1
|
Savoca G, Gianfredi A, Bartolini L. The Development of Epilepsy Following CNS Viral Infections: Mechanisms. Curr Neurol Neurosci Rep 2024; 25:2. [PMID: 39549124 DOI: 10.1007/s11910-024-01393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE OF REVIEW This review examines the role of different viral infections in epileptogenesis, with a focus on Herpesviruses such as Human Herpesvirus 6 (HHV-6) and Epstein Barr Virus (EBV), Flaviviruses, Picornaviruses, Human Immunodeficiency Virus (HIV), Influenzavirus and Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). RECENT FINDINGS A growing literature on animal models, such as the paradigmatic Theiler's murine encephalomyelitis virus (TMEV) model, and clinical investigations in patients with epilepsy have started to elucidate cellular mechanisms implicated in seizure initiation and development of epilepsy following viral infections. A central role of neuroinflammation has emerged, with evidence of activation of the innate and adaptive immunity, dysregulation of microglial and astrocytic activity and production of multiple cytokines and other inflammatory mediators. Several chronic downstream effects result in increased blood-brain barrier permeability, direct neuronal damage, and modifications of ion channels ultimately leading to altered neuronal excitability and seizure generation. Key findings underscore the complex interplay between initial viral infection, neuroinflammation, and later development of epilepsy. Further research is needed to elucidate these mechanisms and develop targeted interventions.
Collapse
Affiliation(s)
- Giulia Savoca
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Arianna Gianfredi
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Luca Bartolini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy.
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
2
|
Shaikh MS, Faiyazuddin M, Khan MS, Pathan SK, Syed IJ, Gholap AD, Akhtar MS, Sah R, Mehta R, Sah S, Bonilla-Aldana DK, Luna C, Rodriguez-Morales AJ. Chikungunya virus vaccine: a decade of progress solving epidemiological dilemma, emerging concepts, and immunological interventions. Front Microbiol 2024; 15:1413250. [PMID: 39104592 PMCID: PMC11298817 DOI: 10.3389/fmicb.2024.1413250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Chikungunya virus (CHIKV), a single-stranded RNA virus transmitted by Aedes mosquitoes, poses a significant global health threat, with severe complications observed in vulnerable populations. The only licensed vaccine, IXCHIQ, approved by the US FDA, is insufficient to address the growing disease burden, particularly in endemic regions lacking herd immunity. Monoclonal antibodies (mAbs), explicitly targeting structural proteins E1/E2, demonstrate promise in passive transfer studies, with mouse and human-derived mAbs showing protective efficacy. This article explores various vaccine candidates, including live attenuated, killed, nucleic acid-based (DNA/RNA), virus-like particle, chimeric, subunit, and adenovirus vectored vaccines. RNA vaccines have emerged as promising candidates due to their rapid response capabilities and enhanced safety profile. This review underscores the importance of the E1 and E2 proteins as immunogens, emphasizing their antigenic potential. Several vaccine candidates, such as CHIKV/IRES, measles vector (MV-CHIK), synthetic DNA-encoded antibodies, and mRNA-lipid nanoparticle vaccines, demonstrate encouraging preclinical and clinical results. In addition to identifying potential molecular targets for antiviral therapy, the study looks into the roles played by Toll-like receptors, RIG-I, and NOD-like receptors in the immune response to CHIKV. It also offers insights into novel tactics and promising vaccine candidates. This article discusses potential antiviral targets, the significance of E1 and E2 proteins, monoclonal antibodies, and RNA vaccines as prospective Chikungunya virus vaccine candidates.
Collapse
Affiliation(s)
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Shahbaz K. Pathan
- Medmecs Medical Coding & Billing Services, Universal Business Park, Mumbai, Maharashtra, India
| | - Imran J. Syed
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- SBSPM’s B. Pharmacy College, Beed, Maharashtra, India
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ranjit Sah
- Green City Hospital, Kathmandu, Nepal
- Research Unit, Department of Microbiology, Dr. DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rachana Mehta
- Dr Lal PathLabs Nepal, Kathmandu, Nepal
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
- Clinical Microbiology, School of Dental Science, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | | | | | - Camila Luna
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
3
|
Ahmad I, Omura S, Sato F, Park AM, Khadka S, Gavins FNE, Tanaka H, Kimura MY, Tsunoda I. Exploring the Role of Platelets in Virus-Induced Inflammatory Demyelinating Disease and Myocarditis. Int J Mol Sci 2024; 25:3460. [PMID: 38542433 PMCID: PMC10970283 DOI: 10.3390/ijms25063460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 12/26/2024] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection has been used as a mouse model for two virus-induced organ-specific immune-mediated diseases. TMEV-induced demyelinating disease (TMEV-IDD) in the central nervous system (CNS) is a chronic inflammatory disease with viral persistence and an animal model of multiple sclerosis (MS) in humans. TMEV infection can also cause acute myocarditis with viral replication and immune cell infiltration in the heart, leading to cardiac fibrosis. Since platelets have been reported to modulate immune responses, we aimed to determine the role of platelets in TMEV infection. In transcriptome analyses of platelets, distinct sets of immune-related genes, including major histocompatibility complex (MHC) class I, were up- or downregulated in TMEV-infected mice at different time points. We depleted platelets from TMEV-infected mice by injecting them with platelet-specific antibodies. The platelet-depleted mice had significantly fewer viral antigen-positive cells in the CNS. Platelet depletion reduced the severities of TMEV-IDD and myocarditis, although the pathology scores did not reach statistical significance. Immunologically, the platelet-depleted mice had an increase in interferon (IFN)-γ production with a higher anti-TMEV IgG2a/IgG1 ratio. Thus, platelets may play roles in TMEV infection, such as gene expression, viral clearance, and anti-viral antibody isotype responses.
Collapse
Affiliation(s)
- Ijaz Ahmad
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| | - Seiichi Omura
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| | - Fumitaka Sato
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| | - Ah-Mee Park
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
- Department of Arts and Sciences, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan
| | - Sundar Khadka
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
- Department of Immunology, Duke University, Durham, NC 27708, USA
| | - Felicity N. E. Gavins
- Department of Biosciences, Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 078-8510, Japan;
| | - Motoko Y. Kimura
- Department of Experimental Immunology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan;
| | - Ikuo Tsunoda
- Department of Microbiology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan; (I.A.); (S.O.); (F.S.); (A.-M.P.); (S.K.)
| |
Collapse
|
4
|
Kim BS. Critical role of TLR activation in viral replication, persistence, and pathogenicity of Theiler's virus. Front Immunol 2023; 14:1167972. [PMID: 37153539 PMCID: PMC10157096 DOI: 10.3389/fimmu.2023.1167972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) establishes persistent viral infections in the central nervous system and induces chronic inflammatory demyelinating disease in susceptible mice. TMEV infects dendritic cells, macrophages, B cells, and glial cells. The state of TLR activation in the host plays a critical role in initial viral replication and persistence. The further activation of TLRs enhances viral replication and persistence, leading to the pathogenicity of TMEV-induced demyelinating disease. Various cytokines are produced via TLRs, and MDA-5 signals linked with NF-κB activation following TMEV infection. In turn, these signals further amplify TMEV replication and the persistence of virus-infected cells. The signals further elevate cytokine production, promoting the development of Th17 responses and preventing cellular apoptosis, which enables viral persistence. Excessive levels of cytokines, particularly IL-6 and IL-1β, facilitate the generation of pathogenic Th17 immune responses to viral antigens and autoantigens, leading to TMEV-induced demyelinating disease. These cytokines, together with TLR2 may prematurely generate functionally deficient CD25-FoxP3+ CD4+ T cells, which are subsequently converted to Th17 cells. Furthermore, IL-6 and IL-17 synergistically inhibit the apoptosis of virus-infected cells and the cytolytic function of CD8+ T lymphocytes, prolonging the survival of virus-infected cells. The inhibition of apoptosis leads to the persistent activation of NF-κB and TLRs, which continuously provides an environment of excessive cytokines and consequently promotes autoimmune responses. Persistent or repeated infections of other viruses such as COVID-19 may result in similar continuous TLR activation and cytokine production, leading to autoimmune diseases.
Collapse
|
5
|
Löscher W, Howe CL. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front Mol Neurosci 2022; 15:870868. [PMID: 35615063 PMCID: PMC9125338 DOI: 10.3389/fnmol.2022.870868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Charles L. Howe
- Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Bühler M, Runft S, Li D, Götting J, Detje CN, Nippold V, Stoff M, Beineke A, Schulz T, Kalinke U, Baumgärtner W, Gerhauser I. IFN-β Deficiency Results in Fatal or Demyelinating Disease in C57BL/6 Mice Infected With Theiler's Murine Encephalomyelitis Viruses. Front Immunol 2022; 13:786940. [PMID: 35222374 PMCID: PMC8864290 DOI: 10.3389/fimmu.2022.786940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Type I Interferons (IFN-I) are important inducers of the antiviral immune response and immune modulators. IFN-β is the most highly expressed IFN-I in the central nervous system (CNS). The infection of SJL mice with the BeAn or the DA strain of Theiler's murine encephalomyelitis virus (TMEV) results in a progressive demyelinating disease. C57BL/6 mice are usually resistant to TMEV-induced demyelination and eliminate these strains from the CNS within several weeks. Using C57BL/6 IFN-β knockout (IFN-β-/-) mice infected with TMEV, we evaluated the role of IFN-β in neuroinfection. Despite the resistance of C57BL/6 wild type (WT) mice to TMEV infection, DA-infected IFN-β-/- mice had to be killed at 7 to 8 days post infection (dpi) due to severe clinical disease. In contrast, BeAn-infected IFN-β-/- mice survived until 98 dpi. Nevertheless at 14 dpi, BeAn-infected IFN-β-/- mice showed a stronger encephalitis and astrogliosis, higher viral load as well as higher mRNA levels of Isg15, Eif2ak2 (PKR), Tnfa, Il1b, Il10, Il12 and Ifng in the cerebrum than BeAn-infected WT mice. Moreover, the majority of IFN-β-/- mice did not clear the virus from the CNS and developed mild demyelination in the spinal cord at 98 dpi, whereas virus and lesions were absent in the spinal cord of WT mice. Persistently infected IFN-β-/- mice also had higher Isg15, Eif2ak1, Tnfa, Il1a, Il1b and Ifng mRNA levels in the spinal cord at 98 dpi than their virus-negative counterparts indicating an activation of IFN-I signaling and ongoing inflammation. Most importantly, BeAn-infected NesCre+/- IFN-βfl/fl mice, which do not express IFN-β in neurons, astrocytes and oligodendrocytes, only developed mild brain lesions similar to WT mice. Consequently, IFN-β produced by neuroectodermal cells does not seem to play a critical role in the resistance of C57BL/6 mice against fatal and demyelinating disease induced by TMEV strains.
