1
|
Gong M, Peng C, Yang C, Wang Z, Qian H, Hu X, Zhou P, Shan C, Ding Q. Genome-wide CRISPR/Cas9 screen identifies SLC39A9 and PIK3C3 as crucial entry factors for Ebola virus infection. PLoS Pathog 2024; 20:e1012444. [PMID: 39173055 PMCID: PMC11341029 DOI: 10.1371/journal.ppat.1012444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The Ebola virus (EBOV) has emerged as a significant global health concern, notably during the 2013-2016 outbreak in West Africa. Despite the clinical approval of two EBOV antibody drugs, there is an urgent need for more diverse and effective antiviral drugs, along with comprehensive understanding of viral-host interactions. In this study, we harnessed a biologically contained EBOVΔVP30-EGFP cell culture model which could recapitulate the entire viral life cycle, to conduct a genome-wide CRISPR/Cas9 screen. Through this, we identified PIK3C3 (phosphatidylinositide 3-kinase) and SLC39A9 (zinc transporter) as crucial host factors for EBOV infection. Genetic depletion of SLC39A9 and PIK3C3 lead to reduction of EBOV entry, but not impact viral genome replication, suggesting that SLC39A9 and PIK3C3 act as entry factors, facilitating viral entry into host cells. Moreover, PIK3C3 kinase activity is indispensable for the internalization of EBOV virions, presumably through the regulation of endocytic and autophagic membrane traffic, which has been previously recognized as essential for EBOV internalization. Notably, our study demonstrated that PIK3C3 kinase inhibitor could effectively block EBOV infection, underscoring PIK3C3 as a promising drug target. Furthermore, biochemical analysis showed that recombinant SLC39A9 protein could directly bind viral GP protein, which further promotes the interaction of viral GP protein with cellular receptor NPC1. These findings suggests that SLC39A9 plays dual roles in EBOV entry. Initially, it serves as an attachment factor during the early entry phase by engaging with the viral GP protein. Subsequently, SLC39A9 functions an adaptor protein, facilitating the interaction between virions and the NPC1 receptor during the late entry phase, prior to cathepsin cleavage on the viral GP. In summary, this study offers novel insights into virus-host interactions, contributing valuable information for the development of new therapies against EBOV infection.
Collapse
Affiliation(s)
- Mingli Gong
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Yang
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Zhenhua Wang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwu Qian
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Ding
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Zhang Z, Leng XK, Zhai YY, Zhang X, Sun ZW, Xiao JY, Lu JF, Liu K, Xia B, Gao Q, Jia M, Xu CQ, Jiang YN, Zhang XG, Tao KS, Wu JW. Deficiency of ASGR1 promotes liver injury by increasing GP73-mediated hepatic endoplasmic reticulum stress. Nat Commun 2024; 15:1908. [PMID: 38459023 PMCID: PMC10924105 DOI: 10.1038/s41467-024-46135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Liver injury is a core pathological process in the majority of liver diseases, yet the genetic factors predisposing individuals to its initiation and progression remain poorly understood. Here we show that asialoglycoprotein receptor 1 (ASGR1), a lectin specifically expressed in the liver, is downregulated in patients with liver fibrosis or cirrhosis and male mice with liver injury. ASGR1 deficiency exacerbates while its overexpression mitigates acetaminophen-induced acute and CCl4-induced chronic liver injuries in male mice. Mechanistically, ASGR1 binds to an endoplasmic reticulum stress mediator GP73 and facilitates its lysosomal degradation. ASGR1 depletion increases circulating GP73 levels and promotes the interaction between GP73 and BIP to activate endoplasmic reticulum stress, leading to liver injury. Neutralization of GP73 not only attenuates ASGR1 deficiency-induced liver injuries but also improves survival in mice received a lethal dose of acetaminophen. Collectively, these findings identify ASGR1 as a potential genetic determinant of susceptibility to liver injury and propose it as a therapeutic target for the treatment of liver injury.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiang Kai Leng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuan Yuan Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhi Wei Sun
- Beijing Sungen Biomedical Technology Co. Ltd, Beijing, China
| | - Jun Ying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kun Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qi Gao
- Beijing Sungen Biomedical Technology Co. Ltd, Beijing, China
| | - Miao Jia
- Beijing Sungen Biomedical Technology Co. Ltd, Beijing, China
| | - Cheng Qi Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Na Jiang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Gang Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Kai Shan Tao
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University, Xi'an, China.
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
3
|
Avdonin PP, Rybakova EY, Trufanov SK, Avdonin PV. SARS-CoV-2 Receptors and Their Involvement in Cell Infection. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2023; 17:1-11. [PMID: 37008884 PMCID: PMC10050803 DOI: 10.1134/s1990747822060034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 03/30/2023]
Abstract
The new coronavirus infection (COVID-19) pandemic caused by SARS-CoV-2 has many times surpassed the epidemics caused by SARS-CoV and MERS-CoV. The reason for this was the presence of sites in the protein sequence of SARS-CoV-2 that provide interaction with a broader range of receptor proteins on the host cell surface. In this review, we consider both already known receptors common to SARS-CoV and SARS-CoV-2 and new receptors specific to SARS-CoV-2.
Collapse
Affiliation(s)
- P. P. Avdonin
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - E. Yu. Rybakova
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - S. K. Trufanov
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - P. V. Avdonin
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
4
|
Zhou Y, Zhao C, Tian Y, Xu N, Wang Y. Characteristics and Functions of HEV Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:15-32. [PMID: 37223856 DOI: 10.1007/978-981-99-1304-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) is a non-enveloped virus containing a single-stranded, positive-sense RNA genome of 7.2 kb, which consists of a 5' non-coding region, three open reading frames (ORFs), and a 3' non-coding region. ORF1 is diverse between genotypes and encodes the nonstructural proteins, which include the enzymes needed for virus replication. In addition to its role in virus replication, the function of ORF1 is relevant to viral adaption in culture and may also relate to virus infection and HEV pathogenicity. ORF2 protein is the capsid protein, which is about 660 amino acids in length. It not only protects the integrity of the viral genome, but is also involved in many important physiological activities, such as virus assembly, infection, host interaction, and innate immune response. The main immune epitopes, especially neutralizing epitopes, are located on ORF2 protein, which is a candidate antigen for vaccine development. ORF3 protein is a phosphoprotein of 113 or 114 amino acids with a molecular weight of 13 kDa with multiple functions that can also induce strong immune reactivity. A novel ORF4 has been identified only in genotype 1 HEV and its translation promotes viral replication.
Collapse
Affiliation(s)
- Yan Zhou
- RegCMC, Great Regulatory Affairs, Sanofi (China) Investment Co., Ltd, Beijing, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yabin Tian
- Division II of In Vitro Diagnostics for Infectious Diseases, National Institutes for Food and Drug Control, Beijing, China
| | - Nan Xu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
5
|
Roa-Colomo A, López Garrido MÁ, Molina-Vallejo P, Rojas A, Sanchez MG, Aranda-García V, Salmeron J, Romero-Gomez M, Muntane J, Padillo J, Alamo JM, Lorente JA, Serrano MJ, Garrido-Navas MC. Hepatocellular carcinoma risk-stratification based on ASGR1 in circulating epithelial cells for cancer interception. Front Mol Biosci 2022; 9:1074277. [PMID: 36518850 PMCID: PMC9742249 DOI: 10.3389/fmolb.2022.1074277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 09/24/2023] Open
Abstract
Purpose: Lack of diagnostic and prognostic biomarkers in hepatocellular carcinoma impedes stratifying patients based on their risk of developing cancer. The aim of this study was to evaluate phenotypic and genetic heterogeneity of circulating epithelial cells (CECs) based on asialoglycoprotein receptor 1 (ASGR1) and miR-122-5p expression as potential diagnostic and prognostic tools in patients with hepatocellular carcinoma (HCC) and liver cirrhosis (LC). Methods: Peripheral blood samples were extracted from LC and HCC patients at different disease stages. CECs were isolated using positive immunomagnetic selection. Genetic and phenotypic characterization was validated by double immunocytochemistry for cytokeratin (CK) and ASGR1 or by in situ hybridization with miR-122-5p and CECs were visualized by confocal microscopy. Results: The presence of CECs increased HCC risk by 2.58-fold, however, this was only significant for patients with previous LC (p = 0.028) and not for those without prior LC (p = 0.23). Furthermore, the number of CECs lacking ASGR1 expression correlated significantly with HCC incidence and absence of miR-122-5p expression (p = 0.014; r = 0.23). Finally, overall survival was significantly greater for patients at earlier cancer stages (p = 0.018), but this difference was only maintained in the group with the presence of CECs (p = 0.021) whereas progression-free survival was influenced by the absence of ASGR1 expression. Conclusion: Identification and characterization of CECs by ASGR1 and/or miR-122-5p expression may be used as a risk-stratification tool in LC patients, as it was shown to be an independent prognostic and risk-stratification marker in LC and early disease stage HCC patients.
Collapse
Affiliation(s)
- Amparo Roa-Colomo
- Clinical Medicine and Public Health Doctoral Program, University of Granada, Granada, Spain
- Gastroenterology and Hepatology Department, San Cecilio University Hospital, Granada, Spain
| | | | - Pilar Molina-Vallejo
- Genyo-Centro Pfizer-Universidad De Granada-Junta De Andalucía De Genómica e Investigación Oncológica, Granada, Spain
| | - Angela Rojas
- Seliver Group, Institute of Biomedicine of Seville (IBiS)/ Hospital Universitario Virgen Del Rocío/CSIC/Universidad De Sevilla, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Mercedes González Sanchez
- Gastroenterology and Hepatology Department, Virgen De Las Nieves University Hospital, Granada, Spain
| | - Violeta Aranda-García
- Statistician at Fundación para la Investigación Biosanitaria Andalucía Oriental Alejandro Otero (FIBAO), Hospital Virgen de las Nieves, Granada, Spain
| | - Javier Salmeron
- Gastroenterology and Hepatology Department, San Cecilio University Hospital, Granada, Spain
| | - Manuel Romero-Gomez
- Seliver Group, Institute of Biomedicine of Seville (IBiS)/ Hospital Universitario Virgen Del Rocío/CSIC/Universidad De Sevilla, Seville, Spain
- Spanish Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Jordi Muntane
- Spanish Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute (ISCIII), Madrid, Spain
- Institute of Biomedicine of Seville (IBiS), Hospital University Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | - Javier Padillo
- General and Gastrointestinal Surgery Division, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Jose María Alamo
- General and Gastrointestinal Surgery Division, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Jose A. Lorente
- Genyo-Centro Pfizer-Universidad De Granada-Junta De Andalucía De Genómica e Investigación Oncológica, Granada, Spain
- Legal Medicine Department, Medicine School, University of Granada, Granada, Spain
| | - María José Serrano
- Genyo-Centro Pfizer-Universidad De Granada-Junta De Andalucía De Genómica e Investigación Oncológica, Granada, Spain
- Comprehensive Oncology Division, Clinical University Hospital, Virgen de las Nieves-IBS, Granada, Spain
- Department of Pathological Anatomy, Faculty of Medicine, University of Granada, Granada, Spain
| | - M. Carmen Garrido-Navas
- Genyo-Centro Pfizer-Universidad De Granada-Junta De Andalucía De Genómica e Investigación Oncológica, Granada, Spain
| |
Collapse
|
6
|
Bhattacharjee C, Mukhopadhyay A. Generation of fluorescent HCV pseudoparticles to study early viral entry events- involvement of Rab1a in HCV entry. Virusdisease 2022; 33:172-184. [PMID: 35855963 PMCID: PMC9275390 DOI: 10.1007/s13337-022-00770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/01/2022] [Indexed: 12/05/2022] Open
Abstract
Understanding the early events in viral biology holds the key to the development of potent preventives. In this study, fluorescent hepatitis C virus pseudoparticles (HCVpp) have been generated where the envelope glycoprotein of Hepatitis C virus (HCV) has an EGFP tag. Using these pseudoparticles, entry assays were conducted where their entry was tracked via confocal microscopy. Using this system, fusion of host and viral membranes is predicted to occur within 15 min of HCV entry. Using cells with a knockdown for Rab1a, HCV trafficking was observed to be altered, indicating a role of Rab1a in HCV trafficking. In conclusion, this study reports the generation and use of fluorescent HCVpp which may be used to understand the early events of viral entry. This system may be adapted for the study of other enveloped viruses as well.
