developing broadly neutralizing antibodies (bnAbs) and/or effector functions such as antibody-dependent cellular cytotoxicity (ADCC). HIV-1 chronically infected adults and children on combination antiretroviral therapy (cART) showed a reduction in ADCC activity and improvement in HIV-1 specific neutralizing antibody (nAb) responses. Early initiation of cART in infected adults is found to be beneficial in reducing the viral load and delaying disease progression. Herein, we longitudinally evaluated the effect of cART on HIV-1 specific plasma ADCC and nAb responses in a cohort of 20 perinatally HIV-1 subtype-C infected infants and children ≤2 years of age, pre-cART and up to 1 year post-cART initiation. Significant reductions in HIV-1 specific plasma ADCC responses to subtype-C and subtype-B viruses and improvement in HIV-1 neutralization were observed in HIV-1 infected children 1 year post-cART initiation. A positive correlation between reduction in viral load and the loss of ADCC response was observed. This study provides information aiding the understanding of the effects of early initiation of cART on antibody effector functions and viral neutralization in HIV-1 infected children, which needs to be further evaluated in large cohorts of HIV-1 infected children on cART to plan future intervention strategies.
Collapse
Affiliation(s)
- Sanjeev Kumar
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshu Batra
- Department of Biology, Catholic University of America, Washington, DC, USA.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshi Chawla
- Present address: Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, UK.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sanket Katpara
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul Wahid Hussain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Lima NS, Takata H, Huang SH, Haregot A, Mitchell J, Blackmore S, Garland A, Sy A, Cartwright P, Routy JP, Michael NL, Appay V, Jones RB, Trautmann L. CTL Clonotypes with Higher TCR Affinity Have Better Ability to Reduce the HIV Latent Reservoir. THE JOURNAL OF IMMUNOLOGY 2020; 205:699-707. [PMID: 32591402 DOI: 10.4049/jimmunol.1900811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/23/2020] [Indexed: 01/09/2023]
Abstract
The success of the shock and kill strategy for the HIV cure depends both on the reactivation of the latent reservoir and on the ability of the immune system to eliminate infected cells. As latency reversal alone has not shown any impact in the size of the latent reservoir, ensuring that effector CTLs are able to recognize and kill HIV-infected cells could contribute to reservoir reduction. In this study, we investigated which functional aspects of human CTLs are associated with a better capacity to kill HIV-infected CD4+ T cells. We isolated Gag- and Nef-specific CTL clones with different TCR sequences from the PBMC of donors in acute and chronic infection. High-affinity clonotypes that showed IFN-γ production preserved even when the CD8 coreceptor was blocked, and clones with high Ag sensitivity exhibited higher efficiency at reducing the latent reservoir. Although intrinsic cytotoxic capacity did not differ according to TCR affinity, clonotypes with high TCR affinity showed a better ability to kill HIV-infected CD4+ T cells obtained from in vivo-infected PBMC and subjected to viral reactivation. Strategies aiming to specifically boost and maintain long-living memory CTLs with high TCR affinity in vivo prior to latency-reversing treatment might improve the efficacy of the shock and kill approach to reduce the latent reservoir.
Collapse
Affiliation(s)
- Noemia S Lima
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Hiroshi Takata
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Szu-Han Huang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Alexander Haregot
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Julie Mitchell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Stephen Blackmore
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Ayanna Garland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Aaron Sy
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | | | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, Paris 75005, France; and.,International Research Center of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910; .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
15
|
Garcia V, Bonhoeffer S, Fu F. Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination. J Theor Biol 2020; 492:110185. [PMID: 32035826 PMCID: PMC7079339 DOI: 10.1016/j.jtbi.2020.110185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
Abstract
The presence of an immunological barrier in cancer- immune system interaction (CISI) is consistent with the bistability patterns in that system. In CISI models, bistability patterns are consistent with immunosuppressive effects dominating immunoproliferative effects. Bistability could be harnessed to devise effective combination immunotherapy approaches.
Cancer immunotherapies rely on how interactions between cancer and immune system cells are constituted. The more essential to the emergence of the dynamical behavior of cancer growth these interactions are, the more effectively they may be used as mechanisms for interventions. Mathematical modeling can help unearth such connections, and help explain how they shape the dynamics of cancer growth. Here, we explored whether there exist simple, consistent properties of cancer-immune system interaction (CISI) models that might be harnessed to devise effective immunotherapy approaches. We did this for a family of three related models of increasing complexity. To this end, we developed a base model of CISI, which captures some essential features of the more complex models built on it. We find that the base model and its derivates can plausibly reproduce biological behavior that is consistent with the notion of an immunological barrier. This behavior is also in accord with situations in which the suppressive effects exerted by cancer cells on immune cells dominate their proliferative effects. Under these circumstances, the model family may display a pattern of bistability, where two distinct, stable states (a cancer-free, and a full-grown cancer state) are possible. Increasing the effectiveness of immune-caused cancer cell killing may remove the basis for bistability, and abruptly tip the dynamics of the system into a cancer-free state. Additionally, in combination with the administration of immune effector cells, modifications in cancer cell killing may be harnessed for immunotherapy without the need for resolving the bistability. We use these ideas to test immunotherapeutic interventions in silico in a stochastic version of the base model. This bistability-reliant approach to cancer interventions might offer advantages over those that comprise gradual declines in cancer cell numbers.
Collapse
Affiliation(s)
- Victor Garcia
- Institute of Applied Simulation, Zurich University of Applied Sciences, Einsiedlerstrasse 31a, 8820 Wädenswil, Switzerland; ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland; Institute for Social and Preventive Medicine, University of Bern, Finkenhubelweg 11, 3012 Bern, Switzerland; Department of Biology, Stanford University, 371 Serra Mall, Stanford CA 94305, USA.
| | | | - Feng Fu
- Department of Mathematics, Dartmouth College, 27 N. Main Street, 6188 Kemeny Hall, Hanover, NH 03755-3551, USA; ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
16
|
Brief Report: HIV Antibodies Decline During Antiretroviral Therapy but Remain Correlated With HIV DNA and HIV-Specific T-Cell Responses. J Acquir Immune Defic Syndr 2020; 81:594-599. [PMID: 31045647 DOI: 10.1097/qai.0000000000002080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In people with HIV on antiretroviral therapy (ART), the relationship between HIV-specific immune responses and measures of HIV persistence is uncertain. METHODS We evaluated 101 individuals on suppressive ART in the AIDS Clinical Trials Group A5321 cohort. Cell-associated (CA) HIV DNA and RNA levels and HIV antibody concentrations and avidity to Env/p24 were measured longitudinally at years 1, 4, and 6-15 after ART initiation. Plasma HIV RNA by single copy assay and T-cell responses (IFN-γ ELISPOT) against multiple HIV antigens were measured at the last time point. RESULTS HIV antibody levels declined significantly with increasing time on ART (19%/year between year 1 and 4). HIV antibody levels correlated with T-cell responses to HIV Pol (r = 0.28, P = 0.014) and to Nef/Tat/Rev (r = 0.34; P = 0.002). HIV antibody and T-cell responses were positively associated with HIV DNA levels; for example, at the last time point (median 7 years on ART), r = 0.35 for antibody levels and HIV DNA (P < 0.001); r = 0.23 for Nef/Tat/Rev-specific T-cell responses and HIV DNA (P = 0.03). Neither antibody nor T-cell responses correlated with cell-associated HIV RNA or plasma RNA by single copy assay. CONCLUSIONS In individuals on long-term ART, HIV-specific antibody and T-cell responses correlate with each other and with HIV DNA levels. The positive correlation between HIV immune responses and HIV DNA implies that the immune system is sensing, but not clearing, infected cells, perhaps because of immune dysfunction. Measuring immune responses to HIV antigens may provide insight into the impact of reservoir-reducing strategies.
Collapse
|
17
|
Cocker ATH, Shah NM, Raj I, Dermont S, Khan W, Mandalia S, Imami N, Johnson MR. Pregnancy Gestation Impacts on HIV-1-Specific Granzyme B Response and Central Memory CD4 T Cells. Front Immunol 2020; 11:153. [PMID: 32117291 PMCID: PMC7027986 DOI: 10.3389/fimmu.2020.00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Pregnancy induces alterations in peripheral T-cell populations with both changes in subset frequencies and anti-viral responses found to alter with gestation. In HIV-1 positive women anti-HIV-1 responses are associated with transmission risk, however detailed investigation into both HIV-1-specific memory responses associated with HIV-1 control and T-cell subset changes during pregnancy have not been undertaken. In this study we aimed to define pregnancy and gestation related changes to HIV-1-specific responses and T-cell phenotype in ART treated HIV-1 positive pregnant women. Eleven non-pregnant and 24 pregnant HIV-1 positive women were recruited, peripheral blood samples taken, fresh cells isolated, and compared using ELISpot assays and flow cytometry analysis. Clinical data were collected as part of standard care, and non-parametric statistics used. Alterations in induced IFNγ, IL-2, IL-10, and granzyme B secretion by peripheral blood mononuclear cells in response to HIV-1 Gag and Nef peptide pools and changes in T-cell subsets between pregnant and non-pregnant women were assessed, with data correlated with participant clinical parameters and longitudinal analysis performed. Cross-sectional comparison identified decreased IL-10 Nef response in HIV-1 positive pregnant women compared to non-pregnant, while correlations exhibited reversed Gag and Nef cytokine and protease response associations between groups. Longitudinal analysis of pregnant participants demonstrated transient increases in Gag granzyme B response and in the central memory CD4 T-cell subset frequency during their second trimester, with a decrease in CD4 effector memory T cells from their second to third trimester. Gag and Nef HIV-1-specific responses diverge with pregnancy time-point, coinciding with relevant T-cell phenotype, and gestation associated immunological adaptations. Decreased IL-10 Nef and both increased granzyme B Gag response and central memory CD4 T cells implies that amplified antigen production is occurring, which suggests a period of compromised HIV-1 control in pregnancy.
