1
|
Gingerich A, Mahoney L, McCormick AL, Miller RJ, Mousa J. Human monoclonal antibodies protect against viral-mediated pneumococcal superinfection. Front Immunol 2024; 15:1364622. [PMID: 38933273 PMCID: PMC11199387 DOI: 10.3389/fimmu.2024.1364622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Community-acquired pneumonia (CAP) is a global health concern, with 25% of cases attributed to Streptococcus pneumoniae (Spn). Viral infections like influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) increase the risk of Spn, leading to severe complications due to compromised host immunity. Methods We evaluated the efficacy of an anti-PhtD monoclonal antibody (mAb) cocktail therapy (PhtD3 + 7) in improving survival rates in three viral/bacterial coinfection models: IAV/Spn, hMPV/Spn, and RSV/Spn. Results The PhtD3 + 7 mAb cocktail outperformed antiviral mAbs, resulting in prolonged survival. In the IAV/Spn model, it reduced bacterial titers in blood and lungs by 2-4 logs. In the hMPV/Spn model, PhtD3 + 7 provided greater protection than the hMPV-neutralizing mAb MPV467, significantly reducing bacterial titers. In the RSV/Spn model, PhtD3 + 7 offered slightly better protection than the antiviral mAb D25, uniquely decreasing bacterial titers in blood and lungs. Discussion Given the threat of antibiotic resistance, our findings highlight the potential of anti-PhtD mAb therapy as an effective option for treating viral and secondary pneumococcal coinfections.
Collapse
Affiliation(s)
- Aaron Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Lauren Mahoney
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Anna L. McCormick
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Rose J. Miller
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jarrod Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
2
|
Yim KC, Mousa JJ, Blanco JCG, Kim S, Boukhvalova MS. Human Metapneumovirus (hMPV) Infection and MPV467 Treatment in Immunocompromised Cotton Rats Sigmodon hispidus. Viruses 2023; 15:476. [PMID: 36851691 PMCID: PMC9966515 DOI: 10.3390/v15020476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Human metapneumovirus (hMPV) is an important cause of respiratory disease in immunocompromised individuals, yet hMPV infection has not been modeled before in immunocompromised animals. In this work, cotton rats S. hispidus immunosuppressed by cyclophosphamide were infected with hMPV, and viral replication and pulmonary inflammation in these animals were compared to those in normal hMPV-infected S. hispidus. The efficacy of prophylactic and therapeutic administration of the anti-hMPV antibody MPV467 was also evaluated. Immunosuppressed animals had higher pulmonary and nasal titers of hMPV on day 5 post-infection compared to normal animals, and large amounts of hMPV were still present in the respiratory tract of immunosuppressed animals on days 7 and 9 post-infection, indicating prolonged viral replication. Immunosuppression was accompanied by reduced pulmonary histopathology in hMPV-infected cotton rats compared to normal animals; however, a delayed increase in pathology and pulmonary chemokine expression was seen in immunosuppressed cotton rats. Prophylactic and therapeutic MPV467 treatments protected both upper and lower respiratory tracts against hMPV infection. The lung pathology and pulmonary expression of IP-10 and MIP-1α mRNA were reduced by therapeutic MPV467 administration. These results indicate that immunosuppressed cotton rats represent a useful model for studying hMPV pathogenesis and for evaluating therapeutics that could alleviate hMPV-induced disease in immunocompromised subjects.
Collapse
Affiliation(s)
- Kevin C. Yim
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| | - Jorge C. G. Blanco
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - Sonnie Kim
- NIH/NIAID, Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, Rockville, MD 20852, USA
| | - Marina S. Boukhvalova
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| |
Collapse
|
3
|
Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022; 14:v14040677. [PMID: 35458407 PMCID: PMC9028271 DOI: 10.3390/v14040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Metapneumoviruses, members of the family Pneumoviridae, have been identified in birds (avian metapneumoviruses; AMPV’s) and humans (human metapneumoviruses; HMPV’s). AMPV and HMPV are closely related viruses with a similar genomic organization and cause respiratory tract illnesses in birds and humans, respectively. AMPV can be classified into four subgroups, A–D, and is the etiological agent of turkey rhinotracheitis and swollen head syndrome in chickens. Epidemiological studies have indicated that AMPV also circulates in wild bird species which may act as reservoir hosts for novel subtypes. HMPV was first discovered in 2001, but retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has evolved from AMPV-C following zoonotic transfer. In this review, we present a historical perspective on the discovery of metapneumoviruses and discuss the host tropism, pathogenicity, and molecular characteristics of the different AMPV and HMPV subgroups to provide increased focus on the necessity to better understand the evolutionary pathways through which HMPV emerged as a seasonal endemic human respiratory virus.
Collapse
|
4
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
5
|
Miranda-Katz M, Erickson JJ, Lan J, Ecker A, Zhang Y, Joyce S, Williams JV. Novel HLA-B7-restricted human metapneumovirus epitopes enhance viral clearance in mice and are recognized by human CD8 + T cells. Sci Rep 2021; 11:20769. [PMID: 34675220 PMCID: PMC8531189 DOI: 10.1038/s41598-021-00023-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Human metapneumovirus (HMPV) is a leading cause of acute lower respiratory tract illness in children and adults. Repeated infections are common and can be severe in young, elderly, and immunocompromised persons due to short-lived protective humoral immunity. In turn, few protective T cell epitopes have been identified in humans. Thus, we infected transgenic mice expressing the common human HLA MHC-I allele B*07:02 (HLA-B7) with HMPV and screened a robust library of overlapping and computationally predicted HLA-B7 binding peptides. Six HLA-B7-restricted CD8+ T cell epitopes were identified using ELISPOT screening in the F, M, and N proteins, with M195-203 (M195) eliciting the strongest responses. MHC-tetramer flow cytometric staining confirmed HLA-B7 epitope-specific CD8+ T cells migrated to lungs and spleen of HMPV-immune mice. Immunization with pooled HLA-B7-restricted peptides reduced viral titer and protected mice from virulent infection. Finally, we confirmed that CD8+ T cells from HLA-B7 positive humans also recognize the identified epitopes. These results enable identification of HMPV-specific CD8+ T cells in humans and help to inform future HMPV vaccine design.
Collapse
Affiliation(s)
- Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - John J Erickson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, USA
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Alwyn Ecker
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, USA
- Vanderbilt Institute for Infection, Immunity, and Inflammation (VI4), Nashville, TN, 37232, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA.
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, 15224, USA.
| |
Collapse
|
6
|
Soto JA, Gálvez NMS, Pacheco GA, Canedo-Marroquín G, Bueno SM, Kalergis AM. Induction of Protective Immunity by a Single Low Dose of a Master Cell Bank cGMP-rBCG-P Vaccine Against the Human Metapneumovirus in Mice. Front Cell Infect Microbiol 2021; 11:662714. [PMID: 34268134 PMCID: PMC8276701 DOI: 10.3389/fcimb.2021.662714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Human metapneumovirus (hMPV) is an emergent virus, which mainly infects the upper and lower respiratory tract epithelium. This pathogen is responsible for a significant portion of hospitalizations due to bronchitis and pneumonia in infants and the elderly worldwide. hMPV infection induces a pro-inflammatory immune response upon infection of the host, which is not adequate for the clearance of this pathogen. The lack of knowledge regarding the different molecular mechanisms of infection of this virus has delayed the licensing of effective treatments or vaccines. As part of this work, we evaluated whether a single and low dose of a recombinant Mycobacterium bovis Bacillus Calmette-Guérin (BCG) expressing the phosphoprotein of hMPV (rBCG-P) can induce a protective immune response in mice. Immunization with the rBCG-P significantly decreased neutrophil counts and viral loads in the lungs of infected mice at different time points. This immune response was also associated with a modulated infiltration of innate cells into the lungs, such as interstitial macrophages (IM) and alveolar macrophages (AM), activated CD4+ and CD8+ T cells, and changes in the population of differentiated subsets of B cells, such as marginal zone B cells and plasma cells. The humoral immune response induced by the rBCG-P led to an early and robust IgA response and a late and constant IgG response. Finally, we determined that the transfer of cells or sera from immunized and infected mice to naïve mice promoted an efficient viral clearance. Therefore, a single and low dose of rBCG-P can protect mice from the disease caused by hMPV, and this vaccine could be a promising candidate for future clinical trials.
