1
|
Ishemgulova A, Mukhamedova L, Trebichalská Z, Rájecká V, Payne P, Šmerdová L, Moravcová J, Hrebík D, Buchta D, Škubník K, Füzik T, Vaňáčová Š, Nováček J, Plevka P. Endosome rupture enables enteroviruses from the family Picornaviridae to infect cells. Commun Biol 2024; 7:1465. [PMID: 39511383 PMCID: PMC11543853 DOI: 10.1038/s42003-024-07147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Membrane penetration by non-enveloped viruses is diverse and generally not well understood. Enteroviruses, one of the largest groups of non-enveloped viruses, cause diseases ranging from the common cold to life-threatening encephalitis. Enteroviruses enter cells by receptor-mediated endocytosis. However, how enterovirus particles or RNA genomes cross the endosome membrane into the cytoplasm remains unknown. Here we used cryo-electron tomography of infected cells to show that endosomes containing enteroviruses deform, rupture, and release the virus particles into the cytoplasm. Blocking endosome acidification with bafilomycin A1 reduced the number of particles that released their genomes, but did not prevent them from reaching the cytoplasm. Inhibiting post-endocytic membrane remodeling with wiskostatin promoted abortive enterovirus genome release in endosomes. The rupture of endosomes also occurs in control cells and after the endocytosis of very low-density lipoprotein. In summary, our results show that cellular membrane remodeling disrupts enterovirus-containing endosomes and thus releases the virus particles into the cytoplasm to initiate infection. Since the studied enteroviruses employ different receptors for cell entry but are delivered into the cytoplasm by cell-mediated endosome disruption, it is likely that most if not all enteroviruses, and probably numerous other viruses from the family Picornaviridae, can utilize endosome rupture to infect cells.
Collapse
Affiliation(s)
- Aygul Ishemgulova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Liya Mukhamedova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Zuzana Trebichalská
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Veronika Rájecká
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Pavel Payne
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Lenka Šmerdová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jana Moravcová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - David Buchta
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
2
|
3,4-Dicaffeoylquinic Acid from the Medicinal Plant Ilex kaushue Disrupts the Interaction Between the Five-Fold Axis of Enterovirus A-71 and the Heparan Sulfate Receptor. J Virol 2022; 96:e0054221. [PMID: 35319229 DOI: 10.1128/jvi.00542-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While infections by enterovirus A71 (EV-A71) are generally self-limiting, they can occasionally lead to serious neurological complications and death. No licensed therapies against EV-A71 currently exist. Using anti-virus-induced cytopathic effect assays, 3,4-dicaffeoylquinic acid (3,4-DCQA) from Ilex kaushue extracts was found to exert significant anti-EV-A71 activity, with a broad inhibitory spectrum against different EV-A71 genotypes. Time-of-drug-addition assays revealed that 3,4-DCQA affects the initial phase (entry step) of EV-A71 infection by directly targeting viral particles and disrupting viral attachment to host cells. Using resistant virus selection experiments, we found that 3,4-DCQA targets the glutamic acid residue at position 98 (E98) and the proline residue at position 246 (P246) in the 5-fold axis located within the VP1 structural protein. Recombinant viruses harboring the two mutations were resistant to 3,4-DCQA-elicited inhibition of virus attachment and penetration into human rhabdomyosarcoma (RD) cells. Finally, we showed that 3,4-DCQA specifically inhibited the attachment of EV-A71 to the host receptor heparan sulfate (HS), but not to the scavenger receptor class B member 2 (SCARB2) and P-selectin glycoprotein ligand-1 (PSGL1). Molecular docking analysis confirmed that 3,4-DCQA targets the 5-fold axis to form a stable structure with the E98 and P246 residues through noncovalent and van der Waals interactions. The targeting of E98 and P246 by 3,4-DCQA was found to be specific; accordingly, HS binding of viruses carrying the K242A or K244A mutations in the 5-fold axis was successfully inhibited by 3,4-DCQA.The clinical utility of 3,4-DCQA in the prevention or treatment of EV-A71 infections warrants further scrutiny. IMPORTANCE The canyon region and the 5-fold axis of the EV-A71 viral particle located within the VP1 protein mediate the interaction of the virus with host surface receptors. The three most extensively investigated cellular receptors for EV-A71 include SCARB2, PSGL1, and cell surface heparan sulfate. In the current study, a RD cell-based anti-cytopathic effect assay was used to investigate the potential broad spectrum inhibitory activity of 3,4-DCQA against different EV-A71 strains. Mechanistically, we demonstrate that 3,4-DCQA disrupts the interaction between the 5-fold axis of EV-A71 and its heparan sulfate receptor; however, no effect was seen on the SCARB2 or PSGL1 receptors. Taken together, our findings show that this natural product may pave the way to novel anti-EV-A71 therapeutic strategies.