Collapse
Affiliation(s)
| | | | - Inez Raj
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Sarah Dermont
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Waheed Khan
- Chelsea and Westminster Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
18
|
Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C. Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 2020; 10:3060. [PMID: 32038533 PMCID: PMC6993040 DOI: 10.3389/fmicb.2019.03060] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Malopolska Centre of Biotechnology, Laboratory of Virology, Jagiellonian University, Krakow, Poland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stephane De Wit
- Service des Maladies Infectieuses, CHU Saint-Pierre, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
19
|
Salwe S, Padwal V, Nagar V, Patil P, Patel V. T cell functionality in HIV-1, HIV-2 and dually infected individuals: correlates of disease progression and immune restoration. Clin Exp Immunol 2019; 198:233-250. [PMID: 31216050 PMCID: PMC6797902 DOI: 10.1111/cei.13342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 01/07/2023] Open
Abstract
The role of suppressive anti-retroviral therapy (ART) in eliciting restoration of dysregulated immune function remains unclear in HIV-1 infection. Also, due to tailoring of therapeutic regimens towards HIV-1, this possible impairment of therapy may be even more pronounced in HIV-2 and dual (HIV-D) infection. Thus, we evaluated the impact of ART on immune restoration by assessing T cell functions, including HIV specific responses in HIV-1-, HIV-2- and HIV-D-infected individuals. Both ART-treated and naive infected subjects showed persistently altered frequency of CD4+ T cell subsets [regulatory T cells (Treg ), naive/central memory, effector memory], increased immune activation, cytoxicity and decreased frequency of natural killer T (NKT)- like cells and T helper type 17 (Th17)/Treg ratio with elevated microbial translocation. Further, HIV-specific responses were dominated by gag-specific CD4+ T cells in virologically suppressed HIV-D individuals, suggesting retention of T cell memory for both viruses. Increased antigen-specific responses, including dual-functional interleukin (IL)-2/interferon (IFN)-γ CD4+ T cells, were detected in therapy receiving HIV-2-infected individuals indicative of a greater and more functionally diverse T cell memory repertoire. We delineated immune signatures specific to therapy-naive single HIV infection, as well as a unique signature associated with HIV-2 disease progression and immune restoration. Circulating Treg frequency, T cell activation and microbial translocation levels correlated with disease progression and immune restoration among all types of HIV infection. Also, memory responses negatively correlated, irrespective of type of infection, in ART receiving infected individuals, with CD4 rebound and decreased pan T cell activation. Our data highlight the need for adjunct immunomodulatory therapeutic strategies to achieve optimal immune restoration in HIV infection.
Collapse
Affiliation(s)
- S. Salwe
- Department of Biochemistry and VirologyNational Institute for Research in Reproductive Health, Indian Council of Medical ResearchParelMumbaiIndia
| | - V. Padwal
- Department of Biochemistry and VirologyNational Institute for Research in Reproductive Health, Indian Council of Medical ResearchParelMumbaiIndia
| | - V. Nagar
- Department of MedicineGrant Medical College and Sir J. J. Group of HospitalsMumbaiIndia
| | - P. Patil
- Department of MedicineGrant Medical College and Sir J. J. Group of HospitalsMumbaiIndia
| | - V. Patel
- Department of Biochemistry and VirologyNational Institute for Research in Reproductive Health, Indian Council of Medical ResearchParelMumbaiIndia
| |
Collapse
|
20
|
Patel S, Hanajiri R, Grant M, Saunders D, Van Pelt S, Keller M, Hanley PJ, Simon G, Nixon DF, Hardy D, Jones RB, Bollard CM. HIV-Specific T Cells Can Be Generated against Non-escaped T Cell Epitopes with a GMP-Compliant Manufacturing Platform. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 16:11-20. [PMID: 31720305 PMCID: PMC6838524 DOI: 10.1016/j.omtm.2019.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/03/2019] [Indexed: 11/01/2022]
Abstract
Although anti-retroviral therapy (ART) is successful in suppressing HIV-1 replication, HIV latently infected reservoirs are not eliminated, representing a major hurdle in efforts to eradicate the virus. Current strategies to eradicate HIV involve two steps: (1) the reactivation of latently infected cells with latency reversing agents (LRAs) to expose persisting HIV, and (2) the elimination of these cells with immune effectors while continuing ART to prevent reinfection. HIV-specific T cells (HSTs) can kill reactivated HIV-infected cells and are currently being evaluated in early-stage immunotherapy trials. HIV can mutate sequences in T cell epitopes and evade T cell-mediated killing of HIV-infected cells. However, by directing T cells to target multiple conserved, non-escaped HIV epitopes, the opportunity for viral escape can be reduced. Using a good manufacturing practice (GMP)-compliant platform, we manufactured HSTs against non-escape epitope targets (HST-NEETs) from HIV+ and HIV-seronegative donors. HST-NEETs expanded to clinically relevant numbers, lysed autologous antigen-pulsed targets, and showed a polyfunctional pro-inflammatory cytokine response. Notably, HST-NEETs recognized multiple conserved, non-escaped HIV epitopes and their common variants. We propose that HST-NEETs could be used to eliminate reactivated virus from latently infected cells in HIV+ individuals following LRA treatment. Additionally, HST-NEETs derived from HIV-negative individuals could be used post-transplant for HIV+ individuals with hematologic malignancies to augment anti-viral immunity and destroy residual infected cells.
Collapse
Affiliation(s)
- Shabnum Patel
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.,GW Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - Ryo Hanajiri
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Melanie Grant
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Devin Saunders
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Stacey Van Pelt
- GW Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - Michael Keller
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Gary Simon
- Department of Medicine, The George Washington University, Washington, DC 20037, USA
| | - Douglas F Nixon
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.,GW Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
21
|
Hsu WT, Pan SC, Hsieh SM. 10-year outcome of temporary structured treatment interruption (STI) among HIV-1-infected patients: An observational study in a single medical center. J Formos Med Assoc 2019; 119:455-461. [PMID: 31409497 DOI: 10.1016/j.jfma.2019.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Lifelong antiretroviral therapy (ART) is recommended for HIV-1 infected patients but may lead to intolerance or poor adherence. Structured treatment interruption (STI) is a strategy for drug holiday or to boost HIV-specific immunity. But the long-term outcome of STI was never reported in literature. METHODS This is a single-center observational study. We followed the HIV-infected patients who already had a stable viral suppression and voluntarily started temporary STI with a fixed 12-week interval after counseling, evaluation and education. HIV-1-specific T cell response was also measured in some patients. RESULTS Totally 34 HIV-infected patients received temporary STI since July, 2006. 18 patients completed 10-year follow-up. All patients received protease inhibitors (PI)-based ART before and during temporary STI. The patients received temporary STI with a period of 36-85 weeks. All of them reached viral suppression after 12 weeks of restarting continuous ART. No viral rebound or opportunistic disease was recorded during follow-up. No adverse event or comorbidity was attributed to STI. The plasma viral load (PVL) at the end of STI was significantly lower than baseline PVL in patients with a longer duration of STI (≤36 weeks vs. >36 weeks, P = 0.005). The T cell response study revealed that cyclically increased HIV-1-specific T cell response after starting STI in patients with baseline CD4+ count >350/μL. CONCLUSION Temporary STI may not lead to worse long-term outcome among highly selected patients. The policy may partially control viral replication through reminding the HIV-1 specific T cell immunity.