Collapse
Affiliation(s)
- Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A. Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gisela Canedo-Marroquín
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Host Components That Modulate the Disease Caused by hMPV. Viruses 2021; 13:v13030519. [PMID: 33809875 PMCID: PMC8004172 DOI: 10.3390/v13030519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is one of the main pathogens responsible for acute respiratory infections in children up to 5 years of age, contributing substantially to health burden. The worldwide economic and social impact of this virus is significant and must be addressed. The structural components of hMPV (either proteins or genetic material) can be detected by several receptors expressed by host cells through the engagement of pattern recognition receptors. The recognition of the structural components of hMPV can promote the signaling of the immune response to clear the infection, leading to the activation of several pathways, such as those related to the interferon response. Even so, several intrinsic factors are capable of modulating the immune response or directly inhibiting the replication of hMPV. This article will discuss the current knowledge regarding the innate and adaptive immune response during hMPV infections. Accordingly, the host intrinsic components capable of modulating the immune response and the elements capable of restricting viral replication during hMPV infections will be examined.
Collapse
|
8
|
Diab M, Schmiedel D, Seidel E, Bacharach E, Mandelboim O. Human Metapneumovirus Escapes NK Cell Recognition through the Downregulation of Stress-Induced Ligands for NKG2D. Viruses 2020; 12:v12070781. [PMID: 32698530 PMCID: PMC7412239 DOI: 10.3390/v12070781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/28/2022] Open
Abstract
The Pneumoviridae family includes human metapneumovirus (HMPV) and human orthopneumovirus, which is also known as a respiratory syncytial virus (HRSV). These are large enveloped, negative single-strand RNA viruses. HMPV and HRSV are the human members, which commonly infect children. HMPV, which was discovered in 2001, infects most children until the age of five, which causes an influenza-like illness. The interaction of this virus with immune cells is poorly understood. In this study, we show that HMPV evades natural killer (NK) cell attack by downregulating stress-induced ligands for the activating receptor NKG2D including: Major histocompatibility complex (MHC) class I polypeptide-related sequences A and B (MICA, MICB), UL16 binding proteins ULBP2, and ULBP3, but not ULBP1. Mechanistically, we show that the viral protein G is involved in the downregulation of ULBP2 and that the viral protein M2.2 is required for MICA and MICB downregulation. These findings emphasize the importance of NK cells, in general, and NKG2D, in particular, in controlling HMPV infection, which opens new avenues for treating HMPV.
Collapse
Affiliation(s)
- Mohammad Diab
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel; (M.D.); (D.S.); (E.S.)
| | - Dominik Schmiedel
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel; (M.D.); (D.S.); (E.S.)
| | - Einat Seidel
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel; (M.D.); (D.S.); (E.S.)
| | - Eran Bacharach
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel; (M.D.); (D.S.); (E.S.)
- Correspondence: ; Tel.: +972-2675-7515
| |
Collapse
|
9
|
Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus. Pathogens 2020; 9:pathogens9060481. [PMID: 32570728 PMCID: PMC7350342 DOI: 10.3390/pathogens9060481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory illnesses in children, the elderly and immunocompromised patients. Although this pathogen was only discovered in 2001, an enormous amount of research has been conducted in order to develop safe and effective vaccines to prevent people from contracting the disease. In this review, we summarize current knowledge about the most promising experimental B- and T-cell epitopes of human metapneumovirus for the rational design of HMPV vaccines using vector delivery systems, paying special attention to the conservation of these epitopes among different lineages/genotypes of HMPV. The prospects of the successful development of an epitope-based HMPV vaccine are discussed in the context of recent findings regarding HMPV’s ability to modulate host immunity. In particular, we discuss the lack of data on experimental human CD4 T-cell epitopes for HMPV despite the role of CD4 lymphocytes in both the induction of higher neutralizing antibody titers and the establishment of CD8 memory T-cell responses. We conclude that current research should be focused on searching for human CD4 T-cell epitopes of HMPV that can help us to design a safe and cross-protective epitope-based HMPV vaccine.
Collapse
|
10
|
Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate Immune Components that Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections. Viruses 2020; 12:E637. [PMID: 32545470 PMCID: PMC7354512 DOI: 10.3390/v12060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Gaspar A. Pacheco
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Nicolas M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|
11
|
Human Metapneumovirus Establishes Persistent Infection in Lung Microvascular Endothelial Cells and Primes a Th2-Skewed Immune Response. Microorganisms 2020; 8:microorganisms8060824. [PMID: 32486193 PMCID: PMC7357125 DOI: 10.3390/microorganisms8060824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Human Metapneumovirus (HMPV) is a major cause of lower respiratory tract infections. HMPV infection has been hypothesized to alter dendritic cell (DC) immune response; however, many questions regarding HMPV pathogenesis within the infected lung remain unanswered. Here, we show that HMPV productively infects human lung microvascular endothelial cells (L-HMVECs). The release of infectious virus occurs for up to more than 30 days of culture without producing overt cytopathic effects and medium derived from persistently HMPV-infected L-HMVECs (secretome) induced monocyte-derived DCs to prime naïve CD4 T-cells toward a Th2 phenotype. Moreover, we demonstrated that infected secretomes trigger DCs to up-regulate OX40L expression and OX40L neutralization abolished the pro-Th2 effect that is induced by HMPV-secretome. We clarified secretome from HMPV by size exclusion and ultracentrifugation with the aim to characterize the role of viral particles in the observed pro-Th2 effect. In both cases, the percentage of IL-4-producing cells and expression of OX40L returned at basal levels. Finally, we showed that HMPV, per se, could reproduce the ability of secretome to prime pro-Th2 DCs. These results suggest that HMPV, persistently released by L-HMVECs, might take part in the development of a skewed, pro-Th2 lung microenvironment.
Collapse
|
12
|
Ballegeer M, Saelens X. Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:v12050542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
Affiliation(s)
- Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
13
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020; 12:542. [PMID: 32423043 PMCID: PMC7290942 DOI: 10.3390/v12050542&set/a 882111696+808152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
14
|
Cell-Mediated Responses to Human Metapneumovirus Infection. Viruses 2020. [DOI: 10.3390/v12050542
expr 836379838 + 819716165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viruses are the most common cause of acute respiratory tract infections (ARTI). Human metapneumovirus (hMPV) frequently causes viral pneumonia which can become life-threatening if the virus spreads to the lungs. Even though hMPV was only isolated in 2001, this negative-stranded RNA virus has probably been circulating in the human population for many decades. Interestingly, almost all adults have serologic evidence of hMPV infection. A well-established host immune response is evoked when hMPV infection occurs. However, the virus has evolved to circumvent and even exploit the host immune response. Further, infection with hMPV induces a weak memory response, and re-infections during life are common. In this review, we provide a comprehensive overview of the different cell types involved in the immune response in order to better understand the immunopathology induced by hMPV. Such knowledge may contribute to the development of vaccines and therapeutics directed against hMPV.
Collapse
|
15
|
Ogonczyk Makowska D, Hamelin MÈ, Boivin G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens 2020; 9:E135. [PMID: 32093057 PMCID: PMC7168645 DOI: 10.3390/pathogens9020135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Human metapneumovirus (HMPV) is an important human pathogen that, along with respiratory syncytial virus (RSV), is a major cause of respiratory tract infections in young infants. Development of an effective vaccine against Pneumoviruses has proven to be particularly difficult; despite over 50 years of research in this field, no vaccine against HMPV or RSV is currently available. Recombinant chimeric viruses expressing antigens of other viruses can be generated by reverse genetics and used for simultaneous immunization against more than one pathogen. This approach can result in the development of promising vaccine candidates against HMPV, and several studies have indeed validated viral vectors expressing HMPV antigens. In this review, we summarize current efforts in generating recombinant chimeric vaccines against HMPV, and we discuss their potential optimization based on the correspondence with RSV studies.
