1
|
Li C, Wang X, Zhu Q, Sun D. Isolation and identification of BRV G6P[1] strain in Heilongjiang province, Northeast China. Front Vet Sci 2024; 11:1416465. [PMID: 39372897 PMCID: PMC11449731 DOI: 10.3389/fvets.2024.1416465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024] Open
Abstract
Bovine rotavirus (BRV) is the main cause of acute gastroenteritis in calves, resulting in significant economic losses to the cattle industry worldwide. Additionally, BRV has multiple genotypes, which could enable cross-species transmission, thereby posing a significant risk to public health. However, there is a problem of multiple genotypes coexisting in BRV, and the cross-protection effect between different genotypes of rotavirus strains is not effective enough. Therefore, mastering clinical epidemic genotypes and using epidemic genotype strains for vaccine preparation is an effective means of preventing and controlling BRV. In this study, BRV strain DQ2020 in MA104 cells was identified by transmission electron microscopy (TEM), reverse transcription polymerase chain reaction (RT-PCR), and colloidal gold immunochromatographic test strips. The whole genome of BRV strain DQ2020 was sequenced and pathogenicity in suckling mice was assessed. The results showed that after 10 passages in MA104 cells, BRV strain DQ2020 induced cytopathic effects. Wheel-shaped virus particles (diameter, ~80 nm) were observed by TEM. A target band of 382 bp was detected by RT-PCR, a positive band was detected with the colloidal gold immunochromatographic test strips, and significant green fluorescence was observed by indirect immunofluorescence (IFA). The highest median tissue culture infectious dose of strain DQ2020 after 9 passages in MA104 cells was 10-4.81 viral particles/0.1 mL. Based on phylogenetic analysis of 11 gene fragments, the genotype of BRV strain DQ2020 was G6-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3, confirming transmission of the G6-P[1] genotype in Chinese cattle herds. Further analysis showed that the isolated strain was a reassortant of bovine (VP7, VP6, NSP3, and NSP5), human (VP4, VP1, VP2, VP3, NSP2, and NSP4), and ovine (NSP1) rotaviruses. BRV strain DQ2020 caused damage to the intestinal villi of suckling mice and diarrhea, confirming pathogenicity. In summary, this study identified a reassortant strain of bovine, human, and ovine rotavirus that is pathogenic to lactating mice, and conducted whole genome sequence analysis, providing valuable insights for the genetic evolution of the virus and the development of vaccines.
Collapse
Affiliation(s)
| | | | - Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
2
|
Hu J, Wu J, Cao H, Luan N, Lin K, Zhang H, Gao D, Lei Z, Li H, Liu C. Effects of Rotavirus NSP4 on the Immune Response and Protection of Rotavirus-Norovirus Recombinant Subunit Vaccines in Different Immune Pathways. Vaccines (Basel) 2024; 12:1025. [PMID: 39340055 PMCID: PMC11436106 DOI: 10.3390/vaccines12091025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Diarrheal disease continues to be a major cause of global morbidity and mortality among children under 5 years of age. To address the current issues associated with oral attenuated rotavirus vaccines, the study of parenteral rotavirus vaccines has promising prospects. In our previous study, we reported that rotavirus nonstructural protein 4 (NSP4) did not increase the IgG antibody titer of co-immune antigen but did have a protective effect against diarrhea via the intramuscular injection method. Here, we explored whether NSP4 can exert adjuvant effects on mucosal immune pathways. In this study, we immunized mice via muscle and nasal routes, gavaged them with the rotavirus Wa strain or the rotavirus SA11 strain, and then tested the protective effects of immune sera against both viruses. The results revealed that the serum-specific VP8* IgG antibody titers of the mice immunized via the nasal route were much lower than those of the mice immunized by intramuscular injection, and the specific IgA antibodies were almost undetectable in the bronchoalveolar lavage fluid (BALF). NSP4 did not increase the titer of specific VP8* antibodies in either immune pathway. Therefore, in the two vaccines (PP-NSP4-VP8* and PP-VP8*+NSP4) used in this study, NSP4 was unable to perform its potential adjuvant role through the mucosal immune pathway. Instead, NSP4 was used as a co-immunized antigen to stimulate the mice to produce specific binding antibodies that play a protective role against diarrhea.
Collapse
Affiliation(s)
- Jingping Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kangyang Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Haihao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Dandan Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhentao Lei
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
3
|
Luo C, Xu Y, Zhang J, Tian Q, Guo Y, Li N, Feng Y, Xu R, Xiao L. Cryptosporidium parvum disrupts intestinal epithelial barrier in neonatal mice through downregulation of cell junction molecules. PLoS Negl Trop Dis 2024; 18:e0012212. [PMID: 38787872 PMCID: PMC11156435 DOI: 10.1371/journal.pntd.0012212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cryptosporidium spp. cause watery diarrhea in humans and animals, especially in infants and neonates. They parasitize the apical surface of the epithelial cells in the intestinal lumen. However, the pathogenesis of Cryptosporidium-induced diarrhea is not fully understood yet. METHODOLOGY/PRINCIPAL FINDINGS In this study, we infected C57BL/6j neonatal mice with C. parvum IIa and IId subtypes, and examined oocyst burden, pathological changes, and intestinal epithelial permeability during the infection. In addition, transcriptomic analyses were used to study the mechanism of diarrhea induced by the C. parvum IId subtype. The neonatal mice were sensitive to both C. parvum IIa and IId infection, but the IId subtype caused a wide oocyst shedding window and maintained the high oocyst burden in the mice compared with the IIa subtype. In addition, the mice infected with C. parvum IId resulted in severe intestinal damage at the peak of infection, leading to increased permeability of the epithelial barrier. The KEGG, GO and GSEA analyses revealed that the downregulation of adherens junction and cell junction molecules at 11 dpi. Meanwhile, E-cadherin, which is associated with adherens junction, was reduced at the protein level in mouse ileum at peak and late infection. CONCLUSIONS/SIGNIFICANCE C. parvum IId infection causes more severe pathological damage than C. parvum IIa infection in neonatal mice. Furthermore, the impairment of the epithelial barrier during C. parvum IId infection results from the downregulation of intestinal junction proteins.
Collapse
Affiliation(s)
- Chaowei Luo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yanhua Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Qing Tian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rui Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Wang J, Hu X, Wu J, Lin X, Chen R, Lu C, Song X, Leng Q, Li Y, Kuang X, Li J, Yao L, Tang X, Ye J, Zhang G, Sun M, Zhou Y, Li H. ML241 Antagonizes ERK 1/2 Activation and Inhibits Rotavirus Proliferation. Viruses 2024; 16:623. [PMID: 38675964 PMCID: PMC11054276 DOI: 10.3390/v16040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Rotavirus (RV) is the main pathogen that causes severe diarrhea in infants and children under 5 years of age. No specific antiviral therapies or licensed anti-rotavirus drugs are available. It is crucial to develop effective and low-toxicity anti-rotavirus small-molecule drugs that act on novel host targets. In this study, a new anti-rotavirus compound was selected by ELISA, and cell activity was detected from 453 small-molecule compounds. The anti-RV effects and underlying mechanisms of the screened compounds were explored. In vitro experimental results showed that the small-molecule compound ML241 has a good effect on inhibiting rotavirus proliferation and has low cytotoxicity during the virus adsorption, cell entry, and replication stages. In addition to its in vitro effects, ML241 also exerted anti-RV effects in a suckling mouse model. Transcriptome sequencing was performed after adding ML241 to cells infected with RV. The results showed that ML241 inhibited the phosphorylation of ERK1/2 in the MAPK signaling pathway, thereby inhibiting IκBα, activating the NF-κB signaling pathway, and playing an anti-RV role. These results provide an experimental basis for specific anti-RV small-molecule compounds or compound combinations, which is beneficial for the development of anti-RV drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming 650118, China; (J.W.); (X.H.); (J.W.); (X.L.); (R.C.); (C.L.); (X.S.); (Q.L.); (Y.L.); (X.K.); (J.L.); (L.Y.); (X.T.); (J.Y.); (G.Z.); (M.S.)
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Kunming 650118, China; (J.W.); (X.H.); (J.W.); (X.L.); (R.C.); (C.L.); (X.S.); (Q.L.); (Y.L.); (X.K.); (J.L.); (L.Y.); (X.T.); (J.Y.); (G.Z.); (M.S.)
| |
Collapse
|
5
|
Martínez-Ruiz S, Olivo-Martínez Y, Cordero C, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Badia J, Baldoma L. Microbiota-Derived Extracellular Vesicles as a Postbiotic Strategy to Alleviate Diarrhea and Enhance Immunity in Rotavirus-Infected Neonatal Rats. Int J Mol Sci 2024; 25:1184. [PMID: 38256253 PMCID: PMC10816611 DOI: 10.3390/ijms25021184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rotavirus (RV) infection is a major cause of acute gastroenteritis in children under 5 years old, resulting in elevated mortality rates in low-income countries. The efficacy of anti-RV vaccines is limited in underdeveloped countries, emphasizing the need for novel strategies to boost immunity and alleviate RV-induced diarrhea. This study explores the effectiveness of interventions involving extracellular vesicles (EVs) from probiotic and commensal E. coli in mitigating diarrhea and enhancing immunity in a preclinical model of RV infection in suckling rats. On days 8 and 16 of life, variables related to humoral and cellular immunity and intestinal function/architecture were assessed. Both interventions enhanced humoral (serum immunoglobulins) and cellular (splenic natural killer (NK), cytotoxic T (Tc) and positive T-cell receptor γδ (TCRγδ) cells) immunity against viral infections and downregulated the intestinal serotonin receptor-3 (HTR3). However, certain effects were strain-specific. EcoR12 EVs activated intestinal CD68, TLR2 and IL-12 expression, whereas EcN EVs improved intestinal maturation, barrier properties (goblet cell numbers/mucin 2 expression) and absorptive function (villus length). In conclusion, interventions involving probiotic/microbiota EVs may serve as a safe postbiotic strategy to improve clinical symptoms and immune responses during RV infection in the neonatal period. Furthermore, they could be used as adjuvants to enhance the immunogenicity and efficacy of anti-RV vaccines.