Collapse
Affiliation(s)
- Wei-Ting Hsu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taiwan
| | - Sung-Ching Pan
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taiwan
| | - Szu-Min Hsieh
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taiwan.
| |
Collapse
|
22
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
23
|
Huang SH, McCann CD, Mota TM, Wang C, Lipkin SM, Jones RB. Have Cells Harboring the HIV Reservoir Been Immunoedited? Front Immunol 2019; 10:1842. [PMID: 31447850 PMCID: PMC6691121 DOI: 10.3389/fimmu.2019.01842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Immunoediting is an important concept in oncology, delineating the mechanisms through which tumors are selected for resistance to immune-mediated elimination. The recent emergence of immunotherapies, such as checkpoint inhibitors, as pillars of cancer therapy has intensified interest in immunoediting as a constraint limiting the efficacy of these approaches. Immunoediting manifests at a number of levels for different cancers, for example through the establishment of immunosuppressive microenvironments within solid tumors. Of particular interest to the current review, selection also occurs at the cellular level; and recent studies have revealed novel mechanisms by which tumor cells acquire intrinsic resistance to immune recognition and elimination. While the selection of escape mutations in viral epitopes by HIV-specific T cells, which is a hallmark of chronic HIV infection, can be considered a form of immunoediting, few studies have considered the possibility that HIV-infected cells themselves may parallel tumors in having differential intrinsic susceptibilities to immune-mediated elimination. Such selection, on the level of an infected cell, may not play a significant role in untreated HIV, where infection is propagated by high levels of cell-free virus produced by cells that quickly succumb to viral cytopathicity. However, it may play an unappreciated role in individuals treated with effective antiretroviral therapy where viral replication is abrogated. In this context, an "HIV reservoir" persists, comprising long-lived infected cells which undergo extensive and dynamic clonal expansion. The ability of these cells to persist in infected individuals has generally been attributed to viral latency, thought to render them invisible to immune recognition, and/or to their compartmentalization in anatomical sites that are poorly accessible to immune effectors. Recent data from ex vivo studies have led us to propose that reservoir-harboring cells may additionally have been selected for intrinsic resistance to CD8+ T cells, limiting their elimination even in the context of antigen expression. Here, we draw on knowledge from tumor immunoediting to discuss potential mechanisms by which clones of HIV reservoir-harboring cells may resist elimination by CD8+ T cells. The establishment of such parallels may provide a premise for testing therapeutics designed to sensitize tumor cells to immune-mediated elimination as novel approaches aimed at curing HIV infection.
Collapse
Affiliation(s)
- Szu-Han Huang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chase D. McCann
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - Talia M. Mota
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chao Wang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Steven M. Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| |
Collapse
|
24
|
Swathirajan CR, Vignesh R, Waldrop G, Shanmugasundaram U, Nandagopal P, Solomon SS, Pradeep A, Saravanan S, Murugavel KG. HIV-specific T-cell Responses and Generalized Activation in HIV-1 Infected Long-term Non-progressors and Progressors from South India. Curr HIV Res 2019; 16:302-314. [PMID: 30543175 PMCID: PMC6416489 DOI: 10.2174/1570162x17666181212122607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Background: Anti-viral cytokine expressions by cytotoxic T-cells and lower activation rates have been reported to correlate with suppressed HIV replication in long-term non-progressors (LTNP). Immune mechanisms underlying disease non-progression in LTNP might vary with HIV-1 subtype and geographical locations. Objective: This study evaluates cytokine expression and T-cells activation in relation to disease non-progression in LTNP. Methods: HIV-1 Subtype C infected LTNP (n=20) and progressors (n=15) were enrolled and flowcytometry assays were performed to study HIV-specific CD8 T-cells expressing IL-2, IFN-γ, TNF-α and MIP-1β against gag and env peptides. CD4+ T-cell activation was evaluated by surface expression of HLADR and CD38. Results: Proportions of cytokines studied did not differ significantly between LTNP and progressors, while contrasting correlations with disease progression markers were observed in LTNP. CD4+ T-cell activation rates were significantly lower in LTNP compared to progressors which indicate the potential role of T-cell activation rates in disease non-progression in LTNP. Conclusion: LTNP and progressors showed similar CD8+ T-cell responses, but final conclusions can be drawn only by comparing multiple immune factors in larger LTNP cohort with HIV-1 infected individuals at various levels of disease progression. A possible role of HIV-1 subtype variation and ethnic differences in addition to host-genetic and viral factors cannot be ruled out.
Collapse
Affiliation(s)
| | - Ramachandran Vignesh
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India.,UniKL-Royal College of Medicine Perak (UniKL-RCMP), Universiti Kuala Lumpur, 3, Jalan Greentown, 30450 Ipoh, Perak, Malaysia
| | - Greer Waldrop
- University of Maryland School of Medicine, College Park, MD 20742, United States
| | | | - Pannerselvam Nandagopal
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India
| | - Sunil Suhas Solomon
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India.,The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, United States
| | - Amrose Pradeep
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India
| | - Shanmugam Saravanan
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India
| | | |
Collapse
|
25
|
Abstract
DESIGN This was an exploratory, single-arm clinical trial that tested the immune enhancement effects of 24-weeks of Toll-like receptor 9 (TLR9) agonist (MGN1703; Lefitolimod; 60 mg × 2 weekly) therapy. METHODS We enrolled HIV-1-infected individuals on suppressive combination antiretroviral therapy. Safety was assessed throughout the study. The primary outcome was reduction in total CD4 T-cell viral DNA levels. Secondary outcomes included safety, detailed immunological and virological analyses, and time to viral rebound (viral load > 5000 copies/ml) after randomization into an analytical treatment interruption (ATI). RESULTS A total of 12 individuals completed the treatment phase and nine completed the ATI. Adverse events were limited and consistent with previous reports for MGN1703. Although the dosing regimen led to potent T-cell activation and increased HIV-1-specific T-cell responses, there were no cohort-wide changes in persistent virus (total CD4 T cells viral DNA; P = 0.34). No difference in time to rebound was observed between the ATI arms (log rank P = 0.25). One of nine ATI participants, despite harboring a large replication-competent reservoir, controlled viremia for 150 days via both HIV-1-specific cellular and antibody-mediated immune responses. CONCLUSION A period of 24 weeks of MGN1703 treatment was safe and improved innate as well as HIV-1-specific adaptive immunity in HIV-1+ individuals. These findings support the incorporation of TLR9 agonism into combination HIV-1 cure strategies. TRIAL NAME AND REGISTRATION TLR9 Enhancement of antiviral immunity in chronic HIV-1 infection: a phase 1B/2A trial; ClinicalTrials.gov NCT02443935.
Collapse
|
26
|
Quantifying Anti-HIV Envelope-Specific Antibodies in Plasma from HIV Infected Individuals. Viruses 2019; 11:v11060487. [PMID: 31141927 PMCID: PMC6631318 DOI: 10.3390/v11060487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022] Open
Abstract
Quantifying HIV Envelope (Env)-specific antibodies in HIV+ plasma is useful for interpreting antibody dependent cellular cytotoxicity assay results. HIV Env, the only viral protein expressed on the surface of infected cells, has a native trimeric closed conformation on cells infected with wild-type HIV. However, CD4+ uninfected bystander cells in HIV+ cell cultures bind gp120 shed from HIV+ cells exposing CD4-induced epitopes normally hidden in native Env. We used flow-cytometry based assays to quantify antibodies in HIV+ plasma specific for native trimeric Env or gp120/CD4 conjugates using CEM.NKr.CCR5 (CEM) cells infected with HIV (iCEM) or coated with recombinant gp120 (cCEM), as a surrogate for gp120+ HIV- bystander cells. Results from both assays were compared to those of a plate-based ELISA to monomeric gp120. The levels of Env-specific antibodies to cCEM and iCEM, measured by flow cytometry, and to gp120 by ELISA were positively correlated. More antibodies in HIV+ plasma recognized the gp120 conformation exposed on cCEM than on iCEM. Comparisons of plasma from untreated progressors, treated progressors, and elite controllers revealed that antibodies to Env epitopes were the lowest in treated progressors. Plasma from elite controllers and untreated progressors had similarly high levels of Env-specific antibodies, despite elite controllers having undetectable HIV viral loads, while untreated progressors maintained high viral loads.
Collapse
|
27
|
Warren JA, Clutton G, Goonetilleke N. Harnessing CD8 + T Cells Under HIV Antiretroviral Therapy. Front Immunol 2019; 10:291. [PMID: 30863403 PMCID: PMC6400228 DOI: 10.3389/fimmu.2019.00291] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic condition. In recent years there has been considerable interest in strategies to enable HIV-infected individuals to cease ART without viral rebound, either by purging all cells infected harboring replication-competent virus (HIV eradication), or by boosting immune responses to allow durable suppression of virus without rebound (HIV remission). Both of these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+ T cells are dysfunctional. Here, we review our current understanding of both global and HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed viral load under ART, and its implications for HIV cure, eradication or remission. Overall, the literature indicates significant normalization of global T cell parameters, including CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals than of viremic HIV-infected individuals. However, markers of senescence remain elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected individuals on ART. This phenomenon could have implications for attempts to prime de novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral suppressive capacity, and tissue localization. Addressing these issues will be critical to the success of HIV cure and remission attempts.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
28
|
Pinzone MR, VanBelzen DJ, Weissman S, Bertuccio MP, Cannon L, Venanzi-Rullo E, Migueles S, Jones RB, Mota T, Joseph SB, Groen K, Pasternak AO, Hwang WT, Sherman B, Vourekas A, Nunnari G, O'Doherty U. Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion. Nat Commun 2019; 10:728. [PMID: 30760706 PMCID: PMC6374386 DOI: 10.1038/s41467-019-08431-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/31/2018] [Indexed: 01/17/2023] Open
Abstract
After initiating antiretroviral therapy (ART), a rapid decline in HIV viral load is followed by a long period of undetectable viremia. Viral outgrowth assay suggests the reservoir continues to decline slowly. Here, we use full-length sequencing to longitudinally study the proviral landscape of four subjects on ART to investigate the selective pressures influencing the dynamics of the treatment-resistant HIV reservoir. We find intact and defective proviruses that contain genetic elements favoring efficient protein expression decrease over time. Moreover, proviruses that lack these genetic elements, yet contain strong donor splice sequences, increase relatively to other defective proviruses, especially among clones. Our work suggests that HIV expression occurs to a significant extent during ART and results in HIV clearance, but this is obscured by the expansion of proviral clones. Paradoxically, clonal expansion may also be enhanced by HIV expression that leads to splicing between HIV donor splice sites and downstream human exons.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - D Jake VanBelzen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, 60201, IL, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Maria Paola Bertuccio
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - LaMont Cannon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Emmanuele Venanzi-Rullo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, 98124, Italy
| | - Stephen Migueles
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - R Brad Jones
- Infectious Disease Division, Weill Cornell Medical College, New York, 10065, NY, USA
| | - Talia Mota
- Infectious Disease Division, Weill Cornell Medical College, New York, 10065, NY, USA
| | - Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Kevin Groen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105, The Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105, The Netherlands
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Brad Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratories for Cancer Research, Leidos Biomedical Research Inc., supporting the Division of Clinical Research, NIAID, Frederick, 21702, MD, USA
| | - Anastasios Vourekas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, 98124, Italy
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA.