Collapse
Affiliation(s)
- Chayan Bhattacharjee
- Molecular Virology Laboratory, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Aparna Mukhopadhyay
- Molecular Virology Laboratory, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| |
Collapse
|
7
|
Alipoor SD, Mirsaeidi M. SARS-CoV-2 cell entry beyond the ACE2 receptor. Mol Biol Rep 2022; 49:10715-10727. [PMID: 35754059 PMCID: PMC9244107 DOI: 10.1007/s11033-022-07700-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is known as the major viral entry site for SARS-CoV-2. However, viral tissue tropism and high rate of infectivity do not directly correspond with the level of ACE2 expression in the organs. It may suggest involvement of other receptors or accessory membrane proteins in SARSCoV-2 cell entry. METHODS AND RESULTS A systematic search was carried out in PubMed/Medline, EMBASE, and Cochrane Library for studies reporting SARS-CoV-2 cell entry. We used a group of the MeSH terms including "cell entry", "surface receptor", "ACE2", and "SARS-CoV-2". We reviewed all selected papers published in English up to end of February 2022. We found several receptors or auxiliary membrane proteins (including CD147, NRP-1, CD26, AGTR2, Band3, KREMEN1, ASGR1, ANP, TMEM30A, CLEC4G, and LDLRAD3) along with ACE2 that facilitate virus entry and transmission. Expression of Band3 protein on the surface of erythrocytes and evidence of binding with S protein of SARS-CoV-2 may explain asymptomatic hypoxemia during COVID19 infection. The variants of SARS-CoV-2 including the B.1.1.7 (Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.2+ (Delta+), and B.1.1.529 (Omicron) may have different potency to bond with these receptors. CONCLUSIONS The high rate of infectivity of SARS-CoV-2 may be due to its ability to enter the host cell through a group of cell surface receptors. These receptors are potential targets to develop novel therapeutic agents for SARS-CoV-2.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- grid.419420.a0000 0000 8676 7464Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic, Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Mirsaeidi
- grid.15276.370000 0004 1936 8091Division of Pulmonary, Critical Care, and Sleep Disease, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL USA
| |
Collapse
|
8
|
Kumar V, Kiran S, Kumar S, Singh UP. Extracellular vesicles in obesity and its associated inflammation. Int Rev Immunol 2022; 41:30-44. [PMID: 34423733 PMCID: PMC8770589 DOI: 10.1080/08830185.2021.1964497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Obesity is characterized by low-grade, chronic inflammation, which promotes insulin resistance and diabetes. Obesity can lead to the development and progression of many autoimmune diseases, including inflammatory bowel disease, psoriasis, psoriatic arthritis, rheumatoid arthritis, thyroid autoimmunity, and type 1 diabetes mellitus (T1DM). These diseases result from an alteration of self-tolerance by promoting pro-inflammatory immune response by lowering numbers of regulatory T cells (Tregs), increasing Th1 and Th17 immune responses, and inflammatory cytokine production. Therefore, understanding the immunological changes that lead to this low-grade inflammatory milieu becomes crucial for the development of therapies that suppress the risk of autoimmune diseases and other immunological conditions. Cells generate extracellular vesicles (EVs) to eliminate cellular waste as well as communicating the adjacent and distant cells through exchanging the components (genetic material [DNA or RNA], lipids, and proteins) between them. Immune cells and adipocytes from individuals with obesity and a high basal metabolic index (BMI) produce also release exosomes (EXOs) and microvesicles (MVs), which are collectively called EVs. These EVs play a crucial role in the development of autoimmune diseases. The current review discusses the immunological dysregulation that leads to inflammation, inflammatory diseases associated with obesity, and the role played by EXOs and MVs in the induction and progression of this devastating conditi8on.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA,Correspondence: Udai P Singh, Ph.D., Associate Professor, Department of Pharmaceutical Sciences, College of Pharmacy, 881 Madison Avenue, The University of Tennessee Health Science Center Memphis, TN, 38163 USA,
| |
Collapse
|
9
|
Gu Y, Cao J, Zhang X, Gao H, Wang Y, Wang J, He J, Jiang X, Zhang J, Shen G, Yang J, Zheng X, Hu G, Zhu Y, Du S, Zhu Y, Zhang R, Xu J, Lan F, Qu D, Xu G, Zhao Y, Gao D, Xie Y, Luo M, Lu Z. Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res 2022; 32. [PMID: 34837059 PMCID: PMC8617373 DOI: 10.1038/s41422-021-00595-6 10.1038/s41422-022-00654-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Host cellular receptors play key roles in the determination of virus tropism and pathogenesis. However, little is known about SARS-CoV-2 host receptors with the exception of ACE2. Furthermore, ACE2 alone cannot explain the multi-organ tropism of SARS-CoV-2 nor the clinical differences between SARS-CoV-2 and SARS-CoV, suggesting the involvement of other receptor(s). Here, we performed genomic receptor profiling to screen 5054 human membrane proteins individually for interaction with the SARS-CoV-2 capsid spike (S) protein. Twelve proteins, including ACE2, ASGR1, and KREMEN1, were identified with diverse S-binding affinities and patterns. ASGR1 or KREMEN1 is sufficient for the entry of SARS-CoV-2 but not SARS-CoV in vitro and in vivo. SARS-CoV-2 utilizes distinct ACE2/ASGR1/KREMEN1 (ASK) receptor combinations to enter different cell types, and the expression of ASK together displays a markedly stronger correlation with virus susceptibility than that of any individual receptor at both the cell and tissue levels. The cocktail of ASK-related neutralizing antibodies provides the most substantial blockage of SARS-CoV-2 infection in human lung organoids when compared to individual antibodies. Our study revealed an interacting host receptome of SARS-CoV-2, and identified ASGR1 and KREMEN1 as alternative functional receptors that play essential roles in ACE2-independent virus entry, providing insight into SARS-CoV-2 tropism and pathogenesis, as well as a community resource and potential therapeutic strategies for further COVID-19 investigations.
Collapse
Affiliation(s)
- Yunqing Gu
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Cao
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Xinyu Zhang
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hai Gao
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
- Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/MOH), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyi Jiang
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinlan Zhang
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guanghui Shen
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Jie Yang
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichen Zheng
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Gaowei Hu
- Key Laboratory of Medical Molecular Virology (MOE/MOH), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (MOE/MOH), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- Key Laboratory of Medical Molecular Virology (MOE/MOH), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunkai Zhu
- Key Laboratory of Medical Molecular Virology (MOE/MOH), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/MOH), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Lan
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology (MOE/MOH), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoliang Xu
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Youhua Xie
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
- Key Laboratory of Medical Molecular Virology (MOE/MOH), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Min Luo
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.
| | - Zhigang Lu
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res 2021; 32:24-37. [PMID: 34837059 PMCID: PMC8617373 DOI: 10.1038/s41422-021-00595-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Host cellular receptors play key roles in the determination of virus tropism and pathogenesis. However, little is known about SARS-CoV-2 host receptors with the exception of ACE2. Furthermore, ACE2 alone cannot explain the multi-organ tropism of SARS-CoV-2 nor the clinical differences between SARS-CoV-2 and SARS-CoV, suggesting the involvement of other receptor(s). Here, we performed genomic receptor profiling to screen 5054 human membrane proteins individually for interaction with the SARS-CoV-2 capsid spike (S) protein. Twelve proteins, including ACE2, ASGR1, and KREMEN1, were identified with diverse S-binding affinities and patterns. ASGR1 or KREMEN1 is sufficient for the entry of SARS-CoV-2 but not SARS-CoV in vitro and in vivo. SARS-CoV-2 utilizes distinct ACE2/ASGR1/KREMEN1 (ASK) receptor combinations to enter different cell types, and the expression of ASK together displays a markedly stronger correlation with virus susceptibility than that of any individual receptor at both the cell and tissue levels. The cocktail of ASK-related neutralizing antibodies provides the most substantial blockage of SARS-CoV-2 infection in human lung organoids when compared to individual antibodies. Our study revealed an interacting host receptome of SARS-CoV-2, and identified ASGR1 and KREMEN1 as alternative functional receptors that play essential roles in ACE2-independent virus entry, providing insight into SARS-CoV-2 tropism and pathogenesis, as well as a community resource and potential therapeutic strategies for further COVID-19 investigations.
Collapse
|
11
|
Wu T, Kang S, Peng W, Zuo C, Zhu Y, Pan L, Fu K, You Y, Yang X, Luo X, Jiang L, Deng M. Original Hosts, Clinical Features, Transmission Routes, and Vaccine Development for Coronavirus Disease (COVID-19). Front Med (Lausanne) 2021; 8:702066. [PMID: 34295915 PMCID: PMC8291337 DOI: 10.3389/fmed.2021.702066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to public concern worldwide. Although a variety of hypotheses about the hosts of SARS-CoV-2 have been proposed, an exact conclusion has not yet been reached. Initial clinical manifestations associated with COVID-19 are similar to those of other acute respiratory infections, leading to misdiagnoses and resulting in the outbreak at the early stage. SARS-CoV-2 is predominantly spread by droplet transmission and close contact; the possibilities of fecal-oral, vertical, and aerosol transmission have not yet been fully confirmed or rejected. Besides, COVID-19 cases have been reported within communities, households, and nosocomial settings through contact with confirmed COVID-19 patients or asymptomatic individuals. Environmental contamination is also a major driver for the COVID-19 pandemic. Considering the absence of specific treatment for COVID-19, it is urgent to decrease the risk of transmission and take preventive measures to control the spread of the virus. In this review, we summarize the latest available data on the potential hosts, entry receptors, clinical features, and risk factors of COVID-19 and transmission routes of SARS-CoV-2, and we present the data about development of vaccines.