Collapse
Affiliation(s)
- Sergio Martínez-Ruiz
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Yenifer Olivo-Martínez
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Cecilia Cordero
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - María J. Rodríguez-Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Josefa Badia
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldoma
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (Y.O.-M.); (C.C.); (M.J.R.-L.); (F.J.P.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| |
Collapse
|
6
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
7
|
Liu Z, Smith H, Criglar JM, Valentin AJ, Karandikar U, Zeng XL, Estes MK, Crawford SE. Rotavirus-mediated DGAT1 degradation: A pathophysiological mechanism of viral-induced malabsorptive diarrhea. Proc Natl Acad Sci U S A 2023; 120:e2302161120. [PMID: 38079544 PMCID: PMC10743370 DOI: 10.1073/pnas.2302161120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Abstract
Gastroenteritis is among the leading causes of mortality globally in infants and young children, with rotavirus (RV) causing ~258 million episodes of diarrhea and ~128,000 deaths annually in infants and children. RV-induced mechanisms that result in diarrhea are not completely understood, but malabsorption is a contributing factor. RV alters cellular lipid metabolism by inducing lipid droplet (LD) formation as a platform for replication factories named viroplasms. A link between LD formation and gastroenteritis has not been identified. We found that diacylglycerol O-acyltransferase 1 (DGAT1), the terminal step in triacylglycerol synthesis required for LD biogenesis, is degraded in RV-infected cells by a proteasome-mediated mechanism. RV-infected DGAT1-silenced cells show earlier and increased numbers of LD-associated viroplasms per cell that translate into a fourfold-to-fivefold increase in viral yield (P < 0.05). Interestingly, DGAT1 deficiency in children is associated with diarrhea due to altered trafficking of key ion transporters to the apical brush border of enterocytes. Confocal microscopy and immunoblot analyses of RV-infected cells and DGAT1-/- human intestinal enteroids (HIEs) show a decrease in expression of nutrient transporters, ion transporters, tight junctional proteins, and cytoskeletal proteins. Increased phospho-eIF2α (eukaryotic initiation factor 2 alpha) in DGAT1-/- HIEs, and RV-infected cells, indicates a mechanism for malabsorptive diarrhea, namely inhibition of translation of cellular proteins critical for nutrient digestion and intestinal absorption. Our study elucidates a pathophysiological mechanism of RV-induced DGAT1 deficiency by protein degradation that mediates malabsorptive diarrhea, as well as a role for lipid metabolism, in the pathogenesis of gastroenteritis.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
- Department of Biosciences, Rice University, Houston, TX77005
| | - Hunter Smith
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Jeanette M. Criglar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Antonio J. Valentin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Umesh Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
- Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
8
|
Isolation and Characterization of Distinct Rotavirus A in Bat and Rodent Hosts. J Virol 2023; 97:e0145522. [PMID: 36633410 PMCID: PMC9888233 DOI: 10.1128/jvi.01455-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rotavirus A (RVA) causes diarrheal disease in humans and various animals. Recent studies have identified bat and rodent RVAs with evidence of zoonotic transmission and genome reassortment. However, the virological properties of bat and rodent RVAs with currently identified genotypes still need to be better clarified. Here, we performed virus isolation-based screening for RVA in animal specimens and isolated RVAs (representative strains: 16-06 and MpR12) from Egyptian fruit bat and Natal multimammate mouse collected in Zambia. Whole-genome sequencing and phylogenetic analysis revealed that the genotypes of bat RVA 16-06 were identical to that of RVA BATp39 strain from the Kenyan fruit bat, which has not yet been characterized. Moreover, all segments of rodent RVA MpR12 were highly divergent and assigned to novel genotypes, but RVA MpR12 was phylogenetically closer to bat RVAs than to other rodent RVAs, indicating a unique evolutionary history. We further investigated the virological properties of the isolated RVAs. In brief, we found that 16-06 entered cells by binding to sialic acids on the cell surface, while MpR12 entered in a sialic acid-independent manner. Experimental inoculation of suckling mice with 16-06 and MpR12 revealed that these RVAs are causative agents of diarrhea. Moreover, 16-06 and MpR12 demonstrated an ability to infect and replicate in a 3D-reconstructed primary human intestinal epithelium with comparable efficiency to the human RVA. Taken together, our results detail the unique genetic and virological features of bat and rodent RVAs and demonstrate the need for further investigation of their zoonotic potential. IMPORTANCE Recent advances in nucleotide sequence detection methods have enabled the detection of RVA genomes from various animals. These studies have discovered multiple divergent RVAs and have resulted in proposals for the genetic classification of novel genotypes. However, most of these RVAs have been identified via dsRNA viral genomes and not from infectious viruses, and their virological properties, such as cell/host tropisms, transmissibility, and pathogenicity, are unclear and remain to be clarified. Here, we successfully isolated RVAs with novel genome constellations from three bats and one rodent in Zambia. In addition to whole-genome sequencing, the isolated RVAs were characterized by glycan-binding affinity, pathogenicity in mice, and infectivity to the human gut using a 3D culture of primary intestinal epithelium. Our study reveals the first virological properties of bat and rodent RVAs with high genetic diversity and unique evolutional history and provides basic knowledge to begin estimating the potential of zoonotic transmission.
Collapse
|
9
|
Lee KY. Rotavirus infection-associated central nervous system complications: clinicoradiological features and potential mechanisms. Clin Exp Pediatr 2022; 65:483-493. [PMID: 35130429 PMCID: PMC9561191 DOI: 10.3345/cep.2021.01333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/22/2022] [Indexed: 11/27/2022] Open
Abstract
Despite the introduction of vaccines in 2006, rotavirus remains one of the most common causes of pediatric gastroenteritis worldwide. While many studies have conclusively shown that rotavirus infection causes gastroenteritis and is associated with various extraintestinal manifestations including central nervous system (CNS) complications, extraintestinal manifestations due to rotavirus infection have been relatively overlooked. Rotavirus infection-associated CNS complications are common in children and present with diverse clinicoradiological features. Rotavirus infection-associated CNS complications can be classified based on clinical features and brain magnetic resonance imaging findings, particularly lesion location on diffusion-weighted imaging. Common clinicoradiological features of rotavirus infection-associated CNS complications include: (1) benign convulsions with mild gastroenteritis; (2) acute encephalopathies/encephalitis, such as mild encephalopathy with a reversible splenial lesion, acute encephalopathy with biphasic seizures and late reduced diffusion, and acute necrotizing encephalopathy; (3) acute cerebellitis; and (4) neonatal rotavirus-associated leukoencephalopathy. The precise mechanism underlying the development of these complications remains unknown despite a number of clinical and laboratory studies. Here we review the diverse clinicoradiological features of rotavirus infection-associated CNS complications and propose a hypothesis of their pathophysiology.
Collapse
Affiliation(s)
- Kyung Yeon Lee
- Department of Pediatrics, Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
10
|
Zhu K, Suttner B, Knee J, Capone D, Moe CL, Stauber CE, Konstantinidis KT, Wallach TE, Pickering AJ, Brown J. Elevated Fecal Mitochondrial DNA from Symptomatic Norovirus Infections Suggests Potential Health Relevance of Human Mitochondrial DNA in Fecal Source Tracking. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:543-550. [PMID: 35719858 PMCID: PMC9202355 DOI: 10.1021/acs.estlett.2c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
An end goal of fecal source tracking (FST) is to provide information on risk of transmission of waterborne illnesses associated with fecal contamination. Ideally, concentrations of FST markers in ambient waters would reflect exposure risk. Human mtDNA is an FST marker that is exclusively human in origin and may be elevated in feces of individuals experiencing gastrointestinal inflammation. In this study, we examined whether human mtDNA is elevated in fecal samples from individuals with symptomatic norovirus infections using samples from the United States (US), Mozambique, and Bangladesh. We quantified hCYTB484 (human mtDNA) and HF183/BacR287 (human-associated Bacteroides) FST markers using droplet digital polymerase chain reaction. We observed the greatest difference in concentrations of hCYTB484 when comparing samples from individuals with symptomatic norovirus infections versus individuals without norovirus infections or diarrhea symptoms: log10 increase of 1.42 in US samples (3,820% increase, p-value = 0.062), 0.49 in Mozambique (308% increase, p-value = 0.061), and 0.86 in Bangladesh (648% increase, p-value = 0.035). We did not observe any trends in concentrations of HF183/BacR287 in the same samples. These results suggest concentrations of fecal mtDNA may increase during symptomatic norovirus infection and that mtDNA in environmental samples may represent an unambiguously human source-tracking marker that correlates with enteric pathogen exposure risk.
Collapse
Affiliation(s)
- Kevin
J. Zhu
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Brittany Suttner
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jackie Knee
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, London WC1E 7HT,United Kingdom
| | - Drew Capone
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Christine L. Moe
- Center
for Global Safe Water, Sanitation, and Hygiene, Rollins School of
Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Christine E. Stauber
- Department
of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia 30302, United States
| | - Kostas T. Konstantinidis
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas E. Wallach
- Division
of Pediatric Gastroenterology, SUNY Downstate
Health Sciences University, Brooklyn, New York 11203, United States
| | - Amy J. Pickering
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Joe Brown
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Fatemi SA, Elliott KEC, Macklin KS, Bello A, Peebles ED. Effects of the In Ovo Injection of Vitamin D 3 and 25-Hydroxyvitamin D 3 in Ross 708 Broilers Subsequently Challenged with Coccidiosis: II Immunological and Inflammatory Responses and Small Intestine Histomorphology. Animals (Basel) 2022; 12:1027. [PMID: 35454273 PMCID: PMC9029999 DOI: 10.3390/ani12081027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 01/20/2023] Open
Abstract
In broilers challenged with coccidiosis, effects of in ovo vitamin D3 (D3) and 25-hydroxyvitamin D3 (25OHD3) administration on their inflammatory response and small intestine morphology were evaluated. At 18 d of incubation (doi), a 50 μL volume of the following 5 in ovo injection treatments was administrated: non-injected (1) and diluent injected (2) controls, or diluent injection containing 2.4 μg D3 (3) or 2.4 μg 25OHD3 (4), or their combination (5). Four male broilers were randomly allocated to each of eight isolated replicate wire-floored battery cages at hatch, and birds were challenged at 14 d of age (doa) with a 20x live coccidial vaccine dosage. One bird from each treatment-replicate (40 birds in each of 8 replicates per treatment) was bled at 14 and 28 doa in order to collect blood for the determination of plasma IL-1β and nitric oxide (NO) concentrations. The duodenum, jejunum, and ilium from those same birds were excised for measurement of villus length, crypt depth, villus length to crypt depth ratio (VCR), and villus surface area. In ovo injection of 2.4 μg of 25OHD3 resulted in a reduction in plasma NO levels as compared to all other treatments at 28 doa. Additionally, duodenal VCR increased in response to the in ovo injection of 25OHD3 when compared to the diluent, D3 alone, and the D3 + 25OHD3 combination treatments at two weeks post-challenge (28 doa). Therefore, it can be concluded that 2.4 μg of 25OHD3, when administrated in ovo at 18 doi, may be used to decrease the inflammatory reaction as well as to enhance the small intestine morphology of broilers during a coccidiosis challenge.