| |
Collapse
|
29
|
Ruiz A, Blanch-Lombarte O, Jimenez-Moyano E, Ouchi D, Mothe B, Peña R, Galvez C, Genescà M, Martinez-Picado J, Goulder P, Barnard R, Howell B, Clotet B, Prado JG. Antigen Production After Latency Reversal and Expression of Inhibitory Receptors in CD8+ T Cells Limit the Killing of HIV-1 Reactivated Cells. Front Immunol 2019; 9:3162. [PMID: 30723480 PMCID: PMC6349966 DOI: 10.3389/fimmu.2018.03162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
The so-called shock and kill therapies aim to combine HIV-1 reactivation by latency-reversing agents (LRA) with immune clearance to purge the HIV-1 reservoir. The clinical use of LRA has demonstrated detectable perturbations in the HIV-1 reservoir without measurable reductions to date. Consequently, fundamental questions concerning the limitations of the recognition and killing of LRA-reactivated cells by effector cells such as CD8+ T cells remain to be answered. Here, we developed a novel experimental framework where we combine the use of cytotoxic CD8+ T-cell lines and ex vivo CD8+ T cells from HIV-1-infected individuals with functional assays of LRA-inducible reactivation to delineate immune barriers to clear the reservoir. Our results demonstrate the potential for early recognition and killing of reactivated cells by CD8+ T cells. However, the potency of LRAs when crossing the barrier for antigen presentation in target cells, together with the lack of expression of inhibitory receptors in CD8+ T cells, are critical events to maximize the speed of recognition and the magnitude of the killing of LRA-inducible provirus. Taken together, our findings highlight direct limitations in LRA potency and CD8+ T cell functional status to succeed in the cure of HIV-1 infection.
Collapse
Affiliation(s)
- Alba Ruiz
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| | - Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| | | | - Dan Ouchi
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Ruth Peña
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Cristina Galvez
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| | - Meritxell Genescà
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Richard Barnard
- Department of Infectious Disease, Merck & Co. Inc. Kenilworth, NJ, United States
| | - Bonnie Howell
- Department of Infectious Disease, Merck & Co. Inc. Kenilworth, NJ, United States
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
30
|
Shete A, Dhayarkar S, Sangale S, Medhe U, Panchal N, Rahane G, Yelgate R, Dhamanage A, Gangakhedkar R. Incomplete functional T-cell reconstitution in immunological non-responders at one year after initiation of antiretroviral therapy possibly predisposes them to infectious diseases. Int J Infect Dis 2019; 81:114-122. [PMID: 30658168 DOI: 10.1016/j.ijid.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/01/2019] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immunological non-responders (INR) represent a unique category of HIV-infected patients on antiretroviral therapy. These patients have suppressed viremia but a suboptimal increase in CD4 cell count, which might have opposing effects on functional immune reconstitution. Hence, the extent of immune reconstitution in INR patients was investigated in order to determine their susceptibility to opportunistic infections. METHODS Twenty-three INR patients (CD4 increase <50 cells/mm3, viral load <40 copies/ml), 40 age-, sex-, and baseline CD4 count-matched responders (CD4 increase >100 cells/mm3, viral load <40 copies/ml), and 18 treatment failures defined as per the national guidelines were enrolled at 1year of antiretroviral therapy. The following examinations were performed: haemogram, phenotypic characterization by flow cytometry, and assessment of functional immune status by ELISPOT and intracellular cytokine assays. RESULTS A higher percentage of INR patients had clinically symptomatic infections than the responders. CD8+ activation and innate immune parameters, including the absolute neutrophil count and natural killer (NK) cell frequency and functionality, were restored in the INR patients. They had significantly higher non-HIV antigen-specific T-cell responses and activated CD4+ cells, but significantly compromised T-cell functionality, as assessed after anti-CD3 stimulation, and lower CD31+ and CD62L+CD4+ cells. CONCLUSIONS INR patients showed lower thymic output, incomplete functional T-cell reconstitution, higher responses to HIV co-pathogens, and higher symptomatic events, indicating the need for close monitoring and intervention strategies to overcome their continuing immunocompromised status.
Collapse
Affiliation(s)
- Ashwini Shete
- ICMR-National AIDS Research Institute, Bhosari, Pune, India
| | | | | | - Uttam Medhe
- Yashwantrao Chavan Memorial Hospital, Sant Tukaram Nagar, Pimpri, Pune, India
| | | | - Girish Rahane
- ICMR-National AIDS Research Institute, Bhosari, Pune, India
| | | | | | - Raman Gangakhedkar
- ICMR-National AIDS Research Institute, Bhosari, Pune, India; Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, New Delhi, India.
| |
Collapse
|
31
|
Broad Recognition of Circulating HIV-1 by HIV-1-Specific Cytotoxic T-Lymphocytes with Strong Ability to Suppress HIV-1 Replication. J Virol 2018; 93:JVI.01480-18. [PMID: 30333175 DOI: 10.1128/jvi.01480-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
HIV-1-specific cytotoxic T-lymphocytes (CTLs) with strong abilities to suppress HIV-1 replication and recognize most circulating HIV-1 strains are candidates for effector T cells for cure treatment and prophylactic AIDS vaccine. Previous studies demonstrated that the existence of CTLs specific for 11 epitopes was significantly associated with good clinical outcomes in Japan, although CTLs specific for one of these epitopes select for escape mutations. However, it remains unknown whether the CTLs specific for the remaining 10 epitopes suppress HIV-1 replication in vitro and recognize circulating HIV-1. Here, we investigated the abilities of these CTLs to suppress HIV-1 replication and to recognize variants in circulating HIV-1. CTL clones specific for 10 epitopes had strong abilities to suppress HIV-1 replication in vitro The ex vivo and in vitro analyses of T-cell responses to variant epitope peptides showed that the T cells specific for 10 epitopes recognized mutant peptides which are detected in 84.1% to 98.8% of the circulating HIV-1 strains found in HIV-1-infected Japanese individuals. In addition, the T cells specific for 5 epitopes well recognized target cells infected with 7 mutant viruses that had been detected in >5% of tested individuals. Taken together, these results suggest that CTLs specific for the 10 epitopes effectively suppress HIV-1 replication and broadly recognize the circulating HIV-1 strains in the HIV-1-infected individuals. This study suggests the use of these T cells in clinical trials.IMPORTANCE In recent T-cell AIDS vaccine trials, the vaccines did not prevent HIV-1 infection, although HIV-1-specific T cells were induced in the vaccinated individuals, suggesting that the T cells have a weak ability to suppress HIV-1 replication and fail to recognize circulating HIV-1. We previously demonstrated that the T-cell responses to 10 epitopes were significantly associated with good clinical outcome. However, there is no direct evidence that these T cells have strong abilities to suppress HIV-1 replication and recognize circulating HIV-1. Here, we demonstrated that the T cells specific for the 10 epitopes had strong abilities to suppress HIV-1 replication in vitro Moreover, the T cells cross-recognized most of the circulating HIV-1 in HIV-1-infected individuals. This study suggests the use of T cells specific for these 10 epitopes in clinical trials of T-cell vaccines as a cure treatment.