Collapse
Affiliation(s)
- Ting Wu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Shuntong Kang
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenyao Peng
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenzhe Zuo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuhao Zhu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Liangyu Pan
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Keyun Fu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yaxian You
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Xinyuan Yang
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuan Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Yuanpin Cell Biotechnology Co., Ltd, Changsha, China
| | - Liping Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
12
|
LeBlanc EV, Kim Y, Capicciotti CJ, Colpitts CC. Hepatitis C Virus Glycan-Dependent Interactions and the Potential for Novel Preventative Strategies. Pathogens 2021; 10:pathogens10060685. [PMID: 34205894 PMCID: PMC8230238 DOI: 10.3390/pathogens10060685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infections continue to be a major contributor to liver disease worldwide. HCV treatment has become highly effective, yet there are still no vaccines or prophylactic strategies available to prevent infection and allow effective management of the global HCV burden. Glycan-dependent interactions are crucial to many aspects of the highly complex HCV entry process, and also modulate immune evasion. This review provides an overview of the roles of viral and cellular glycans in HCV infection and highlights glycan-focused advances in the development of entry inhibitors and vaccines to effectively prevent HCV infection.
Collapse
Affiliation(s)
- Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Surgery, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Correspondence:
| |
Collapse
|
13
|
Palit S, Banerjee S, Mahata T, Niyogi S, Das T, Sova Mandi C, Chakrabarti P, Dutta S. Interaction of a Triantennary Quinoline Glycoconjugate with the Asialoglycoprotein Receptor. ChemMedChem 2021; 16:2211-2216. [PMID: 33860988 DOI: 10.1002/cmdc.202100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/07/2021] [Indexed: 11/11/2022]
Abstract
Targeted intracellular delivery is an efficient strategy for developing therapeutics against cancer and other intracellular infections. Nonspecific drug delivery shows limited clinical applications owing to high dosage, cytotoxicity, nonspecific action, high cost, etc. Therefore, targeted delivery of less cytotoxic drug candidates to hepatocytes through ASGPR-mediated endocytosis could be an efficient strategy to surmount the prevailing shortcomings. In the present work, the gene encoding ASGPR-H1-CRD was amplified from Huh7 cells, cloned into pET 11a vector, and the ASGPR-H1-CRD protein was expressed and purified from E. coli. A novel triantennary galactose-conjugated quinoline derivative 4 was synthesized that demonstrates 17-fold higher binding affinity to isolated ASGPR-H1-CRD protein receptor (Kd ∼54 μM) in comparison to D-galactose (Kd ∼900 μM). Moreover, micro-calorimetric studies for the interaction of glycoconjugate 4 with ASGPR protein on live hepatocytes showed notable thermal response in case of ASGPR-containing Huh7 cells, in comparison to non-ASGPR Chang cells. These results might serve as an approach towards targeted delivery of small glycoconjugates to hepatocytes.
Collapse
Affiliation(s)
- Subhadeep Palit
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sayanika Banerjee
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Tridib Mahata
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sougata Niyogi
- Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Tanusree Das
- Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Chandra Sova Mandi
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Partha Chakrabarti
- Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sanjay Dutta
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| |
Collapse
|
14
|
Yang Q, Humphreys SC, Lade JM, Li AP. Prolonged cultured human hepatocytes as an in vitro experimental system for the evaluation of potency and duration of activity of RNA therapeutics: Demonstration of prolonged duration of gene silencing effects of a GalNAc-conjugated human hypoxanthine phosphoribosyl transferase (HPRT1) siRNA. Biochem Pharmacol 2020; 189:114374. [PMID: 33358826 DOI: 10.1016/j.bcp.2020.114374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
We report here the evaluation of a novel in vitro experimental model, prolonged cultured human hepatocytes (PCHC), as an experimental system to evaluate the potency and duration of effects of oligonucleotide therapeutics. A novel observation was made on the redifferentiation of PCHC upon prolonged culturing based on mRNA profiling of characteristic hepatic differentiation marker genes albumin, transferrin, and transthyretin. Consistent with the known de-differentiation of cultured human hepatocytes, decreases in marker gene expression were observed upon culturing of the hepatocytes for 2 days. A novel observation of re-differentiation was observed on day 7 as demonstrated by an increase in expression of the marker genes to levels similar to that observed on the first day of culture. The expression of the differentiation marker genes was highest on day 7, followed by a gradual decrease but remained higher than that on day 2 for up to the longest culture duration evaluated of 41 days. The redifferentiation phenomenon suggests that PCHC may be useful for the evaluation of the duration of effects of oligonucleotide therapeutics on gene expression in human hepatocytes. A proof of concept study was thereby conducted with PCHC with a GalNAc-conjugated siRNA targeting human hypoxanthine phosphoribosyl transferase1 (HPRT1). HPRT1 mRNA expression in siRNA-treated cultures decreased to 21% of that in untreated hepatocytes on day 1, <10% from days 2 to 12, <20% from days 16 to 33, and eventually recovered to 64% by day 41. Our results suggest that PCHC represent a clinically-relevant cost- and time-efficient experimental tool to aid in the evaluation of GalNAc-siRNA silencing activity, providing information on both efficacy and duration of efficacy. PCHC may be applicable in the drug development setting as a species- and cell type-relevant experimental tool to aid the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Qian Yang
- In Vitro ADMET Laboratories Inc., Columbia, MD (QY, APL) and Amgen Inc., San Francisco, CA (SCH, JML), United States
| | - Sara C Humphreys
- In Vitro ADMET Laboratories Inc., Columbia, MD (QY, APL) and Amgen Inc., San Francisco, CA (SCH, JML), United States
| | - Julie M Lade
- In Vitro ADMET Laboratories Inc., Columbia, MD (QY, APL) and Amgen Inc., San Francisco, CA (SCH, JML), United States
| | - Albert P Li
- In Vitro ADMET Laboratories Inc., Columbia, MD (QY, APL) and Amgen Inc., San Francisco, CA (SCH, JML), United States.
| |
Collapse
|
15
|
|
16
|
Tellefsen S, Morthen MK, Richards SM, Lieberman SM, Rahimi Darabad R, Kam WR, Sullivan DA. Sex Effects on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome. Invest Ophthalmol Vis Sci 2019; 59:5599-5614. [PMID: 30481277 PMCID: PMC6262646 DOI: 10.1167/iovs.18-25772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Sjögren syndrome is an autoimmune disease that occurs primarily in women, and is associated with lacrimal gland inflammation and aqueous-deficient dry eye. We hypothesize that sex-associated differences in lacrimal gland gene expression are very important in promoting lymphocyte accumulation in this tissue and contribute to the onset, progression, and/or severity of the inflammatory disease process. To test our hypothesis, we explored the nature and extent of sex-related differences in gene expression in autoimmune lacrimal glands. Methods Lacrimal glands were collected from age-matched, adult, male and female MRL/MpJ-Tnfrsf6lpr (MRL/lpr) and nonobese diabetic/LtJ (NOD) mice. Glands were processed for the analysis of differentially expressed mRNAs by using CodeLink Bioarrays and Affymetrix GeneChips. Data were evaluated with bioinformatics and statistical software. Results Our results show that sex significantly influences the expression of thousands of genes in lacrimal glands of MRL/lpr and NOD mice. The immune nature of this glandular response is very dependent on the Sjögren syndrome model. Lacrimal glands of female, as compared with male, MRL/lpr mice contain a significant increase in the expression of genes related to inflammatory responses, antigen processing, and chemokine pathways. In contrast, it is the lacrimal tissue of NOD males, and not females, that presents with a significantly greater expression of immune-related genes. Conclusions These data support our hypothesis that sex-related differences in gene expression contribute to lacrimal gland disease in Sjögren syndrome. Our findings also suggest that factors in the lacrimal gland microenvironment are critically important in mediating these sex-associated immune effects.
Collapse
Affiliation(s)
- Sara Tellefsen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital/Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mathias Kaurstad Morthen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Medical Biochemistry, Oslo University Hospital/Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stephen M Richards
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Raheleh Rahimi Darabad
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Clinical Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Wendy R Kam
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - David A Sullivan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Duan X, Anwar MI, Xu Z, Ma L, Yuan G, Chen Y, Liu X, Xia J, Zhou Y, Li YP. Adaptive mutation F772S-enhanced p7-NS4A cooperation facilitates the assembly and release of hepatitis C virus and is associated with lipid droplet enlargement. Emerg Microbes Infect 2018; 7:143. [PMID: 30087320 PMCID: PMC6081454 DOI: 10.1038/s41426-018-0140-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/17/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis and liver cancer worldwide. Adaptive mutations play important roles in the development of the HCV replicon and its infectious clones. We and others have previously identified the p7 mutation F772S and the co-presence of NS4A mutations in infectious HCV full-length clones and chimeric recombinants. However, the underlying mechanism of F772S function remains incompletely understood. Here, we investigated the functional role of F772S using an efficient JFH1-based reporter virus with Core-NS2 from genotype 2a strain J6, and we designated J6-p7/JFH1-4A according to the strain origin of the p7 and NS4A sequences. We found that replacing JFH1-4A with J6-4A (wild-type or mutated NS4A) or genotype 2b J8-4A severely attenuated the viability of J6-p7/JFH1-4A. However, passage-recovered viruses that contained J6-p7 all acquired F772S. Introduction of F772S efficiently rescued the viral spread and infectivity titers of J6-p7/J6-4A, which reached the levels of the original J6-p7/JFH1-4A and led to a concomitant increase in RNA replication, assembly and release of viruses with J6-specific p7 and NS4A. These data suggest that an isolate-specific cooperation existed between p7 and NS4A. NS4A exchange- or substitution-mediated viral attenuation was attributed to the RNA sequence, and no p7-NS4A protein interaction was detected. Moreover, we found that F772S-enhanced p7-NS4A cooperation was associated with the enlargement of intracellular lipid droplets. This study therefore provides new insights into the mechanisms of adaptive mutations and facilitates studies on the HCV life cycle and virus–host interaction.