Collapse
Affiliation(s)
- Seyed Abolghasem Fatemi
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (K.E.C.E.); (E.D.P.)
| | - Katie E. C. Elliott
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (K.E.C.E.); (E.D.P.)
- Poultry Research Unit, USDA-ARS, Mississippi State, MS 39762, USA
| | - Ken S. Macklin
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL 36849, USA;
| | - Abiodun Bello
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Edgar David Peebles
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA; (K.E.C.E.); (E.D.P.)
| |
Collapse
|
12
|
Maeda K, Zachos NC, Orzalli MH, Schmieder SS, Chang D, Bugda Gwilt K, Doucet M, Baetz NW, Lee S, Crawford SE, Estes MK, Kagan JC, Turner JR, Lencer WI. Depletion of the apical endosome in response to viruses and bacterial toxins provides cell-autonomous host defense at mucosal surfaces. Cell Host Microbe 2022; 30:216-231.e5. [PMID: 35143768 PMCID: PMC8852832 DOI: 10.1016/j.chom.2021.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Polarized epithelial cells form an essential barrier against infection at mucosal surfaces. Many pathogens breach this barrier to cause disease, often by co-opting cellular endocytosis mechanisms to enter the cell through the lumenal (apical) cell surface. We recently discovered that the loss of the cell polarity gene PARD6B selectively diminishes apical endosome function. Here, we find that in response to the entry of certain viruses and bacterial toxins into the epithelial cells via the apical membrane, PARD6B and aPKC, two components of the PARD6B-aPKC-Cdc42 apical polarity complex, undergo rapid proteasome-dependent degradation. The perturbation of apical membrane glycosphingolipids by toxin- or virus-binding initiates degradation of PARD6B. The loss of PARD6B causes the depletion of apical endosome function and renders the cell resistant to further infection from the lumenal cell surface, thus enabling a form of cell-autonomous host defense.
Collapse
Affiliation(s)
- Keiko Maeda
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Megan H Orzalli
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stefanie S Schmieder
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Denis Chang
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michele Doucet
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas W Baetz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sun Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jerrold R Turner
- Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Yin N, Wu J, Kuang X, Lin X, Zhou Y, Yi S, Hu X, Chen R, Liu Y, Ye J, He Z, Sun M, Li H. Vaccination of pregnant rhesus monkeys with inactivated rotavirus as a model for achieving protection from rotavirus SA11 infection in the offspring. Hum Vaccin Immunother 2021; 17:5656-5665. [PMID: 35213949 PMCID: PMC8903932 DOI: 10.1080/21645515.2021.2011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Live-attenuated rotavirus vaccine has shown low protection in underdeveloped or developing countries. However, the inactivated rotavirus vaccine may have the potential to overcome some of these challenges. In the present study, the immunogenicity and protective efficacy of a bivalent inactivated rotavirus vaccine by parenteral administration were elevated in a neonatal rhesus monkey model. A bivalent inactivated rotavirus vaccine containing G1P[8] (ZTR-68 strain) and G9P[8] (ZTR-18 strain) was administered to pregnant rhesus monkeys twice at an interval of 14 days. Neutralizing antibodies against RV strains ZTR-68, ZTR-18, SA11, WA, UK, and Gottfried emerged in pregnant rhesus monkeys and were transplacentally transmitted to the offspring. In the vaccine group, clinical symptoms of diarrhea, viral load in the gut tissue and histopathological changes were significantly reduced in the neonatal rhesus monkeys following oral challenge with the SA11 strain.
Collapse
Affiliation(s)
- Na Yin
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China,CONTACT Hongjun Li Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming650118, China
| | - Jinyuan Wu
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiangjing Kuang
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaochen Lin
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yan Zhou
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Shan Yi
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaoqing Hu
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Rong Chen
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yaling Liu
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jun Ye
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zhanlong He
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Maosheng Sun
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Hongjun Li
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
14
|
Zhou J, Huang S, Fan B, Niu B, Guo R, Gu J, Gao S, Li B. iTRAQ-based proteome analysis of porcine group A rotavirus-infected porcine IPEC-J2 intestinal epithelial cells. J Proteomics 2021; 248:104354. [PMID: 34418579 DOI: 10.1016/j.jprot.2021.104354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
Porcine rotavirus (PoRV), particularly group A, is one of the most important swine pathogens, causing substantial economic losses in the animal husbandry industry. To improve understanding of host responses to PoRV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantitatively identify the differentially expressed proteins in PoRV-infected IPEC-J2 cells and confirmed the differentially accumulated proteins (DAPs) expression differences by performing RT-qPCR and Western blot analysis. Herein, in PoRV- and mock-infected IPEC-J2 cells, relative quantitative data were identified for 4724 proteins, 223 of which were DAPs (125 up-accumulated and 98 down-accumulated). Bioinformatics analyses further revealed that a majority of the DAPs are involved in numerous crucial biological processes and signaling pathways, such as metabolic process, immune system process, amino acid metabolism, energy metabolism, immune system, MHC class I peptide loading complex, Hippo signaling pathway, Th1 and Th2 cell differentiation, antigen processing and presentation, and tubule bicarbonate reclamation. The cellular localization prediction analysis indicated that these DAPs may be located in the Golgi apparatus, nucleus, peroxisomal, cytoplasm, mitochondria, extracellular, plasma membrane, and endoplasmic reticulum (ER). Expression levels of three up-accumulated (VAMP4, IKBKE, and TJP3) or two down-accumulated (SOD3 and DHX9) DAPs upon PoRV infection, were further validated by RT-qPCR and Western blot analysis. Collectively, this work is the first time to investigate the protein profile of PoRV-infected IPEC-J2 cells using quantitative proteomics; these findings provide valuable information to better understand the mechanisms underlying the host responses to PoRV infection in piglets. SIGNIFICANCE: The proteomics analysis of this study uncovered the target associated with PoRV-induced innate immune response or cellular damage, and provided relevant insights into the molecular functions, biological processes, and signaling pathway in these targets. Out of these 223 DAPs, the expression levels of three up-accumulated (VAMP4, IKBKE, and TJP3) and two down-accumulated (SOD3 and DHX9) DAPs upon PoRV infection, have been further validated using RT-qPCR and Western blot analysis. These outcomes could uncover how PoRV manipulated the cellular machinery, which could further our understanding of PoRV pathogenesis in piglets.
Collapse
Affiliation(s)
- Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Shimeng Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Beibei Niu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China; College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-gang, Nanjing 210095, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China
| | - Jun Gu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Song Gao
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Yang Q, Xue SL, Chan CJ, Rempfler M, Vischi D, Maurer-Gutierrez F, Hiiragi T, Hannezo E, Liberali P. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat Cell Biol 2021; 23:733-744. [PMID: 34155381 PMCID: PMC7611267 DOI: 10.1038/s41556-021-00700-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Intestinal organoids derived from single cells undergo complex crypt-villus patterning and morphogenesis. However, the nature and coordination of the underlying forces remains poorly characterized. Here, using light-sheet microscopy and large-scale imaging quantification, we demonstrate that crypt formation coincides with a stark reduction in lumen volume. We develop a 3D biophysical model to computationally screen different mechanical scenarios of crypt morphogenesis. Combining this with live-imaging data and multiple mechanical perturbations, we show that actomyosin-driven crypt apical contraction and villus basal tension work synergistically with lumen volume reduction to drive crypt morphogenesis, and demonstrate the existence of a critical point in differential tensions above which crypt morphology becomes robust to volume changes. Finally, we identified a sodium/glucose cotransporter that is specific to differentiated enterocytes that modulates lumen volume reduction through cell swelling in the villus region. Together, our study uncovers the cellular basis of how cell fate modulates osmotic and actomyosin forces to coordinate robust morphogenesis.
Collapse
Affiliation(s)
- Qiutan Yang
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
| | - Shi-Lei Xue
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Markus Rempfler
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Dario Vischi
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | | | | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Apoptotic colopathy in a pediatric autologous bone marrow transplantation patient with spontaneous colonic cast excretion: Is it due to GVHD or rotavirus infection? JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.788764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Owusu IA, Quaye O, Passalacqua KD, Wobus CE. Egress of non-enveloped enteric RNA viruses. J Gen Virol 2021; 102:001557. [PMID: 33560198 PMCID: PMC8515858 DOI: 10.1099/jgv.0.001557] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
A long-standing paradigm in virology was that non-enveloped viruses induce cell lysis to release progeny virions. However, emerging evidence indicates that some non-enveloped viruses exit cells without inducing cell lysis, while others engage both lytic and non-lytic egress mechanisms. Enteric viruses are transmitted via the faecal-oral route and are important causes of a wide range of human infections, both gastrointestinal and extra-intestinal. Virus cellular egress, when fully understood, may be a relevant target for antiviral therapies, which could minimize the public health impact of these infections. In this review, we outline lytic and non-lytic cell egress mechanisms of non-enveloped enteric RNA viruses belonging to five families: Picornaviridae, Reoviridae, Caliciviridae, Astroviridae and Hepeviridae. We discuss factors that contribute to egress mechanisms and the relevance of these mechanisms to virion stability, infectivity and transmission. Since most data were obtained in traditional two-dimensional cell cultures, we will further attempt to place them into the context of polarized cultures and in vivo pathogenesis. Throughout the review, we highlight numerous knowledge gaps to stimulate future research into the egress mechanisms of these highly prevalent but largely understudied viruses.