Collapse
|
32
|
Salido J, Ruiz MJ, Trifone C, Figueroa MI, Caruso MP, Gherardi MM, Sued O, Salomón H, Laufer N, Ghiglione Y, Turk G. Phenotype, Polyfunctionality, and Antiviral Activity of in vitro Stimulated CD8 + T-Cells From HIV + Subjects Who Initiated cART at Different Time-Points After Acute Infection. Front Immunol 2018; 9:2443. [PMID: 30405632 PMCID: PMC6205955 DOI: 10.3389/fimmu.2018.02443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Since anti-HIV treatment cannot cure the infection, many strategies have been proposed to eradicate the viral reservoir, which still remains as a major challenge. The success of some of these strategies will rely on the ability of HIV-specific CD8+ T-cells (CD8TC) to clear reactivated infected cells. Here, we aimed to investigate the phenotype and function of in vitro expanded CD8TC obtained from HIV+ subjects on combination antiretroviral therapy (cART), either initiated earlier (median = 3 months postinfection, ET: Early treatment) or later (median = 20 months postinfection, DT: Delayed treatment) after infection. Peripheral blood mononuclear cells from 12 DT and 13 ET subjects were obtained and stimulated with Nef and Gag peptide pools plus IL-2 for 14 days. ELISPOT was performed pre- and post-expansion. CD8TC memory/effector phenotype, PD-1 expression, polyfunctionality (CD107a/b, IFN-γ, IL-2, CCL4 (MIP-1β), and/or TNF-α production) and antiviral activity were evaluated post-expansion. Magnitude of ELISPOT responses increased after expansion by 103 times, in both groups. Expanded cells were highly polyfunctional, regardless of time of cART initiation. The memory/effector phenotype distribution was sharply skewed toward an effector phenotype after expansion in both groups although ET subjects showed significantly higher proportions of stem-cell and central memory CD8TCs. PD-1 expression was clustered in HIV-specific effector memory CD8TCs, subset that also showed the highest proportion of cytokine-producing cells. Moreover, PD-1 expression directly correlated with CD8TC functionality. Expanded CD8TCs from DT and ET subjects were highly capable of mediating antiviral activity, measured by two different assays. Antiviral function directly correlated with the proportion of fully differentiated effector cells (viral inhibition assay) as well as with CD8TC polyfunctionality and PD-1 expression (VITAL assay). In sum, we show that, despite being dampened in subjects on cART, the HIV-specific CD8TC response could be selectively stimulated and expanded in vitro, presenting a high proportion of cells able to carry-out multiple effector functions. Timing of cART initiation had an impact on the memory/effector differentiation phenotype, most likely reflecting how different periods of antigen persistence affected immune function. Overall, these results have important implications for the design and evaluation of strategies aimed at modulating CD8TCs to achieve the HIV functional cure.
Collapse
Affiliation(s)
- Jimena Salido
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Julia Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - César Trifone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - María Paula Caruso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Magdalena Gherardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
- Hospital General de Agudos “Dr. JA Fernández”, Buenos Aires, Argentina
| | - Yanina Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
33
|
Cao Y, Cartwright EK, Silvestri G, Perelson AS. CD8+ lymphocyte control of SIV infection during antiretroviral therapy. PLoS Pathog 2018; 14:e1007350. [PMID: 30308068 PMCID: PMC6199003 DOI: 10.1371/journal.ppat.1007350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/23/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
CD8+ lymphocytes play an important role in suppressing in vivo viral replication in HIV infection. However, both the extent to which and the mechanisms by which CD8+ lymphocytes contribute to viral control are not completely understood. A recent experiment depleted CD8+ lymphocytes in simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) on antiretroviral treatment (ART) to study the role of CD8+ lymphocytes. CD8+ lymphocytes depletion resulted in temporary plasma viremia in all studied RMs. Viral control was restored when CD8+ lymphocytes repopulated. We developed a viral dynamic model to fit the viral load (VL) data from the CD8 depletion experiment. We explicitly modeled the dynamics of the latent reservoir and the SIV-specific effector cell population including their exhaustion and their potential cytolytic and noncytolytic functions. We found that the latent reservoir significantly contributes to the size of the peak VL after CD8 depletion, while drug efficacy plays a lesser role. Our model suggests that the overall CD8+ lymphocyte cytolytic killing rate is dynamically changing depending on the levels of antigen-induced effector cell activation and exhaustion. Based on estimated parameters, our model suggests that before ART or without ART the overall CD8 cytolytic killing rate is small due to exhaustion. However, after the start of ART, the overall CD8 cytolytic killing rate increases due to an expansion of SIV-specific CD8 effector cells. Further, we estimate that the cytolytic killing rate can be significantly larger than the cytopathic death rate in some animals during the second phase of ART-induced viral decay. Lastly, our model provides a new explanation for the puzzling findings by Klatt et al. and Wong et al. that CD8 depletion done immediately before ART has no noticeable effect on the first phase viral decay slope seen after ART initiation Overall, by incorporating effector cells and their exhaustion, our model can explain the effects of CD8 depletion on VL during ART, reveals a detailed dynamic role of CD8+ lymphocytes in controlling viral infection, and provides a unified explanation for CD8 depletion experimental data. CD8+ lymphocytes play an important role in suppressing in vivo viral replication in HIV infection. However, both the extent to which and the mechanisms by which CD8+ lymphocytes contribute to viral control are not completely understood. By mathematically modeling data from a recent CD8 depletion experiment done in antiretroviral (ART) treated animals, our results suggest that the overall CD8+ lymphocyte cytolytic killing rate is dynamically changing depending on the levels of antigen-induced effector cell activation and exhaustion, i.e. before ART or without ART the overall CD8 cytolytic killing rate is small due to exhaustion. However, after the start of ART, the overall CD8 cytolytic killing rate increases due to an expansion of SIV-specific CD8 effector cells. By incorporating effector cells and their exhaustion, our model explains the effects on viral load of CD8 depletion done before ART or during ART, reveals a detailed dynamic role of CD8+ lymphocytes in controlling viral infection, and provides a unified explanation for CD8 depletion experimental data.
Collapse
Affiliation(s)
- Youfang Cao
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, United States of America
- Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Emily K. Cartwright
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, United States of America
- * E-mail:
| |
Collapse
|
34
|
McBrien JB, Kumar NA, Silvestri G. Mechanisms of CD8 + T cell-mediated suppression of HIV/SIV replication. Eur J Immunol 2018; 48:898-914. [PMID: 29427516 DOI: 10.1002/eji.201747172] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
In this article, we summarize the role of CD8+ T cells during natural and antiretroviral therapy (ART)-treated HIV and SIV infections, discuss the mechanisms responsible for their suppressive activity, and review the rationale for CD8+ T cell-based HIV cure strategies. Evidence suggests that CD8+ T cells are involved in the control of virus replication during HIV and SIV infections. During early HIV infection, the cytolytic activity of CD8+ T cells is responsible for control of viremia. However, it has been proposed that CD8+ T cells also use non-cytolytic mechanisms to control SIV infection. More recently, CD8+ T cells were shown to be required to fully suppress virus production in ART-treated SIV-infected macaques, suggesting that CD8+ T cells are involved in the control of virus transcription in latently infected cells that persist under ART. A better understanding of the complex antiviral activities of CD8+ T cells during HIV/SIV infection will pave the way for immune interventions aimed at harnessing these functions to target the HIV reservoir.
Collapse
Affiliation(s)
- Julia Bergild McBrien
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Nitasha A Kumar
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
35
|
CHOMONT N, OKOYE AA, FAVRE D, TRAUTMANN L. Wake me up before you go: a strategy to reduce the latent HIV reservoir. AIDS 2018; 32:293-298. [PMID: 29135580 PMCID: PMC5758429 DOI: 10.1097/qad.0000000000001695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the quest to eliminate or reduce the HIV reservoir, shock and kill strategies require the combined administration of a latency reversing agent (LRA) to reactivate the latent reservoir and an intervention to boost effector functions to clear this reservoir. Both parts of this strategy are quite inefficient when LRAs are administered to HIV-infected individuals on suppressive ART for several years, possibly due to low levels of induced antigen expression, negative impact of LRAs on clearance mechanisms, and very low number of effective cytotoxic T cells (CTLs). Here we provide rationale for an approach that would require only the administration of an LRA at the time of ART initiation to significantly reduce the HIV reservoir. The advantage of this strategy is an efficient reactivation of the latent HIV reservoir when high numbers of HIV-specific CD8+ T cells are present. This strategy may also potentiate more effective CTL responses and the establishment of a longer period of immune surveillance. This “window of opportunity” has been validated in silico , can be tested in preclinical non-human primate (NHP) models and translated rapidly in the clinic.