Collapse
Affiliation(s)
- Melanie Bühler
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sandra Runft
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dandan Li
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasper Götting
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Vanessa Nippold
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melanie Stoff
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Andreas Beineke
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Ingo Gerhauser
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
7
|
Excessive Innate Immunity Steers Pathogenic Adaptive Immunity in the Development of Theiler's Virus-Induced Demyelinating Disease. Int J Mol Sci 2021; 22:ijms22105254. [PMID: 34067536 PMCID: PMC8156427 DOI: 10.3390/ijms22105254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 01/05/2023] Open
Abstract
Several virus-induced models were used to study the underlying mechanisms of multiple sclerosis (MS). The infection of susceptible mice with Theiler’s murine encephalomyelitis virus (TMEV) establishes persistent viral infections and induces chronic inflammatory demyelinating disease. In this review, the innate and adaptive immune responses to TMEV are discussed to better understand the pathogenic mechanisms of viral infections. Professional (dendritic cells (DCs), macrophages, and B cells) and non-professional (microglia, astrocytes, and oligodendrocytes) antigen-presenting cells (APCs) are the major cell populations permissive to viral infection and involved in cytokine production. The levels of viral loads and cytokine production in the APCs correspond to the degrees of susceptibility of the mice to the TMEV-induced demyelinating diseases. TMEV infection leads to the activation of cytokine production via TLRs and MDA-5 coupled with NF-κB activation, which is required for TMEV replication. These activation signals further amplify the cytokine production and viral loads, promote the differentiation of pathogenic Th17 responses, and prevent cellular apoptosis, enabling viral persistence. Among the many chemokines and cytokines induced after viral infection, IFN α/β plays an essential role in the downstream expression of costimulatory molecules in APCs. The excessive levels of cytokine production after viral infection facilitate the pathogenesis of TMEV-induced demyelinating disease. In particular, IL-6 and IL-1β play critical roles in the development of pathogenic Th17 responses to viral antigens and autoantigens. These cytokines, together with TLR2, may preferentially generate deficient FoxP3+CD25- regulatory cells converting to Th17. These cytokines also inhibit the apoptosis of TMEV-infected cells and cytolytic function of CD8+ T lymphocytes (CTLs) and prolong the survival of B cells reactive to viral and self-antigens, which preferentially stimulate Th17 responses.
Collapse
|
8
|
Creisher PS, Chandwani MN, Kamte YS, Covvey JR, Ganesan P, O’Donnell LA. Type II interferon signaling in the brain during a viral infection with age-dependent pathogenesis. Dev Neurobiol 2020; 80:213-228. [PMID: 32866337 PMCID: PMC8513332 DOI: 10.1002/dneu.22778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/13/2020] [Accepted: 08/05/2020] [Indexed: 01/10/2023]
Abstract
Viral infections of the central nervous system (CNS) often cause disease in an age-dependent manner, with greater neuropathology during the fetal and neonatal periods. Transgenic CD46+ mice model these age-dependent outcomes through a measles virus infection of CNS neurons. Adult CD46+ mice control viral spread and survive the infection in an interferon gamma (IFNγ)-dependent manner, whereas neonatal CD46+ mice succumb despite similar IFNγ expression in the brain. Thus, we hypothesized that IFNγ signaling in the adult brain may be more robust, potentially due to greater basal expression of IFNγ signaling proteins. To test this hypothesis, we evaluated the expression of canonical IFNγ signaling proteins in the neonatal and adult brain, including the IFNγ receptor, Janus kinase (JAK) 1/2, and signal transducer and activator of transcription-1 (STAT1) in the absence of infection. We also analyzed the expression and activation of STAT1 and IFNγ-stimulated genes during MV infection. We found that neonatal brains have equivalent or greater JAK/STAT1 expression in the hippocampus and the cerebellum than adults. IFNγ receptor expression varied by cell type in the brain but was widely expressed on neuronal and glial cells. During MV infection, increased STAT1 expression and activation correlated with viral load in the hippocampus regardless of age, but not in the cerebellum where viral load was consistently undetectable in adults. These results suggest the neonatal brain is capable of initiating IFNγ signaling during a viral infection, but that downstream STAT1 activation is insufficient to limit viral spread.
Collapse
Affiliation(s)
- Patrick S. Creisher
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| | - Manisha N. Chandwani
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| | - Yashika S. Kamte
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| | - Jordan R. Covvey
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| | - Priya Ganesan
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| | - Lauren A. O’Donnell
- Duquesne University, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282
| |
Collapse
|
9
|
Dawes BE, Gao J, Atkins C, Nelson JT, Johnson K, Wu P, Freiberg AN. Human neural stem cell-derived neuron/astrocyte co-cultures respond to La Crosse virus infection with proinflammatory cytokines and chemokines. J Neuroinflammation 2018; 15:315. [PMID: 30442185 PMCID: PMC6236894 DOI: 10.1186/s12974-018-1356-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND La Crosse virus (LACV) causes pediatric encephalitis in the USA. LACV induces severe inflammation in the central nervous system, but the recruitment of inflammatory cells is poorly understood. A deeper understanding of LACV-induced neural pathology is needed in order to develop treatment options. However, there is a severe limitation of relevant human neuronal cell models of LACV infection. METHODS We utilized human neural stem cell (hNSC)-derived neuron/astrocyte co-cultures to study LACV infection in disease-relevant primary cells. hNSCs were differentiated into neurons and astrocytes and infected with LACV. To characterize susceptibility and responses to infection, we measured viral titers and levels of viral RNA, performed immunofluorescence analysis to determine the cell types infected, performed apoptosis and cytotoxicity assays, and evaluated cellular responses to infection using qRT-PCR and Bioplex assays. RESULTS hNSC-derived neuron/astrocyte co-cultures were susceptible to LACV infection and displayed apoptotic responses as reported in previous in vitro and in vivo studies. Neurons and astrocytes are both targets of LACV infection, with neurons becoming the predominant target later in infection possibly due to astrocytic responses to IFN. Additionally, neuron/astrocyte co-cultures responded to LACV infection with strong proinflammatory cytokine, chemokine, as well as MMP-2, MMP-7, and TIMP-1 responses. CONCLUSIONS hNSC-derived neuron/astrocyte co-cultures reproduce key aspects of LACV infection in humans and mice and are useful models to study encephalitic viruses. Specifically, we show astrocytes to be susceptible to LACV infection and that neurons and astrocytes are important drivers of the inflammatory responses seen in LACV infection through the production of proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Brian E. Dawes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, USA
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, 77555-0609 USA
| | - Jacob T. Nelson
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, 77555-0609 USA
| | - Kendra Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, 77555-0609 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
10
|
Waltl I, Käufer C, Gerhauser I, Chhatbar C, Ghita L, Kalinke U, Löscher W. Microglia have a protective role in viral encephalitis-induced seizure development and hippocampal damage. Brain Behav Immun 2018; 74:186-204. [PMID: 30217535 PMCID: PMC7111316 DOI: 10.1016/j.bbi.2018.09.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/23/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
In the central nervous system (CNS), innate immune surveillance is mainly coordinated by microglia. These CNS resident myeloid cells are assumed to help orchestrate the immune response against infections of the brain. However, their specific role in this process and their interactions with CNS infiltrating immune cells, such as blood-borne monocytes and T cells are only incompletely understood. The recent development of PLX5622, a specific inhibitor of colony-stimulating factor 1 receptor that depletes microglia, allows studying the role of microglia in conditions of brain injury such as viral encephalitis, the most common form of brain infection. Here we used this inhibitor in a model of viral infection-induced epilepsy, in which C57BL/6 mice are infected by a picornavirus (Theiler's murine encephalomyelitis virus) and display seizures and hippocampal damage. Our results show that microglia are required early after infection to limit virus distribution and persistence, most likely by modulating T cell activation. Microglia depletion accelerated the occurrence of seizures, exacerbated hippocampal damage, and led to neurodegeneration in the spinal cord, which is normally not observed in this mouse strain. This study enhances our understanding of the role of microglia in viral encephalitis and adds to the concept of microglia-T cell crosstalk.