Collapse
Affiliation(s)
- Irene A. Owusu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Karla D. Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- Henry Ford Health System, Detroit, MI 48202, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| |
Collapse
|
18
|
Mahapatro M, Erkert L, Becker C. Cytokine-Mediated Crosstalk between Immune Cells and Epithelial Cells in the Gut. Cells 2021; 10:cells10010111. [PMID: 33435303 PMCID: PMC7827439 DOI: 10.3390/cells10010111] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small proteins that are secreted by a vast majority of cell types in the gut. They not only establish cell-to-cell interactions and facilitate cellular signaling, but also regulate both innate and adaptive immune responses, thereby playing a central role in genetic, inflammatory, and infectious diseases of the gut. Both, immune cells and gut epithelial cells, play important roles in intestinal disease development. The epithelium is located in between the mucosal immune system and the gut microbiome. It not only establishes an efficient barrier against gut microbes, but it also signals information from the gut lumen and its composition to the immune cell compartment. Communication across the epithelial cell layer also occurs in the other direction. Intestinal epithelial cells respond to immune cell cytokines and their response influences and shapes the microbial community within the gut lumen. Thus, the epithelium should be seen as a translator or a moderator between the microbiota and the mucosal immune system. Proper communication across the epithelium seems to be a key to gut homeostasis. Indeed, current genome-wide association studies for intestinal disorders have identified several disease susceptibility loci, which map cytokine signatures and their related signaling genes. A thorough understanding of this tightly regulated cytokine signaling network is crucial. The main objective of this review was to shed light on how cytokines can orchestrate epithelial functions such as proliferation, cell death, permeability, microbe interaction, and barrier maintenance, thereby safeguarding host health. In addition, cytokine-mediated therapy for inflammation and cancer are discussed.
Collapse
|
19
|
Huang H, Liao D, Zhou G, Zhu Z, Cui Y, Pu R. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153230. [PMID: 32682225 DOI: 10.1016/j.phymed.2020.153230] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Rotavirus (RV) is the primary causative agent for viral gastroenteritis among infants and young children worldwide. Currently, no clinically approved and effective antiviral drug for the treatment of RV infection is available. PURPOSE We investigated the potential anti-RV activity of resveratrol and underlying mechanisms by which resveratrol acted against RV. METHODS The anti-RV activity of resveratrol in vitro was evaluated using plaque reduction assays. The effects of resveratrol on yield of virion progeny, viral polyprotein expression and genomic RNA synthesis were respectively investigated using enzyme-linked immunosorbent assays, western blotting and qRT-PCR assays. Further, we also measured the antiviral effect of resveratrol by evaluation of antigen clearance and assessment of changes in proinflammatory cytokines/chemokines in RV-infected neonatal mouse model. RESULTS Our results indicated that 20 μM of resveratrol significantly inhibited RV replication in Caco-2 cell line by suppressing RV RNA synthesis, protein expression, viroplasm plaque formation, progeny virion production, and RV-induced cytopathy independent of the different strains and cell lines of RV that we used. Analysis of the effect of time post-addition of resveratrol indicated that its application inhibited early processes in the RV replication cycle. Further study of the underlying mechanism of anti-RV activity indicated that resveratrol inhibited RV replication by suppressing expression of heat-shock protein 90 (HSP90) mRNA and protein, and that the effect occurred in a dose-dependent manner. Overexpression of HSP90 was found to have attenuated the inhibitory effect of resveratrol on RV replication. Interestingly, the application of resveratrol were found to down-regulate the level of inhibition of RV-mediated MEK1/2 and ERK phosphorylation. Using a RV-infected suckling mice model, we found that application of resveratrol significantly lessened the severity of diarrhea, decreased viral titers, and relieved associated symptoms. Levels of mRNA expression of interleukin-2, interleukin-10, tumor necrosis factor-α, interferon-γ, macrophage inflammatory protein 1, and monocyte chemotactic protein-1 were all found to have been sharply reduced in intestinal tissue from mice which had been treated with resveratrol (10 or 20 mg/kg) after RV infection (p < 0.05). CONCLUSION These findings implied that resveratrol exhibits antiviral activity and could be a promising treatment for rotavirus infection.
Collapse
Affiliation(s)
- Haohai Huang
- Department of Clinical Pharmacy, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Central Laboratory, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Dan Liao
- Department of Gynaecology, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- Department of Rehabilitation medicine, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Zhu Zhu
- Sino-American Cancer Research Institute, Guangdong Medical University, Dongguan, Guangdong, China; Scientific Research Platform, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- Central Laboratory, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Department of Laboratory, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Rong Pu
- Department of Laboratory, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China.
| |
Collapse
|
20
|
Engevik MA, Banks LD, Engevik KA, Chang-Graham AL, Perry JL, Hutchinson DS, Ajami NJ, Petrosino JF, Hyser JM. Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut Microbes 2020; 11:1324-1347. [PMID: 32404017 PMCID: PMC7524290 DOI: 10.1080/19490976.2020.1754714] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Multiple studies have identified changes within the gut microbiome in response to diarrheal-inducing bacterial pathogens. However, examination of the microbiome in response to viral pathogens remains understudied. Compounding this, many studies use fecal samples to assess microbiome composition; which may not accurately mirror changes within the small intestine, the primary site for most enteric virus infections. As a result, the functional significance of small intestinal microbiome shifts during infection is not well defined. To address these gaps, rotavirus-infected neonatal mice were examined for changes in bacterial community dynamics, host gene expression, and tissue recovery during infection. Profiling bacterial communities using 16S rRNA sequencing suggested significant and distinct changes in ileal communities in response to rotavirus infection, with no significant changes for other gastrointestinal (GI) compartments. At 1-d post-infection, we observed a loss in Lactobacillus species from the ileum, but an increase in Bacteroides and Akkermansia, both of which exhibit mucin-digesting capabilities. Concomitant with the bacterial community shifts, we observed a loss of mucin-filled goblet cells in the small intestine at d 1, with recovery occurring by d 3. Rotavirus infection of mucin-producing cell lines and human intestinal enteroids (HIEs) stimulated release of stored mucin granules, similar to in vivo findings. In vitro, incubation of mucins with Bacteroides or Akkermansia members resulted in significant glycan degradation, which altered the binding capacity of rotavirus in silico and in vitro. Taken together, these data suggest that the response to and recovery from rotavirus-diarrhea is unique between sub-compartments of the GI tract and may be influenced by mucin-degrading microbes.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA,Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Lori D. Banks
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kristen A. Engevik
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Alexandra L. Chang-Graham
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob L. Perry
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Diane S. Hutchinson
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nadim J. Ajami
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F. Petrosino
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph M. Hyser
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA,CONTACT Joseph M. Hyser 1 Baylor Plaza, HoustonTX77030, USA
| |
Collapse
|
21
|
Jiang C, Yang H, Chen X, Qiu S, Wu C, Zhang B, Jin L. Macleaya cordata extracts exert antiviral effects in newborn mice with rotavirus-induced diarrhea via inhibiting the JAK2/STAT3 signaling pathway. Exp Ther Med 2020; 20:1137-1144. [PMID: 32742353 PMCID: PMC7388234 DOI: 10.3892/etm.2020.8766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence demonstrates that Macleaya cordata extract exerts antiviral and anti-inflammatory effects in various diseases. The present study aimed to investigate the potential effects of M. cordata on rotavirus SA11-induced diarrhea in mice. Diarrhea severity, levels of inflammatory cytokines, histological changes in the small intestine and the underlying mechanisms were evaluated in rotavirus-stimulated mice treated with 1, 2 and 4 mg/kg/day M. cordata or 4 mg/kg/day ribavirin (positive control). M. cordata treatment effectively ameliorated rotavirus-induced diarrhea in a dose-dependent manner by decreasing viral RNA levels. In addition, M. cordata reduced the release of pro-inflammatory cytokines including migration inhibitory factor, interleukin (IL)-8, IL-β, interferon-γ and tumor necrosis factor-α, and elevated the secretion of the anti-inflammatory cytokine IL-10 following rotavirus infection. M. cordata inhibited intestinal epithelial cell apoptosis and improved intestinal inflammation after rotavirus infection. The study also revealed that M. cordata exerted antiviral and anti-inflammatory effects on rotavirus-induced diarrhea by suppressing the Janus kinase 2 (JAK2)/STAT3 pathway, as reflected by decreased protein expression of phosphorylated (p)-JAK2 and p-STAT3. Overall, M. cordata effectively inhibited the inflammation caused by rotavirus, which was closely associated with the suppression of JAK2/STAT3 phosphorylation. These data suggested that M. cordata may be applied as a treatment for rotavirus-induced diarrhea.
Collapse
Affiliation(s)
- Chunmao Jiang
- School of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Haifeng Yang
- School of Animal Pharmaceutical Sciences, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaolan Chen
- School of Animal Pharmaceutical Sciences, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Shulei Qiu
- School of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Caihong Wu
- School of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Bin Zhang
- School of Pet Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| | - Liqin Jin
- School of Animal Pharmaceutical Sciences, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
22
|
MicroRNA-7 Inhibits Rotavirus Replication by Targeting Viral NSP5 In Vivo and In Vitro. Viruses 2020; 12:v12020209. [PMID: 32069901 PMCID: PMC7077326 DOI: 10.3390/v12020209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Rotavirus (RV) is the major causes of severe diarrhea in infants and young children under five years of age. There are no effective drugs for the treatment of rotavirus in addition to preventive live attenuated vaccine. Recent evidence demonstrates that microRNAs (miRNAs) can affect RNA virus replication. However, the antiviral effect of miRNAs during rotavirus replication are largely unknown. Here, we determined that miR-7 is upregulated during RV replication and that it targets the RV NSP5 (Nonstructural protein 5). Results suggested that miR-7 affected viroplasm formation and inhibited RV replication by down-regulating RV NSP5 expression. Up-regulation of miR-7 expression is a common regulation method of different G-type RV-infected host cells. Then, we further revealed the antiviral effect of miR-7 in diarrhea suckling mice model. MiR-7 is able to inhibit rotavirus replication in vitro and in vivo. These data provide that understanding the role of cellular miR-7 during rotaviral replication may help in the identification of novel therapeutic small RNA molecule drug for anti-rotavirus.