Collapse
Affiliation(s)
| | | | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC G1V 4G2, Canada; (D.O.M.); (M.-È.H.)
| |
Collapse
|
16
|
Are Community Acquired Respiratory Viral Infections an Underestimated Burden in Hematology Patients? Microorganisms 2019; 7:microorganisms7110521. [PMID: 31684063 PMCID: PMC6920795 DOI: 10.3390/microorganisms7110521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Despite a plethora of studies demonstrating significant morbidity and mortality due to community-acquired respiratory viral (CRV) infections in intensively treated hematology patients, and despite the availability of evidence-based guidelines for the diagnosis and management of respiratory viral infections in this setting, there is no uniform inclusion of respiratory viral infection management in the clinical hematology routine. Nevertheless, timely diagnosis and systematic management of CRV infections in intensively treated hematology patients has a demonstrated potential to significantly improve outcome. We have briefly summarized the recently published data on CRV infection epidemiology, as well as guidelines on the diagnosis and management of CRV infections in patients intensively treated for hematological malignancies. We have also assessed available treatment options, as well as mentioned novel agents currently in development.
Collapse
|
17
|
Bar-Peled Y, Diaz D, Pena-Briseno A, Murray J, Huang J, Tripp RA, Mousa JJ. A Potent Neutralizing Site III-Specific Human Antibody Neutralizes Human Metapneumovirus In Vivo. J Virol 2019; 93:e00342-19. [PMID: 31292250 PMCID: PMC6744252 DOI: 10.1128/jvi.00342-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (hMPV) is a leading cause of viral lower respiratory tract infection in children. The sole target of neutralizing antibodies targeting hMPV is the fusion (F) protein, a class I viral fusion protein mediating virus-cell membrane fusion. There have been several monoclonal antibodies (mAbs) isolated that neutralize hMPV; however, determining the antigenic sites on the hMPV F protein mediating such neutralizing antibody generation would assist efforts for effective vaccine design. In this report, the isolation and characterization of four new human mAbs, termed MPV196, MPV201, MPV314, and MPV364, are described. Among the four mAbs, MPV364 was found to be the most potent neutralizing mAb in vitro Binding studies with monomeric and trimeric hMPV F revealed that MPV364 had the weakest binding affinity for monomeric hMPV F compared to the other three mAbs, yet binding experiments with trimeric hMPV F showed limited differences in binding affinity, suggesting that MPV364 targets an antigenic site incorporating two protomers. Epitope binning studies showed that MPV364 targets antigenic site III on the hMPV F protein and competes for binding with previously discovered mAbs MPE8 and 25P13, both of which cross-react with the respiratory syncytial virus (RSV) F protein. However, MPV364 does not cross-react with the RSV F protein, and the competition profile suggests that it binds to the hMPV F protein in a binding pose slightly shifted from mAbs MPE8 and 25P13. MPV364 was further assessed in vivo and was shown to substantially reduce viral replication in the lungs of BALB/c mice. Overall, these data reveal a new binding region near antigenic site III of the hMPV F protein that elicits potent neutralizing hMPV F-specific mAbs and provide a new panel of neutralizing mAbs that are candidates for therapeutic development.IMPORTANCE Recent progress in understanding the human immune response to respiratory syncytial virus has paved the way for new vaccine antigens and therapeutics to prevent and treat disease. Progress toward understanding the immune response to human metapneumovirus (hMPV) has lagged behind, although hMPV is a leading cause of lower respiratory tract infection in children. In this report, we advanced the field by isolating a panel of human mAbs to the hMPV F protein. One potent neutralizing mAb, MPV364, targets antigenic site III on the hMPV F protein and incorporates two protomers into its epitope yet is unique from previously discovered site III mAbs, as it does not cross-react with the RSV F protein. We further examined MPV364 in vivo and found that it limits viral replication in BALB/c mice. Altogether, these data provide new mAb candidates for therapeutic development and provide insights into hMPV vaccine development.
Collapse
Affiliation(s)
- Yael Bar-Peled
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Darren Diaz
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Alma Pena-Briseno
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jiachen Huang
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jarrod J Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
18
|
Soto JA, Gálvez NMS, Rivera CA, Palavecino CE, Céspedes PF, Rey-Jurado E, Bueno SM, Kalergis AM. Recombinant BCG Vaccines Reduce Pneumovirus-Caused Airway Pathology by Inducing Protective Humoral Immunity. Front Immunol 2018; 9:2875. [PMID: 30581437 PMCID: PMC6293239 DOI: 10.3389/fimmu.2018.02875] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/22/2018] [Indexed: 12/22/2022] Open
Abstract
The Human Respiratory Syncytial Virus (hRSV) and the Human Metapneumovirus (hMPV) are two pneumoviruses that are leading agents causing acute lower respiratory tract infections (ALRTIs) affecting young infants, the elderly, and immunocompromised patients worldwide. Since these pathogens were first discovered, many approaches for the licensing of safe and effective vaccines have been explored being unsuccessful to date. We have previously described that immunization with recombinant strains of Mycobacterium bovis Bacillus Calmette-Guérin (rBCG) expressing the hRSV nucleoprotein (rBCG-N) or the hMPV phosphoprotein (rBCG-P) induced immune protection against each respective virus. These vaccines efficiently promoted viral clearance without significant lung damage, mainly through the induction of a T helper 1 cellular immunity. Here we show that upon viral challenge, rBCG-immunized mice developed a protective humoral immunity, characterized by production of antibodies specific for most hRSV and hMPV proteins. Further, isotype switching from IgG1 to IgG2a was observed in mice immunized with rBCG vaccines and correlated with an increased viral clearance, as compared to unimmunized animals. Finally, sera obtained from animals immunized with rBCG vaccines and infected with their respective viruses exhibited virus neutralizing capacity and protected naïve mice from viral replication and pulmonary disease. These results support the notion that the use of rBCG strains could be considered as an effective vaccination approach against other respiratory viruses with similar biology as hRSV and hMPV.
Collapse
Affiliation(s)
- Jorge A Soto
- Departamento de Genética Moleculary Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Departamento de Genética Moleculary Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Rivera
- Departamento de Genética Moleculary Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian E Palavecino
- Departamento de Genética Moleculary Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Céspedes
- Departamento de Genética Moleculary Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emma Rey-Jurado
- Departamento de Genética Moleculary Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Moleculary Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Moleculary Microbiología, Facultad de Ciencias Biológicas, Millennium Institute of Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Han M, Rajput C, Ishikawa T, Jarman CR, Lee J, Hershenson MB. Small Animal Models of Respiratory Viral Infection Related to Asthma. Viruses 2018; 10:E682. [PMID: 30513770 PMCID: PMC6316391 DOI: 10.3390/v10120682] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Charu Rajput
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Tomoko Ishikawa
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Caitlin R Jarman
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Julie Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM. Neurologic Alterations Due to Respiratory Virus Infections. Front Cell Neurosci 2018; 12:386. [PMID: 30416428 PMCID: PMC6212673 DOI: 10.3389/fncel.2018.00386] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 11/14/2022] Open
Abstract