Collapse
Affiliation(s)
- Nicolas CHOMONT
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Department of microbiology, infectiology and immunology, Faculty of Medicine. Université de Montréal, Montreal, Quebec, Canada
| | - Afam A. OKOYE
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - David FAVRE
- GlaxoSmithKline, Durham, North Carolina, USA
| | - Lydie TRAUTMANN
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Murdock BJ, Zhou T, Kashlan SR, Little RJ, Goutman SA, Feldman EL. Correlation of Peripheral Immunity With Rapid Amyotrophic Lateral Sclerosis Progression. JAMA Neurol 2017; 74:1446-1454. [PMID: 28973548 DOI: 10.1001/jamaneurol.2017.2255] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Amyotrophic lateral sclerosis (ALS) has an immune component, but previous human studies have not examined immune changes over time. Objectives To assess peripheral inflammatory markers in participants with ALS and healthy control individuals and to track immune changes in ALS and determine whether these changes correlate with disease progression. Design, Setting, and Participants In this longitudinal cohort study, leukocytes were isolated from peripheral blood samples from 35 controls and 119 participants with ALS at the ALS Clinic of the University of Michigan, Ann Arbor, from June 18, 2014, through May 26, 2016. Follow-up visits occurred every 6 to 12 months. Fifty-one participants with ALS provided samples at multiple points. Immune cell populations were measured and compared between control and ALS groups. Surface marker expression of CD11b+ myeloid cells was also assessed. Changes over time were correlated with disease progression using multivariate regression. Main Outcomes and Measures The number of immune cells per milliliter of blood and the fold expression of cell surface markers. Multivariate regression models were used to correlate changes in immune metrics with changes on the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). Results Thirty-five controls (17 women [48.6%] and 18 men [51.4%]; mean [SD] age, 63.5 [9.9] years) and 119 participants with ALS (50 women [42.0%] and 69 men [68.0%]; mean [SD] age, 61.4 [11.5] years) were enrolled. Compared with controls, participants with ALS had increased mean (SEM) counts ( × 106/mL) of total leukocytes (4.57 [0.29; 95% CI, 3.94-5.11] vs 5.53 [0.16; 95% CI, 5.21-5.84]), neutrophils (2.87 [0.23; 95% CI, 2.40-3.35] vs 3.80 [0.12; 95% CI, 3.56-4.04]), CD16+ monocytes (0.03 [0.003; 95% CI, 0.02-0.04] vs 0.04 [0.002; 95% CI, 0.03-0.04]), CD16- monocytes (0.25 [0.02; 95% CI, 0.21-0.30] vs 0.29 [0.01; 95% CI, 0.27-0.31]), and natural killer cells (0.13 [0.02; 95% CI, 0.10-0.17] vs 0.18 [0.01; 95% CI, 0.16-0.21]). We also observed an acute, transient increase in a population of CD11b+ myeloid cells expressing HLA-DR, CD11c, and CX3CR1. Finally, early changes in immune cell numbers had a significant correlation with disease progression measured by change in ALSFRS-R score, particularly neutrophils (-4.37 [95% CI, -6.60 to -2.14] per 11.47 × 104/mL [SD, 58.04 × 104/mL] per year) and CD4 T cells (-30.47 [95% CI, -46.02 to -14.94] per -3.72 × 104/mL [SD, 26.21 × 104/mL] per year). Conclusions and Relevance Changes in the immune system occur during ALS and may contribute to the pathologic features of ALS.
Collapse
Affiliation(s)
| | - Tingting Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor
| | - Samy R Kashlan
- Department of Neurology, University of Michigan, Ann Arbor
| | - Roderick J Little
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor.,A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor
| |
Collapse
|
37
|
Takata H, Buranapraditkun S, Kessing C, Fletcher JLK, Muir R, Tardif V, Cartwright P, Vandergeeten C, Bakeman W, Nichols CN, Pinyakorn S, Hansasuta P, Kroon E, Chalermchai T, O'Connell R, Kim J, Phanuphak N, Robb ML, Michael NL, Chomont N, Haddad EK, Ananworanich J, Trautmann L. Delayed differentiation of potent effector CD8 + T cells reducing viremia and reservoir seeding in acute HIV infection. Sci Transl Med 2017; 9:9/377/eaag1809. [PMID: 28202771 DOI: 10.1126/scitranslmed.aag1809] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
Abstract
CD8+ T cells play a critical role in controlling HIV viremia and could be important in reducing HIV-infected cells in approaches to eradicate HIV. The simian immunodeficiency virus model provided the proof of concept for a CD8+ T cell-mediated reservoir clearance but showed conflicting evidence on the role of these cells to eliminate HIV-infected cells. In humans, HIV-specific CD8+ T cell responses have not been associated with a reduction of the HIV-infected cell pool in vivo. We studied HIV-specific CD8+ T cells in the RV254 cohort of individuals initiating ART in the earliest stages of acute HIV infection (AHI). We showed that the HIV-specific CD8+ T cells generated as early as AHI stages 1 and 2 before peak viremia are delayed in expanding and acquiring effector functions but are endowed with higher memory potential. In contrast, the fully differentiated HIV-specific CD8+ T cells at peak viremia in AHI stage 3 were more prone to apoptosis but were associated with a steeper viral load decrease after ART initiation. Their capacity to persist in vivo after ART initiation correlated with a lower HIV DNA reservoir. These findings demonstrate that HIV-specific CD8+ T cell magnitude and differentiation are delayed in the earliest stages of infection. These results also demonstrate that potent HIV-specific CD8+ T cells contribute to the reduction of the pool of HIV-producing cells and the HIV reservoir seeding in vivo and provide the rationale to design interventions aiming at inducing these potent responses to cure HIV infection.
Collapse
Affiliation(s)
- Hiroshi Takata
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Supranee Buranapraditkun
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Cari Kessing
- The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Roshell Muir
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Pearline Cartwright
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Claire Vandergeeten
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987, USA
| | - Wendy Bakeman
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987, USA
| | - Carmen N Nichols
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL 34987, USA
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Pokrath Hansasuta
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Nuffield Department of Medicine, University of Oxford, Oxford, U.K
| | - Eugene Kroon
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Thep Chalermchai
- SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Robert O'Connell
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jerome Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | | | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology, and Immunology, Centre de Recherche Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - Elias K Haddad
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.,SEARCH, The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | | |
Collapse
|
38
|
Leibman RS, Richardson MW, Ellebrecht CT, Maldini CR, Glover JA, Secreto AJ, Kulikovskaya I, Lacey SF, Akkina SR, Yi Y, Shaheen F, Wang J, Dufendach KA, Holmes MC, Collman RG, Payne AS, Riley JL. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathog 2017; 13:e1006613. [PMID: 29023549 PMCID: PMC5638568 DOI: 10.1371/journal.ppat.1006613] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/29/2017] [Indexed: 11/24/2022] Open
Abstract
HIV is adept at avoiding naturally generated T cell responses; therefore, there is a need to develop HIV-specific T cells with greater potency for use in HIV cure strategies. Starting with a CD4-based chimeric antigen receptor (CAR) that was previously used without toxicity in clinical trials, we optimized the vector backbone, promoter, HIV targeting moiety, and transmembrane and signaling domains to determine which components augmented the ability of T cells to control HIV replication. This re-engineered CAR was at least 50-fold more potent in vitro at controlling HIV replication than the original CD4 CAR, or a TCR-based approach, and substantially better than broadly neutralizing antibody-based CARs. A humanized mouse model of HIV infection demonstrated that T cells expressing optimized CARs were superior at expanding in response to antigen, protecting CD4 T cells from infection, and reducing viral loads compared to T cells expressing the original, clinical trial CAR. Moreover, in a humanized mouse model of HIV treatment, CD4 CAR T cells containing the 4-1BB costimulatory domain controlled HIV spread after ART removal better than analogous CAR T cells containing the CD28 costimulatory domain. Together, these data indicate that potent HIV-specific T cells can be generated using improved CAR design and that CAR T cells could be important components of an HIV cure strategy.
Collapse
Affiliation(s)
- Rachel S. Leibman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Max W. Richardson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christoph T. Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Colby R. Maldini
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joshua A. Glover
- Department of Medicine and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Anthony J. Secreto
- Department of Medicine and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Simon F. Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah R. Akkina
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yanjie Yi
- Department of Medicine and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Farida Shaheen
- Department of Medicine and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jianbin Wang
- Sangamo BioSciences Inc., Richmond, California, United States of America
| | - Keith A. Dufendach
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael C. Holmes
- Sangamo BioSciences Inc., Richmond, California, United States of America
| | - Ronald G. Collman
- Department of Medicine and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aimee S. Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James L. Riley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
39
|
Thomas AS, Jones KL, Gandhi RT, McMahon DK, Cyktor JC, Chan D, Huang SH, Truong R, Bosque A, Macedo AB, Kovacs C, Benko E, Eron JJ, Bosch RJ, Lalama CM, Simmens S, Walker BD, Mellors JW, Jones RB. T-cell responses targeting HIV Nef uniquely correlate with infected cell frequencies after long-term antiretroviral therapy. PLoS Pathog 2017; 13:e1006629. [PMID: 28931091 PMCID: PMC5624641 DOI: 10.1371/journal.ppat.1006629] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/02/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
HIV-specific CD8+ T-cell responses limit viral replication in untreated infection. After the initiation of antiretroviral therapy (ART), these responses decay and the infected cell population that remains is commonly considered to be invisible to T-cells. We hypothesized that HIV antigen recognition may persist in ART-treated individuals due to low-level or episodic protein expression. We posited that if persistent recognition were occurring it would be preferentially directed against the early HIV gene products Nef, Tat, and Rev as compared to late gene products, such as Gag, Pol, and Env, which have higher barriers to expression. Using a primary cell model of latency, we observed that a Nef-specific CD8+ T-cell clone exhibited low-level recognition of infected cells prior to reactivation and robust recognition shortly thereafter. A Gag-specific CD8+ T-cell clone failed to recognized infected cells under these conditions, corresponding with a lack of detectable Gag expression. We measured HIV-specific T-cell responses in 96 individuals who had been suppressed on ART for a median of 7 years, and observed a significant, direct correlation between cell-associated HIV DNA levels and magnitudes of IFN-γ-producing Nef/Tat/Rev-specific T-cell responses. This correlation was confirmed in an independent cohort (n = 18). Correlations were not detected between measures of HIV persistence and T-cell responses to other HIV antigens. The correlation with Nef/Tat/Rev-specific T-cells was attributable to Nef-specific responses, the breadth of which also correlated with HIV DNA levels. These results suggest that ongoing Nef expression in ART-treated individuals drives preferential maintenance and/or expansion of T-cells reactive to this protein, implying sensing of infected cells by the immune system. The direct correlation, however, suggests that recognition does not result in efficient elimination of infected cells. These results raise the possibility that enhancing the cytolytic activity of Nef-specific T-cells may lead to reductions in infected cell frequencies, even in the absence of therapeutic latency reversal.