Collapse
|
23
|
Shi Z, Zou J, Zhang Z, Zhao X, Noriega J, Zhang B, Zhao C, Ingle H, Bittinger K, Mattei LM, Pruijssers AJ, Plemper RK, Nice TJ, Baldridge MT, Dermody TS, Chassaing B, Gewirtz AT. Segmented Filamentous Bacteria Prevent and Cure Rotavirus Infection. Cell 2019; 179:644-658.e13. [PMID: 31607511 PMCID: PMC7525827 DOI: 10.1016/j.cell.2019.09.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/23/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.
Collapse
Affiliation(s)
- Zhenda Shi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jun Zou
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Juan Noriega
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benyue Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Chunyu Zhao
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Harshad Ingle
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle Bittinger
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa M Mattei
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrea J Pruijssers
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Timothy J Nice
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Neuroscience Institute, GSU, Atlanta, GA, USA
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
24
|
Rebel J, Balk F, Post J, Van Hemert S, Zekarias B, Stockhofe N. Malabsorption syndrome in broilers. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps200481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J.M.J. Rebel
- Animal Sciences Group, Division Animal Resources Development, P.O. Box 65, 8200AB Lelystad, The Netherlands
| | - F.R.M. Balk
- Animal Sciences Group, Division Animal Resources Development, P.O. Box 65, 8200AB Lelystad, The Netherlands
| | - J. Post
- Animal Sciences Group, Division Animal Resources Development, P.O. Box 65, 8200AB Lelystad, The Netherlands
| | - S. Van Hemert
- Animal Sciences Group, Division Animal Resources Development, P.O. Box 65, 8200AB Lelystad, The Netherlands
| | - B. Zekarias
- Animal Sciences Group, Division Animal Resources Development, P.O. Box 65, 8200AB Lelystad, The Netherlands
| | - N. Stockhofe
- Animal Sciences Group, Division Animal Resources Development, P.O. Box 65, 8200AB Lelystad, The Netherlands
| |
Collapse
|
25
|
Mao X, Hu H, Xiao X, Chen D, Yu B, He J, Yu J, Zheng P, Luo J, Luo Y, Wang J. Lentinan administration relieves gut barrier dysfunction induced by rotavirus in a weaned piglet model. Food Funct 2019; 10:2094-2101. [PMID: 30916667 DOI: 10.1039/c8fo01764f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotavirus (RV) is a pathogen that induces severe diarrhea in infants and young animals. Shiitake mushroom is a traditional food, which can improve physiological function, including gut health. Lentinan (LNT) is the main functional component of Shiitake mushroom. This study aimed to verify whether LNT administration could improve intestinal barrier function, thereby decreasing RV-induced diarrhea in a porcine model. According to initial weight and origin, a total of 28 weaned piglets were randomly fed 2 diets containing 0 or 84 mg kg-1 LNT for 19 d (n = 14). On day 15, RV was orally infused to half of the pigs in each group. RV-induced diarrhea (P < 0.05), the positive rate of RV non-structural protein 4 (NSP4), impaired intestinal morphology, antioxidant capacity and microbiota (P < 0.05), and increased apoptosis of jejunal epithelial cells (P < 0.05) were assessed in the piglets. Dietary LNT supplementation was found to improve intestinal morphology, permeability, antioxidant capacity and microbiota (P < 0.05). Supplementation also further alleviated the effects of RV infection on diarrhea, intestinal morphology, permeability, antioxidant capacity, microbiota and apoptosis of jejunal epithelial cells in piglets (P < 0.05). Thus, these results suggest that LNT administration relieved RV-induced diarrhea in piglets, which could be due to the increase in antioxidant capacity, reduction in apoptosis and improvement of the microbiota-increased gut barrier.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao Y, Ran Z, Jiang Q, Hu N, Yu B, Zhu L, Shen L, Zhang S, Chen L, Chen H, Jiang J, Chen D. Vitamin D Alleviates Rotavirus Infection through a Microrna-155-5p Mediated Regulation of the TBK1/IRF3 Signaling Pathway In Vivo and In Vitro. Int J Mol Sci 2019; 20:ijms20143562. [PMID: 31330869 PMCID: PMC6678911 DOI: 10.3390/ijms20143562] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Vitamin D (VD) plays a vital role in anti-viral innate immunity. However, the role of VD in anti-rotavirus and its mechanism is still unclear. The present study was performed to investigate whether VD alleviates rotavirus (RV) infection through a microRNA-155-5p (miR-155-5p)-mediated regulation of TANK-binding kinase 1 (TBK1)/interferon regulatory factors 3 (IRF3) signaling pathway in vivo and in vitro. (2) Methods: The efficacy of VD treatment was evaluated in DLY pig and IPEC-J2. Dual-luciferase reporter activity assay was performed to verify the role of miR-155-5p in 1α,25-dihydroxy-VD3 (1,25D3) mediating the regulation of the TBK1/IRF3 signaling pathway. (3) Results: A 5000 IU·kg–1 dietary VD3 supplementation attenuated RV-induced the decrease of the villus height and crypt depth (p < 0.05), and up-regulated TBK1, IRF3, and IFN-β mRNA expressions in the jejunum (p < 0.05). Incubation with 1,25D3 significantly decreased the RV mRNA expression and the RV antigen concentration, and increased the TBK1 mRNA and protein levels, and the phosphoprotein IRF3 (p-IRF3) level (p < 0.05). The expression of miR-155-5p was up-regulated in response to an RV infection in vivo and in vitro (p < 0.05). 1,25D3 significantly repressed the up-regulation of miR-155-5p in vivo and in vitro (p < 0.05). Overexpression of miR-155-5p remarkably suppressed the mRNA and protein levels of TBK1 and p-IRF3 (p < 0.01), while the inhibition of miR-155-5p had an opposite effect. Luciferase activity assays confirmed that miR-155-5p regulated RV replication by directly targeting TBK1, and miR-155-5p suppressed the TBK1 protein level (p < 0.01). (4) Conclusions: These results indicate that miR-155-5p is involved in 1,25D3 mediating the regulation of the TBK1/IRF3 signaling pathway by directly targeting TBK1.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China.
| | - Zhiming Ran
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ningming Hu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
27
|
Immunomodulating dose of levamisole stimulates innate immune response and prevents intestinal damage in porcine rotavirus diarrhea: a restricted-randomized, single-blinded, and placebo-controlled clinical trial. Trop Anim Health Prod 2019; 51:1455-1465. [DOI: 10.1007/s11250-019-01833-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/23/2019] [Indexed: 11/25/2022]
|
28
|
Vesicle-Cloaked Virus Clusters Are Optimal Units for Inter-organismal Viral Transmission. Cell Host Microbe 2019; 24:208-220.e8. [PMID: 30092198 DOI: 10.1016/j.chom.2018.07.006] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/11/2018] [Accepted: 07/13/2018] [Indexed: 01/29/2023]
Abstract
In enteric viral infections, such as those with rotavirus and norovirus, individual viral particles shed in stool are considered the optimal units of fecal-oral transmission. We reveal that rotaviruses and noroviruses are also shed in stool as viral clusters enclosed within vesicles that deliver a high inoculum to the receiving host. Cultured cells non-lytically release rotaviruses and noroviruses inside extracellular vesicles. In addition, stools of infected hosts contain norovirus and rotavirus within vesicles of exosomal or plasma membrane origin. These vesicles remain intact during fecal-oral transmission and thereby transport multiple viral particles collectively to the next host, enhancing both the MOI and disease severity. Vesicle-cloaked viruses are non-negligible populations in stool and have a disproportionately larger contribution to infectivity than free viruses. Our findings indicate that vesicle-cloaked viruses are highly virulent units of fecal-oral transmission and highlight a need for antivirals targeting vesicles and virus clustering.
Collapse
|
29
|
Rotavirus Double Infection Model to Study Preventive Dietary Interventions. Nutrients 2019; 11:nu11010131. [PMID: 30634561 PMCID: PMC6357201 DOI: 10.3390/nu11010131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
Rotaviruses are the main cause of acute diarrhea among young children worldwide with an increased frequency of reinfection. Several life style factors, such as dietary components, may influence such processes by affecting the outcome of the first rotavirus infection and therefore having a beneficial impact on the anti-rotavirus immune responses during any subsequent reinfections. The aim of this research was to develop a double-infection model in rat that mimics real-life clinical scenarios and would be useful in testing whether nutritional compounds can modulate the rotavirus-associated disease and immune response. Three experimental designs and a preventive dietary-like intervention were conducted in order to achieve a differential response in the double-infected animals compared to the single-infected ones and to study the potential action of a modulatory agent in early life. Diarrhea was only observed after the first infection, with a reduction of fecal pH and fever. After the second infection an increase in body temperature was also found. The immune response against the second infection was regulated by the preventive effect of the dietary-like intervention during the first infection in terms of specific antibodies and DTH. A rotavirus-double-infection rat model has been developed and is suitable for use in future preventive dietary intervention studies.