Central Nervous System (CNS) infections are one of the most critical problems in public health, as frequently patients exhibit neurologic sequelae. Usually, CNS pathologies are caused by known neurotropic viruses such as measles virus (MV), herpes virus and human immunodeficiency virus (HIV), among others. However, nowadays respiratory viruses have placed themselves as relevant agents responsible for CNS pathologies. Among these neuropathological viruses are the human respiratory syncytial virus (hRSV), the influenza virus (IV), the coronavirus (CoV) and the human metapneumovirus (hMPV). These viral agents are leading causes of acute respiratory infections every year affecting mainly children under 5 years old and also the elderly. Up to date, several reports have described the association between respiratory viral infections with neurological symptoms. The most frequent clinical manifestations described in these patients are febrile or afebrile seizures, status epilepticus, encephalopathies and encephalitis. All these viruses have been found in cerebrospinal fluid (CSF), which suggests that all these pathogens, once in the lungs, can spread throughout the body and eventually reach the CNS. The current knowledge about the mechanisms and routes used by these neuro-invasive viruses remains scarce. In this review article, we describe the most recent findings associated to neurologic complications, along with data about the possible invasion routes of these viruses in humans and their various effects on the CNS, as studied in animal models.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy (MIII), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Soto JA, Gálvez NMS, Benavente FM, Pizarro-Ortega MS, Lay MK, Riedel C, Bueno SM, Gonzalez PA, Kalergis AM. Human Metapneumovirus: Mechanisms and Molecular Targets Used by the Virus to Avoid the Immune System. Front Immunol 2018; 9:2466. [PMID: 30405642 PMCID: PMC6207598 DOI: 10.3389/fimmu.2018.02466] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory virus, first reported the year 2001. Since then, it has been described as one of the main etiological agents that causes acute lower respiratory tract infections (ALRTIs), which is characterized by symptoms such as bronchiolitis, wheezing and coughing. Susceptible population to hMPV-infection includes newborn, children, elderly and immunocompromised individuals. This viral agent is a negative-sense, single-stranded RNA enveloped virus, that belongs to the Pneumoviridae family and Metapneumovirus genus. Early reports—previous to 2001—state several cases of respiratory illness without clear identification of the responsible pathogen, which could be related to hMPV. Despite the similarities of hMPV with several other viruses, such as the human respiratory syncytial virus or influenza virus, mechanisms used by hMPV to avoid the host immune system are still unclear. In fact, evidence indicates that hMPV induces a poor innate immune response, thereby affecting the adaptive immunity. Among these mechanisms, is the promotion of an anergic state in T cells, instead of an effective polarization or activation, which could be induced by low levels of cytokine secretion. Further, the evidences support the notion that hMPV interferes with several pattern recognition receptors (PRRs) and cell signaling pathways triggered by interferon-associated genes. However, these mechanisms reported in hMPV are not like the ones reported for hRSV, as the latter has two non-structural proteins that are able to inhibit these pathways. Several reports suggest that viral glycoproteins, such as G and SH, could play immune-modulator roles during infection. In this work, we discuss the state of the art regarding the mechanisms that underlie the poor immunity elicited by hMPV. Importantly, these mechanisms will be compared with those elicited by other common respiratory viruses.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
22
|
Marsico S, Caccuri F, Mazzuca P, Apostoli P, Roversi S, Lorenzin G, Zani A, Fiorentini S, Giagulli C, Caruso A. Human lung epithelial cells support human metapneumovirus persistence by overcoming apoptosis. Pathog Dis 2018; 76:4923026. [PMID: 29617859 DOI: 10.1093/femspd/fty013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/05/2018] [Indexed: 11/12/2022] Open
Abstract
Human metapneumovirus (hMPV) has been identified as a major cause of lower respiratory tract infection in children. Epidemiological and molecular evidence has highlighted an association between severe childhood respiratory viral infection and chronic lung diseases, such as asthma and chronic obstructive pulmonary disease. Currently, animal models have demonstrated the ability of hMPV to persist in vivo suggesting a role of the virus in asthma development in children. However, mechanisms involved in hMPV persistence in the respiratory tract are not yet understood. In the present study we monitored hMPV infection in human alveolar epithelial A549 cells in order to understand if the virus is able to persist in these cells upon acute infection. Our data show that hMPV initially induces an apoptotic process in A549 cells through poly (ADP-ribose) polymerase 1 cleavage, caspase-3/7 activation and Wee1 activity. The hMPV-infected cells were then able to overcome the apoptotic pathway and cell cycle arrest in G2/M by expressing B-cell lymphoma 2 and to acquire a reservoir cell phenotype with constant production of infectious virus. These findings provide evidence of the ability of hMPV to persist in alveolar epithelial cells and help in understanding the mechanisms responsible for hMPV persistence in the human respiratory tract.
Collapse
Affiliation(s)
- Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Paola Apostoli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Roversi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giovanni Lorenzin
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Simona Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
23
|
Liu Y, Qin T, Zhao X, Dong S, Zhu J, Peng D, Zhong J, Li T, Chen X. Skewed balance of regulatory T cell and inflammatory T cell in IL-17 defect with human metapneumovirus infection. Cell Immunol 2018; 331:161-167. [PMID: 30077332 DOI: 10.1016/j.cellimm.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
Abstract
Human metapneumovirus (hMPV) is a common cause of respiratory infections in children. However, the precise mechanisms underlying the development of hMPV-induced pulmonary pathology remain unknown. Studies show that IL-17 plays an important role in some inflammatory diseases of the airways, including asthma and chronic obstructive pulmonary disease. Here, we generated an IL-17 KO murine model of hMPV infection and used it to characterize the role of IL-17 hMPV-induced pulmonary inflammation. The results demonstrated that the defect in IL-17 resulted in less neutrophil influx into the lungs, along with reduced ventilatory function. Meanwhile, viral infection in IL-17 KO mice increased regulatory T cells (Tregs) and reduced Th1 and Th2 cells in the lung, suggesting that lack of IL-17 skews the immune response in the lung toward an anti-inflammatory profile, as exhibited by a greater number of Treg cells and fewer Th1 and Th2 cells.
Collapse
Affiliation(s)
- Yuhang Liu
- Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Tao Qin
- Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaodong Zhao
- Research Center for Immunologic and Infectious Diseases, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Shifang Dong
- Division of Flow Cytometry, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jin Zhu
- Division of Pathology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Donghong Peng
- Division of Respiratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jiarong Zhong
- General Medical Wards, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Tingyu Li
- Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xin Chen
- General Medical Wards, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
24
|
Abstract
Human metapneumovirus (HMPV) is a leading cause of acute respiratory infection, particularly in children, immunocompromised patients, and the elderly. HMPV, which is closely related to avian metapneumovirus subtype C, has circulated for at least 65 years, and nearly every child will be infected with HMPV by the age of 5. However, immunity is incomplete, and re-infections occur throughout adult life. Symptoms are similar to those of other respiratory viral infections, ranging from mild (cough, rhinorrhea, and fever) to more severe (bronchiolitis and pneumonia). The preferred method for diagnosis is reverse transcription-polymerase chain reaction as HMPV is difficult to culture. Although there have been many advances made in the past 16 years since its discovery, there are still no US Food and Drug Administration-approved antivirals or vaccines available to treat HMPV. Both small animal and non-human primate models have been established for the study of HMPV. This review will focus on the epidemiology, transmission, and clinical manifestations in humans as well as the animal models of HMPV pathogenesis and host immune response.
Collapse
Affiliation(s)
- Nazly Shafagati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Role of human metapneumovirus and respiratory syncytial virus in asthma exacerbations: where are we now? Clin Sci (Lond) 2017; 131:1713-1721. [PMID: 28667069 DOI: 10.1042/cs20160011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 04/18/2017] [Accepted: 05/02/2017] [Indexed: 12/30/2022]
Abstract
Since its discovery in 2001, human metapneumovirus (hMPV) has been identified as an important cause of respiratory tract infection in young children, second only to the closely related respiratory syncytial virus (RSV). Clinical evidence suggests that hMPV is associated with acute exacerbations of asthma in both children and adults, and may play a role in initiating asthma development in children. Animal models have demonstrated that airway hyperresponsiveness (AHR) and inflammation are triggered following hMPV infection, and hMPV is able to persist in vivo by inhibiting innate immune responses and causing aberrant adaptive responses. In this review, we discuss the prevalence of hMPV infection in pediatric and adult populations and its potential role in asthma exacerbation. We also review recent advances made in animal models to determine immune responses following hMPV infection, and compare to what is known about RSV.