Collapse
Affiliation(s)
- Inken Waltl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany,Center for Systems Neuroscience, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Germany
| | - Chintan Chhatbar
- Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz Center for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz Center for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Center for Systems Neuroscience, Hannover, Germany,Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz Center for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
11
|
Chandwani MN, Creisher PS, O'Donnell LA. Understanding the Role of Antiviral Cytokines and Chemokines on Neural Stem/Progenitor Cell Activity and Survival. Viral Immunol 2018; 32:15-24. [PMID: 30307795 DOI: 10.1089/vim.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system are accompanied by the expression of cytokines and chemokines that can be critical for the control of viral replication in the brain. The outcomes of cytokine/chemokine signaling in neural cells vary widely, with cell-specific effects on cellular activity, proliferation, and survival. Neural stem/progenitor cells (NSPCs) are often altered during viral infections, through direct infection by the virus or by the influence of immune cell activity or cytokine/chemokine signaling. However, it has been challenging to dissect the contribution of the virus and specific inflammatory mediators during an infection. In addition to initiating an antiviral program in infected NSPCs, cytokines/chemokines can induce multiple changes in NSPC behavior that can perturb NSPC numbers, differentiation into other neural cells, and migration to sites of injury, and ultimately brain development and repair. The focus of this review was to dissect the effects of common antiviral cytokines and chemokines on NSPC activity, and to consider the subsequent pathological consequences for the host from changes in NSPC function.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Patrick S Creisher
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Lauren A O'Donnell
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Gaikwad S, Patel D, Agrawal-Rajput R. CD40 Negatively Regulates ATP-TLR4-Activated Inflammasome in Microglia. Cell Mol Neurobiol 2017; 37:351-359. [PMID: 26961545 DOI: 10.1007/s10571-016-0358-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/29/2016] [Indexed: 01/01/2023]
Abstract
During acute brain injury and/or sterile inflammation, release of danger-associated molecular patterns (DAMPs) activates pattern recognition receptors (PRRs). Microglial toll-like receptor (TLR)-4 activated by DAMPs potentiates neuroinflammation through inflammasome-induced IL-1β and pathogenic Th17 polarization which critically influences brain injury. TLR4 activation accompanies increased CD40, a cognate costimulatory molecule, involved in microglia-mediated immune responses in the brain. During brain injury, excessive release of extracellular ATP (DAMPs) is involved in promoting the damage. However, the regulatory role of CD40 in microglia during ATP-TLR4-mediated inflammasome activation has never been explored. We report that CD40, in the absence of ATP, synergizes TLR4-induced proinflammatory cytokines but not IL-1β, suggesting that the response is independent of inflammasome. The presence of ATP during TLR4 activation leads to NLRP3 inflammasome activation and caspase-1-mediated IL-1β secretion which was inhibited during CD40 activation, accompanied with inhibition of ERK1/2 and reactive oxygen species (ROS), and elevation in p38 MAPK phosphorylation. Experiments using selective inhibitors prove indispensability of ERK 1/2 and ROS for inflammasome activation. The ATP-TLR4-primed macrophages polarize the immune response toward pathogenic Th17 cells, whereas CD40 activation mediates Th1 response. Exogenous supplementation of IFN-γ (a Th1 cytokine and CD40 inducer) results in decreased IL-1β, suggesting possible feedback loop mechanism of inflammasome inhibition, whereby IFN-γ-mediated increase in CD40 expression and activation suppress neurotoxic inflammasome activation required for Th17 response. Collectively, the findings indicate that CD40 is a novel negative regulator of ATP-TLR4-mediated inflammasome activation in microglia, thus providing a checkpoint to regulate excessive inflammasome activation and Th17 response during DAMP-mediated brain injury.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382 007, India
| | - Divyesh Patel
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382 007, India
| | - Reena Agrawal-Rajput
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382 007, India.
| |
Collapse
|
13
|
Kulkarni A, Ganesan P, O'Donnell LA. Interferon Gamma: Influence on Neural Stem Cell Function in Neurodegenerative and Neuroinflammatory Disease. Clin Med Insights Pathol 2016; 9:9-19. [PMID: 27774000 PMCID: PMC5065109 DOI: 10.4137/cpath.s40497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/05/2023] Open
Abstract
Interferon-gamma (IFNγ), a pleiotropic cytokine, is expressed in diverse neurodegenerative and neuroinflammatory conditions. Its protective mechanisms are well documented during viral infections in the brain, where IFNγ mediates non-cytolytic viral control in infected neurons. However, IFNγ also plays both protective and pathological roles in other central nervous system (CNS) diseases. Of the many neural cells that respond to IFNγ, neural stem/progenitor cells (NSPCs), the only pluripotent cells in the developing and adult brain, are often altered during CNS insults. Recent studies highlight the complex effects of IFNγ on NSPC activity in neurodegenerative diseases. However, the mechanisms that mediate these effects, and the eventual outcomes for the host, are still being explored. Here, we review the effects of IFNγ on NSPC activity during different pathological insults. An improved understanding of the role of IFNγ would provide insight into the impact of immune responses on the progression and resolution of neurodegenerative diseases.
Collapse
Affiliation(s)
- Apurva Kulkarni
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Priya Ganesan
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Lauren A O'Donnell
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Baxter VK, Griffin DE. Interferon gamma modulation of disease manifestation and the local antibody response to alphavirus encephalomyelitis. J Gen Virol 2016; 97:2908-2925. [PMID: 27667782 DOI: 10.1099/jgv.0.000613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection of mice with Sindbis virus (SINV) produces encephalomyelitis and provides a model for examination of the central nervous system (CNS) immune response to alphavirus infection. Clearance of infectious virus is accomplished through a cooperative effort between SINV-specific antibody and IFN-γ, but the regulatory interactions are poorly understood. To determine the effects of IFN-γ on clinical disease and the antiviral immune response, C57BL/6 mice lacking IFN-γ (Ifng-/-) or IFN-γ receptor (Ifngr1-/-) were studied in comparison to WT mice. Maximum production of Ifng mRNA and IFN-γ protein in the CNS of WT and Ifngr1-/- mice occurred 5-7 days after infection, with higher levels of IFN-γ in Ifngr1-/- mice. Onset of clinical disease was earlier in mice with impaired IFN-γ signalling, although Ifngr1-/- mice recovered more rapidly. Ifng-/- and Ifngr1-/- mice maintained body weight better than WT mice, associated with better food intake and lower brain levels of inflammatory cytokines. Clearance of infectious virus from the spinal cords was slower, and CNS, but not serum, levels of SINV-specific IgM, IgG2a and IgG2b were lower in Ifngr1-/- and Ifng-/- mice compared to WT mice. Decreased CNS antiviral antibody was associated with lower expression of mRNAs for B-cell attracting chemokines CXCL9, CXCL10 and CXCL13 and fewer B cells in the CNS. Therefore, IFN-γ signalling increases levels of CNS pro-inflammatory cytokines, leading to clinical disease, but synergistically clears virus with SINV-specific antibody at least in part by increasing chemokine production important for infiltration of antibody-secreting B cells into the CNS.
Collapse
Affiliation(s)
- Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Abstract
IL-10 is a multifunctional cytokine secreted by a variety of cells. It not only inhibits activation of monocyte/macrophage system and synthesis of monocyte cytokine and inflammatory cytokine but also promotes the proliferation and maturation of non-monocyte-dependent T cell, stimulating proliferation of antigen-specific B cell. Increasing evidence indicates that IL-10 plays an important role in both the onset and development of auto-immune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS), multiple sclerosis (MS), Crohn's disease (CD), and psoriasis. However, the exact mechanisms of IL-10 in auto-immune diseases remain unclear. In the present review, we will summarize the biological effects of IL-10, as well as its role and therapeutic potential in auto-immune diseases.
Collapse
|
16
|
Moore TC, Vogel AJ, Petro TM, Brown DM. IRF3 deficiency impacts granzyme B expression and maintenance of memory T cell function in response to viral infection. Microbes Infect 2015; 17:426-39. [PMID: 25777301 PMCID: PMC4479197 DOI: 10.1016/j.micinf.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/02/2023]
Abstract
The role of interferon regulatory factor 3 (IRF3) in the innate immune response to infection has been well studied. However, less is known about IRF3 signaling in shaping the adaptive T cell response. To determine the role of IRF3 in the generation and maintenance of effective anti-viral T cell responses, mice deficient in IRF3 were infected with a potentially persistent virus, Theiler's murine encephalomyelitis virus (TMEV) or with a model acute infection, influenza A virus (IAV). IRF3 was required to prevent TMEV persistence and induce robust TMEV specific effector T cell responses at the site of infection. This defect was more pronounced in the memory phase with an apparent lack of TMEV-specific memory T cells expressing granzyme B (GrB) in IRF3 deficient mice. In contrast, IRF3 had no effect on antigen specific T cell responses at the effector stage during IAV infection. However, memory T cell responses to IAV were also impaired in IRF3 deficient mice. Furthermore, addition of cytokines during peptide restimulation could not restore GrB expression in IRF3 deficient memory T cells. Taken together, IRF3 plays an important role in the maintenance of effective anti-viral T cell memory responses.
Collapse
Affiliation(s)
- Tyler C Moore
- School of Biological Sciences, University of Nebraska-Lincoln, USA
| | | | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska-Lincoln, USA; Department of Oral Biology, University of Nebraska Medical Center, USA
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, USA.
| |
Collapse
|
17
|
Henry RJ, Kerr DM, Finn DP, Roche M. FAAH-mediated modulation of TLR3-induced neuroinflammation in the rat hippocampus. J Neuroimmunol 2014; 276:126-34. [PMID: 25245162 DOI: 10.1016/j.jneuroim.2014.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023]
Abstract
The present study examined the effect of enhancing fatty acid amide hydrolase (FAAH) substrate levels in vivo on Toll-like receptor (TLR)3-induced neuroinflammation. Systemic and central (i.c.v.) administration of the FAAH inhibitor URB597 increased hippocampal levels of the N-acylethanolamines palmitoylethanolamide and oleoylethanolamide, but not anandamide. Systemic URB597 increased IFNα, IFNγ and IL-6 expression following TLR3 activation and attenuated TLR3-induced IL-1β and TNFα expression. In comparison, central URB597 administration attenuated the TLR3-induced increase in TNFα and IFNγ expression (and associated downstream genes IP-10 and SOCS1), while concurrently increasing IL-10 expression. These data support an important role for FAAH-mediated regulation of TLR3-induced neuroinflammatory responses.
Collapse
Affiliation(s)
- Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
18
|
Priya R, Patro IK, Parida MM. TLR3 mediated innate immune response in mice brain following infection with Chikungunya virus. Virus Res 2014; 189:194-205. [PMID: 24905288 DOI: 10.1016/j.virusres.2014.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/12/2022]
Abstract
Chikungunya virus (CHIKV) has received global attention due to the series of large-scale outbreaks in different parts of the world. Many unusual clinical severities including neurological complications and death were reported in recent outbreaks. The mechanism underlying the host immune response to CHIKV in the brain is poorly characterized. In this study, the neuropathogenesis of CHIKV with E1:A226V mutation was elucidated in 1 week old BALB/c mice. The virus was found to replicate in mice brain with peak titer of 10(4) on 6th day post infection. Immunohistochemical analysis revealed preferential virus localization in neuronal cells of cerebellum. The expression profiling of TLR, antiviral genes and cytokines in mice brain revealed significant up regulation of TLR3, TRAF-6, TICAM-1, MCP-1, CXCL-10, IL-6, IL-4, ISG-15, MX-2, IFN-β, OAS-3 genes that ultimately resulted in virus clearance from brain by day 9-10 suggesting activation of innate immune pathway. Further the effect of poly I: C (Polyinosinic: Polycytidylic acid), a TLR-3 agonist and potent IFN inducer on CHIKV neuropathogenesis was studied. Pretreatment of mice with Poly I: C caused reduction of CHIKV titer in brain and offered 100% protection of animals. The protection was mediated by an increased induction of TLR3, IFN-β and antiviral genes in mice brain. Our result demonstrates that pre immune stimulation of animals by Poly I: C is effective inhibitor of CHIKV replication and might be a promising prevention agent against this virus.