Collapse
Affiliation(s)
- Xiaobing Duan
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Muhammad Ikram Anwar
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhanxue Xu
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ling Ma
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Guosheng Yuan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yiyi Chen
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Jinyu Xia
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Ping Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 501180, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 501180, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Sun Yat-Sen University, Guangzhou, 510080, China. .,Program in Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
18
|
Sullivan DA, Rocha EM, Aragona P, Clayton JA, Ding J, Golebiowski B, Hampel U, McDermott AM, Schaumberg DA, Srinivasan S, Versura P, Willcox MDP. TFOS DEWS II Sex, Gender, and Hormones Report. Ocul Surf 2017; 15:284-333. [PMID: 28736336 DOI: 10.1016/j.jtos.2017.04.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/21/2022]
Abstract
One of the most compelling features of dry eye disease (DED) is that it occurs more frequently in women than men. In fact, the female sex is a significant risk factor for the development of DED. This sex-related difference in DED prevalence is attributed in large part to the effects of sex steroids (e.g. androgens, estrogens), hypothalamic-pituitary hormones, glucocorticoids, insulin, insulin-like growth factor 1 and thyroid hormones, as well as to the sex chromosome complement, sex-specific autosomal factors and epigenetics (e.g. microRNAs). In addition to sex, gender also appears to be a risk factor for DED. "Gender" and "sex" are words that are often used interchangeably, but they have distinct meanings. "Gender" refers to a person's self-representation as a man or woman, whereas "sex" distinguishes males and females based on their biological characteristics. Both gender and sex affect DED risk, presentation of the disease, immune responses, pain, care-seeking behaviors, service utilization, and myriad other facets of eye health. Overall, sex, gender and hormones play a major role in the regulation of ocular surface and adnexal tissues, and in the difference in DED prevalence between women and men. The purpose of this Subcommittee report is to review and critique the nature of this role, as well as to recommend areas for future research to advance our understanding of the interrelationships between sex, gender, hormones and DED.
Collapse
Affiliation(s)
- David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Eduardo M Rocha
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pasquale Aragona
- Department of Biomedical Sciences, Ocular Surface Diseases Unit, University of Messina, Messina, Sicily, Italy
| | - Janine A Clayton
- National Institutes of Health Office of Research on Women's Health, Bethesda, MD, USA
| | - Juan Ding
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Blanka Golebiowski
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Ulrike Hampel
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alison M McDermott
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| | - Debra A Schaumberg
- Harvard School of Public Health, Boston, MA, USA; University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sruthi Srinivasan
- Centre for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada
| | - Piera Versura
- Department of Specialized, Experimental, and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
19
|
Zhang L, Tian Y, Wen Z, Zhang F, Qi Y, Huang W, Zhang H, Wang Y. Asialoglycoprotein receptor facilitates infection of PLC/PRF/5 cells by HEV through interaction with ORF2. J Med Virol 2016; 88:2186-2195. [DOI: 10.1002/jmv.24570] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Li Zhang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Yabin Tian
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Zhiheng Wen
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Feng Zhang
- Division of Monoclonal Antibody Products; National Institutes for Food and Drug Control; Beijing China
| | - Ying Qi
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Heqiu Zhang
- Department of Bio-Diagnosis; Beijing Institute of Basic Medical Sciences; Beijing China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| |
Collapse
|
20
|
Tian Y, Huang W, Yang J, Wen Z, Geng Y, Zhao C, Zhang H, Wang Y. Systematic identification of hepatitis E virus ORF2 interactome reveals that TMEM134 engages in ORF2-mediated NF-κB pathway. Virus Res 2016; 228:102-108. [PMID: 27899274 DOI: 10.1016/j.virusres.2016.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023]
Abstract
Hepatitis E virus (HEV) is the causative agent of acute hepatitis E. Open reading frame 2 (ORF2) encodes the capsid protein of HEV, which is the main structural protein and may participate, together with the host factors, in viral entry and egress. However, it is still not clear which host proteins are involved in the interaction with ORF2 and what the functions of these ORF2-interacting proteins are. In this study, we have applied a split-ubiquitin yeast two-hybrid screening approach in combination with the pull-down and coimmunoprecipitation assays, identified and validated multiple interacting partners of ORF2 of genotype 1 and 4, which have diverse biological functions. Among these novel candidates that have not been previously reported, we have found that 20 of them are located in endoplasmic reticulum. TMEM134, which interacts and co-localizes with ORF2 in the endoplasmic reticulum, negatively regulates ORF2-mediated inhibition of the NF-κB signaling pathway. Our study for the first time has systematically mapped the ORF2 interactome in two genotypes of HEV, providing a new insight of understanding the virus-host interaction during the pathogenesis of HEV, and may offer potential therapeutic targets to intervene the HEV life cycle.
Collapse
Affiliation(s)
- Yabin Tian
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Beijing 100050, China.
| | - Weijin Huang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Beijing 100050, China.
| | - Jun Yang
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38015, USA.
| | - Zhiheng Wen
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Beijing 100050, China.
| | - Yansheng Geng
- Health Science Center, Hebei University, No. 342 Yuhuadonglu, Baoding 071000, China.
| | - Chenyan Zhao
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Beijing 100050, China.
| | - Heqiu Zhang
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, 27, Taiping Road, Beijing 100850, China.
| | - Youchun Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Beijing 100050, China.
| |
Collapse
|
21
|
Triyatni M, Berger EA, Saunier B. Assembly and release of infectious hepatitis C virus involving unusual organization of the secretory pathway. World J Hepatol 2016; 8:796-814. [PMID: 27429716 PMCID: PMC4937168 DOI: 10.4254/wjh.v8.i19.796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/30/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if calnexin (CANX), RAB1 and alpha-tubulin were involved in the production of hepatitis C virus (HCV) particles by baby hamster kidney-West Nile virus (BHK-WNV) cells.
METHODS: Using a siRNA-based approach complemented with immuno-fluorescence confocal microscope and Western blot studies, we examined the roles of CANX, RAB1 and alpha-tubulin in the production of HCV particles by permissive BHK-WNV cells expressing HCV structural proteins or the full-length genome of HCV genotype 1a. Immuno-fluorescence studies in producer cells were performed with monoclonal antibodies against HCV structural proteins, as well as immunoglobulin from the serum of a patient recently cured from an HCV infection of same genotype. The cellular compartment stained by the serum immunoglobulin was also observed in thin section transmission electron microscopy. These findings were compared with the JFH-1 strain/Huh-7.5 cell model.
RESULTS: We found that CANX was necessary for the production of HCV particles by BHK-WNV cells. This process involved the recruitment of a subset of HCV proteins, detected by immunoglobulin of an HCV-cured patient, in a compartment of rearranged membranes bypassing the endoplasmic reticulum-Golgi intermediary compartment and surrounded by mitochondria. It also involved the maturation of N-linked glycans on HCV envelope proteins, which was required for assembly and/or secretion of HCV particles. The formation of this specialized compartment required RAB1; upon expression of HCV structural genes, this compartment developed large vesicles with viral particles. RAB1 and alpha-tubulin were required for the release of HCV particles. These cellular factors were also involved in the production of HCVcc in the JFH-1 strain/Huh-7.5 cell system, which involves HCV RNA replication. The secretion of HCV particles by BHK-WNV cells presents similarities with a pathway involving caspase-1; a caspase-1 inhibitor was found to suppress the production of HCV particles from a full-length genome.
CONCLUSION: Prior activity of the WNV subgenomic replicon in BHK-21 cells promoted re-wiring of host factors for the assembly and release of infectious HCV in a caspase-1-dependent mechanism.
Collapse
|
22
|
Zhou Y, Zhao C, Tian Y, Xu N, Wang Y. Characteristics and Functions of HEV Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 948:17-38. [PMID: 27738977 DOI: 10.1007/978-94-024-0942-0_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) is a non-enveloped virus containing a single-stranded, positive-sense RNA genome of 7.2 kb, which consists of a 5' noncoding region, three open reading frames (ORFs), and a 3' noncoding region. ORF1 is diverse between genotypes and encodes the nonstructural proteins, which include the enzymes needed for virus replication. In addition to its role in virus replication, the function of ORF1 is relevant to viral adaption in cultured cells and may also relate to virus infection and HEV pathogenicity. ORF2 protein is the capsid protein, which is about 660 amino acids in length. It not only protects the integrity of the viral genome but is also involved in many important physiological activities, such as virus assembly, infection, and host interaction. The main immune epitopes, especially neutralizing epitopes, are located on ORF2 protein, which is a candidate antigen for vaccine development. ORF3 protein is a phosphoprotein of 113 or 114 amino acids with a molecular weight of 13 kDa with multiple functions that can also induce strong immune reactivity.
Collapse
Affiliation(s)
- Yan Zhou
- Division of Drug and Cosmetics Inspection, Center for Food and Drug Inspection, China Food and Drug Administration, No.11 Fa Hua Nan Li, Dongcheng District, Beijing, 100061, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Yabin Tian
- Division of Diagnosis, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Nan Xu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, No. 2 Tiantanxili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
23
|
Lakshminarayanan A, Reddy BU, Raghav N, Ravi VK, Kumar A, Maiti PK, Sood AK, Jayaraman N, Das S. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells. NANOSCALE 2015; 7:16921-16931. [PMID: 26411288 DOI: 10.1039/c5nr02898a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse 'off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting "out" in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the 'proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.
Collapse
|
24
|
Stefas I, Tigrett S, Dubois G, Kaiser M, Lucarz E, Gobby D, Bray D, Ellerbrok H, Zarski JP, Veas F. Interactions between Hepatitis C Virus and the Human Apolipoprotein H Acute Phase Protein: A Tool for a Sensitive Detection of the Virus. PLoS One 2015; 10:e0140900. [PMID: 26502286 PMCID: PMC4621047 DOI: 10.1371/journal.pone.0140900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 10/01/2015] [Indexed: 12/20/2022] Open
Abstract
The Hepatitis C virus (HCV) infection exhibits a high global prevalence frequently associated with hepatocellular carcinoma, taking years to develop. Despite the standardization of highly sensitive HCV quantitative RT-PCR (qRT-PCR) detection methods, false-negative diagnoses may be generated with current methods, mainly due to the presence of PCR inhibitors and/or low viral loads in the patient’s sample. These false-negative diagnoses impact both public health systems, in developing countries, and an in lesser extent, in developed countries, including both the risk of virus transmission during organ transplantation and/or blood transfusion and the quality of the antiviral treatment monitoring. To adopt an appropriate therapeutic strategy to improve the patient’s prognosis, it is urgent to increase the HCV detection sensitivity. Based upon previous studies on HBV, we worked on the capacity of the scavenger acute phase protein, Apolipoprotein H (ApoH) to interact with HCV. Using different approaches, including immunoassays, antibody-inhibition, oxidation, ultracentrifugation, electron microscopy and RT-PCR analyses, we demonstrated specific interactions between HCV particles and ApoH. Moreover, when using a two-step HCV detection process, including capture of HCV by ApoH-coated nanomagnetic beads and a home-made real-time HCV-RT-PCR, we confirmed the presence of HCV for all samples from a clinical collection of HCV-seropositive patients exhibiting an RT-PCR COBAS® TaqMan® HCV Test, v2.0 (COBAS)-positive result. In contrast, for HCV-seropositive patients with either low HCV-load as determined with COBAS or exhibiting HCV-negative COBAS results, the addition of the two-step ApoH-HCV-capture and HCV-detection process was able to increase the sensitivity of HCV detection or more interestingly, detect in a genotype sequence-independent manner, a high-proportion (44%) of HCV/RNA-positive among the COBAS HCV-negative patients. Thus, the immune interaction between ApoH and HCV could be used as a sample preparation tool to enrich and/or cleanse HCV patient’s samples to enhance the detection sensitivity of HCV and therefore significantly reduce the numbers of false-negative HCV diagnosis results.