Collapse
Affiliation(s)
- Allison S. Thomas
- Department of Microbiology Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, United States of America
| | - Kimberley L. Jones
- Department of Microbiology Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, United States of America
| | - Rajesh T. Gandhi
- Ragon Institute of MIT, MGH, and Harvard, Cambridge MA, United States of America
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Deborah K. McMahon
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Joshua C. Cyktor
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dora Chan
- Department of Microbiology Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, United States of America
| | - Szu-Han Huang
- Department of Microbiology Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, United States of America
| | - Ronald Truong
- Department of Microbiology Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, United States of America
| | - Alberto Bosque
- Department of Microbiology Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, United States of America
| | - Amanda B. Macedo
- Department of Microbiology Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, United States of America
| | | | - Erika Benko
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Joseph J. Eron
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ronald J. Bosch
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Christina M. Lalama
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Samuel Simmens
- Department of Epidemiology and Biostatistics, George Washington University, Milken Institute School of Public Health, Washington, District of Columbia, United States of America
| | - Bruce D. Walker
- Ragon Institute of MIT, MGH, and Harvard, Cambridge MA, United States of America
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - R. Brad Jones
- Department of Microbiology Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Effect of Combination Antiretroviral Therapy on HIV-1-specific Antibody-Dependent Cellular Cytotoxicity Responses in Subtype B- and Subtype C-Infected Cohorts. J Acquir Immune Defic Syndr 2017; 75:345-353. [PMID: 28346319 DOI: 10.1097/qai.0000000000001380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND There is growing interest in immune therapies to clear the latent HIV-1 after combination antiretroviral therapy (cART). There is limited information on the effect of cART on antibody-dependent cellular cytotoxicity (ADCC), and no studies have directly compared ADCC in HIV-1 subtype B- and subtype C-infected subjects. The effect of improving immunocompetence on ADCC to influenza also remains unexplored. METHODS The effect of cART on HIV-1- and influenza-specific ADCC was analyzed in 2 cohorts (39 subtype B- and 47 subtype C-infected subjects) before and after 2 years of cART. ADCC analyses included an enzyme-linked immunosorbent assay-based dimeric recombinant soluble (rs) FcγRIIIa-binding assay, antibody-dependent natural killer cell activation assay, and ADCC-mediated killing assays. RESULTS HIV-1 subtype B and C Env-specific antibody binding to dimeric rsFcγRIIIa were reduced in subtypes B- and C-infected cohorts after 2 years of cART (both P < 0.05). Reduced ADCC-mediated killing of target cells expressing subtype B Env in the subtype B-infected cohort (P = 0.003) was observed after 96 weeks of cART, but not of subtype C Env in the subtype C-infected cohort. A greater reduction in ADCC was detected in subjects with baseline CD4 counts >300 cells/μL (P < 0.05). The resolving immunodeficiency after 96 weeks of cART resulted in improved HA-specific ADCC to 6 strains of influenza (all P < 0.01). CONCLUSIONS cART results in HIV-1 antigen loss and reductions in HIV-1 Env-specific antibodies with Fc functionality in both subtype B- and C-infected subjects, particularly in immunocompetent subjects. Simultaneously, cART improves ADCC to diverse strains of influenza, suggesting reduction in influenza disease after cART.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Increasing evidence suggests that purging the latent HIV reservoir in virally suppressed individuals will require both the induction of viral replication from its latent state and the elimination of these reactivated HIV-infected cells ('Shock and Kill' strategy). Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure. RECENT FINDINGS Recent studies provided the rationale for developing immune interventions to increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. Multiple approaches are being evaluated including very early suppression of HIV replication in acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 T cells have been developed to assess the efficacy of these new approaches. The strategies combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be tested in in-vivo and in-silico models to accelerate the design of new clinical trials. SUMMARY New immunobased strategies are explored to boost HIV-specific CD8 T cells able to purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral replication without antiretroviral treatment.
Collapse
|
42
|
Riley JL, Montaner LJ. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir. J Infect Dis 2017; 215:S160-S171. [PMID: 28520969 PMCID: PMC5853458 DOI: 10.1093/infdis/jix002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure.
Collapse
Affiliation(s)
- James L Riley
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, and
| | - Luis J Montaner
- HIV-1 Immunopathogenesis Laboratory, Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Bui JK, Sobolewski MD, Keele BF, Spindler J, Musick A, Wiegand A, Luke BT, Shao W, Hughes SH, Coffin JM, Kearney MF, Mellors JW. Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir. PLoS Pathog 2017; 13:e1006283. [PMID: 28328934 PMCID: PMC5378418 DOI: 10.1371/journal.ppat.1006283] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/03/2017] [Accepted: 03/08/2017] [Indexed: 11/19/2022] Open
Abstract
The major obstacle to curing HIV infection is the persistence of cells with intact proviruses that can produce replication-competent virus. This HIV reservoir is believed to exist primarily in CD4+ T-cells and is stable despite years of suppressive antiretroviral therapy. A potential mechanism for HIV persistence is clonal expansion of infected cells, but how often such clones carry replication-competent proviruses has been controversial. Here, we used single-genome sequencing to probe for identical HIV sequence matches among viruses recovered in different viral outgrowth cultures and between the sequences of outgrowth viruses and proviral or intracellular HIV RNA sequences in uncultured blood mononuclear cells from eight donors on suppressive ART with diverse proviral populations. All eight donors had viral outgrowth virus that was fully susceptible to their current ART drug regimen. Six of eight donors studied had identical near full-length HIV RNA sequences recovered from different viral outgrowth cultures, and one of the two remaining donors had identical partial viral sequence matches between outgrowth virus and intracellular HIV RNA. These findings provide evidence that clonal expansion of HIV-infected cells is an important mechanism of reservoir persistence that should be targeted to cure HIV infection.
Collapse
Affiliation(s)
- John K. Bui
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Howard Hughes Medical Research Fellows Program, Howard Hughes Medical Institute, Bethesda, Maryland, United States of America
| | - Michele D. Sobolewski
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research operated by Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Andrew Musick
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ann Wiegand
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Brian T. Luke
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research operated by Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Wei Shao
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research operated by Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - John M. Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
44
|
Alvarez RA, Maestre AM, Law K, Durham ND, Barria MI, Ishii-Watabe A, Tada M, Kapoor M, Hotta MT, Rodriguez-Caprio G, Fierer DS, Fernandez-Sesma A, Simon V, Chen BK. Enhanced FCGR2A and FCGR3A signaling by HIV viremic controller IgG. JCI Insight 2017; 2:e88226. [PMID: 28239647 DOI: 10.1172/jci.insight.88226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV-1 viremic controllers (VC) spontaneously control infection without antiretroviral treatment. Several studies indicate that IgG Abs from VCs induce enhanced responses from immune effector cells. Since signaling through Fc-γ receptors (FCGRs) modulate these Ab-driven responses, here we examine if enhanced FCGR activation is a common feature of IgG from VCs. Using an infected cell-based system, we observed that VC IgG stimulated greater FCGR2A and FCGR3A activation as compared with noncontrollers, independent of the magnitude of HIV-specific Ab binding or virus neutralization activities. Multivariate regression analysis showed that enhanced FCGR signaling was a significant predictor of VC status as compared with chronically infected patients (CIP) on highly active antiretroviral therapy (HAART). Unsupervised hierarchical clustering of patient IgG functions primarily grouped VC IgG profiles by enhanced FCGR2A, FCGR3A, or dual signaling activity. Our findings demonstrate that enhanced FCGR signaling is a common and significant predictive feature of VC IgG, with VCs displaying a distinct spectrum of FCGR activation profiles. Thus, profiling FCGR activation may provide a useful method for screening and distinguishing protective anti-HIV IgG responses in HIV-infected patients and in monitoring HIV vaccination regimens.
Collapse
Affiliation(s)
- Raymond A Alvarez
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kenneth Law
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| | - Natasha D Durham
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| | - Maria Ines Barria
- Division of Infectious Diseases, Department of Medicine, Immunology Institute.,Department of Microbiology, University of Concepcion, Concepcion, Chile
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | - Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mathew T Hotta
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| | | | - Daniel S Fierer
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Division of Infectious Diseases, Department of Medicine, Immunology Institute.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K Chen
- Division of Infectious Diseases, Department of Medicine, Immunology Institute
| |
Collapse
|
45
|
Hsu DC, Ananworanich J. Immune Interventions to Eliminate the HIV Reservoir. Curr Top Microbiol Immunol 2017; 417:181-210. [PMID: 29071472 DOI: 10.1007/82_2017_70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.