Collapse
Affiliation(s)
- Raj Priya
- Division of Virology, Defence Research & Development Establishment, Gwalior 474002, India
| | - I K Patro
- School of Studies in Neurosciences, Jiwaji University, Gwalior 474002, India
| | - M M Parida
- Division of Virology, Defence Research & Development Establishment, Gwalior 474002, India.
| |
Collapse
|
19
|
Lee EY, Schultz KLW, Griffin DE. Mice deficient in interferon-gamma or interferon-gamma receptor 1 have distinct inflammatory responses to acute viral encephalomyelitis. PLoS One 2013; 8:e76412. [PMID: 24204622 PMCID: PMC3811984 DOI: 10.1371/journal.pone.0076412] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/23/2013] [Indexed: 11/25/2022] Open
Abstract
Interferon (IFN)-gamma is an important component of the immune response to viral infections that can have a role both in controlling virus replication and inducing inflammatory damage. To determine the role of IFN-gamma in fatal alphavirus encephalitis, we have compared the responses of wild type C57BL/6 (WTB6) mice with mice deficient in either IFN-gamma (GKO) or the alpha-chain of the IFN-gamma receptor (GRKO) after intranasal infection with a neuroadapted strain of sindbis virus. Mortalities of GKO and GRKO mice were similar to WTB6 mice. Both GKO and GRKO mice had delayed virus clearance from the brain and spinal cord, more infiltrating perforin(+) cells and lower levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 mRNAs than WTB6 mice. However, inflammation was more intense in GRKO mice than WTB6 or GKO mice with more infiltrating CD3(+) T cells, greater expression of major histocompatibility complex-II and higher levels of interleukin-17A mRNA. Fibroblasts from GRKO embryos did not develop an antiviral response after treatment with IFN-gamma, but showed increases in TNF-alpha, IL-6, CXCL9 and CXCL10 mRNAs although these increases developed more slowly and were less intense than those of WTB6 fibroblasts. These data indicate that both GKO and GRKO mice fail to develop an IFN-gamma-mediated antiviral response, but differ in regulation of the inflammatory response to infection. Therefore, GKO and GRKO cannot be considered equivalent when assessing the role of IFN-gamma in CNS viral infections.
Collapse
Affiliation(s)
- Eun-Young Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kimberly L. W. Schultz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
20
|
Bowen JL, Olson JK. IFNγ influences type I interferon response and susceptibility to Theiler's virus-induced demyelinating disease. Viral Immunol 2013; 26:223-38. [PMID: 23829778 DOI: 10.1089/vim.2013.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces a demyelinating disease in susceptible SJL mice that has similarities to multiple sclerosis in humans. TMEV infection of susceptible mice leads to a persistent virus infection of the central nervous system (CNS), which promotes the development of demyelinating disease associated with an inflammatory immune response in the CNS. TMEV infection of resistant C57BL6 mice results in viral clearance without development of demyelinating disease. Interestingly, TMEV infection of resistant mice deficient in IFNγ leads to a persistent virus infection in the CNS and development of demyelinating disease. We have previously shown that the innate immune response affects development of TMEV- induced demyelinating disease, thus we wanted to determine the role of IFNγ during the innate immune response. TMEV-infected IFNγ-deficient mice had an altered innate immune response, including reduced expression of innate immune cytokines, especially type I interferons. Administration of type I interferons, IFNα and IFNß, to TMEV-infected IFNγ-deficient mice during the innate immune response restored the expression of innate immune cytokines. Most importantly, administration of type I interferons to IFNγ-deficient mice during the innate immune response decreased the virus load in the CNS and decreased development of demyelinating disease. Microglia are the CNS resident immune cells that express innate immune receptors. In TMEV-infected IFNγ-deficient mice, microglia had reduced expression of innate immune cytokines, and administration of type I interferons to these mice restored the innate immune response by microglia. In the absence of IFNγ, microglia from TMEV-infected mice had reduced expression of some innate immune receptors and signaling molecules, especially IRF1. These results suggest that IFNγ plays an important role in the innate immune response to TMEV by enhancing the expression of innate immune cytokines, especially type I interferons, which directly affects the development of demyelinating disease.
Collapse
Affiliation(s)
- Jenna L Bowen
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
21
|
Larena M, Regner M, Lobigs M. Cytolytic effector pathways and IFN-γ help protect against Japanese encephalitis. Eur J Immunol 2013; 43:1789-98. [DOI: 10.1002/eji.201243152] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/05/2013] [Accepted: 04/03/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Maximilian Larena
- Department of Emerging Pathogens and Vaccines; John Curtin School of Medical Research; The Australian National University; Canberra; Australia
| | - Matthias Regner
- Department of Emerging Pathogens and Vaccines; John Curtin School of Medical Research; The Australian National University; Canberra; Australia
| | | |
Collapse
|
22
|
Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 2013; 152:743-54. [PMID: 23415224 DOI: 10.1016/j.cell.2013.01.015] [Citation(s) in RCA: 543] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/28/2012] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are increasingly appreciated as regulators of cell-specific gene expression. Here, an enhancer-like lncRNA termed NeST (nettoie Salmonella pas Theiler's [cleanup Salmonella not Theiler's]) is shown to be causal for all phenotypes conferred by murine viral susceptibility locus Tmevp3. This locus was defined by crosses between SJL/J and B10.S mice and contains several candidate genes, including NeST. The SJL/J-derived locus confers higher lncRNA expression, increased interferon-γ (IFN-γ) abundance in activated CD8(+) T cells, increased Theiler's virus persistence, and decreased Salmonella enterica pathogenesis. Transgenic expression of NeST lncRNA alone was sufficient to confer all phenotypes of the SJL/J locus. NeST RNA was found to bind WDR5, a component of the histone H3 lysine 4 methyltransferase complex, and to alter histone 3 methylation at the IFN-γ locus. Thus, this lncRNA regulates epigenetic marking of IFN-γ-encoding chromatin, expression of IFN-γ, and susceptibility to a viral and a bacterial pathogen.
Collapse
Affiliation(s)
- J Antonio Gomez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mangalam AK, Taneja V, David CS. HLA class II molecules influence susceptibility versus protection in inflammatory diseases by determining the cytokine profile. THE JOURNAL OF IMMUNOLOGY 2013; 190:513-8. [PMID: 23293357 DOI: 10.4049/jimmunol.1201891] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The MHC in humans encodes the most polymorphic genes, the HLA genes, which are critical for the immune system to clear infection. This can be attributed to strong selection pressure as populations moved to different parts of the world and encountered new kinds of infections, leading to new HLA class II alleles. HLA genes also have the highest relative risk for autoimmune diseases. Three haplotypes, that is, HLA-DR2DQ6, DR4DQ8, and DR3DQ2, account for HLA association with most autoimmune diseases. We hypothesize that these haplotypes, along with their multiple subtypes, have survived bottlenecks of infectious episodes in human history because of their ability to present pathogenic peptides to activate T cells that secrete cytokines to clear infections. Unfortunately, they also present self-peptides/mimics to activate autoreactive T cells secreting proinflammatory cytokines that cause autoimmune diseases.
Collapse
Affiliation(s)
- Ashutosh K Mangalam
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
24
|
Mecha M, Carrillo-Salinas FJ, Mestre L, Feliú A, Guaza C. Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler's virus. Prog Neurobiol 2013; 101-102:46-64. [PMID: 23201558 PMCID: PMC7117056 DOI: 10.1016/j.pneurobio.2012.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 11/02/2022]
Abstract
Multiple sclerosis (MS) is a complex inflammatory disease of unknown etiology that affects the central nervous system (CNS) white matter, and for which no effective cure exists. Indeed, whether the primary event in MS pathology affects myelin or axons of the CNS remains unclear. Animal models are necessary to identify the immunopathological mechanisms involved in MS and to develop novel therapeutic and reparative approaches. Specifically, viral models of chronic demyelination and axonal damage have been used to study the contribution of viruses in human MS, and they have led to important breakthroughs in our understanding of MS pathology. The Theiler's murine encephalomyelitis virus (TMEV) model is one of the most commonly used MS models, although other viral models are also used, including neurotropic strains of mouse hepatitis virus (MHV) that induce chronic inflammatory demyelination with similar histological features to those observed in MS. This review will discuss the immunopathological mechanisms involved in TMEV-induced demyelinating disease (TMEV-IDD). The TMEV model reproduces a chronic progressive disease due to the persistence of the virus for the entire lifespan in susceptible mice. The evolution and significance of the axonal damage and neuroinflammation, the importance of epitope spread from viral to myelin epitopes, the presence of abortive remyelination and the existence of a brain pathology in addition to the classical spinal cord demyelination, are some of the findings that will be discussed in the context of this TMEV-IDD model. Despite their limitations, viral models remain an important tool to study the etiology of MS, and to understand the clinical and pathological variability associated with this disease.