Collapse
|
30
|
Azagra-Boronat I, Massot-Cladera M, Knipping K, Van't Land B, Stahl B, Garssen J, Rodríguez-Lagunas MJ, Franch À, Castell M, Pérez-Cano FJ. Supplementation With 2'-FL and scGOS/lcFOS Ameliorates Rotavirus-Induced Diarrhea in Suckling Rats. Front Cell Infect Microbiol 2018; 8:372. [PMID: 30406046 PMCID: PMC6205980 DOI: 10.3389/fcimb.2018.00372] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
Rotavirus (RV) is considered to be the most common cause of gastroenteritis among infants aged less than 5 years old. Human milk bioactive compounds have the ability to modulate the diarrheic process caused by several intestinal pathogens. This study aimed to evaluate the potential protective role of a specific human milk oligosaccharide, 2′-fucosyllactose (2′-FL), a mixture of the prebiotic short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides 9:1 (GOS/FOS) and their combination (2′-FL+GOS/FOS) on RV-induced diarrhea in suckling rats. The nutritional intervention was performed from the second to the sixteenth day of life by oral gavage and on day 5 an RV strain was orally administered to induce infection. Fecal samples were scored daily to assess the clinical pattern of severity, incidence and duration of diarrhea. Blood and tissues were obtained at day 8 and 16 in order to evaluate the effects on the epithelial barrier and the mucosal and systemic immune responses. In the assessment of severity, incidence and duration of diarrhea, both 2′-FL and GOS/FOS displayed a beneficial effect in terms of amelioration. However, the mechanisms involved seemed to differ: 2′-FL displayed a direct ability to promote intestinal maturation and to enhance neonatal immune responses, while GOS/FOS induced an intestinal trophic effect and an RV-blocking action. The combination of 2′-FL and GOS/FOS showed additive effects in some variables. Therefore, it could be a good strategy to add these compounds in combination to infant formulas, to protect against human RV-induced diarrhea in children.
Collapse
Affiliation(s)
- Ignasi Azagra-Boronat
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Barcelona, Spain
| | - Malén Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Barcelona, Spain
| | - Karen Knipping
- Nutricia Research, Utrecht, Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Belinda Van't Land
- Nutricia Research, Utrecht, Netherlands.,Department of Pediatric Immunology, University Medical Centre Utrecht/Wilhelmina Children's Hospital, Utrecht, Netherlands
| | | | - Johan Garssen
- Nutricia Research, Utrecht, Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Maria José Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Barcelona, Spain
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Barcelona, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Barcelona, Spain
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Nutrition and Food Safety Research Institute (INSA-UB), Barcelona, Spain
| |
Collapse
|
31
|
Kashyap G, Singh R, Malik Y, Agrawal R, Singh K, Kumar P, Sahoo M, Gupta D, Singh R. Experimental bovine rotavirus-A (RV-A)infection causes intestinal and extra-intestinal pathology in suckling mice. Microb Pathog 2018; 121:22-26. [DOI: 10.1016/j.micpath.2018.04.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/17/2018] [Accepted: 04/22/2018] [Indexed: 11/25/2022]
|
32
|
Kim K, Lee G, Thanh HD, Kim JH, Konkit M, Yoon S, Park M, Yang S, Park E, Kim W. Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. J Dairy Sci 2018; 101:5702-5712. [DOI: 10.3168/jds.2017-14151] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/23/2018] [Indexed: 01/03/2023]
|
33
|
Abstract
Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease.IMPORTANCE Acute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease.
Collapse
|
34
|
Lei X, Cai L, Li X, Xu H, Geng C, Wang C. Up-regulation of NHE8 by somatostatin ameliorates the diarrhea symptom in infectious colitis mice model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:269-275. [PMID: 29719449 PMCID: PMC5928340 DOI: 10.4196/kjpp.2018.22.3.269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 02/05/2023]
Abstract
Na+/H+ exchangers (NHEs) have been shown to be involved in regulating cell volume and maintaining fluid and electrolyte homeostasis. Pooled evidences have suggested that loss of Na+/H+ exchanger isoform 8 (NHE8) impairs intestinal mucosa. Whether NHE8 participates in the pathology of infectious colitis is still unknown. Our previous study demonstrated that somatostatin (SST) could stimulate the expression of intestinal NHE8 so as to facilitate Na+ absorption under normal condition. This study further explored whether NHE8 participates in the pathological processes of infectious colitis and the effects of SST on intestinal NHE8 expression in the setting of infectious colitis. Our data showed that NHE8 expression was reduced in Citrobacter rodentium (CR) infected mice. Up-regulation of NHE8 improved diarrhea symptom and mucosal damage induced by CR. In vitro, a similar observation was also seen in Enteropathogenic E. coli (EPEC) infected Caco-2 cells. Seglitide, a SST receptor (SSTR) 2 agonist, partly reversed the inhibiting action of EPEC on NHE8 expression, but SSTR5 agonist (L-817,818) had no effect on the expression of NHE8. Moreover, SST blocked the phosphorylation of p38 in EPEC-infected Caco-2 cells. Taken together, these results suggest that enhancement of intestinal NHE8 expression by SST could ameliorate the symptoms of mice with infectious colitis.
Collapse
Affiliation(s)
- Xuelian Lei
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lin Cai
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hua Xu
- University of Arizona Health Science Center, Tucson 85701, Arizona
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Almeida PR, Lorenzetti E, Cruz RS, Watanabe TT, Zlotowski P, Alfieri AA, Driemeier D. Diarrhea caused by rotavirus A, B, and C in suckling piglets from southern Brazil: molecular detection and histologic and immunohistochemical characterization. J Vet Diagn Invest 2018; 30:370-376. [PMID: 29455625 DOI: 10.1177/1040638718756050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rotavirus (RV) is an important viral pathogen causing diarrhea in piglets and other mammals worldwide. We describe 34 cases from 4 diarrheal outbreaks caused by RV in unvaccinated farrowing units in southern Brazil from 2011 to 2013. We performed autopsy, histologic examinations, bacterial culture, RV immunohistochemistry (IHC), and enteric virus detection through molecular assays for rotavirus A, B, and C, transmissible gastroenteritis virus, porcine epidemic diarrhea virus, sapovirus, norovirus, and kobuvirus. Histologically, villus atrophy (29 of 34) and epithelial vacuolation (27 of 34) occurred in all 4 outbreaks. Cell debris in the lamina propria occurred in 20 cases, mostly from outbreaks A (8 of 11), C (4 of 6), and D (7 of 11). IHC was positive for RV in 21 of 34 samples. RT-PCR was positive for RV in 20 of 30 samples; RV-C was the most frequently detected RV ( n = 17). Kobuvirus was detected in 11 samples, and, in 3 of them, there was single detection of this enteric virus.
Collapse
Affiliation(s)
- Paula R Almeida
- Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Almeida, Cruz, Watanabe, Zlotowski, Driemeier).,Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Lorenzetti, Alfieri)
| | - Elis Lorenzetti
- Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Almeida, Cruz, Watanabe, Zlotowski, Driemeier).,Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Lorenzetti, Alfieri)
| | - Raquel S Cruz
- Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Almeida, Cruz, Watanabe, Zlotowski, Driemeier).,Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Lorenzetti, Alfieri)
| | - Tatiane T Watanabe
- Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Almeida, Cruz, Watanabe, Zlotowski, Driemeier).,Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Lorenzetti, Alfieri)
| | - Priscila Zlotowski
- Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Almeida, Cruz, Watanabe, Zlotowski, Driemeier).,Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Lorenzetti, Alfieri)
| | - Amauri A Alfieri
- Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Almeida, Cruz, Watanabe, Zlotowski, Driemeier).,Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Lorenzetti, Alfieri)
| | - David Driemeier
- Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil (Almeida, Cruz, Watanabe, Zlotowski, Driemeier).,Laboratory of Animal Virology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Lorenzetti, Alfieri)
| |
Collapse
|
36
|
Zou WY, Blutt SE, Zeng XL, Chen MS, Lo YH, Castillo-Azofeifa D, Klein OD, Shroyer NF, Donowitz M, Estes MK. Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation. Cell Rep 2018; 22:1003-1015. [PMID: 29386123 DOI: 10.1016/j.celrep.2017.12.093] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/16/2017] [Accepted: 12/24/2017] [Indexed: 12/25/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain and repair the intestinal epithelium. While regeneration after ISC-targeted damage is increasingly understood, injury-repair mechanisms that direct regeneration following injuries to differentiated cells remain uncharacterized. The enteric pathogen, rotavirus, infects and damages differentiated cells while sparing all ISC populations, thus allowing the unique examination of the response of intact ISC compartments during injury-repair. Upon rotavirus infection in mice, ISC compartments robustly expand and proliferating cells rapidly migrate. Infection results specifically in stimulation of the active crypt-based columnar ISCs, but not alternative reserve ISC populations, as is observed after ISC-targeted damage. Conditional ablation of epithelial WNT secretion diminishes crypt expansion and ISC activation, demonstrating a previously unknown function of epithelial-secreted WNT during injury-repair. These findings indicate a hierarchical preference of crypt-based columnar cells (CBCs) over other potential ISC populations during epithelial restitution and the importance of epithelial-derived signals in regulating ISC behavior.
Collapse
Affiliation(s)
- Winnie Y Zou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min-Shan Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan-Hung Lo
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Castillo-Azofeifa
- Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Abstract
Rotavirus infections are a leading cause of severe, dehydrating gastroenteritis in children <5 years of age. Despite the global introduction of vaccinations for rotavirus over a decade ago, rotavirus infections still result in >200,000 deaths annually, mostly in low-income countries. Rotavirus primarily infects enterocytes and induces diarrhoea through the destruction of absorptive enterocytes (leading to malabsorption), intestinal secretion stimulated by rotavirus non-structural protein 4 and activation of the enteric nervous system. In addition, rotavirus infections can lead to antigenaemia (which is associated with more severe manifestations of acute gastroenteritis) and viraemia, and rotavirus can replicate in systemic sites, although this is limited. Reinfections with rotavirus are common throughout life, although the disease severity is reduced with repeat infections. The immune correlates of protection against rotavirus reinfection and recovery from infection are poorly understood, although rotavirus-specific immunoglobulin A has a role in both aspects. The management of rotavirus infection focuses on the prevention and treatment of dehydration, although the use of antiviral and anti-emetic drugs can be indicated in some cases.