Collapse
Affiliation(s)
- Ilias Stefas
- ApoH-Technologies, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Sylvia Tigrett
- ApoH-Technologies, Faculté de Pharmacie, Université de Montpellier, Montpellier, France; Institut de Recherche pour le Développement, UMR-Ministère de la Défense 3, Laboratoire d'Immuno-Physiopathologie Moléculaire Comparée, Faculté de Pharmacie, Montpellier, France
| | - Grégor Dubois
- Institut de Recherche pour le Développement, UMR-Ministère de la Défense 3, Laboratoire d'Immuno-Physiopathologie Moléculaire Comparée, Faculté de Pharmacie, Montpellier, France
| | | | - Estelle Lucarz
- ApoH-Technologies, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Delphine Gobby
- ApoH-Technologies, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Dorothy Bray
- Immunoclin Corporation, Washington, DC, United States of America
| | - Heinz Ellerbrok
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses, Berlin, Germany
| | - Jean Pierre Zarski
- Clinique d'Hépato-gastroentérologie, Centre Hospitalier Universitaire de Grenoble, IAB, INSERM U823, Grenoble, France
| | - Francisco Veas
- Institut de Recherche pour le Développement, UMR-Ministère de la Défense 3, Laboratoire d'Immuno-Physiopathologie Moléculaire Comparée, Faculté de Pharmacie, Montpellier, France
| |
Collapse
|
25
|
Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses 2015; 7:4461-81. [PMID: 26258788 PMCID: PMC4576187 DOI: 10.3390/v7082826] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
The high prevalence of hepatitis C virus (HCV) infection in the human population has triggered intensive research efforts that have led to the development of curative antiviral therapy. Moreover, HCV has become a role model to study fundamental principles that govern the replication cycle of a positive strand RNA virus. In fact, for most HCV proteins high-resolution X-ray and NMR (Nuclear Magnetic Resonance)-based structures have been established and profound insights into their biochemical and biological properties have been gained. One example is p7, a small hydrophobic protein that is dispensable for RNA replication, but crucial for the production and release of infectious HCV particles from infected cells. Owing to its ability to insert into membranes and assemble into homo-oligomeric complexes that function as minimalistic ion channels, HCV p7 is a member of the viroporin family. This review compiles the most recent findings related to the structure and dual pore/ion channel activity of p7 of different HCV genotypes. The alternative conformations and topologies proposed for HCV p7 in its monomeric and oligomeric state are described and discussed in detail. We also summarize the different roles p7 might play in the HCV replication cycle and highlight both the ion channel/pore-like function and the additional roles of p7 unrelated to its channel activity. Finally, we discuss possibilities to utilize viroporin inhibitors for antagonizing p7 ion channel/pore-like activity.
Collapse
|
26
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
27
|
Asialoglycoprotein receptor mediated hepatocyte targeting — Strategies and applications. J Control Release 2015; 203:126-39. [DOI: 10.1016/j.jconrel.2015.02.022] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
|
28
|
Chen PC, Chuang PK, Chen CH, Chan YT, Chen JR, Lin SW, Ma C, Hsu TL, Wong CH. Role of N-linked glycans in the interactions of recombinant HCV envelope glycoproteins with cellular receptors. ACS Chem Biol 2014; 9:1437-43. [PMID: 24766301 DOI: 10.1021/cb500121c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis and hepatocellular carcinoma. It infects human liver cells through several cellular protein receptors including CD81, SR-BI, claudin-1, and occludin. Previous reports also show that lectin receptors can mediate HCV recognition and entry. The envelope proteins of HCV (E1 and E2) are heavily glycosylated, further indicating the possible roles of lectin receptor-virus interaction in HCV infection. However, there is limited study investigating the relationship of HCV envelope glycoproteins and lectin as well as non-lectin receptors. Here we used surface plasmon resonance to examine the binding affinity of different glycoforms of recombinant HCV envelope protein to receptors and inspected the infectivity and assembly of HCV pseudoparticles composed of different glycoforms of envelope proteins. Our results indicated that DC-SIGN, L-SIGN, and Langerin had higher affinity to recombinant HCV envelope proteins in the presence of calcium ions than non-lectin receptors, and envelope proteins with Man8/9 N-glycans showed approximate 10-fold better binding to lectin receptors than envelope proteins with Man5 and complex type N-glycans. Interestingly, comparing among glycoforms, recombinant envelope proteins with Man5 N-glycans showed the highest binding affinity when interacting with non-lectin receptors. In summary, the glycans on HCV envelope protein play a modulatory role in HCV assembly and infection and direct HCV-receptor interaction, which mediates viral entry in different cells. Receptors with high affinity to HCV envelope proteins may be considered as targets for development of a therapeutic strategy against HCV.
Collapse
Affiliation(s)
- Po-Chang Chen
- Institute
of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Po-Kai Chuang
- Institute
of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bentham MJ, Marraiki N, McCormick CJ, Rowlands DJ, Griffin S. NS2 is dispensable for efficient assembly of hepatitis C virus-like particles in a bipartite trans-encapsidation system. J Gen Virol 2014; 95:2427-2441. [PMID: 25024280 PMCID: PMC4202265 DOI: 10.1099/vir.0.068932-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infectious hepatitis C virus (HCV) particle production in the genotype 2a JFH-1-based cell culture system involves non-structural proteins in addition to canonical virion components. NS2 has been proposed to act as a protein adaptor, co-ordinating the early stages of virion assembly. However, other studies have identified late-acting roles for this protein, making its precise involvement in infectious particle production unclear. Using a robust, bipartite trans-encapsidation system based upon baculovirus expression of HCV structural proteins, we have generated HCV-like particles (HCV-LP) in the absence of NS2 with overt similarity to wild-type virions. HCV-LP could transduce naive cells with trans-encapsidated subgenomic replicon RNAs and shared similar biochemical and biophysical properties with JFH-1 HCV. Both genotype 1b and JFH-1 intracellular HCV-LP were produced in the absence of NS2, whereas restoring NS2 to the JFH-1 system dramatically enhanced secreted infectivity, consistent with a late-acting role. Our system recapitulated authentic HCV particle assembly via trans-complementation of bicistronic, NS2-deleted, chimeric HCV, which is otherwise deficient in particle production. This closely resembled replicon-mediated NS2 trans-complementation, confirming that baculovirus expression of HCV proteins did not unduly affect particle production. Furthermore, this suggests that separation of structural protein expression from replicating HCV RNAs that are destined to be packaged alleviates an early stage requirement for NS2 during particle formation. This highlights our current lack of understanding of how NS2 mediates assembly, yet comparison of full-length and bipartite systems may provide further insight into this process.
Collapse
Affiliation(s)
- Matthew J Bentham
- Leeds Institute of Cancer & Pathology (LICAP), and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, UK
| | - Najat Marraiki
- School of Molecular & Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Mount Preston Street, Leeds, West Yorkshire LS2 9JT, UK
| | - Christopher J McCormick
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - David J Rowlands
- School of Molecular & Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Mount Preston Street, Leeds, West Yorkshire LS2 9JT, UK
| | - Stephen Griffin
- School of Molecular & Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Mount Preston Street, Leeds, West Yorkshire LS2 9JT, UK.,Leeds Institute of Cancer & Pathology (LICAP), and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, UK
| |
Collapse
|
30
|
Atkins E, Tatineni R, Li H, Gretch D, Harris M, Griffin S. The stability of secreted, acid-labile H77/JFH-1 hepatitis C virus (HCV) particles is altered by patient isolate genotype 1a p7 sequences. Virology 2014; 448:117-24. [PMID: 24314642 PMCID: PMC7615703 DOI: 10.1016/j.virol.2013.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/05/2013] [Accepted: 10/03/2013] [Indexed: 12/17/2022]
Abstract
Secreted infectious particles generated by the genotype 2a JFH-1 hepatitis C virus infectious clone are resistant to acidic pH, whereas intracellular virions remain acid-labile. Thus, JFH-1 particles are thought to undergo pH maturation as they are secreted from the cell. Here, we demonstrate that both infectious intracellular and secreted genotype 1a (H77)/JFH-1 chimaeric particles display enhanced acid sensitivity compared with JFH-1, although pH maturation still occurs upon release. Introduction of p7 sequences from genotype 1a infected HCV patients into the H77/JFH-1 background yielded variable effects on infectious particle production and sensitivity to small molecule inhibitors. However, two selected patient p7 sequences increased the acid stability of secreted, but not intracellular H77/JFH-1 particles, suggesting that p7 directly influences particle pH maturation via an as yet undefined mechanism. We propose that HCV particles vary in acid stability, and that this may be dictated by variations in both canonical structural proteins and p7.
Collapse
Affiliation(s)
- Elizabeth Atkins
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom
| | - Ranjitha Tatineni
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, St James’ University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, United Kingdom
| | - Hui Li
- Department of Laboratory Medicine, University of Washington School of Medicine, Harborview Medical Centre, Ninth & Jefferson Building, 908 Jefferson Street, Seattle, WA 98104, USA
| | - David Gretch
- Department of Laboratory Medicine, University of Washington School of Medicine, Harborview Medical Centre, Ninth & Jefferson Building, 908 Jefferson Street, Seattle, WA 98104, USA
| | - Mark Harris
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom
| | - Stephen Griffin
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, St James’ University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, United Kingdom
| |
Collapse
|
31
|
Sun L, Zhang X, An J, Su C, Guo Q, Li C. Boronate ester bond-based core–shell nanocarriers with pH response for anticancer drug delivery. RSC Adv 2014. [DOI: 10.1039/c4ra01812e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, the major challenge for cancer treatment is to develop simple and smart nanocarriers that can efficiently retain the encapsulated drug during blood circulation, recognize tumor cells and quickly release the drug under stimulation.