Collapse
Key Words
- ab, antibody
- ag, antigen
- apc, antigen presenting cell
- bbb, blood–brain barrier
- cns, central nervous system
- cox-2, cyclooxygenase-2
- ctl, cytotoxic t lymphocytes
- dpi, days post-infection
- da, daniels strain of theiler's virus
- eae, experimental autoimmune encephalomyelitis
- galc, galactocerebroside
- mbp, myelin basic protein
- mnc, mononuclear cells
- mhc, major histocompatibility complex
- mhv, mouse hepatitis virus
- mog, myelin oligodendrocyte glycoprotein
- ms, multiple sclerosis
- naa, n-acetylaspartate
- no, nitric oxide
- pcr, polymerase chain reaction
- plp, myelin proteolipid protein
- pprs, pattern recognition receptors
- sfv, semliki forest virus
- sv, sindbis virus
- tmev, theiler's murine encephalomyelitis virus
- tmev-idd, theiler's murine encephalomyelitis virus-induced demyelinating disease
- tregs, regulatory t cells
- theiler's virus
- multiple sclerosis
- demyelination
- axonal damage
- neuroinflammation
- spinal cord pathology
- brain pathology
Collapse
Affiliation(s)
| | | | | | | | - Carmen Guaza
- Neuroimmunology Group, Functional and System Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda Dr Arce 37, 28002 Madrid, Spain
| |
Collapse
|
25
|
Chronic social stress impairs virus specific adaptive immunity during acute Theiler's virus infection. J Neuroimmunol 2012; 254:19-27. [PMID: 23021485 DOI: 10.1016/j.jneuroim.2012.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 01/12/2023]
Abstract
Prior exposure to social disruption (SDR) stress exacerbates Theiler's murine encephalomyelitis virus (TMEV) infection, a model of multiple sclerosis. Here we examined the impact of SDR on T cell responses to TMEV infection in SJL mice. SDR impaired viral clearance and exacerbated acute disease. Moreover, TMEV infection alone increased CD4 and CD8 mRNA expression in brain and spleen while SDR impaired this response. SDR decreased both CD4(+) and CD8(+) virus-specific T cells in CNS, but not spleen. These findings suggest that SDR-induced suppression of virus-specific T cell responses contributes to impairments in viral clearance and exacerbation of acute disease.
Collapse
|
26
|
Tsugane S, Takizawa S, Kaneyama T, Ichikawa M, Yagita H, Kim BS, Koh CS. Therapeutic effects of anti-Delta1 mAb on Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Neuroimmunol 2012; 252:66-74. [PMID: 22944320 DOI: 10.1016/j.jneuroim.2012.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/30/2012] [Accepted: 08/07/2012] [Indexed: 11/19/2022]
Abstract
We examined the role of Notch ligand Delta-like 1 (Delta1) in the development of Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD). Blocking of Delta1 by anti-Delta1 monoclonal antibody (mAb) in the effector phase significantly suppressed the disease development of TMEV-IDD both clinically and histologically. The number of infiltrating inflammatory mononuclear cells in the spinal cords was also decreased in mice treated with anti-Delta1 mAb at the effector phase. Flow cytometric analysis of cytokine staining revealed that IFN-γ- or IL-4-producing CD4(+) splenocytes were significantly decreased in mice treated with anti-Delta1 mAb in the spleens, whereas IL-10-producing CD4(+) splenocytes were increased. Furthermore, IFN-γ-, TNF-α-, IL-4-, or IL-10-producing CD4(+) cells were decreased in spinal cords, and IL-17-producing CD4(+) cells were increased. These data suggest that Delta1 may play important roles in the development of TMEV-IDD and that antibodies to Delta1 could be used as a novel therapeutic treatment of demyelinating diseases such as human multiple sclerosis.
Collapse
Affiliation(s)
- Sayaka Tsugane
- Department of Biomedical Laboratory Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Herder V, Gerhauser I, Klein SK, Almeida P, Kummerfeld M, Ulrich R, Seehusen F, Rohn K, Schaudien D, Baumgärtner W, Huehn J, Beineke A. Interleukin-10 expression during the acute phase is a putative prerequisite for delayed viral elimination in a murine model for multiple sclerosis. J Neuroimmunol 2012; 249:27-39. [DOI: 10.1016/j.jneuroim.2012.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/24/2012] [Accepted: 04/20/2012] [Indexed: 01/19/2023]
|
28
|
Podolsky MA, Solomos AC, Durso LC, Evans SM, Rall GF, Rose RW. Extended JAK activation and delayed STAT1 dephosphorylation contribute to the distinct signaling profile of CNS neurons exposed to interferon-gamma. J Neuroimmunol 2012; 251:33-8. [PMID: 22769061 DOI: 10.1016/j.jneuroim.2012.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 01/19/2023]
Abstract
Although interferon-gamma (IFN-γ) plays a critical role in the noncytolytic elimination of many neurotropic viral infections, the signaling response to this cytokine has not been extensively characterized in primary CNS neurons. We previously demonstrated that the IFN-γ response at the signaling and gene expression levels is temporally extended in primary mouse hippocampal neurons, as compared to the transient response of primary mouse embryonic fibroblasts (MEF). We hypothesize that the protracted kinetics of STAT1 phosphorylation in IFN-γ-treated neurons are due to extended receptor activation and/or delayed STAT1 dephosphorylation in the nucleus. Here, we show that in response to IFN-γ, the Janus kinases (JAK1/JAK2) associated with the neuronal IFN-γ receptor complex remain active for an extended period as compared to MEF. Experimental inactivation of JAK1/JAK2 in neurons after IFN-γ treatment did not reverse the extended STAT1 phosphorylation phenotype. These results suggest that the extended kinetics of neuronal IFN-γ signaling are a product of distinct negative feedback mechanisms operating at both the receptor and within the nucleus.
Collapse
Affiliation(s)
- Michael A Podolsky
- Department of Biology, Arcadia University, 450 South Easton Road, Glenside, PA 19038, USA
| | | | | | | | | | | |
Collapse
|
29
|
Pirko I, Chen Y, Lohrey AK, McDole J, Gamez JD, Allen KS, Pavelko KD, Lindquist DM, Dunn RS, Macura SI, Johnson AJ. Contrasting roles for CD4 vs. CD8 T-cells in a murine model of virally induced "T1 black hole" formation. PLoS One 2012; 7:e31459. [PMID: 22348089 PMCID: PMC3278445 DOI: 10.1371/journal.pone.0031459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/08/2012] [Indexed: 12/31/2022] Open
Abstract
MRI is sensitive to tissue pathology in multiple sclerosis (MS); however, most lesional MRI findings have limited correlation with disability. Chronic T1 hypointense lesions or "T1 black holes" (T1BH), observed in a subset of MS patients and thought to represent axonal damage, show moderate to strong correlation with disability. The pathogenesis of T1BH remains unclear. We previously reported the first and as of yet only model of T1BH formation in the Theiler's murine encephalitis virus induced model of acute CNS neuroinflammation induced injury, where CD8 T-cells are critical mediators of axonal damage and related T1BH formation. The purpose of this study was to further analyze the role of CD8 and CD4 T-cells through adoptive transfer experiments and to determine if the relevant CD8 T-cells are classic epitope specific lymphocytes or different subsets. C57BL/6 mice were used as donors and RAG-1 deficient mice as hosts in our adoptive transfer experiments. In vivo 3-dimensional MRI images were acquired using a 7 Tesla small animal MRI system. For image analysis, we used semi-automated methods in Analyze 9.1; transfer efficiency was monitored using FACS of brain infiltrating lymphocytes. Using a peptide depletion method, we demonstrated that the majority of CD8 T-cells are classic epitope specific cytotoxic cells. CD8 T-cell transfer successfully restored the immune system's capability to mediate T1BH formation in animals that lack adaptive immune system, whereas CD4 T-cell transfer results in an attenuated phenotype with significantly less T1BH formation. These findings demonstrate contrasting roles for these cell types, with additional evidence for a direct pathogenic role of CD8 T-cells in our model of T1 black hole formation.
Collapse
Affiliation(s)
- Istvan Pirko
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yi Chen
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Anne K. Lohrey
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jeremiah McDole
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jeffrey D. Gamez
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kathleen S. Allen
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Diana M. Lindquist
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - R. Scott Dunn
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Slobodan I. Macura
- Department of Biochemistry, NMR Core Facility, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
30
|
Moreno-Martet M, Mestre L, Loría F, Guaza C, Fernández-Ruiz J, de Lago E. Identification of receptors and enzymes for endocannabinoids in NSC-34 cells: relevance for in vitro studies with cannabinoids in motor neuron diseases. Neurosci Lett 2011; 508:67-72. [PMID: 22206832 DOI: 10.1016/j.neulet.2011.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/17/2011] [Accepted: 12/14/2011] [Indexed: 02/07/2023]
Abstract
NSC-34 cells, a hybridoma cell line derived from the fusion of neuroblastoma cells with mice spinal cord cells, have been widely used as an in vitro model for the study of motor neuron diseases [i.e. amyotrophic lateral sclerosis (ALS)]. In the present study, they were used to characterize different elements of the cannabinoid signaling system, which have been reported to serve as targets for the neuroprotective action of different natural and synthetic cannabinoid compounds. Using RT-PCR, Western blotting and immunocytochemistry, we first identified the presence of the cannabinoid CB(1) receptor in these cells. As expected, CB(2) receptor is not expressed in this neuronal cell line, a result that is concordant with the idea that this receptor type is preferentially expressed in glial elements. Diacylglycerol-lipase (DAGL) and N-arachidonoylphosphatidylethanolamine-phospholipase D (NAPE-PLD), the enzymes that synthesize endocannabinoids, have also been detected in these cells using RT-PCR, and the same happened with the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol-lipase (MAGL). The presence of the CB(1) receptor in these cells supports the idea that this receptor may play a role in the regulation of cellular survival face to excitotoxic injury. Interestingly, the expression of CB(1) receptor (and also the FAAH enzyme) was strongly up-regulated after differentiation of these cells, as previously reported with glutamate receptors. No changes were found for NAPE-PLD, DAGL and MAGL. Assuming that glutamate toxicity is one of the major causes of neuronal damage in ALS and other motor neurons diseases, the differentiated NSC-34 cells might serve as a useful model for studying neuroprotection with cannabinoids in conditions of excitotoxic injury, mitochondrial malfunctioning and oxidative stress.
Collapse
Affiliation(s)
- Miguel Moreno-Martet
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Sosa RA, Forsthuber TG. The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis. J Interferon Cytokine Res 2011; 31:753-68. [PMID: 21919736 PMCID: PMC3189551 DOI: 10.1089/jir.2011.0052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4(+) T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process.