Collapse
|
38
|
Shaw EJ, Smith EE, Whittingham-Dowd J, Hodges MD, Else KJ, Rigby RJ. Intestinal epithelial suppressor of cytokine signaling 3 (SOCS3) impacts on mucosal homeostasis in a model of chronic inflammation. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:336-345. [PMID: 28508554 PMCID: PMC5569373 DOI: 10.1002/iid3.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/13/2022]
Abstract
Introduction Suppressor of cytokine signaling 3 (SOCS3) is a tumour suppressor, limiting intestinal epithelial cell (IEC) proliferation in acute inflammation, and tumour growth, but little is known regarding its role in mucosal homeostasis. Resistance to the intestinal helminth Trichuris muris relies on an “epithelial escalator” to expel the parasite. IEC turnover is restricted by parasite‐induced indoleamine 2,3‐dioxygenase (IDO). Methods Mice with or without conditional knockout of SOCS3 were infected with T. muris. Crypt depth, worm burden, and proliferating cells and IDO were quantified. SOCS3 knockdown was also performed in human IEC cell lines. Results Chronic T. muris infection increased expression of SOCS3 in wild‐type mice. Lack of IEC SOCS3 led to a modest increase in epithelial turnover. This translated to a lower worm burden, but not complete elimination of the parasite suggesting a compensatory mechanism, possibly IDO, as seen in SOCS3 knockdown. Conclusions We report that SOCS3 impacts on IEC turnover following T. muris infection, potentially through enhancement of IDO. IDO may dampen the immune response which can drive IEC hyperproliferation in the absence of SOCS3, demonstrating the intricate interplay of immune signals regulating mucosal homeostasis, and suggesting a novel tumour suppressor role of SOCS3.
Collapse
Affiliation(s)
- Elisabeth J Shaw
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Emily E Smith
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jayde Whittingham-Dowd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Matthew D Hodges
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Kathryn J Else
- Faculty of Biology, Medicine, and Health, Manchester University, Manchester, UK
| | - Rachael J Rigby
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
39
|
Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors. PLoS One 2017; 12:e0173979. [PMID: 28346473 PMCID: PMC5367788 DOI: 10.1371/journal.pone.0173979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 12/17/2022] Open
Abstract
Human rotavirus (RV) infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1), which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TGFβ1 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in mice administered BBG9-1. Thus, the present study showed that oral administration of BBG9-1 palliated diarrhea partly through protection against RV-induced lesions by inducing mucosal protective factors. Oral administration of BBG9-1 is thought to be an efficient method for management of an RV epidemic for both prophylactic and therapeutic purposes.
Collapse
|
40
|
Brown LAK, Clark I, Brown JR, Breuer J, Lowe DM. Norovirus infection in primary immune deficiency. Rev Med Virol 2017; 27:e1926. [DOI: 10.1002/rmv.1926] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/19/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | - Ian Clark
- Department of Cellular Pathology; Royal Free London NHS Foundation Trust; London UK
| | - Julianne R. Brown
- Microbiology, Virology and Infection Control; Great Ormond Street Hospital for Children NHS Foundation Trust; London UK
- NIHR Biomedical Research Centre; Great Ormond Street Hospital for Children NHS Foundation Trust and University College; London UK
| | - Judith Breuer
- Division of Infection and Immunity; University College London; London UK
| | - David M. Lowe
- Institute of Immunity and Transplantation; University College London, Royal Free Campus; London UK
| |
Collapse
|
41
|
Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs. mSphere 2017; 2:mSphere00046-17. [PMID: 28261667 PMCID: PMC5332602 DOI: 10.1128/msphere.00046-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children. Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103+ and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children.
Collapse
|
42
|
Paim FC, Langel SN, Fischer DD, Kandasamy S, Shao L, Alhamo MA, Huang HC, Kumar A, Rajashekara G, Saif LJ, Vlasova AN. Effects of Escherichia coli Nissle 1917 and Ciprofloxacin on small intestinal epithelial cell mRNA expression in the neonatal piglet model of human rotavirus infection. Gut Pathog 2016; 8:66. [PMID: 27999620 PMCID: PMC5154029 DOI: 10.1186/s13099-016-0148-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/03/2016] [Indexed: 02/08/2023] Open
Abstract
We evaluated the effects of the probiotic Escherichia coli Nissle 1917 (EcN) and the antibiotic Ciprofloxacin (Cipro) on mRNA expression of intestinal epithelial cells (IEC) in gnotobiotic (Gn) piglets colonized with a defined commensal microflora (DMF) and inoculated with human rotavirus (HRV) that infects IECs. We analyzed mRNA levels of IEC genes for enteroendocrine cells [chromogranin A (CgA)], goblet cells [mucin 2 (MUC2)], transient amplifying progenitor cell [proliferating cell nuclear antigen (PCNA)], intestinal epithelial stem cell (SOX9) and enterocytes (villin). Cipro treatment enhanced HRV diarrhea and decreased the mRNA levels of MUC2 and villin but increased PCNA. These results suggest that Cipro alters the epithelial barrier, potentially decreasing the numbers of mature enterocytes (villin) and goblet cells secreting protective mucin (MUC2). These alterations may induce increased IEC proliferation (PCNA expression) to restore the integrity of the epithelial layer. Coincidental with decreased diarrhea severity in EcN treated groups, the expression of CgA and villin was increased, while SOX9 expression was decreased representing higher epithelial integrity indicative of inhibition of cellular proliferation. Thus, EcN protects the intestinal epithelium from damage by increasing the gene expression of enterocytes and enteroendocrine cells, maintaining the absorptive function and, consequently, decreasing the severity of diarrhea in HRV infection.
Collapse
Affiliation(s)
- Francine C Paim
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Stephanie N Langel
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - David D Fischer
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Sukumar Kandasamy
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Lulu Shao
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA ; Hillman Cancer Center, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260 USA
| | - Moyasar A Alhamo
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Huang-Chi Huang
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Anand Kumar
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA ; Genomics and Systems Biology, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Linda J Saif
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Anastasia N Vlasova
- Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| |
Collapse
|
43
|
Li X, Cai L, Xu H, Geng C, Lu J, Tao L, Sun D, Ghishan FK, Wang C. Somatostatin regulates NHE8 protein expression via the ERK1/2 MAPK pathway in DSS-induced colitis mice. Am J Physiol Gastrointest Liver Physiol 2016; 311:G954-G963. [PMID: 27686614 PMCID: PMC5130551 DOI: 10.1152/ajpgi.00239.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/11/2016] [Indexed: 02/05/2023]
Abstract
Previous studies reported that administration of somatostatin (SST) to human patients mitigated their diarrheal symptoms. Octreotide (an analog of SST) treatment in animals resulted in upregulation of sodium/hydrogen exchanger 8 (NHE8). NHE8 is important for water/sodium absorption in the intestine, and loss of NHE8 function results in mucosal injury. Thus we hypothesized that NHE8 expression is inhibited during colitis and that SST treatment during pathological conditions can restore NHE8 expression. Our data showed for the first time that NHE8 is expressed in the human colonic tissue and that NHE8 expression is decreased in ulcerative colitis (UC) patients. We also found that octreotide could stimulate colonic NHE8 expression in colitic mice. Furthermore, the somatostatin receptor 2 (SSTR2) agonist seglitide and the somatostatin receptor 5 (SSTR5) agonist L-817,818 could restore NHE8 expression via its role in suppressing ERK1/2 phosphorylation. Our study uncovered a novel mechanism of SST stimulation of NHE8 expression in colitis.
Collapse
Affiliation(s)
- Xiao Li
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Lin Cai
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Hua Xu
- 2Department of Pediatrics, The University of Arizona, Tucson, Arizona
| | - Chong Geng
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Jing Lu
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Liping Tao
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Dan Sun
- 1Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| | - Fayez K. Ghishan
- 2Department of Pediatrics, The University of Arizona, Tucson, Arizona
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China; and
| |
Collapse
|
44
|
Gagnon M, Vimont A, Darveau A, Fliss I, Jean J. Study of the Ability of Bifidobacteria of Human Origin to Prevent and Treat Rotavirus Infection Using Colonic Cell and Mouse Models. PLoS One 2016; 11:e0164512. [PMID: 27727323 PMCID: PMC5058500 DOI: 10.1371/journal.pone.0164512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/25/2016] [Indexed: 12/11/2022] Open
Abstract
Rotavirus is the leading cause of severe acute gastroenteritis among children worldwide. Despite effective vaccines, inexpensive alternatives such as probiotics are needed. The aim of this study was to assess the ability of probiotic candidate Bifidobacterium thermophilum RBL67 to inhibit rotavirus infection. Bacterial adhesion to intestinal cells and interference with viral attachment were evaluated in vitro. B. thermophilum RBL67 displayed adhesion indexes of 625 ± 84 and 1958 ± 318 on Caco-2 and HT-29 cells respectively and was comparable or superior to four other bifidobacteria, including B. longum ATCC 15707 and B. pseudolongum ATCC 25526 strains. Incubation of B. thermophilum RBL67 for 30 min before (exclusion) and simultaneously (competition) with human rotavirus strain Wa decreased virus attachment by 2.0 ± 0.1 and 1.5 ± 0.1 log10 (by 99.0% and 96.8% respectively). Displacement of virus already present was negligible. In CD-1 suckling mice fed B. thermophilum RBL67 challenged with simian rotavirus SA-11, pre-infection feeding with RBL 67 was more effective than post-infection feeding, reducing the duration of diarrhea, limiting epithelial lesions, reducing viral replication in the intestine, accelerating recovery, and stimulating the humoral specific IgG and IgM response, without inducing any adverse effect. B. thermophilum RBL67 had little effect on intestinal IgA titer. These results suggest that humoral immunoglobulin might provide protection against the virus and that B. thermophilum RBL67 has potential as a probiotic able to inhibit rotavirus infection and ultimately reduce its spread.