Collapse
Affiliation(s)
- Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA. .,US Military HIV Research Program (MHRP), 6720-A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA.
| |
Collapse
|
46
|
Mahnke YD, Fletez-Brant K, Sereti I, Roederer M. Reconstitution of Peripheral T Cells by Tissue-Derived CCR4+ Central Memory Cells Following HIV-1 Antiretroviral Therapy. Pathog Immun 2016; 1:260-290. [PMID: 27819062 PMCID: PMC5093337 DOI: 10.20411/pai.v1i2.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Highly active antiretroviral therapy induces clinical benefits to HIV-1 infected individuals, which can be striking in those with progressive disease. Improved survival and decreased incidence of opportunistic infections go hand in hand with a suppression of the plasma viral load, an increase in peripheral CD4+ T-cell counts, as well as a reduction in the activation status of both CD4+ and CD8+ T cells. Methods: We investigated T-cell dynamics during ART by polychromatic flow cytometry in total as well as in HIV-1-specific CD4+ and CD8+ T cells in patients with advanced disease. We also measured gene expression by single cell transcriptomics to assess functional state. Results: The cytokine pattern of HIV-specific CD8+ T cells was not altered after ART, though their magnitude decreased significantly as the plasma viral load was suppressed to undetectable levels. Importantly, while CD4+ T cell numbers increased substantially during the first year, the population did not normalize: the increases were largely due to expansion of mucosal-derived CCR4+ CD4+ TCM; transcriptomic analysis revealed that these are not classical Th2-type cells. Conclusion: The apparent long-term normalization of CD4+ T-cell numbers following ART does not comprise a normal balance of functionally distinct cells, but results in a dramatic Th2 shift of the reconstituting immune system.
Collapse
Affiliation(s)
- Yolanda D Mahnke
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Kipper Fletez-Brant
- Immunology Core Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD
| | - Irini Sereti
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
47
|
Abstract
OBJECTIVES Strategies to cure HIV-1 infection require the eradication of viral reservoirs. An innovative approach for boosting the cytotoxic T-lymphocyte response is the transfer of T-cell receptors (TCRs). Previously, we have shown that electroporation of TCR-encoding mRNA is able to reprogram CD8 T cells derived from healthy donors. So far, it is unknown whether the transfer of HIV-1-specific TCRs is capable to reprogram CD8 T cells of HIV-1-infected patients. To assess the efficiency of TCR-transfer by mRNA electroporation and the functionality of reprogramed T cells in HIV-1-infected patients, we performed an in-vitro analysis of TCR-transfer into T cells from HIV-1-infected patients in various stages of disease and from healthy controls. METHODS Peripheral blood mononuclear cells from 16 HIV-1-infected patients (nine HLA-A02-positive, seven HLA-A02-negative) and from five healthy controls were electroporated with mRNA-constructs encoding TCRs specific for the HLA-A02/HIV-1-gag p17 epitope SLYNTVATL (SL9). Functionality of the TCRs was measured by γIFN-ELISpot assays. RESULTS SL9/TCR transfection into peripheral blood mononuclear cells from both HLA-A02-positive and HLA-A02-negative HIV-1-infected patients and from healthy blood donors reprogramed T cells for recognition of SL9-presenting HLA-A02-positive cells in γIFN-ELISpot assays. SL9/TCR-transfer into T cells from an immunodeficient AIDS patient could induce recognition of SL9-expressing target cells only after reversion of T-cell dysfunction by antiretroviral therapy. CONCLUSION The transfer of HIV-1-p17-specific TCRs into T cells is functional both in HIV-1-infected patients as well as in healthy blood donors. TCR-transfer is a promising method to boost the immune system against HIV-1.
Collapse
|
48
|
Notwithstanding Circumstantial Alibis, Cytotoxic T Cells Can Be Major Killers of HIV-1-Infected Cells. J Virol 2016; 90:7066-7083. [PMID: 27226367 PMCID: PMC4984658 DOI: 10.1128/jvi.00306-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Several experiments suggest that in the chronic phase of human immunodeficiency virus type 1 (HIV-1) infection, CD8+ cytotoxic T lymphocytes (CTL) contribute very little to the death of productively infected cells. First, the expected life span of productively infected cells is fairly long, i.e., about 1 day. Second, this life span is hardly affected by the depletion of CD8+ T cells. Third, the rate at which mutants escaping a CTL response take over the viral population tends to be slow. Our main result is that all these observations are perfectly compatible with killing rates that are much faster than one per day once we invoke the fact that infected cells proceed through an eclipse phase of about 1 day before they start producing virus. Assuming that the major protective effect of CTL is cytolytic, we demonstrate that mathematical models with an eclipse phase account for the data when the killing is fast and when it varies over the life cycle of infected cells. Considering the steady state corresponding to the chronic phase of the infection, we find that the rate of immune escape and the rate at which the viral load increases following CD8+ T cell depletion should reflect the viral replication rate, ρ. A meta-analysis of previous data shows that viral replication rates during chronic infection vary between 0.5 ≤ ρ ≤ 1 day−1. Balancing such fast viral replication requires killing rates that are several times larger than ρ, implying that most productively infected cells would die by cytolytic effects. IMPORTANCE Most current data suggest that cytotoxic T cells (CTL) mediate their control of human immunodeficiency virus type 1 (HIV-1) infection by nonlytic mechanisms; i.e., the data suggest that CTL hardly kill. This interpretation of these data has been based upon the general mathematical model for HIV infection. Because this model ignores the eclipse phase between the infection of a target cell and the start of viral production by that cell, we reanalyze the same data sets with novel models that do account for the eclipse phase. We find that the data are perfectly consistent with lytic control by CTL and predict that most productively infected cells are killed by CTL. Because the killing rate should balance the viral replication rate, we estimate both parameters from a large set of published experiments in which CD8+ T cells were depleted in simian immunodeficiency virus (SIV)-infected monkeys. This confirms that the killing rate can be much faster than is currently appreciated.
Collapse
|
49
|
Effective Cytotoxic T Lymphocyte Targeting of Persistent HIV-1 during Antiretroviral Therapy Requires Priming of Naive CD8+ T Cells. mBio 2016; 7:mBio.00473-16. [PMID: 27247230 PMCID: PMC4895106 DOI: 10.1128/mbio.00473-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Curing HIV-1 infection will require elimination of persistent cellular reservoirs that harbor latent virus in the face of combination antiretroviral therapy (cART). Proposed immunotherapeutic strategies to cure HIV-1 infection include enhancing lysis of these infected cells by cytotoxic T lymphocytes (CTL). A major challenge in this strategy is overcoming viral immune escape variants that have evaded host immune control. Here we report that naive CD8+ T cells from chronic HIV-1-infected participants on long-term cART can be primed by dendritic cells (DC). These DC must be mature, produce high levels of interleukin 12p70 (IL-12p70), be responsive to CD40 ligand (CD40L), and be loaded with inactivated, autologous HIV-1. These DC-primed CD8+ T cell responders produced high levels of gamma interferon (IFN-γ) in response to a broad range of both conserved and variable regions of Gag and effectively killed CD4+ T cell targets that were either infected with the autologous latent reservoir-associated virus or loaded with autologous Gag peptides. In contrast, HIV-1-specific memory CD8+ T cells stimulated with autologous HIV-1-loaded DC produced IFN-γ in response to a narrow range of conserved and variable Gag peptides compared to the primed T cells and most notably, displayed significantly lower cytolytic function. Our findings highlight the need to selectively induce new HIV-1-specific CTL from naive precursors while avoiding activation of existing, dysfunctional memory T cells in potential curative immunotherapeutic strategies for HIV-1 infection. Current immunotherapeutic approaches aim to enhance antiviral immunity against the HIV-1 reservoir; however, it has yet to be shown whether T cells from persons on cART can recognize and eliminate virus-infected cells. We show that in persons on cART a personalized medicine approach using their dendritic cells to stimulate their naive T cells induces potent effector CTL in vitro that recognize and eradicate HIV-1-infected CD4+ T cells. Additionally, we show that the same stimulation of existing memory T cells results in cytokine secretion but limited effector function. Our study demonstrates that the naive T cell repertoire can recognize persistent HIV-1 during cART and supports immunotherapy strategies for an HIV-1 cure that targets naive T cells, rather than existing, dysfunctional, memory T cells.
Collapse
|
50
|
Abstract
After the success of combination antiretroviral therapy (cART) to treat HIV infection, the next great frontier is to cure infected persons, a formidable challenge. HIV persists in a quiescent state in resting CD4+ T cells, where the replicative enzymes targeted by cART are not active. Although low levels of HIV transcripts are detectable in these resting cells, little to no viral protein is produced, rendering this reservoir difficult to detect by the host CD8+ T cell response. However, recent advances suggest that this state of latency might be pharmacologically reversed, resulting in viral protein expression without the adverse effects of massive cellular activation. Emerging data suggest that with this approach, infected cells will not die of viral cytopathic effects, but might be eliminated if HIV-specific CD8+ T cells can be effectively harnessed. Here, we address the antiviral properties of HIV-specific CD8+ T cells and how these cells might be harnessed to greater effect toward achieving viral eradication or a functional cure.
Collapse
|