Collapse
Affiliation(s)
- Rebecca A Sosa
- Department of Biology, University of Texas at San Antonio, Texas 78249, USA
| | | |
Collapse
|
32
|
Abstract
Measles virus is highly neuroinvasive, yet host immune responses are highly effective at limiting neurovirulence in humans. We know that neurons are an important target of infection and that both IFN-γ and -β expression are observed in the measles virus-infected human brain. Rodent models can be used to understand how this response is orchestrated. Constitutive expression of the major inducible 70-kDa heat-shock protein is a feature of primate tissues that is lacking in mice. This article examines the importance of addressing this difference when modeling outcomes of brain infection in mice, particularly in terms of understanding how infected neurons may activate uninfected brain macrophages to produce IFN-β and support T-cell production of IFN-γ, a mediator of noncytolytic viral clearance. New and historical data suggest that the virus heat-shock protein 70 relationship is key to a protective host immune response and has potential broad relevance.
Collapse
Affiliation(s)
- Michael Oglesbee
- Department of Veterinary Biosciences, Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | |
Collapse
|
33
|
Ryu HJ, Kim JE, Kim MJ, Kwon HJ, Suh SW, Song HK, Kang TC. The protective effects of interleukin-18 and interferon-γ on neuronal damages in the rat hippocampus following status epilepticus. Neuroscience 2010; 170:711-21. [PMID: 20674684 DOI: 10.1016/j.neuroscience.2010.07.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/22/2010] [Accepted: 07/22/2010] [Indexed: 12/27/2022]
Abstract
To elucidate whether interleukin-18 (IL-18) or interferon-γ (IFN-γ) participates in neurodegeneartion, we investigated the changes in IL-18 and IFN-γ systems within the rat hippocampus following status epilepticus (SE). In non-SE induced animals, IL-18, IL-18 receptor α (IL-18Rα), IFN-γ and IFN-γ receptor α (IFN-γRα) immunoreactivity was not detected in the hippocampus. Following SE, IL-18 immunoreactivity was increased in CA1-3 pyramidal cells as well as dentate granule cells. IL-18 immunoreactivity was also up-regulated in astrocytes and microglia/macrophages. IL-18Rα immunoreactivity was detected in astrocytes and microglia/macrophages. IFN-γ immunoreactivity was detected only in astrocytes within all regions of the hippocampus. IFN-γRα immunoreactivity was increased in neurons as well as astrocytes. Intracerebroventricular infusions of recombinant rat IL-18 or IFN-γ alleviated SE-induced neuronal damages, while neutralization of IL-18, IFN-γ or their receptors aggravated them, as compared to saline-infused animals. These findings suggest that astroglial-mediated IFN-γ pathway in response to IL-18 induction may play an important role in alleviation of SE-induced neuronal damages.
Collapse
Affiliation(s)
- H J Ryu
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-DO 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Himeda T, Okuwa T, Muraki Y, Ohara Y. Cytokine/chemokine profile in J774 macrophage cells persistently infected with DA strain of Theiler's murine encephalomyelitis virus (TMEV). J Neurovirol 2010; 16:219-29. [PMID: 20515433 DOI: 10.3109/13550284.2010.484040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus and persists in the spinal cords of mice, followed by inflammatory demyelinating disease. Viral persistence is a key determinant for the TMEV-induced demyelination. Macrophages are thought to serve as the site of TMEV persistence during the chronic demyelinating phase. We previously demonstrated that two nonstructural proteins of TMEV, L and L(*), were important for virus growth in J774.1 macrophage cells. However, the key factors of macrophage cells related to virus persistence and demyelination remain poorly understood. The inflammatory response is heavily dependent on cytokine and chemokine production by cell of both the immune system and the central nervous system (CNS). In this study, we established the macrophage cells persistently infected with DA strain, and then analyzed the cytokine expression pattern in those cells. The present results are the first to demonstrate the up-regulation of B-lymphocyte chemoattractant (BLC) and granulocyte colony-stimulating factor (G-CSF) in the macrophage cells persistently infected with DA strain. Furthermore, up-regulation of interleukin (IL)-10 and down-regulation of interferon (IFN)-alpha 4, IFN-beta, and IFN-gamma were shown in those cells. The data suggest that these cytokines/chemokines may contribute to the virus persistence and the acceleration of TMEV-induced demyelination.
Collapse
Affiliation(s)
- Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | | | | | | |
Collapse
|
35
|
Doi K. Experimental encephalomyocarditis virus infection in small laboratory rodents. J Comp Pathol 2010; 144:25-40. [PMID: 20594559 DOI: 10.1016/j.jcpa.2010.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/24/2010] [Accepted: 05/18/2010] [Indexed: 11/30/2022]
Abstract
Encephalomyocarditis virus (EMCV) is a cardiovirus that belongs to the family Picornaviridae. EMCV is an important cause of acute myocarditis in piglets and of fetal death or abortion in pregnant sows. Small rodents, especially rats, have been suspected to be reservoir hosts or carriers. This virus also induces type 1 diabetes mellitus, encephalomyelitis, myocarditis, orchitis and/or sialodacryoadenitis in small laboratory rodents. This paper reviews the pathology and pathogenesis of experimental infection with EMCV in small laboratory rodents.
Collapse
Affiliation(s)
- K Doi
- Nippon Institute for Biological Science, 9-2221-1, Shin-Machi, Ome, Tokyo 198-0024, Japan.
| |
Collapse
|
36
|
O'Donnell LA, Rall GF. Blue moon neurovirology: the merits of studying rare CNS diseases of viral origin. J Neuroimmune Pharmacol 2010; 5:443-55. [PMID: 20419352 DOI: 10.1007/s11481-010-9200-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 03/05/2010] [Indexed: 11/24/2022]
Abstract
While measles virus (MV) continues to have a significant impact on human health, causing 150,000-200,000 deaths worldwide each year, the number of fatalities that can be attributed to MV-triggered central nervous system (CNS) diseases are on the order of a few hundred individuals annually (World Health Organization 2009). Despite this modest impact, substantial effort has been expended to understand the basis of measles-triggered neuropathogenesis. What can be gained by studying such a rare condition? Simply stated, the wealth of studies in this field have revealed core principles that are relevant to multiple neurotropic pathogens, and that inform the broader field of viral pathogenesis. In recent years, the emergence of powerful in vitro systems, novel animal models, and reverse genetics has enabled insights into the basis of MV persistence, the complexity of MV interactions with neurons and the immune system, and the role of immune and CNS development in virus-triggered disease. In this review, we highlight some key advances, link relevant measles-based studies to the broader disciplines of neurovirology and viral pathogenesis, and propose future areas of study for the field of measles-mediated neurological disease.
Collapse
Affiliation(s)
- Lauren A O'Donnell
- Program in Immune Cell Development and Host Defense, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
37
|
Chakraborty S, Nazmi A, Dutta K, Basu A. Neurons under viral attack: victims or warriors? Neurochem Int 2010; 56:727-35. [PMID: 20206655 PMCID: PMC7115389 DOI: 10.1016/j.neuint.2010.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 12/26/2022]
Abstract
When the central nervous system (CNS) is under viral attack, defensive antiviral responses must necessarily arise from the CNS itself to rapidly and efficiently curb infections with minimal collateral damage to the sensitive, specialized and non-regenerating neural tissue. This presents a unique challenge because an intact blood-brain barrier (BBB) and lack of proper lymphatic drainage keeps the CNS virtually outside the radar of circulating immune cells that are at constant vigilance for antigens in peripheral tissues. Limited antigen presentation skills of CNS cells in comparison to peripheral tissues is because of a total lack of dendritic cells and feeble expression of major histocompatibility complex (MHC) proteins in neurons and glia. However, research over the past two decades has identified immune effector mechanisms intrinsic to the CNS for immediate tackling, attenuating and clearing of viral infections, with assistance pouring in from peripheral circulation in the form of neutralizing antibodies and cytotoxic T cells at a later stage. Specialized CNS cells, microglia and astrocytes, were regarded as sole sentinels of the brain for containing a viral onslaught but neurons held little recognition as a potential candidate for protecting itself from the proliferation and pathogenesis of neurotropic viruses. Accumulating evidence however indicates that extracellular insult causes neurons to express immune factors characteristic of lymphoid tissues. This article aims to comprehensively analyze current research on this conditional alteration in the protein expression repertoire of neurons and the role it plays in CNS innate immune response to counter viral infections.
Collapse
|
38
|
T cells facilitate recovery from Venezuelan equine encephalitis virus-induced encephalomyelitis in the absence of antibody. J Virol 2010; 84:4556-68. [PMID: 20181704 DOI: 10.1128/jvi.02545-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus of the genus Alphavirus that is responsible for a significant disease burden in Central and South America through sporadic outbreaks into human and equid populations. For humans, 2 to 4% of cases are associated with encephalitis, and there is an overall case mortality rate of approximately 1%. In mice, replication of the virus within neurons of the central nervous system (CNS) leads to paralyzing, invariably lethal encephalomyelitis. However, mice infected with certain attenuated mutants of the virus are able to control the infection within the CNS and recover. To better define what role T cell responses might be playing in this process, we infected B cell-deficient microMT mice with a VEEV mutant that induces mild, sublethal illness in immune competent mice. Infected microMT mice rapidly developed the clinical signs of severe paralyzing encephalomyelitis but were eventually able to control the infection and recover fully from clinical illness. Recovery in this system was T cell dependent and associated with a dramatic reduction in viral titers within the CNS, followed by viral persistence in the brain. Further comparison of the relative roles of T cell subpopulations within this system revealed that CD4(+) T cells were better producers of gamma interferon (IFN-gamma) than CD8(+) T cells and were more effective at controlling VEEV within the CNS. Overall, these results suggest that T cells, especially CD4(+) T cells, can successfully control VEEV infection within the CNS and facilitate recovery from a severe viral encephalomyelitis.