Collapse
Affiliation(s)
- Mélanie Gagnon
- Institute of Nutrition and Functional Foods, Department of Food Science, Laval University, Quebec, Quebec, Canada
| | - Allison Vimont
- Institute of Nutrition and Functional Foods, Department of Food Science, Laval University, Quebec, Quebec, Canada
| | - André Darveau
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec, Quebec, Canada
| | - Ismaïl Fliss
- Institute of Nutrition and Functional Foods, Department of Food Science, Laval University, Quebec, Quebec, Canada
| | - Julie Jean
- Institute of Nutrition and Functional Foods, Department of Food Science, Laval University, Quebec, Quebec, Canada
- * E-mail:
| |
Collapse
|
45
|
Fusion of the mouse IgG1 Fc domain to the VHH fragment (ARP1) enhances protection in a mouse model of rotavirus. Sci Rep 2016; 6:30171. [PMID: 27439689 PMCID: PMC4954977 DOI: 10.1038/srep30171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/28/2016] [Indexed: 11/15/2022] Open
Abstract
A variable fragment of a heavy chain antibody (VHH) directed against rotavirus, also referred to as anti-rotavirus protein 1 (ARP1), was shown to confer protection against rotavirus induced diarrhea in infant mouse model of rotavirus induced diarrhea. In this study, we have fused the mouse IgG1 Fc to ARP1 to improve the protective capacity of ARP1 by inducing an Fc-mediated effector function. We have shown that the Fc-ARP1 fusion protein confers significantly increased protection against rotavirus in a neonatal mouse model of rotavirus-induced diarrhea by reducing the prevalence, duration and severity of diarrhea and the viral load in the small intestines, suggesting that the Fc part of immunoglobulins may be engaged in Fc-mediated neutralization of rotavirus. Engineered conventional-like antibodies, by fusion of the Fc part of immunoglobulins to antigen-specific heavy-chain only VHH fragments, might be applied to novel antibody-based therapeutic approaches to enhance elimination of pathogens by activation of distinct effector signaling pathways.
Collapse
|
46
|
Guerrero CA, Guerrero RA, Silva E, Acosta O, Barreto E. Experimental Adaptation of Rotaviruses to Tumor Cell Lines. PLoS One 2016; 11:e0147666. [PMID: 26828934 PMCID: PMC4734670 DOI: 10.1371/journal.pone.0147666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023] Open
Abstract
A number of viruses show a naturally extended tropism for tumor cells whereas other viruses have been genetically modified or adapted to infect tumor cells. Oncolytic viruses have become a promising tool for treating some cancers by inducing cell lysis or immune response to tumor cells. In the present work, rotavirus strains TRF-41 (G5) (porcine), RRV (G3) (simian), UK (G6-P5) (bovine), Ym (G11-P9) (porcine), ECwt (murine), Wa (G1-P8), Wi61 (G9) and M69 (G8) (human), and five wild-type human rotavirus isolates were passaged multiple times in different human tumor cell lines and then combined in five different ways before additional multiple passages in tumor cell lines. Cell death caused by the tumor cell-adapted isolates was characterized using Hoechst, propidium iodide, 7-AAD, Annexin V, TUNEL, and anti-poly-(ADP ribose) polymerase (PARP) and -phospho-histone H2A.X antibodies. Multiple passages of the combined rotaviruses in tumor cell lines led to a successful infection of these cells, suggesting a gain-of-function by the acquisition of greater infectious capacity as compared with that of the parental rotaviruses. The electropherotype profiles suggest that unique tumor cell-adapted isolates were derived from reassortment of parental rotaviruses. Infection produced by such rotavirus isolates induced chromatin modifications compatible with apoptotic cell death.
Collapse
Affiliation(s)
- Carlos A. Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Rafael A. Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Elver Silva
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Orlando Acosta
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| | - Emiliano Barreto
- Institute of Biotechnology, Universidad Nacional de Colombia, Bogota, D.C., Colombia
| |
Collapse
|
47
|
Xu R, Lei YH, Shi J, Zhou YJ, Chen YW, He ZJ. Effects of lactadherin on plasma D-lactic acid and small intestinal MUC2 and claudin-1 expression levels in rats with rotavirus-induced diarrhea. Exp Ther Med 2016; 11:943-950. [PMID: 26998017 DOI: 10.3892/etm.2016.3015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the effects of lactadherin on plasma D-lactic acid and small intestinal mucin (MUC) 2 and claudin-1 expression levels in rats with diarrhea induced by rotavirus (RV) infection. A total of 75 seven-day-old healthy Sprague-Dawley rats were randomly divided into the following five groups: Control (C), RV infection (RVI), lactadherin before rotavirus infection (LBRI), lactadherin after rotavirus infection (LARI), and blank (B). On day 4 of artificial feeding, the rats in groups RVI, LBRI and LARI were intragastric administered 1×106 PFU RV; whereas the rats in groups C and B were intragastrically administered an equal volume of maintenance solution from the RV supernatant and normal saline, respectively. In the LBRI and LARI groups, rats received daily intragastric administration of 0.25 mg lactadherin for three days prior to and following infection with RV, respectively. The course of diarrheal symptoms was observed in each group and samples were collected on days 1, 4, and 7 post-infection in order to determine the mucosal morphology, plasma D-lactic acid levels and the expression levels of MUC2 and the intracellular junction protein, claudin-1, in the small intestine. On day 4 post-infection, the rats in group RVI demonstrated severely damaged small intestines and typical diarrheal characteristics, as detected by light microscopy; whereas rats in groups LBRI and LARI demonstrated intact small intestinal villi with partial vacuolation of epithelial cells and changes in the position of their nuclei. Electron microscopy demonstrated that the rats in the RVI group had sparse, shortened, disordered intestinal microvilli and widened intercellular junctions; whereas those in groups LBRI and LARI had long intestinal microvilli sparser compared with groups B and C and slightly widened intercellular junctions. Plasma D-lactic acid levels were increased in groups RVI, LBRI and LARI, as compared with groups B and C, and the greatest levels were detected in the RVI group on days 1, 4 and 7 post-infection. In addition to maintaining intestinal permeability, lactadherin enhanced the expression levels of MUC2 and reduced the expression of claudin-1; therefore, further protecting the intestinal epithelial barrier, which may contribute to the prevention and treatment of diarrhea induced by infection with RV.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yi-Hui Lei
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China; Department of Perinatal Research Laboratory, Shanghai Institute for Pediatric Research Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jun Shi
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yi-Jun Zhou
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Ying-Wei Chen
- Department of Perinatal Research Laboratory, Shanghai Institute for Pediatric Research Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China; Department of Pediatric Gastroenterology and Nutrition Key Laboratory, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhen-Juan He
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China; Department of Perinatal Research Laboratory, Shanghai Institute for Pediatric Research Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
48
|
Vlasova AN, Kandasamy S, Chattha KS, Rajashekara G, Saif LJ. Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet Immunol Immunopathol 2016; 172:72-84. [PMID: 26809484 DOI: 10.1016/j.vetimm.2016.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 02/06/2023]
Abstract
Different probiotic strains of Lactobacillus and Bifidobacterium genera possess significant and widely acknowledged health-promoting and immunomodulatory properties. They also provide an affordable means for prevention and treatment of various infectious, allergic and inflammatory conditions as demonstrated in numerous human and animal studies. Despite the ample evidence of protective effects of these probiotics against rotavirus (RV) infection and disease, the precise immune mechanisms of this protection remain largely undefined, because of limited mechanistic research possible in humans and investigated in the majority of animal models. Additionally, while most human clinical probiotic trials are well-standardized using the same strains, uniform dosages, regimens of the probiotic treatments and similar host age, animal studies often lack standardization, have variable experimental designs, and non-uniform and sometime limited selection of experimental variables or observational parameters. This review presents selected data on different probiotic strains of lactobacilli and bifidobacteria and summarizes the knowledge of their immunomodulatory properties and the associated protection against RV disease in diverse host species including neonates.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA.
| | - Sukumar Kandasamy
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA
| | - Kuldeep S Chattha
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
49
|
Nikiforou M, Kemp MW, van Gorp RH, Saito M, Newnham JP, Reynaert NL, Janssen LEW, Jobe AH, Kallapur SG, Kramer BW, Wolfs TGAM. Selective IL-1α exposure to the fetal gut, lung, and chorioamnion/skin causes intestinal inflammatory and developmental changes in fetal sheep. J Transl Med 2016; 96:69-80. [PMID: 26501868 DOI: 10.1038/labinvest.2015.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023] Open
Abstract
Chorioamnionitis, caused by intra-amniotic exposure to bacteria and their toxic components, is associated with fetal gut inflammation and mucosal injury. In a translational ovine model, we have shown that these adverse intestinal outcomes to chorioamnionitis were the combined result of local gut and pulmonary-driven systemic immune responses. Chorioamnionitis-induced gut inflammation and injury was largely prevented by inhibiting interleukin-1 (IL-1) signaling. Therefore, we investigated whether local (gut-derived) IL-1α signaling or systemic IL-1α-driven immune responses (lung or chorioamnion/skin-derived) were sufficient for intestinal inflammation and mucosal injury in the course of chorioamnionitis. Fetal surgery was performed in sheep to isolate the lung, gastrointestinal tract, and chorioamnion/skin, and IL-1α or saline was given into the trachea, stomach, or amniotic cavity 1 or 6 days before preterm delivery. Selective IL-1α exposure to the lung, gut, or chorioamnion/skin increased the CD3+ cell numbers in the fetal gut. Direct IL-1α exposure to the gut impaired intestinal zonula occludens protein-1 expression, induced villus atrophy, changed the expression pattern of intestinal fatty acid-binding protein along the villus, and increased the CD68, IL-1, and TNF-α mRNA levels in the fetal ileum. With lung or chorioamnion/skin exposure to IL-1α, intestinal inflammation was associated with increased numbers of blood leukocytes without induction of intestinal injury or immaturity. We concluded that local IL-1α signaling was required for intestinal inflammation, disturbed gut maturation, and mucosal injury in the context of chorioamnionitis.
Collapse
Affiliation(s)
- Maria Nikiforou
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia, Perth, WA, Australia
| | - Rick H van Gorp
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Masatoshi Saito
- School of Women's and Infants' Health, The University of Western Australia, Perth, WA, Australia.,Division of Perinatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - John P Newnham
- School of Women's and Infants' Health, The University of Western Australia, Perth, WA, Australia
| | - Niki L Reynaert
- School for Nutrition and Translational Research in Metabolism, Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Leon E W Janssen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alan H Jobe
- School of Women's and Infants' Health, The University of Western Australia, Perth, WA, Australia.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Suhas G Kallapur
- School of Women's and Infants' Health, The University of Western Australia, Perth, WA, Australia.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Boris W Kramer
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
50
|
Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology. J Virol 2015; 90:43-56. [PMID: 26446608 DOI: 10.1128/jvi.01930-15] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures.
Collapse
|