Collapse
Affiliation(s)
- Lei Sun
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Jinxia An
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Cui Su
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Qianqain Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| |
Collapse
|
32
|
Abstract
The consumption of alcohol is associated with many health issues including alcoholic liver disease (ALD). The natural history of ALD involves the development of steatosis, inflammation (steatohepatitis), fibrosis and cirrhosis. During the stage of steatohepatitis, the combination of inflammation and cellular damage can progress to a severe condition termed alcoholic hepatitis (AH). Unfortunately, the pathogenesis of AH remains uncharacterized. Some modulations have been identified in host defense and liver immunity mechanisms during AH that highlight the role of intrahepatic lymphocyte accumulation and associated inflammatory cytokine responses. Also, it is hypothesized that alcohol-induced injury to liver cells may significantly contribute to the aberrant lymphocytic distribution that is seen in AH. In particular, the regulation of lymphocytes by hepatocytes may be disrupted in the alcoholic liver resulting in altered immunologic homeostasis and perpetuation of disease. In recent studies, it was demonstrated that the direct killing of activated T lymphocytes by hepatocytes is facilitated by the asialoglycoprotein receptor (ASGPR). The ASGPR is a well-characterized glycoprotein receptor that is exclusively expressed by hepatocytes. This hepatic receptor is known for its role in the clearance of desialylated glycoproteins or cells, yet neither its physiological function nor its role in disease states has been determined. Interestingly, alcohol markedly impairs ASGPR function; however, the effect alcohol has on ASGPR-mediated cytotoxicity of lymphocytes remains to be elucidated. This review discusses the contribution of hepatocytes in immunological regulation and, importantly, how pathological effects of ethanol disrupt hepatocellular-mediated defense mechanisms.
Collapse
|
33
|
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus and a major cause of chronic hepatitis and liver disease worldwide. Initial interactions between HCV virions and hepatocytes are required for productive viral infection and initiation of the viral life cycle. Furthermore, HCV entry contributes to the tissue tropism and species specificity of this virus. The elucidation of these interactions is critical, not only to understand the pathogenesis of HCV infection, but also to design efficient antiviral strategies and vaccines. This review summarizes our current knowledge of the host factors required for the HCV-host interactions during HCV binding and entry, our understanding of the molecular mechanisms underlying HCV entry into target cells, and the relevance of HCV entry for the pathogenesis of liver disease, antiviral therapy, and vaccine development.
Collapse
|
34
|
Bentham MJ, Foster TL, McCormick C, Griffin S. Mutations in hepatitis C virus p7 reduce both the egress and infectivity of assembled particles via impaired proton channel function. J Gen Virol 2013; 94:2236-2248. [PMID: 23907396 DOI: 10.1099/vir.0.054338-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hepatitis C virus (HCV) p7 protein is critical for the efficient production of infectious virions in culture. p7 undergoes genotype-specific protein-protein interactions as well as displaying channel-forming activity, making it unclear whether the phenotypes of deleterious p7 mutations result from the disruption of one or both of these functions. Here, we showed that proton channel activity alone, provided in trans by either influenza virus M2 or genotype 1b HCV p7, was both necessary and sufficient to restore infectious particle production to genotype 2a HCV (JFH-1 isolate) carrying deleterious p7 alanine substitutions within the p7 dibasic loop (R33A, R35A), and the N-terminal trans-membrane region (N15 : C16 : H17/AAA). Both mutations markedly reduced mature p7 abundance, with those in the dibasic loop also significantly reducing levels of mature E2 and NS2. Interestingly, whilst M2 and genotype 1b p7 restored the same level of intracellular infectivity as JFH-1 p7, supplementing with the isogenic protein led to a further increase in secreted infectivity, suggesting a late-acting role for genotype-specific p7 protein interactions. Finally, cells infected by viruses carrying p7 mutations contained non-infectious core-containing particles with densities equivalent to WT HCV, indicating a requirement for p7 proton channel activity in conferring an infectious phenotype to virions.
Collapse
Affiliation(s)
- Matthew J Bentham
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| | - Toshana L Foster
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| | - Christopher McCormick
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| |
Collapse
|
35
|
Wang X, Sun H, Meng F, Cheng R, Deng C, Zhong Z. Galactose-Decorated Reduction-Sensitive Degradable Chimaeric Polymersomes as a Multifunctional Nanocarrier To Efficiently Chaperone Apoptotic Proteins into Hepatoma Cells. Biomacromolecules 2013; 14:2873-82. [DOI: 10.1021/bm4007248] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaoyan Wang
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, Department of Polymer Science and
Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
| | - Huanli Sun
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, Department of Polymer Science and
Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
| | - Fenghua Meng
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, Department of Polymer Science and
Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
| | - Ru Cheng
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, Department of Polymer Science and
Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
| | - Chao Deng
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, Department of Polymer Science and
Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
| | - Zhiyuan Zhong
- Biomedical
Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional
Polymer Design and Application, Department of Polymer Science and
Engineering, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou 215123,
P. R. China
| |
Collapse
|
36
|
Sun P, Zheng J, She G, Wei X, Zhang X, Shi H, Zhou X. Expression pattern of asialoglycoprotein receptor in human testis. Cell Tissue Res 2013; 352:761-8. [PMID: 23604802 DOI: 10.1007/s00441-013-1616-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/11/2013] [Indexed: 02/05/2023]
Abstract
During acute or chronic hepatitis B virus (HBV) infection, the virus can invade the male reproductive system, pass through the blood-testis barrier and integrate into the germ line, resulting in abnormal spermatozoa. However, the pathway remains unclear. The asialoglycoprotein receptor (ASGR), a potential receptor for HBV, is mainly distributed in hepatocytes. We have examined the distribution of ASGR in human testis and found it in the seminiferous tubules and interstitial region but its enrichment in human testis is much lower than that in liver. By multiple immunoenzyme histochemistry staining, ASGR was precisely co-localized with vimentin (Sertoli cell marker) but not proliferating cell nuclear antigen (spermatogonial cell marker) in testis tissue. ASGR was expressed in human Leydig cells, stromal cells in the seminiferous tubules and Sertoli cells but seldom in spermatogonial cells. Therefore, ASGR could provide HBV with access to the luminal compartment of human testis. The mechanism by which HBV invades germ cells remains unknown.
Collapse
Affiliation(s)
- Pingnan Sun
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes. J Virol 2013; 87:6866-75. [PMID: 23576506 DOI: 10.1128/jvi.03475-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our recent studies demonstrated that apolipoprotein E mediates cell attachment of hepatitis C virus (HCV) through interactions with the cell surface heparan sulfate (HS). HS is known to covalently attach to core proteins to form heparan sulfate proteoglycans (HSPGs) on the cell surface. The HSPG core proteins include the membrane-spanning syndecans (SDCs), the lycosylphosphatidylinositol-linked glypicans (GPCs), the basement membrane proteoglycan perlecan (HSPG2), and agrin. In the present study, we have profiled each of the HSPG core proteins in HCV attachment. Substantial evidence derived from our studies demonstrates that SDC1 is the major receptor protein for HCV attachment. The knockdown of SDC1 expression by small interfering RNA (siRNA)-induced gene silence resulted in a significant reduction of HCV attachment to Huh-7.5 cells and stem cell-differentiated human hepatocytes. The silence of SDC2 expression also caused a modest decrease of HCV attachment. In contrast, the siRNA-mediated knockdown of other SDCs, GPCs, HSPG2, and agrin had no effect on HCV attachment. More importantly, ectopic expression of SDC1 was able to completely restore HCV attachment to Huh-7.5 cells in which the endogenous SDC1 expression was silenced by specific siRNAs. Interestingly, mouse SDC1 is also fully functional in mediating HCV attachment when expressed in the SDC1-deficient cells, consistent with recent reports that mouse hepatocytes are also susceptible to HCV infection when expressing other key HCV receptors. Collectively, our findings demonstrate that SDC1 serves as the major receptor protein for HCV attachment to cells, providing another potential target for discovery and development of antiviral drugs against HCV.
Collapse
|
38
|
Coulstock E, Sosabowski J, Ovečka M, Prince R, Goodall L, Mudd C, Sepp A, Davies M, Foster J, Burnet J, Dunlevy G, Walker A. Liver-targeting of interferon-alpha with tissue-specific domain antibodies. PLoS One 2013; 8:e57263. [PMID: 23451195 PMCID: PMC3581439 DOI: 10.1371/journal.pone.0057263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/18/2013] [Indexed: 12/27/2022] Open
Abstract
Interferon alpha (IFNα) is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. We genetically fused IFN to a domain antibody (dAb) specific to a hepatocyte restricted antigen, asialoglycoprotein receptor (ASGPR). Our results show that the murine IFNα2 homolog (mIFNα2) fused to an ASGPR specific dAb, termed DOM26h-196-61, could be expressed in mammalian tissue culture systems and retains the desirable biophysical properties and activity of both fusion partners when measured in vitro. Furthermore a clear increase in in vivo targeting of the liver by mIFNα2-ASGPR dAb fusion protein, compared to that observed with either unfused mIFNα2 or mIFNα2 fused to an isotype control dAb VHD2 (which does not bind ASGPR) was demonstrated using microSPECT imaging. We suggest that these findings may be applicable in the development of a liver-targeted human IFN molecule with improved safety and patient compliance in comparison to the current standard of care, which could ultimately be used as a treatment for human hepatitis virus infections.
Collapse
Affiliation(s)
- Edward Coulstock
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Milan Ovečka
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Rob Prince
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Laura Goodall
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Clare Mudd
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Armin Sepp
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Marie Davies
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Julie Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jerome Burnet
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Gráinne Dunlevy
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Adam Walker
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Paganelli M, Dallmeier K, Nyabi O, Scheers I, Kabamba B, Neyts J, Goubau P, Najimi M, Sokal EM. Differentiated umbilical cord matrix stem cells as a new in vitro model to study early events during hepatitis B virus infection. Hepatology 2013; 57:59-69. [PMID: 22898823 DOI: 10.1002/hep.26006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/30/2012] [Indexed: 01/08/2023]
Abstract
UNLABELLED The role of cell differentiation state on hepatitis B virus (HBV) replication has been well demonstrated, whereas how it determines cell susceptibility to HBV entry is far less understood. We previously showed that umbilical cord matrix stem cells (UCMSC) can be differentiated towards hepatocyte-like cells in vitro. In this study we infected undifferentiated (UD-) and differentiated (D-) UCMSCs with HBV and studied the infection kinetics, comparing them to primary human hepatocytes (PHHs). UD-UCMSCs, although permissive to viral binding, had a very limited uptake capacity, whereas D-UCMSCs showed binding and uptake capabilities similar to PHHs. Likewise, asialoglycoprotein receptor (ASGPR) was up-regulated in UCMSCs upon differentiation. In D-UCMSCs, a dose-dependent inhibition of HBV binding and uptake was observed when ASGPR was saturated with known specific ligands. Subsequent viral replication was shown in D-UCMSCs but not in UD-UCMSCs. Susceptibility of UCMSCs to viral replication correlated with the degree of differentiation. Replication efficiency was low compared to PHHs, but was confirmed by (1) a dose-dependent inhibition by specific antiviral treatment using tenofovir; (2) the increase of viral RNAs along time; (3) de novo synthesis of viral proteins; and (4) secretion of infectious viral progeny. CONCLUSION UCMSCs become supportive of the entire HBV life cycle upon in vitro hepatic differentiation. Despite low replication efficiency, D-UCMSCs proved to be fully capable of HBV uptake. Overall, UCMSCs are a unique human, easily available, nontransformed, in vitro model of HBV infection that could prove useful to study early infection events and the role of the cell differentiation state on such events.