Collapse
|
26
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|
27
|
Diab M, Glasner A, Isaacson B, Bar-On Y, Drori Y, Yamin R, Duev-Cohen A, Danziger O, Zamostiano R, Mandelboim M, Jonjic S, Bacharach E, Mandelboim O. NK-cell receptors NKp46 and NCR1 control human metapneumovirus infection. Eur J Immunol 2017; 47:692-703. [DOI: 10.1002/eji.201646756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/20/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Mohammad Diab
- The Lautenberg Center for General and Tumor Immunology, the BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC); The Hebrew University Hadassah Medical School; Jerusalem Israel
| | - Ariella Glasner
- The Lautenberg Center for General and Tumor Immunology, the BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC); The Hebrew University Hadassah Medical School; Jerusalem Israel
| | - Batya Isaacson
- The Lautenberg Center for General and Tumor Immunology, the BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC); The Hebrew University Hadassah Medical School; Jerusalem Israel
| | - Yotam Bar-On
- The Lautenberg Center for General and Tumor Immunology, the BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC); The Hebrew University Hadassah Medical School; Jerusalem Israel
| | - Yaron Drori
- Central Virology Laboratory, Ministry of Health, Public Health Services; Chaim Sheba Medical Center, Tel-Hashomer; Ramat-Gan Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, the BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC); The Hebrew University Hadassah Medical School; Jerusalem Israel
| | - Alexandra Duev-Cohen
- The Lautenberg Center for General and Tumor Immunology, the BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC); The Hebrew University Hadassah Medical School; Jerusalem Israel
| | - Oded Danziger
- Department of Cell Research and Immunology, Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Rachel Zamostiano
- Department of Cell Research and Immunology, Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Public Health Services; Chaim Sheba Medical Center, Tel-Hashomer; Ramat-Gan Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine; University of Rijeka; Rijeka Croatia
- Center for Proteomics, Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | - Eran Bacharach
- Department of Cell Research and Immunology, Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, the BioMedical Research Institute Israel-Canada of the Faculty of Medicine (IMRIC); The Hebrew University Hadassah Medical School; Jerusalem Israel
| |
Collapse
|
28
|
Márquez-Escobar VA. Current developments and prospects on human metapneumovirus vaccines. Expert Rev Vaccines 2017; 16:419-431. [PMID: 28116910 DOI: 10.1080/14760584.2017.1283223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Human metapneumovirus (hMPV) has become one of the major pathogens causing acute respiratory infections (ARI) mainly affecting young children, immunocompromised patients, and the elderly. Currently there are no licensed vaccines against this virus. Areas covered: Since the discovery of hMPV in 2001, many groups have focused on developing vaccines against this pathogen. This review presents the outcomes and perspectives derived from preclinical studies performed in cell cultures and animals as well as the only candidate that has reached evaluation in a clinical trial. Limitations of the current vaccine candidates are discussed and perspectives for the development of plant-based vaccines are analyzed. Expert commentary: Several hMPV vaccine candidates are under development with the potential to progress into clinical trials. In parallel, the molecular farming field offers new opportunities to generate innovative vaccines that will offer several advantages in the fight against hMPV.
Collapse
Affiliation(s)
- Verónica Araceli Márquez-Escobar
- a Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , Av. Dr. Manuel Nava 6, San Luis Potosí 78210 , SLP , Mexico
| |
Collapse
|
29
|
González AE, Lay MK, Jara EL, Espinoza JA, Gómez RS, Soto J, Rivera CA, Abarca K, Bueno SM, Riedel CA, Kalergis AM. Aberrant T cell immunity triggered by human Respiratory Syncytial Virus and human Metapneumovirus infection. Virulence 2016; 8:685-704. [PMID: 27911218 DOI: 10.1080/21505594.2016.1265725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human Respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are the two major etiological viral agents of lower respiratory tract diseases, affecting mainly infants, young children and the elderly. Although the infection of both viruses trigger an antiviral immune response that mediate viral clearance and disease resolution in immunocompetent individuals, the promotion of long-term immunity appears to be deficient and reinfection are common throughout life. A possible explanation for this phenomenon is that hRSV and hMPV, can induce aberrant T cell responses, which leads to exacerbated lung inflammation and poor T and B cell memory immunity. The modulation of immune response exerted by both viruses include different strategies such as, impairment of immunological synapse mediated by viral proteins or soluble factors, and the induction of pro-inflammatory cytokines by epithelial cells, among others. All these viral strategies contribute to the alteration of the adaptive immunity in order to increase the susceptibility to reinfections. In this review, we discuss current research related to the mechanisms underlying the impairment of T and B cell immune responses induced by hRSV and hMPV infection. In addition, we described the role each virulence factor involved in immune modulation caused by these viruses.
Collapse
Affiliation(s)
- Andrea E González
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Margarita K Lay
- b Departamento de Biotecnología , Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta , Antofagasta , Chile
| | - Evelyn L Jara
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Janyra A Espinoza
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Roberto S Gómez
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Jorge Soto
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Rivera
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Katia Abarca
- c Departamento de Pediatría , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile.,d INSERM UMR1064 , Nantes , France
| | - Claudia A Riedel
- e Millennium Institute of Immunology and Immunotherapy , Departamento de Ciencias Biológicas , Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello , Santiago , Chile
| | - Alexis M Kalergis
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile.,c Departamento de Pediatría , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile.,f Millennium Institute of Immunology and Immunotherapy , Departamento de Endocrinología , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
30
|
Hastings AK, Gilchuk P, Joyce S, Williams JV. Novel HLA-A2-restricted human metapneumovirus epitopes reduce viral titers in mice and are recognized by human T cells. Vaccine 2016; 34:2663-70. [PMID: 27105560 DOI: 10.1016/j.vaccine.2016.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 11/25/2022]
Abstract
Human metapneumovirus (HMPV) is a major cause of morbidity and mortality from acute lower respiratory tract illness, with most individuals seropositive by age five. Despite the presence of neutralizing antibodies, secondary infections are common and can be severe in young, elderly, and immunocompromised persons. Preclinical vaccine studies for HMPV have suggested a need for a balanced antibody and T cell immune response to enhance protection and avoid lung immunopathology. We infected transgenic mice expressing human HLA-A*0201 with HMPV and used ELISPOT to screen overlapping and predicted epitope peptides. We identified six novel HLA-A2 restricted CD8(+) T cell (TCD8) epitopes, with M39-47 (M39) immunodominant. Tetramer staining detected M39-specific TCD8 in lungs and spleen of HMPV-immune mice. Immunization with adjuvant-formulated M39 peptide reduced lung virus titers upon challenge. Finally, we show that TCD8 from HLA-A*0201 positive humans recognize M39 by IFNγ ELISPOT and tetramer staining. These results will facilitate HMPV vaccine development and human studies.
Collapse
Affiliation(s)
- Andrew K Hastings
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Administration Tennessee Valley Healthcare System, Nashville, TN 37332, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, USA.
| |
Collapse
|
31
|
Immune Response to Human Metapneumovirus Infection: What We Have Learned from the Mouse Model. Pathogens 2015; 4:682-96. [PMID: 26393657 PMCID: PMC4584281 DOI: 10.3390/pathogens4030682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023] Open
Abstract
Human Metapneumovirus (hMPV) is a leading respiratory viral pathogen associated with bronchiolitis, pneumonia, and asthma exacerbation in young children, the elderly and immunocompromised individuals. The development of a potential vaccine against hMPV requires detailed understanding of the host immune system, which plays a significant role in hMPV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which hMPV causes disease. Several animal models have been evaluated and established so far to study the host immune responses and pathophysiology of hMPV infection. However, inbred laboratory mouse strains have been one of the most used animal species for experimental modeling and therefore used for the studies of immunity and immunopathogenesis to hMPV. This review summarizes the contributions of the mouse model to our understanding of the immune response against hMPV infection.
Collapse
|
32
|
Lung CD8+ T Cell Impairment Occurs during Human Metapneumovirus Infection despite Virus-Like Particle Induction of Functional CD8+ T Cells. J Virol 2015; 89:8713-26. [PMID: 26063431 DOI: 10.1128/jvi.00670-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Human metapneumovirus (HMPV) is a major cause of respiratory disease in infants, the elderly, and immunocompromised individuals worldwide. There is currently no licensed HMPV vaccine. Virus-like particles (VLPs) are an attractive vaccine candidate because they are noninfectious and elicit a neutralizing antibody response. However, studies show that serum neutralizing antibodies are insufficient for complete protection against reinfection and that adaptive T cell immunity is important for viral clearance. HMPV and other respiratory viruses induce lung CD8(+) T cell (TCD8) impairment, mediated by programmed death 1 (PD-1). In this study, we generated HMPV VLPs by expressing the fusion and matrix proteins in mammalian cells and tested whether VLP immunization induces functional HMPV-specific TCD8 responses in mice. C57BL/6 mice vaccinated twice with VLPs and subsequently challenged with HMPV were protected from lung viral replication for at least 20 weeks postimmunization. A single VLP dose elicited F- and M-specific lung TCD8s with higher function and lower expression of PD-1 and other inhibitory receptors than TCD8s from HMPV-infected mice. However, after HMPV challenge, lung TCD8s from VLP-vaccinated mice exhibited inhibitory receptor expression and functional impairment similar to those of mice experiencing secondary infection. HMPV challenge of VLP-immunized μMT mice also elicited a large percentage of impaired lung TCD8s, similar to mice experiencing secondary infection. Together, these results indicate that VLPs are a promising vaccine candidate but do not prevent lung TCD8 impairment upon HMPV challenge. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of acute respiratory disease for which there is no licensed vaccine. Virus-like particles (VLPs) are an attractive vaccine candidate and induce antibodies, but T cell responses are less defined. Moreover, HMPV and other respiratory viruses induce lung CD8(+) T cell (TCD8) impairment mediated by programmed death 1 (PD-1). In this study, HMPV VLPs containing viral fusion and matrix proteins elicited epitope-specific TCD8s that were functional with low PD-1 expression. Two VLP doses conferred sterilizing immunity in C57BL/6 mice and facilitated HMPV clearance in antibody-deficient μMT mice without enhancing lung pathology. However, regardless of whether responding lung TCD8s had previously encountered HMPV antigens in the context of VLPs or virus, similar proportions were impaired and expressed comparable levels of PD-1 upon viral challenge. These results suggest that VLPs are a promising vaccine candidate but do not prevent lung TCD8 impairment upon HMPV challenge.