Collapse
|
39
|
Steelman AJ, Dean DD, Young CR, Smith R, Prentice TW, Meagher MW, Welsh CJR. Restraint stress modulates virus specific adaptive immunity during acute Theiler's virus infection. Brain Behav Immun 2009; 23:830-43. [PMID: 19348911 PMCID: PMC2710426 DOI: 10.1016/j.bbi.2009.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 03/21/2009] [Accepted: 03/22/2009] [Indexed: 10/20/2022] Open
Abstract
Multiple sclerosis (MS) is a devastating CNS disease of unknown origin. Multiple factors including genetic background, infection, and psychological stress affect the onset or progression of MS. Theiler's murine encephalomyelitis virus (TMEV) infection is an animal model of MS in which aberrant immunity leads to viral persistence and subsequently results in demyelination that resembles MS. Here, we examined how stress during acute TMEV infection altered virus-specific cell mediated responses. Using immunodominant viral peptides specific for either CD4(+) or CD8(+) T cells, we found that stress reduced IFN-gamma producing virus-specific CD4(+) and CD8(+) T cells in the spleen and CD8(+) T cells CNS. Cytokine production by cells isolated from the CNS or spleens following stimulation with virus or viral peptides, indicated that stress decreased both type 1 and type 2 responses. Glucocorticoids were implicated in the decreased T cell function as the effects of stress were partially reversed by concurrent RU486 administration but mimicked by dexamethasone. As T cells mediate viral clearance in this model, our data support the hypothesis that stress-induced immunosuppression may provide a mechanism for enhanced viral persistence within the CNS.
Collapse
Affiliation(s)
- Andrew J. Steelman
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Dana D. Dean
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Colin R. Young
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Roger Smith
- Dept of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Thomas W. Prentice
- Dept of Psychology, College of Liberal Arts, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Mary W. Meagher
- Dept of Psychology, College of Liberal Arts, Texas A&M University, College Station, Texas 77843 U.S.A
| | - C. Jane R. Welsh
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A, Dept of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| |
Collapse
|
40
|
Noncytolytic clearance of sindbis virus infection from neurons by gamma interferon is dependent on Jak/STAT signaling. J Virol 2009; 83:3429-35. [PMID: 19176616 DOI: 10.1128/jvi.02381-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alphavirus Sindbis virus (SINV) causes encephalomyelitis in mice by infecting neurons of the brain and spinal cord. The outcome is age dependent. Young animals develop fatal disease, while older animals recover from infection. Recovery requires noncytolytic clearance of SINV from neurons, and gamma interferon (IFN-gamma) is an important contributor to clearance in vivo. IFN-gamma-dependent clearance has been studied using immortalized CSM14.1 rat neuronal cells that can be differentiated in vitro. Previous studies have shown that differentiated, but not undifferentiated, cells develop prolonged SINV replication and respond to IFN-gamma treatment with noncytolytic clearance of virus preceded by suppression of genomic viral RNA synthesis and reactivation of cellular protein synthesis. To determine the signaling mechanisms responsible for clearance, the responses of SINV-infected differentiated neurons to IFN-gamma were examined. IFN-gamma treatment of SINV-infected differentiated CSM14.1 cells, AP-7 olfactory neuronal cells, and primary dorsal root ganglia neurons triggered prolonged Stat-1 Tyr(701) phosphorylation, Stat-1 Ser(727) phosphorylation, and transient Stat-5 phosphorylation. Inhibition of Jak kinase activity with Jak inhibitor I completely reversed the neuroprotective and antiviral activities of IFN-gamma in differentiated cells. We conclude that activation of the Jak/Stat pathway is the primary mechanism for IFN-gamma-mediated clearance of SINV infection from mature neurons.
Collapse
|
41
|
Abstract
The etiology of multiple sclerosis (MS) is unknown but it manifests as a chronic inflammatory demyelinating disease in the central nervous system (CNS). During chronic CNS inflammation, nicotinamide adenine dinucleotide (NAD) concentrations are altered by (T helper) Th1-derived cytokines through the coordinated induction of both indoleamine 2,3-dioxygenase (IDO) and the ADP cyclase CD38 in pathogenic microglia and lymphocytes. While IDO activation may keep auto-reactive T cells in check, hyper-activation of IDO can leave neuronal CNS cells starving for extracellular sources of NAD. Existing data indicate that glia may serve critical functions as an essential supplier of NAD to neurons during times of stress. Administration of pharmacological doses of non-tryptophan NAD precursors ameliorates pathogenesis in animal models of MS. Animal models of MS involve artificially stimulated autoimmune attack of myelin by experimental autoimmune encephalomyelitis (EAE) or by viral-mediated demyelination using Thieler's murine encephalomyelitis virus (TMEV). The Wld(S) mouse dramatically resists razor axotomy mediated axonal degeneration. This resistance is due to increased efficiency of NAD biosynthesis that delays stress-induced depletion of axonal NAD and ATP. Although the Wld(S) genotype protects against EAE pathogenesis, TMEV-mediated pathogenesis is exacerbated. In this review, we contrast the role of NAD in EAE versus TMEV demyelinating pathogenesis to increase our understanding of the pharmacotherapeutic potential of NAD signal transduction pathways. We speculate on the importance of increased SIRT1 activity in both PARP-1 inhibition and the potentially integral role of neuronal CD200 interactions through glial CD200R with induction of IDO in MS pathogenesis. A comprehensive review of immunomodulatory control of NAD biosynthesis and degradation in MS pathogenesis is presented. Distinctive pharmacological approaches designed for NAD-complementation or targeting NAD-centric proteins (SIRT1, SIRT2, PARP-1, GPR109a, and CD38) are outlined towards determining which approach may work best in the context of clinical application.
Collapse
Affiliation(s)
- W Todd Penberthy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| | | |
Collapse
|
42
|
Cheeran MCJ, Jiang Z, Hu S, Ni HT, Palmquist JM, Lokensgard JR. Cytomegalovirus infection and interferon-gamma modulate major histocompatibility complex class I expression on neural stem cells. J Neurovirol 2008; 14:437-47. [PMID: 18937121 DOI: 10.1080/13550280802356845] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cytomegalovirus (CMV) is the leading transmittable cause of congenital brain abnormalities in children and infection results in fatal ventriculoencephalitis in advanced acquired immunodeficiency syndrome (AIDS) patients. Pathology associated with CMV brain infection is seen predominantly in the periventricular region, an area known to harbor neural stem cells (NSCs). In the present study, using an adult model of murine CMV brain infection, the authors demonstrated that nestin-positive NSCs in the subventricular zone are susceptible to murine CMV infection. Furthermore, primary NSC cultures supported productive murine CMV replication with a 1000-fold increase in viral titers by 5 days post infection (d.p.i). Previous studies from the authors' laboratory demonstrated that CD8 lymphocytes were essential in protecting the brain against murine CMV infection. In the present study, the authors found that interferon (IFN)-gamma treatment increased the expression of major histocompatibility complex (MHC) class I on NSCs. Viral infection, on the other hand, inhibited this IFN-gamma-induced MHC up-regulation. In addition to increasing MHC class I expression, IFN-gamma (but not tumor necrosis factor [TNF]-alpha, interleukin [IL]-1 beta, or IL-10) also suppressed NSC proliferation in vitro. This decrease in proliferation was not accompanied by apoptosis or extracellular release of cellular lactate dehydrogenase (LDH), suggesting that the effects were not due to direct cytotoxicity. These studies demonstrate that NSCs are susceptible to murine CMV infection and inflammatory mediators, such as IFN-gamma, alter cellular characteristics which may have an impact on their reparative functions.
Collapse
Affiliation(s)
- Maxim C-J Cheeran
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Steurbaut S, Merckx E, Rombaut B, Vrijsen R. Modulation of viral replication in macrophages persistently infected with the DA strain of Theiler's murine encephalomyelitis virus. Virol J 2008; 5:89. [PMID: 18680564 PMCID: PMC2515842 DOI: 10.1186/1743-422x-5-89] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 08/04/2008] [Indexed: 11/30/2022] Open
Abstract
Background Demyelinating strains of Theiler's murine encephalomyelitis virus (TMEV) such as the DA strain are the causative agents of a persistent infection that induce a multiple sclerosis-like disease in the central nervous system of susceptible mice. Viral persistence, mainly associated with macrophages, is considered to be an important disease determinant that leads to chronic inflammation, demyelination and autoimmunity. In a previous study, we described the establishment of a persistent DA infection in RAW macrophages, which were therefore named DRAW. Results In the present study we explored the potential of diverse compounds to modulate viral persistence in these DRAW cells. Hemin was found to increase viral yields and to induce cell lysis. Enviroxime and neutralizing anti-TMEV monoclonal antibody were shown to decrease viral yields, whereas interferon-α and interferon-γ completely cleared the persistent infection. We also compared the cytokine pattern secreted by uninfected RAW, DRAW and interferon-cured DRAW macrophages using a cytokine protein array. The chemokine RANTES was markedly upregulated in DRAW cells and restored to a normal expression level after abrogation of the persistent infection with interferon-α or interferon-γ. On the other hand, the chemokine MCP-1 was upregulated in the interferon-cured DRAW cells. Conclusion We have identified several compounds that modulate viral replication in an in vitro model system for TMEV persistence. These compounds now await further testing in an in vivo setting to address fundamental questions regarding persistent viral infection and immunopathogenesis.
Collapse
Affiliation(s)
- Stephane Steurbaut
- Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
44
|
Yang J, Dennison NN, Reiss CS. PIN: a novel protein involved in IFN-gamma accumulation of NOS-1 in neurons. DNA Cell Biol 2008; 27:9-17. [PMID: 17941806 DOI: 10.1089/dna.2007.0673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study we investigate the role of the protein inhibitor of NOS-1 (PIN) in the interferon-gamma (IFN-gamma)-mediated posttranscriptional accumulation of nitric oxide synthase-1 (NOS-1) and the anti-vesicular stomatitis virus response in neuronal cells. IFN-gamma-induced enhancement of NOS-1 activity is crucial for its antiviral activity in the central nervous system. IFN-gamma treatment of neuronal cells results in an increase of total NOS-1 and decrease of total PIN proteins without alteration in their respective mRNA levels. PIN/NOS-1 complexes decreased after IFN-gamma treatment. Transfection of cells with small interfering RNA (siRNA) for PIN results in a higher constitutive activity of NOS-1 and inhibition of viral replication. IFN-gamma treatment did not change the amount of NOS-1 detectable by Western blot, when PIN is diminished by RNAi treatment. Overexpression of PIN results in lower constitutive NOS-1 expression and activity, and diminishes activation of NOS-1 by IFN-gamma. Our findings indicate that in neurons, IFN-gamma upregulates NOS-1 through proteasomal degradation of PIN.