Collapse
Affiliation(s)
- Massimiliano Paganelli
- Pediatric Gastroenterology & Hepatology Unit, Université catholique de Louvain and Cliniques universitaires Saint-Luc, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zeng J, Wu Y, Liao Q, Li L, Chen X, Chen X. Liver X receptors agonists impede hepatitis C virus infection in an Idol-dependent manner. Antiviral Res 2012; 95:245-56. [PMID: 22713431 DOI: 10.1016/j.antiviral.2012.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/09/2012] [Accepted: 06/09/2012] [Indexed: 01/01/2023]
Abstract
Hepatitis C virus (HCV) is a major human pathogen that causes many serious diseases, including acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma. Treatments for this virus are inadequate, and improved antiviral therapies are necessary. Although the precise mechanisms regulating HCV entry into hepatic cells are still unknown, the low-density lipoprotein receptor (LDLR) has been shown to be essential for entry of infectious HCV particles. Liver X receptors (LXR) were recently reported to control LDLR expression through the regulation of the expression of the Idol (inducible degrader of the LDLR) protein, which could trigger the ubiquitination and degradation of LDLR. In this study, we analyzed the antiviral effect of Idol in vitro. The results demonstrated that Huh7.5.1 cells that exogenously expressed Idol were resistant to HCV infection. Next, the treatment of HCV-infected Huh7.5.1 cells with either synthetic LXR agonists (GW3965 or T0901317) or the natural LXR ligand 24(S),25-epoxycholesterol inhibited HCV infection in a dose-dependent manner. Furthermore, a combination of LXR agonists and HCV RNA replication inhibitors exerted additive effects against HCV, as revealed by isobologram analysis. In conclusion, our data indicate that molecules such as LXR agonists, which could stimulate the expression of Idol, represent a new class of potential anti-HCV compounds, and these compounds could be developed for therapeutic use against HCV infection, either as a monotherapy, or in combination with other anti-HCV drugs.
Collapse
Affiliation(s)
- Jing Zeng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academic of Sciences, Wuhan, Hubei 430071, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Hepatitis C virus attachment mediated by apolipoprotein E binding to cell surface heparan sulfate. J Virol 2012; 86:7256-67. [PMID: 22532692 DOI: 10.1128/jvi.07222-11] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Viruses are known to use virally encoded envelope proteins for cell attachment, which is the very first step of virus infection. In the present study, we have obtained substantial evidence demonstrating that hepatitis C virus (HCV) uses the cellular protein apolipoprotein E (apoE) for its attachment to cells. An apoE-specific monoclonal antibody was able to efficiently block HCV attachment to the hepatoma cell line Huh-7.5 as well as primary human hepatocytes. After HCV bound to cells, however, anti-apoE antibody was unable to inhibit virus infection. Conversely, the HCV E2-specific monoclonal antibody CBH5 did not affect HCV attachment but potently inhibited HCV entry. Similarly, small interfering RNA-mediated knockdown of the key HCV receptor/coreceptor molecules CD81, claudin-1, low-density lipoprotein receptor (LDLr), occludin, and SR-BI did not affect HCV attachment but efficiently suppressed HCV infection, suggesting their important roles in HCV infection at postattachment steps. Strikingly, removal of heparan sulfate from the cell surface by treatment with heparinase blocked HCV attachment. Likewise, substitutions of the positively charged amino acids with neutral or negatively charged residues in the receptor-binding region of apoE resulted in a reduction of apoE-mediating HCV infection. More importantly, mutations of the arginine and lysine to alanine or glutamic acid in the receptor-binding region ablated the heparin-binding activity of apoE, as determined by an in vitro heparin pulldown assay. HCV attachment could also be inhibited by a synthetic peptide derived from the apoE receptor-binding region. Collectively, these findings demonstrate that apoE mediates HCV attachment through specific interactions with cell surface heparan sulfate.
Collapse
|
42
|
Khaliq S, Jahan S, Hassan S. Hepatitis C virus p7: molecular function and importance in hepatitis C virus life cycle and potential antiviral target. Liver Int 2011; 31:606-17. [PMID: 21457434 DOI: 10.1111/j.1478-3231.2010.02442.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
p7, a 63-residue peptide encoded by hepatitis C virus (HCV), a major pathogen associated with a risk of developing severe liver disease, is involved in ion channel activity in lipid bilayer membranes both in in vitro and cell-based assays. p7 protein consists of two transmembrane α-helices, TM1 and TM2 connected by a loop oriented towards the cytoplasm. HCV relies on p7 function in addition to ion channel formation for efficient assembly, release and production of infectious progeny virions from liver cells. p7 activity is strictly sequence specific as mutation analysis showed the loss of ion channel function. Moreover, p7 ion channel activity can be specifically inhibited by different drugs suggesting the protein as a new target for future antiviral chemotherapy. In the present review, we focused to bring together the recent development to explore the potential role of p7 protein in HCV infection and its inhibition as a therapy.
Collapse
Affiliation(s)
- Saba Khaliq
- Functional and Applied Genomics Laboratory, National Center of Excellence in Molecular Biology, University of Punjab, Lahore, Pakistan.
| | | | | |
Collapse
|
43
|
Triyatni M, Berger EA, Saunier B. A new model to produce infectious hepatitis C virus without the replication requirement. PLoS Pathog 2011; 7:e1001333. [PMID: 21533214 PMCID: PMC3077361 DOI: 10.1371/journal.ppat.1001333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 03/14/2011] [Indexed: 02/06/2023] Open
Abstract
Numerous constraints significantly hamper the experimental study of hepatitis C virus (HCV). Robust replication in cell culture occurs with only a few strains, and is invariably accompanied by adaptive mutations that impair in vivo infectivity/replication. This problem complicates the production and study of authentic HCV, including the most prevalent and clinically important genotype 1 (subtypes 1a and 1b). Here we describe a novel cell culture approach to generate infectious HCV virions without the HCV replication requirement and the associated cell-adaptive mutations. The system is based on our finding that the intracellular environment generated by a West-Nile virus (WNV) subgenomic replicon rendered a mammalian cell line permissive for assembly and release of infectious HCV particles, wherein the HCV RNA with correct 5′ and 3′ termini was produced in the cytoplasm by a plasmid-driven dual bacteriophage RNA polymerase-based transcription/amplification system. The released particles preferentially contained the HCV-based RNA compared to the WNV subgenomic RNA. Several variations of this system are described with different HCV-based RNAs: (i) HCV bicistronic particles (HCVbp) containing RNA encoding the HCV structural genes upstream of a cell-adapted subgenomic replicon, (ii) HCV reporter particles (HCVrp) containing RNA encoding the bacteriophage SP6 RNA polymerase in place of HCV nonstructural genes, and (iii) HCV wild-type particles (HCVwt) containing unmodified RNA genomes of diverse genotypes (1a, strain H77; 1b, strain Con1; 2a, strain JFH-1). Infectivity was assessed based on the signals generated by the HCV RNA molecules introduced into the cytoplasm of target cells upon virus entry, i.e. HCV RNA replication and protein production for HCVbp in Huh-7.5 cells as well as for HCVwt in HepG2-CD81 cells and human liver slices, and SP6 RNA polymerase-driven firefly luciferase for HCVrp in target cells displaying candidate HCV surface receptors. HCV infectivity was inhibited by pre-incubation of the particles with anti-HCV antibodies and by a treatment of the target cells with leukocyte interferon plus ribavirin. The production of authentic infectious HCV particles of virtually any genotype without the adaptive mutations associated with in vitro HCV replication represents a new paradigm to decipher the requirements for HCV assembly, release, and entry, amenable to analyses of wild type and genetically modified viruses of the most clinically significant HCV genotypes. Two decades after its identification, hepatitis C virus (HCV) remains a leading cause of serious liver diseases worldwide. The poor in vitro propagation of patient isolates has impaired their study. Conversely, viral strains of the most prevalent (∼70% of total infections) and clinically problematic (∼45% cured with the standard of care) genotype 1 adapted for in vitro replication display mutations impairing yield and/or in vivo infectivity. We established a new cell culture model for producing infectious HCV in a cell line stably bearing a subgenomic replicon from West Nile virus (a flavivirus belonging to the same family as HCV) that circumvents the requirement for HCV RNA replication. To study viral infectivity in vitro, we devised several HCV genome-based constructs. This system produced wild type HCV particles of subtypes 1a, 1b, 2a and a 1b/2a chimera. All specifically infected permissive target cells, and HCV particles containing wild type genomes known to be infectious in vivo infected human liver slices ex vivo. The production of authentic HCV particles independent of HCV RNA replication represents a new paradigm to decipher requirements for HCV assembly, release, and entry, amenable to analyses of wild type and genetically modified viruses of the most clinically significant genotypes.
Collapse
Affiliation(s)
- Miriam Triyatni
- Molecular Structure Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Edward A. Berger
- Molecular Structure Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Bertrand Saunier
- Molecular Structure Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- Paris-Descartes University, Faculty of Medicine, Paris, France
- Institut Cochin, Paris, France
- Inserm U1016, Paris, France
- * E-mail:
| |
Collapse
|
44
|
Rosenberg P, Hagen K. Serum B12 levels predict response to treatment with interferon and ribavirin in patients with chronic HCV infection. J Viral Hepat 2011; 18:129-34. [PMID: 20196801 DOI: 10.1111/j.1365-2893.2010.01288.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin B12 is stored in hepatocytes and inhibits hepatitis C virus (HCV) RNA translation. The implication of B12 in the setting of antiviral treatment is unknown. This study aims to retrospectively evaluate the discriminative efficacy of pretreatment B12 serum levels (s-B12) on end-of-treatment response (ETR) in patients with chronic HCV. Ninety-nine treatment naïve HCV patients, treated with interferon and ribavirin were studied. Serum B12 (s-B12) was analysed in samples collected before treatment start. Pretreatment s-B12 levels were correlated to ETR using univariate analysis. S-B12 and clinical data were evaluated in a multivariate logistic regression model. Mean pretreatment s-B12 was 331 pm in ETR and 260 pm in nonresponders (NR) (P = 0.012). In patients with s-B12 levels ≤ 360 pm, 23 (31.5%) were NR and 50 (68.5%) had ETR. In patients with s-B12 > 360 pm, one (3.8%) was NR and 25 (96.2%) had ETR (P = 0.0034). The results of the multivariate analysis were as follows: Pretreatment s-B12 > 360 vs ≤ 360 pm: OR 28.6 CI 2.31-354, P = 0.008. Fibrosis stage 3-4 vs 0-2: OR 0.29 CI 0.074-1.12, P = 0.068. Genotype 2/3 vs 1/4/5: OR 15.5 CI 2.87-83.9, P = 0.0012. Dose reduction vs no dose reduction: OR 0.21, CI 0.048-0.91 P = 0.034. Standard interferon vs pegylated-interferon: OR 0.079, CI 0.0091-0.68 P = 0.019. Age and gender were not correlated to ETR. S-B12 > 360 pm is independently correlated to ETR in HCV patients treated with interferon and ribavirin. This suggests that B12 is involved in suppression of viral replication during anti-HCV treatment.