Collapse
|
33
|
Simon A, Manoha C, Müller A, Schildgen O. Human Metapneumovirus and Its Role in Childhood Respiratory Infections. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0048-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Small Animal Models for Human Metapneumovirus: Cotton Rat is More Permissive than Hamster and Mouse. Pathogens 2014; 3:633-55. [PMID: 25438015 PMCID: PMC4243432 DOI: 10.3390/pathogens3030633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/13/2014] [Accepted: 06/30/2014] [Indexed: 11/17/2022] Open
Abstract
Human metapneumovirus (hMPV) is the second most prevalent causative agent of pediatric respiratory infections worldwide. Currently, there are no vaccines or antiviral drugs against this virus. One of the major hurdles in hMPV research is the difficulty to identify a robust small animal model to accurately evaluate the efficacy and safety of vaccines and therapeutics. In this study, we compared the replication and pathogenesis of hMPV in BALB/c mice, Syrian golden hamsters, and cotton rats. It was found that BALB/c mice are not permissive for hMPV infection despite the use of a high dose (6.5 log10 PFU) of virus for intranasal inoculation. In hamsters, hMPV replicated efficiently in nasal turbinates but demonstrated only limited replication in lungs. In cotton rats, hMPV replicated efficiently in both nasal turbinate and lung when intranasally administered with three different doses (4, 5, and 6 log10 PFU) of hMPV. Lungs of cotton rats infected by hMPV developed interstitial pneumonia with mononuclear cells infiltrates and increased lumen exudation. By immunohistochemistry, viral antigens were detected at the luminal surfaces of the bronchial epithelial cells in lungs. Vaccination of cotton rats with hMPV completely protected upper and lower respiratory tract from wildtype challenge. The immunization also elicited elevated serum neutralizing antibody. Collectively, these results demonstrated that cotton rat is a robust small animal model for hMPV infection.
Collapse
|
35
|
Acute clearance of human metapneumovirus occurs independently of natural killer cells. J Virol 2014; 88:10963-9. [PMID: 24965465 DOI: 10.1128/jvi.01558-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory disease. The role of NK cells in protection against HMPV is unclear. We show that while HMPV-infected C57BL/6 mice had higher numbers of functional lung NK cells than mock-treated mice, comparing NK cell-depleted and control mice did not reveal differences in lung viral titers, histopathology, cytokine levels, or T cell numbers or function. These data indicate that NK cells are not required for host control of HMPV.
Collapse
|
36
|
van den Hoogen BG, van Boheemen S, de Rijck J, van Nieuwkoop S, Smith DJ, Laksono B, Gultyaev A, Osterhaus ADME, Fouchier RAM. Excessive production and extreme editing of human metapneumovirus defective interfering RNA is associated with type I IFN induction. J Gen Virol 2014; 95:1625-1633. [PMID: 24760760 PMCID: PMC4103063 DOI: 10.1099/vir.0.066100-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type I IFN production is one of the hallmarks of host innate immune responses upon virus infection. Whilst most respiratory viruses carry IFN antagonists, reports on human metapneumovirus (HMPV) have been conflicting. Using deep sequencing, we have demonstrated that HMPV particles accumulate excessive amounts of defective interfering RNA (DIs) rapidly upon in vitro passage, and that these are associated with IFN induction. Importantly, the DIs were edited extensively; up to 70% of the original A and T residues had mutated to G or C, respectively. Such high editing rates of viral RNA have not, to our knowledge, been reported before. Bioinformatics and PCR assays indicated that adenosine deaminase acting on RNA (ADAR) was the most likely editing enzyme. HMPV thus has an unusually high propensity to generate DIs, which are edited at an unprecedented high frequency. The conflicting published data on HMPV IFN induction and antagonism are probably explained by DIs in virus stocks. The interaction of HMPV DIs with the RNA-editing machinery and IFN responses warrants further investigation.
Collapse
Affiliation(s)
| | | | - Jonneke de Rijck
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Brigitta Laksono
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Wei L, Zhu S, She R, Hu F, Wang J, Yan X, Zhang C, Liu S, Quan R, Li Z, Du F, Wei T, Liu J. Viral replication and lung lesions in BALB/c mice experimentally inoculated with avian metapneumovirus subgroup C isolated from chickens. PLoS One 2014; 9:e92136. [PMID: 24637582 PMCID: PMC3956885 DOI: 10.1371/journal.pone.0092136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/18/2014] [Indexed: 11/18/2022] Open
Abstract
Avian metapneumovirus (aMPV) emerged as an important respiratory pathogen causing acute respiratory tract infection in avian species. Here we used a chicken aMPV subgroup C (aMPV/C) isolate to inoculate experimentally BALB/c mice and found that the aMPV/C can efficiently replicate and persist in the lungs of mice for at least 21 days with a peak viral load at day 6 postinoculation. Lung pathological changes were characterized by increased inflammatory cells. Immunochemical assay showed the presence of viral antigens in the lungs and significant upregulation of pulmonary inflammatory cytokines and chemokines including MCP-1, MIP-1α, RANTES, IL-1β, IFN-γ, and TNF-α were detected following inoculation. These results indicate for the first time that chicken aMPV/C may replicate in the lung of mice. Whether aMPV/C has potential as zoonotic pathogen, further investigation will be required.
Collapse
Affiliation(s)
- Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People’s Republic of China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People’s Republic of China
| | - Ruiping She
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Fengjiao Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People’s Republic of China
| | - Xu Yan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People’s Republic of China
| | - Chunyan Zhang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People’s Republic of China
| | - Shuhang Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People’s Republic of China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People’s Republic of China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People’s Republic of China
| | - Fang Du
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ting Wei
- Molecular Virology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People’s Republic of China
| |
Collapse
|
38
|
Palavecino CE, Céspedes PF, Gómez RS, Kalergis AM, Bueno SM. Immunization with a recombinant bacillus Calmette-Guerin strain confers protective Th1 immunity against the human metapneumovirus. THE JOURNAL OF IMMUNOLOGY 2013; 192:214-23. [PMID: 24319265 DOI: 10.4049/jimmunol.1300118] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Along with the human respiratory syncytial virus (hRSV), the human metapneumovirus (hMPV) is one of the leading causes of childhood hospitalization and a major health burden worldwide. Unfortunately, owing to an inefficient immunological memory, hMPV infection provides limited immune protection against reinfection. Furthermore, hMPV can induce an inadequate Th2 type immune response that causes severe lung inflammation, leading to airway obstruction. Similar to hRSV, it is likely that an effective clearance of hMPV would require a balanced Th1 type immunity by the host, involving the activation of IFN-γ-secreting T cells. A recognized inducer of Th1 immunity is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which has been used in newborns for many decades and in several countries as a tuberculosis vaccine. We have previously shown that immunization with BCG strains expressing hRSV Ags can induce an efficient immune response that protects against this virus. In this study, we show that immunization with rBCG strains expressing the phosphoprotein from hMPV also can induce protective Th1 immunity. Mice immunized with rBCG were protected against weight loss, airway inflammation, and viral replication in the lungs after hMPV infection. Our rBCG vaccine also induced the activation of hMPV-specific T cells producing IFN-γ and IL-2, which could protect from hMPV infection when transferred to recipient mice. These data strongly support the notion that rBCG induces protective Th1 immunity and could be considered as an efficient vaccine against hMPV.