Collapse
Affiliation(s)
- Jingjun Yang
- Department of Biology, New York University, New York, New York 10003-6688, USA
| | | | | |
Collapse
|
45
|
Zhang B, Chan YK, Lu B, Diamond MS, Klein RS. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. THE JOURNAL OF IMMUNOLOGY 2008; 180:2641-9. [PMID: 18250476 DOI: 10.4049/jimmunol.180.4.2641] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regional differences in inflammation during viral infections of the CNS suggest viruses differentially induce patterns of chemoattractant expression, depending on their cellular targets. Previous studies have shown that expression of the chemokine CXCL10 by West Nile virus (WNV)-infected neurons is essential for the recruitment of CD8 T cells for the purpose of viral clearance within the CNS. In the current study we used mice deficient for the CXCL10 receptor, CXCR3, to evaluate its role in leukocyte-mediated viral clearance of WNV infection within various CNS compartments. WNV-infected CXCR3-deficient mice exhibited significantly enhanced mortality compared with wild-type controls. Immunologic and virologic analyses revealed that CXCR3 was dispensable for control of viral infection in the periphery and in most CNS compartments but, surprisingly, was required for CD8 T cell-mediated antiviral responses specifically within the cerebellum. WNV-specific, CXCR3-expressing T cells preferentially migrated into the cerebellum, and WNV-infected cerebellar granule cell neurons expressed higher levels of CXCL10 compared with similarly infected cortical neurons. These results indicate that WNV differentially induces CXCL10 within neuronal populations and suggest a novel model for nonredundancy in chemokine-mediated inflammation among CNS compartments.
Collapse
Affiliation(s)
- Bo Zhang
- Division of Infectious Diseases, Children's Hospital of Boston, Boston, MA, USA
| | | | | | | | | |
Collapse
|
46
|
Rodriguez M, Zoecklein L, Papke L, Gamez J, Denic A, Macura S, Howe C. Tumor necrosis factor alpha is reparative via TNFR2 [corrected] in the hippocampus and via TNFR1 [corrected] in the striatum after virus-induced encephalitis. Brain Pathol 2008; 19:12-26. [PMID: 18422761 DOI: 10.1111/j.1750-3639.2008.00151.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Differentiating between injurious and reparative factors facilitates appropriate therapeutic intervention. We evaluated the role of tumor necrosis factor alpha (TNFalpha) in parenchymal brain pathology resolution following virus-induced encephalitis from a picornavirus, Theiler's murine encephalomyelitis virus (TMEV). We infected the following animals with TMEV for 7 to 270 days: B6/129 TNF(-/-) mice (without TNFalpha expression), B6/129 TNFR1(-/-) mice (without TNFalpha receptor 1 expression), and B6/129 TNFR2(-/-) mice (without TNFalpha receptor 2 expression). Normal TNFalpha-expressing controls were TMEV-infected B6, 129/J, B6/129F1 and B6/129F2 mice. Whereas all strains developed inflammation and neuronal injury in the hippocampus and striatum 7 to 21 days postinfection (dpi), the control mice resolved the pathology by 45 to 90 dpi. However, parenchymal hippocampal and striatal injury persisted in B6/129 TNF(-/-) mice following infection. Treating virus-infected mice with active recombinant mouse TNFalpha resulted in less hippocampal and striatal pathology, whereas TNFalpha-neutralizing treatment worsened pathology. T1 "black holes" appeared on MRI during early infection in the hippocampus and striatum in all mice but persisted only in TNF(-/-) mice. TNFR2 [corrected] mediated hippocampal pathology resolution whereas TNFR1 [corrected] mediated striatal healing. These findings indicate the role of TNFalpha in resolution of sublethal hippocampal and striatal injury.
Collapse
Affiliation(s)
- Moses Rodriguez
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Human HLA-DR transgenes protect mice from fatal virus-induced encephalomyelitis and chronic demyelination. J Virol 2008; 82:3369-80. [PMID: 18234804 DOI: 10.1128/jvi.02243-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We evaluated the participatory role of human HLA-DR molecules in control of virus from the central nervous system and in the development of subsequent spinal cord demyelination. The experiments utilized intracranial infection with Theiler's murine encephalomyelitis virus (TMEV), a picornavirus that, in some strains of mice, results in primary demyelination. We studied DR2 and DR3 transgenic mice that were bred onto a combined class I-deficient mouse (beta-2 microglobulin deficient; beta2m(0)) and class II-deficient mouse (Abeta(0)) of the H-2(b) background. Abeta(0).beta2m(0) mice infected with TMEV died within 18 days of infection. These mice showed severe encephalomyelitis due to rapid replication of virus genome. In contrast, transgenic mice with insertion of a single human class II major histocompatibility complex (MHC) gene (DR2 or DR3) survived the acute infection. DR2 and DR3 mice controlled virus infection by 45 days and did not develop spinal cord demyelination. Levels of virus RNA were reduced in HLA-DR transgenic mice compared to Abeta(0).beta2m(0) mice. Virus-neutralizing antibody responses did not explain why DR mice survived the infection and controlled virus replication. However, DR mice showed an increase in gamma interferon and interleukin-2 transcripts in the brain, which were associated with protection. The findings support the hypothesis that the expression of a single human class II MHC molecule can, by itself, influence the control of an intracerebral pathogen in a host without a competent class I MHC immune response. The mechanism of protection appears to be the result of cytokines released by CD4(+) T cells.
Collapse
|
48
|
Abstract
The role of immune-mediated axonal injury in the induction of nonremitting functional deficits associated with multiple sclerosis is an area of active research that promises to substantially alter our understanding of the pathogenesis of this disease and modify or change our therapeutic focus. This review summarizes the current state of research regarding changes in axonal function during demyelination, provides evidence of axonal dysmorphia and degeneration associated with demyelination, and identifies the cellular and molecular effectors of immune-mediated axonal injury. Finally, a unifying hypothesis that links neuronal stress associated with demyelination-induced axonal dysfunction to immune recognition and immunopathology is provided in an effort to shape future experimentation.
Collapse
|
49
|
Moldovan IR, Cotleur AC, Zamor N, Butler RS, Pelfrey CM. Multiple sclerosis patients show sexual dimorphism in cytokine responses to myelin antigens. J Neuroimmunol 2008; 193:161-9. [PMID: 18022700 PMCID: PMC2235927 DOI: 10.1016/j.jneuroim.2007.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis affects more women than men. The reasons for this are unknown. Previously, we have shown significant differences in women versus men in inflammatory cytokine responses to the major protein component of myelin, proteolipid protein (PLP), which is thought to be a target in MS patients. Here, using the ELISPOT assay, we examined sex differences in single-cell secretion of Th1 and Th2 cytokines from freshly isolated PBMC between relapsing remitting (RR) MS patients and healthy individuals. Cells were stimulated with MS-associated antigens including proteolipid protein (PLP), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), and non-disease related antigens. Our data show a sex bias in the cytokine responses to multiple MS-relevant myelin antigens: Women with MS show IFNgamma-skewed responses and men with MS show IL-5-skewed responses. These data extend our previous findings [Pelfrey, C.M., Cotleur, A.C., Lee, J.C., Rudick, R.A. 2002. Sex differences in cytokine responses to myelin peptides in multiple sclerosis. J. Neuroimmunol. 130, 211-223.]: (1) by demonstrating gender skewing in cytokine responses to an expanded myelin antigen repertoire, which includes MBP, MOG and PLP; (2) by showing TNFalpha and IL-10 do not display comparable gender skewing compared to IFNgamma and IL5; (3) by defining the patient population as early, untreated RRMS patients to avoid confounding factors, such as different disease stages/disability and immunomodulatory therapy; and (4) by showing HLA type does not appear to underlie the gender differences. These findings may explain increased susceptibility to MS in women and could contribute to the differences in disease severity between men and women.
Collapse
Affiliation(s)
- Ioana R. Moldovan
- Department of Neurosciences, NC30, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH 44195
| | - Anne C. Cotleur
- Department of Neurosciences, NC30, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH 44195
| | - Natacha Zamor
- Department of Neurosciences, NC30, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH 44195
| | - Robert S. Butler
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute
| | - Clara M. Pelfrey
- Department of Neurosciences, NC30, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH 44195
- Institute of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106
| |
Collapse
|
50
|
Rose RW, Vorobyeva AG, Skipworth JD, Nicolas E, Rall GF. Altered levels of STAT1 and STAT3 influence the neuronal response to interferon gamma. J Neuroimmunol 2007; 192:145-56. [PMID: 18006082 DOI: 10.1016/j.jneuroim.2007.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/01/2007] [Accepted: 10/03/2007] [Indexed: 12/11/2022]
Abstract
As immune responses in the CNS are highly regulated, cell-specific differences in IFNgamma signaling may be integral in dictating the outcome of host cell responses. In comparing the response of IFNgamma-treated primary neurons to control MEF, we observed that neurons demonstrated lower basal expression of both STAT1 and STAT3, the primary signal transducers responsible for IFNgamma signaling. Following IFNgamma treatment of these cell populations, we noted muted and delayed STAT1 phosphorylation, no detectable STAT3 phosphorylation, and a 3-10-fold lower level of representative IFNgamma-responsive gene transcripts. Moreover, in response to a brief pulse of IFNgamma, a steady increase in STAT1 phosphorylation and IFNgamma gene expression over 48 h was observed in neurons, as compared to rapid attenuation in MEF. These distinct response kinetics in IFNgamma-stimulated neurons may reflect modifications in the IFNgamma negative feedback loop, which may provide a mechanism for the cell-specific heterogeneity of responses to IFNgamma.
Collapse
Affiliation(s)
- R Wesley Rose
- Department of Biology, Arcadia University, 450 South Easton Road, Glenside, PA 19038, United States
| | | | | | | | | |
Collapse
|