Collapse
Affiliation(s)
- P Rosenberg
- Department of Medicine, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
45
|
Sabahi A, Marsh KA, Dahari H, Corcoran P, Lamora JM, Yu X, Garry RF, Uprichard SL. The rate of hepatitis C virus infection initiation in vitro is directly related to particle density. Virology 2010; 407:110-9. [PMID: 20800257 PMCID: PMC2946418 DOI: 10.1016/j.virol.2010.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/10/2010] [Accepted: 07/18/2010] [Indexed: 02/06/2023]
Abstract
To gain a more complete understanding of hepatitis C virus (HCV) entry, we initially assessed the rate at which HCV initiates productive attachment/infection in vitro and discovered it to be slower than most viruses. Since HCV, including cell culture-derived HCV (HCVcc), exhibits a broad-density profile (1.01-1.16 g/ml), we hypothesized that the varying densities of the HCVcc particles present in the inoculum may be responsible for this prolonged entry phenotype. To test this hypothesis, we show that during infection, particles of high density disappeared from the viral inoculum sooner and initiated productive infection faster than virions of low density. Moreover, we could alter the rate of attachment/infection initiation by increasing or decreasing the density of the cell culture medium. Together, these findings demonstrate that the relationship between the density of HCVcc and the density of the extracellular milieu can significantly impact the rate at which HCVcc productively interacts with target cells in vitro.
Collapse
Affiliation(s)
- Ali Sabahi
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Katherine A. Marsh
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Harel Dahari
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter Corcoran
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jennifer M. Lamora
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Xuemei Yu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert F. Garry
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Susan L. Uprichard
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
46
|
Tencate V, Sainz B, Cotler SJ, Uprichard SL. Potential treatment options and future research to increase hepatitis C virus treatment response rate. Hepat Med 2010; 2010:125-145. [PMID: 21331152 PMCID: PMC3039485 DOI: 10.2147/hmer.s7193] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a liver-tropic blood-borne pathogen that affects more than 170 million people worldwide. Although acute infections are usually asymptomatic, up to 90% of HCV infections persist with the possibility of long-term consequences such as liver fibrosis, cirrhosis, steatosis, insulin resistance, or hepatocellular carcinoma. As such, HCV-associated liver disease is a major public health concern. Although the currently available standard of care therapy of pegylated interferon α plus ribavirin successfully treats infection in a subset of patients, the development of more effective, less toxic HCV antivirals is a health care imperative. This review not only discusses the limitations of the current HCV standard of care but also evaluates upcoming HCV treatment options and how current research elucidating the viral life cycle is facilitating the development of HCV-specific therapeutics that promise to greatly improve treatment response rates both before and after liver transplantation.
Collapse
Affiliation(s)
- Veronica Tencate
- Department of Medicine, Section of Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
47
|
Liu J, Hu B, Yang Y, Ma Z, Yu Y, Liu S, Wang B, Zhao X, Lu M, Yang D. A new splice variant of the major subunit of human asialoglycoprotein receptor encodes a secreted form in hepatocytes. PLoS One 2010; 5:e12934. [PMID: 20886072 PMCID: PMC2944864 DOI: 10.1371/journal.pone.0012934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/29/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The human asialoglycoprotein receptor (ASGPR) is composed of two polypeptides, designated H1 and H2. While variants of H2 have been known for decades, the existence of H1 variants has never been reported. PRINCIPAL FINDINGS We identified two splice variants of ASGPR H1 transcripts, designated H1a and H1b, in human liver tissues and hepatoma cells. Molecular cloning of ASGPR H1 variants revealed that they differ by a 117 nucleotide segment corresponding to exon 2 in the ASGPR genomic sequence. Thus, ASGPR variant H1b transcript encodes a protein lacking the transmembrane domain. Using an H1b-specific antibody, H1b protein and a functional soluble ASGPR (sASGPR) composed of H1b and H2 in human sera and in hepatoma cell culture supernatant were identified. The expression of ASGPR H1a and H1b in Hela cells demonstrated the different cellular loctions of H1a and H1b proteins at cellular membranes and in intracellular compartments, respectively. In vitro binding assays using fluorescence-labeled sASGPR or the substract ASOR revealed that the presence of sASGPR reduced the binding of ASOR to cells. However, ASOR itself was able to enhance the binding of sASGPR to cells expressing membrane-bound ASGPR. Further, H1b expression is reduced in liver tissues from patients with viral hepatitis. CONCLUSIONS We conclude that two naturally occurring ASGPR H1 splice variants are produced in human hepatocytes. A hetero-oligomeric complex sASGPR consists of the secreted form of H1 and H2 and may bind to free substrates in circulation and carry them to liver tissue for uptake by ASGPR-expressing hepatocytes.
Collapse
Affiliation(s)
- Jia Liu
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Hu
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Yang
- Experimental Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhiyong Ma
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuan Yu
- Experimental Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shenpei Liu
- Experimental Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Baoju Wang
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiping Zhao
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mengji Lu
- Department of Microbiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute of Virology, Medical School, Duisburg-Essen University, Essen, Germany
- * E-mail: (ML); (DY)
| | - Dongliang Yang
- Division of Clinical Immunology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Experimental Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail: (ML); (DY)
| |
Collapse
|
48
|
Navarro-Alvarez N, Soto-Gutierrez A, Kobayashi N. Hepatic stem cells and liver development. Methods Mol Biol 2010; 640:181-236. [PMID: 20645053 DOI: 10.1007/978-1-60761-688-7_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver consists of many cell types with specialized functions. Hepatocytes are one of the main players in the organ and therefore are the most vulnerable cells to damage. Since they are not everlasting cells, they need to be replenished throughout life. Although the capacity of hepatocytes to contribute to their own maintenance has long been recognized, recent studies have indicated the presence of both intrahepatic and extrahepatic stem/progenitor cell populations that serve to maintain the normal organ and to regenerate damaged parenchyma in response to a variety of insults.The intrahepatic compartment most likely derives primarily from the biliary tree, particularly the most proximal branches, i.e. the canals of Hering and smallest ductules. The extrahepatic compartment is at least in part derived from diverse populations of cells from the bone marrow. Embryonic stem cells (ES's) are considered as a part of the extrahepatic compartment. Due to their pluripotent capabilities, ES cell-derived cells form a potential future source of hepatocytes, to replace or restore hepatic tissues that have been damaged by disease or injury. Progressing knowledge about stem cells in the liver would allow a better understanding of the mechanisms of hepatic homeostasis and regeneration. Although a human stem cell-derived cell type equivalent to primary hepatocytes does not yet exist, the promising results obtained with extrahepatic stem cells would open the way to cell-based therapy for liver diseases.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | |
Collapse
|
49
|
Tao W, Xu C, Ding Q, Li R, Xiang Y, Chung J, Zhong J. A single point mutation in E2 enhances hepatitis C virus infectivity and alters lipoprotein association of viral particles. Virology 2009; 395:67-76. [PMID: 19793603 DOI: 10.1016/j.virol.2009.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/07/2009] [Accepted: 09/08/2009] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide health problem. Our previous results showed that HCV evolved to gain the enhanced infectivity and altered buoyant density distribution during persistent infections in vitro. Here we showed that a point mutation I414T in HCV E2 was mainly responsible for these phenotypic changes. While the I414T mutation had no significant effect on HCV RNA replication and viral entry, it enhanced the production of infectious viral particles and decreased the dependency of viral entry on the levels of HCV receptors. Furthermore, we showed that the I414T mutation reduced the association of viral particles with low-density lipoprotein or very low-density lipoproteins during the virus secretion process, and the infection of the delipidated virus was more sensitive to the blockade by an anti-E2 neutralizing antibody and recombinant CD81 proteins. Our results provided more insights into understanding the roles of lipoprotein associations in HCV life cycle.
Collapse
Affiliation(s)
- Wanyin Tao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Li HF, Huang CH, Ai LS, Chuang CK, Chen SSL. Mutagenesis of the fusion peptide-like domain of hepatitis C virus E1 glycoprotein: involvement in cell fusion and virus entry. J Biomed Sci 2009; 16:89. [PMID: 19778418 PMCID: PMC2759930 DOI: 10.1186/1423-0127-16-89] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 09/24/2009] [Indexed: 01/19/2023] Open
Abstract
Background Envelope (E) glycoprotein E2 of the hepatitis C virus (HCV) mediates binding of the virus to target cell receptors. Nevertheless, the precise role of E1 in viral entry remains elusive. Methods To understand the involvement of the fusion peptide-like domain positioned at residues 264 to 290 within envelope glycoprotein E1 in HCV infection, mutants with Ala and Asn substitutions for residues conserved between HCV and E proteins of flaviviruses or the fusion proteins of paramyxoviruses were constructed by site-directed mutagenesis and their effects on membrane fusion and viral infectivity were examined. Results None of these mutations affected the synthesis or cell surface expression of envelope proteins, nor did they alter the formation of a non-covalent E1-E2 heterodimer or E2 binding to the large extracellular loop of CD81. The Cys residues located at positions 272 and 281 were unlikely involved in intra- or intermolecular disulfide bond formation. With the exception of the G267A mutant, which showed increased cell fusion, other mutants displayed reduced or marginally inhibited cell fusion capacities compared to the wild-type (WT) E1E2. The G267A mutant was also an exception in human immunodeficiency virus type 1 (HIV-1)/HCV E1E2 pseudotyping analyses, in that it showed higher one-cycle infectivity; all other mutants exhibited greatly or partially reduced viral entry versus the WT pseudotype. All but the G278A and D279N mutants showed a WT-like profile of E1E2 incorporation into HIV-1 particles. Since C272A, C281A, G282A, and G288A pseudotypes bound to Huh7 cells as effectively as did the WT pseudotype, the reduced infectivity of these pseudotypes was due to their ability to inhibit cell fusion. Conclusion Our results indicate that specific residues, but not the structure, of this fusion peptide-like domain are required for mediating cell fusion and viral entry.
Collapse
Affiliation(s)
- Hsiao-Fen Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | | | | | | | | |
Collapse
|