Collapse
Affiliation(s)
- Christian E Palavecino
- Instituto Milenio en Inmunología e Inmunoterapia, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | | | | | | | | |
Collapse
|
39
|
Mitzel DN, Jaramillo RJ, Stout-Delgado H, Senft AP, Harrod KS. Human metapneumovirus inhibits the IL-6-induced JAK/STAT3 signalling cascade in airway epithelium. J Gen Virol 2013; 95:26-37. [PMID: 24114793 DOI: 10.1099/vir.0.055632-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The host cytokine IL-6 plays an important role in host defence and prevention of lung injury from various pathogens, making IL-6 an important mediator in the host's susceptibility to respiratory infections. The cellular response to IL-6 is mediated through a Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signal transduction pathway. Human metapneumovirus (hMPV) is an important causative agent of viral respiratory infections known to inhibit the IFN-mediated activation of STAT1. However, little is known about the interactions between this virus and other STAT signalling cascades. Herein, we showed that hMPV can attenuate the IL-6-mediated JAK/STAT3 signalling cascade in lung epithelial cells. HMPV inhibited a key event in this pathway by impeding the phosphorylation and nuclear translocation of STAT3 in A549 cells and in primary normal human bronchial epithelial cells. Further studies established that hMPV interrupted the IL-6-induced JAK/STAT pathway early in the signal transduction pathway by blocking the phosphorylation of JAK2. By antagonizing the IL-6-mediated JAK/STAT3 pathway, hMPV perturbed the expression of IL-6-inducible genes important for apoptosis, cell differentiation and growth. Infection with hMPV also differentially regulated the effects of IL-6 on apoptosis. Thus, hMPV regulation of these genes could usurp the protective roles of IL-6, and these data provide insight into an important element of viral pathogenesis.
Collapse
Affiliation(s)
- Dana N Mitzel
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Richard J Jaramillo
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Heather Stout-Delgado
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Albert P Senft
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Kevin S Harrod
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
40
|
Aerts L, Hamelin MÈ, Rhéaume C, Lavigne S, Couture C, Kim W, Susan-Resiga D, Prat A, Seidah NG, Vergnolle N, Riteau B, Boivin G. Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model. PLoS One 2013; 8:e72529. [PMID: 24015257 PMCID: PMC3755973 DOI: 10.1371/journal.pone.0072529] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human metapneumovirus (hMPV) infection causes acute respiratory tract infections (RTI) which can result in hospitalization of both children and adults. To date, no antiviral or vaccine is available for this common viral infection. Immunomodulators could represent an interesting strategy for the treatment of severe viral infection. Recently, the role of protease-activated receptors (PAR) in inflammation, coagulation and infection processes has been of growing interest. Herein, the effects of a PAR1 agonist and a PAR1 antagonist on hMPV infection were investigated in BALB/c mice. Intranasal administration of the PAR1 agonist resulted in increased weight loss and mortality of infected mice. Conversely, the PAR1 antagonist was beneficial to hMPV infection by decreasing weight loss and clinical signs and by significantly reducing pulmonary inflammation, pro-inflammatory cytokine levels (including IL-6, KC and MCP-1) and recruitment of immune cells to the lungs. In addition, a significant reduction in pulmonary viral titers was also observed in the lungs of PAR1 antagonist-treated mice. Despite no apparent direct effect on virus replication during in vitro experiments, an important role for PAR1 in the regulation of furin expression in the lungs was shown for the first time. Further experiments indicated that the hMPV fusion protein can be cleaved by furin thus suggesting that PAR1 could have an effect on viral infectivity in addition to its immunomodulatory properties. Thus, inhibition of PAR1 by selected antagonists could represent an interesting strategy for decreasing the severity of paramyxovirus infections.
Collapse
Affiliation(s)
- Laetitia Aerts
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Chantal Rhéaume
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Sophie Lavigne
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Christian Couture
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - WooJin Kim
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nathalie Vergnolle
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Beatrice Riteau
- Virologie et Pathologie Humaine, Université Lyon, Faculté de Médecine RTH Laennec, Lyon, France
- Centre de Tours-Nouzilly Institut National de la Recherche Agronomique, Nouzilly, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| |
Collapse
|
41
|
Ren J, Kolli D, Deng J, Fang R, Gong B, Xue M, Casola A, Garofalo RP, Wang T, Bao X. MyD88 controls human metapneumovirus-induced pulmonary immune responses and disease pathogenesis. Virus Res 2013; 176:241-50. [PMID: 23845303 DOI: 10.1016/j.virusres.2013.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/23/2013] [Accepted: 06/26/2013] [Indexed: 12/14/2022]
Abstract
Human metapneumovirus (hMPV) is a common cause of lung and airway infections in infants and young children. Recently, we and others have shown that hMPV infection induces Toll-like receptor (TLR)-dependent cellular signaling. However, the contribution of TLR-mediated signaling in host defenses against pulmonary hMPV infection and associated disease pathogenesis has not been elucidated. In this study, mice deficient in MyD88, a common adaptor of TLRs, was used to investigate the contribution of TLRs to in vivo pulmonary response to hMPV infection. MyD88(-/-) mice have significantly reduced pulmonary inflammation and associated disease compared with wild-type (WT) C57BL/6 mice after intranasal infection with hMPV. hMPV-induced cytokines and chemokines in bronchoalveolar lavage fluid (BALF) and isolated lung conventional dendritic cells (cDC) are also significantly impaired by MyD88 deletion. In addition, we found that MyD88 is required for the recruitment of DC, T cells, and other immune cells to the lungs, and for the functional regulation of DC and T cells in response to hMPV infection. Taken together, our data indicate that MyD88-mediated pathways are essential for the pulmonary immune and pathogenic responses to this viral pathogen.
Collapse
Affiliation(s)
- Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Loubaki L, Tremblay T, Bazin R. In vivo depletion of leukocytes and platelets following injection of T cell-specific antibodies into mice. J Immunol Methods 2013; 393:38-44. [PMID: 23597928 DOI: 10.1016/j.jim.2013.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/20/2013] [Accepted: 04/08/2013] [Indexed: 12/23/2022]
Abstract
In vivo T cell depletion experiments are widely used to establish the role of these cells in a variety of immunological processes. Different clones of monoclonal antibody targeting the CD3 molecular complex (mainly 145-2C11 and 17A2) have been successfully used for T cell depletion. In the present work, we assessed the specificity of monoclonal antibody-mediated CD3 T cell depletion in mouse peripheral blood. We showed that treatment of BALB/C mice with monoclonal antibodies (clones 145-2C11 and 17A2) not only efficiently depletes T cells in vivo, but also leads to a substantial reduction in B cell, granulocyte and platelet counts. In contrast, T cell depletion using a combination of anti-CD4 and anti-CD8 antibodies was efficient and produced less deleterious effects on other blood cell populations. Therefore, the results obtained from T cell depletion experiments using anti-CD3 antibodies must be interpreted with caution prior to draw definitive conclusions on the role of T cells in a given immunological process.
Collapse
Affiliation(s)
- Lionel Loubaki
- Department of Research and Development, Héma-Québec, Quebec G1V 5C3, Canada.
| | | | | |
Collapse
|
43
|
Abstract
It has been 10 years since human metapneumovirus (HMPV) was identified as a causative agent of respiratory illness in humans. Since then, numerous studies have contributed to a substantial body of knowledge on many aspects of HMPV. This review summarizes our current knowledge on HMPV, HMPV disease pathogenesis, and disease intervention strategies and identifies a number of areas with key questions to be addressed in the future.
Collapse
|
44
|
Deng Q, Weng Y, Lu W, Demers A, Song M, Wang D, Yu Q, Li F. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus. Virus Res 2011; 160:102-7. [PMID: 21683102 DOI: 10.1016/j.virusres.2011.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 01/05/2023]
Abstract
The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size amongst the different viruses. Human respiratory syncytial virus (HRSV) encodes the smallest SH protein consisting of only 64 amino acids, while metapneumoviruses have the longest SH protein ranging from 174 to 179 amino acids in length. Little is currently known about the cellular localization and topology of the metapneumovirus SH protein. Here we characterize for the first time metapneumovirus SH protein with respect to topology, subcellular localization, and transport using avian metapneumovirus subgroup C (AMPV-C) as a model system. We show that AMPV-C SH is an integral membrane protein with N(in)C(out) orientation located in both the plasma membrane as well as within intracellular compartments, which is similar to what has been described previously for SH proteins of other paramyxoviruses. Furthermore, we demonstrate that AMPV-C SH protein localizes in the endoplasmic reticulum (ER), Golgi, and cell surface, and is transported through ER-Golgi secretory pathway.
Collapse
Affiliation(s)
- Qiji Deng
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, United States
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ditt V, Lüsebrink J, Tillmann RL, Schildgen V, Schildgen O. Respiratory infections by HMPV and RSV are clinically indistinguishable but induce different host response in aged individuals. PLoS One 2011; 6:e16314. [PMID: 21298115 PMCID: PMC3027670 DOI: 10.1371/journal.pone.0016314] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/09/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Human metapneumovirus and respiratory syncytial virus can cause severe respiratory diseases, especially in infants, young children, and the elderly. So far it remains unclear why infections in the elderly become life threatening despite the presence of neutralizing antibodies in the serum, and to which extent double infections worsen the clinical course. METHODS Young and aged BALB/c-mice were infected with RSV or/and HMPV. Appearance of the mice was observed during course of infection. On day 5 p.i. animals were dispatched by cervical dislocation and levels of TNF-α and NF-κB were determined. RESULTS The observation of activity, weight and appearance of the different mice showed no differences among the tested groups. Despite this, the immunologic response depends on the animals' age and the virus they were infected with. In young animals, NF-κB levels were elevated if infected with HMPV and HMPV/RSV but remained low in RSV infections, whereas in aged animals the opposite was observed: solely RSV-infected animals showed elevated levels of NF-κB. TNF-α was slightly elevated in HMPV-infected young and old animals, but only in young animals this elevation was significant. CONCLUSIONS Contrary to other studies, no weight loss or change in activity despite productive lung infection with the different viruses were observed. This may be due to the weaker anaesthesia or the lesser volume of virus solution used, leading to less stress in the animals. The observed differences in TNF-α and NF-κB elevation lead to the assumption that young and old individuals have different mechanisms to react against the viruses.
Collapse
Affiliation(s)
- Vanessa Ditt
- Institute for Virology, University of Bonn, Bonn, Germany
| | | | | | | | - Oliver Schildgen
- Institute for Virology, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
46
|
Maggina P, Christodoulou I, Papaevangelou V, Tsolia M, Papadopoulos NG. Dendritic cells in viral bronchiolitis. Expert Rev Clin Immunol 2010; 5:271-82. [PMID: 20477005 DOI: 10.1586/eci.09.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells (DCs) are major antigen-presenting cells that constitute a link between innate and adaptive immune responses, and are critical in the processes of control and elimination of viral infections. On the other hand, there is a large body of data strongly implicating respiratory viruses in morbidity during infancy through the induction of lower respiratory tract infections, such as bronchiolitis, and later on in childhood and adult life, mainly due to their association with asthma exacerbations. Little is known, however, about the precise role of DCs in human respiratory tract infections. This review focuses on current data, both from in vivo and in vitro studies, that highlight the interplay between DCs and the viral causes of bronchiolitis.
Collapse
Affiliation(s)
- Paraskevi Maggina
- Allergy Research Centre, 2nd Paediatric Clinic, Medical School, University of Athens, 41 Fidippidou Street, Goudi, 11527 Athens, Greece.
| | | | | | | | | |
Collapse
|
47
|
Rubbenstroth D, Dalgaard TS, Kothlow S, Juul-Madsen HR, Rautenschlein S. Effects of cyclosporin A induced T-lymphocyte depletion on the course of avian Metapneumovirus (aMPV) infection in turkeys. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:518-529. [PMID: 20043941 DOI: 10.1016/j.dci.2009.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/22/2009] [Accepted: 12/22/2009] [Indexed: 05/28/2023]
Abstract
The avian Metapneumovirus (aMPV) causes an economically important acute respiratory disease in turkeys (turkey rhinotracheitis, TRT). While antibodies were shown to be insufficient for protection against aMPV-infection, the role of T-lymphocytes in the control of aMPV-infection is not clear. In this study we investigated the role of T-lymphocytes in aMPV-pathogenesis in a T-cell-suppression model in turkeys. T-cell-intact turkeys and turkeys partly depleted of functional CD4(+) and CD8(+) T-lymphocytes by Cyclosporin A (CsA) treatment were inoculated with the virulent aMPV subtype A strain BUT 8544. CsA-treatment resulted in a significant reduction of absolute numbers of circulating CD4(+) and CD8alpha(+) T-lymphocytes by up to 82 and 65%, respectively (P<0.05). Proportions of proliferating T-cells within mitogen-stimulated peripheral blood mononuclear cells were reduced by similar levels in CsA-treated birds compared to untreated controls (P<0.05). CsA-treated turkeys showed delayed recovery from aMPV-induced clinical signs and histopathological lesions and a prolonged detection of aMPV in choanal swabs. The results of this study show that T-lymphocytes play an important role in the control of primary aMPV-infection in turkeys.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Clinic for Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, Hannover, Germany
| | | | | | | | | |
Collapse
|
48
|
Herd KA, Nelson M, Mahalingam S, Tindle RW. Pulmonary infection of mice with human metapneumovirus induces local cytotoxic T-cell and immunoregulatory cytokine responses similar to those seen with human respiratory syncytial virus. J Gen Virol 2010; 91:1302-10. [PMID: 20053825 DOI: 10.1099/vir.0.015396-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human metapneumovirus (hMPV) is a major cause of upper and lower respiratory-tract infection in infants, the elderly and immunocompromised individuals. Virus-directed cellular immunity elicited by hMPV infection is poorly understood, in contrast to the phylogenetically and clinically related pathogen human respiratory syncytial virus (hRSV). In a murine model of acute lower respiratory-tract infection with hMPV, we demonstrate the accumulation of gamma interferon (IFN-gamma)-producing CD8+ T cells in the airways and lungs at day 7 post-infection (p.i.), associated with cytotoxic T lymphocytes (CTLs) directed to an epitope of the M2-1 protein. This CTL immunity was accompanied by increased pulmonary expression of Th1 cytokines IFN-gamma and interleukin (IL)-12 and antiviral cytokines (IFN-beta), as well as chemokines Mip-1alpha, Mip-1beta, Mig, IP-10 and CX3CL1. There was also a moderate increase in Th2-type cytokines IL-4 and IL-10 compared with uninfected mice. At 21 days p.i., a strong CTL response could be recalled from the spleen. A similar pattern of CTL induction to the homologous M2-1 CTL epitope of hRSV, and of cytokine/chemokine induction, was observed following infection with hRSV, highlighting similarities in the cellular immune response to the two related pathogens.
Collapse
Affiliation(s)
- Karen A Herd
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, and Clinical Medical Virology Centre, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
49
|
Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 2010; 23:74-98. [PMID: 20065326 PMCID: PMC2806659 DOI: 10.1128/cmr.00032-09] [Citation(s) in RCA: 486] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In global terms, respiratory viral infection is a major cause of morbidity and mortality. Infancy, in particular, is a time of increased disease susceptibility and severity. Early-life viral infection causes acute illness and can be associated with the development of wheezing and asthma in later life. The most commonly detected viruses are respiratory syncytial virus (RSV), rhinovirus (RV), and influenza virus. In this review we explore the complete picture from epidemiology and virology to clinical impact and immunology. Three striking aspects emerge. The first is the degree of similarity: although the infecting viruses are all different, the clinical outcome, viral evasion strategies, immune response, and long-term sequelae share many common features. The second is the interplay between the infant immune system and viral infection: the immaturity of the infant immune system alters the outcome of viral infection, but at the same time, viral infection shapes the development of the infant immune system and its future responses. Finally, both the virus and the immune response contribute to damage to the lungs and subsequent disease, and therefore, any prevention or treatment needs to address both of these factors.
Collapse
Affiliation(s)
- John S Tregoning
- Centre for Infection, Department of Cellular and Molecular Medicine, St. George's University of London, London, United Kingdom.
| | | |
Collapse
|
50
|
High seroprevalence of neutralizing capacity against human metapneumovirus in all age groups studied in Bonn, Germany. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 17:481-4. [PMID: 20042516 DOI: 10.1128/cvi.00398-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human metapneumovirus (hMPV) infections occur frequently despite high rates of perpetual seroprevalence for all age groups. Analyses of approximately 2,000 archived, randomly selected serum samples demonstrated that neutralizing capacities remain high, with a minor decrease for individuals over 69 years of age, leading to the hypothesis that reinfections occur because humoral immune responses play minor roles in the clearance of hMPV infections.
Collapse
|