Collapse
|
3
|
Wang J, Yang G, Wang X, Wen Z, Shuai L, Luo J, Wang C, Sun Z, Liu R, Ge J, He X, Hua R, Wang X, Yang X, Chen W, Zhong G, Bu Z. SARS-CoV-2 uses metabotropic glutamate receptor subtype 2 as an internalization factor to infect cells. Cell Discov 2021; 7:119. [PMID: 34903715 PMCID: PMC8668938 DOI: 10.1038/s41421-021-00357-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses angiotensin-converting enzyme 2 (ACE2) as a binding receptor to enter cells via clathrin-mediated endocytosis (CME). However, receptors involved in other steps of SARS-CoV-2 infection remain largely unknown. Here, we found that metabotropic glutamate receptor subtype 2 (mGluR2) is an internalization factor for SARS-CoV-2. Our results show that mGluR2 directly interacts with the SARS-CoV-2 spike protein and that knockdown of mGluR2 decreases internalization of SARS-CoV-2 but not cell binding. Further, mGluR2 is uncovered to cooperate with ACE2 to facilitate SARS-CoV-2 internalization through CME and mGluR2 knockout in mice abolished SARS-CoV-2 infection in the nasal turbinates and significantly reduced viral infection in the lungs. Notably, mGluR2 is also important for SARS-CoV spike protein- and Middle East respiratory syndrome coronavirus spike protein-mediated internalization. Thus, our study identifies a novel internalization factor used by SARS-CoV-2 and opens a new door for antiviral development against coronavirus infection.
Collapse
Affiliation(s)
- Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xinxin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Lei Shuai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jie Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Ziruo Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Renqiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xijun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Ronghong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Weiye Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Gongxun Zhong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Mathez G, Cagno V. Clinical severe acute respiratory syndrome coronavirus 2 isolation and antiviral testing. Antivir Chem Chemother 2021; 29:20402066211061063. [PMID: 34806440 PMCID: PMC8606911 DOI: 10.1177/20402066211061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 is an RNA virus currently causing a pandemic. Due to errors during replication, mutations can occur and result in cell adaptation by the virus or in the rise of new variants. This can change the attachment receptors' usage, result in different morphology of plaques, and can affect as well antiviral development. Indeed, a molecule can be active on laboratory strains but not necessarily on circulating strains or be effective only against some viral variants. Experiments with clinical samples with limited cell adaptation should be performed to confirm the efficiency of drugs of interest. In this protocol, we present a method to culture severe acute respiratory syndrome coronavirus 2 from nasopharyngeal swabs, obtain a high viral titer while limiting cell adaptation, and assess antiviral efficiency.
Collapse
Affiliation(s)
- Gregory Mathez
- Institute of Microbiology, Lausanne University Hospital, 419236University of Lausanne, Switzerland
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, 419236University of Lausanne, Switzerland
| |
Collapse
|
5
|
García-Rodríguez I, van Eijk H, Koen G, Pajkrt D, Sridhar A, Wolthers KC. Parechovirus A Infection of the Intestinal Epithelium: Differences Between Genotypes A1 and A3. Front Cell Infect Microbiol 2021; 11:740662. [PMID: 34790587 PMCID: PMC8591172 DOI: 10.3389/fcimb.2021.740662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Human parechovirus (PeV-A), one of the species within the Picornaviridae family, is known to cause disease in humans. The most commonly detected genotypes are PeV-A1, associated with mild gastrointestinal disease in young children, and PeV-A3, linked to severe disease with neurological symptoms in neonates. As PeV-A are detectable in stool and nasopharyngeal samples, entry is speculated to occur via the respiratory and gastro-intestinal routes. In this study, we characterized PeV-A1 and PeV-A3 replication and tropism in the intestinal epithelium using a primary 2D model based on human fetal enteroids. This model was permissive to infection with lab-adapted strains and clinical isolates of PeV-A1, but for PeV-A3, infection could only be established with clinical isolates. Replication was highest with infection established from the basolateral side with apical shedding for both genotypes. Compared to PeV-A1, replication kinetics of PeV-A3 were slower. Interestingly, there was a difference in cell tropism with PeV-A1 infecting both Paneth cells and enterocytes, while PeV-A3 infected mainly goblet cells. This difference in cell tropism may explain the difference in replication kinetics and associated disease in humans.
Collapse
Affiliation(s)
- Inés García-Rodríguez
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hetty van Eijk
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit Koen
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Dasja Pajkrt
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Katja C. Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Zhang YM. Orosomucoid-like protein 3, rhinovirus and asthma. World J Crit Care Med 2021; 10:170-182. [PMID: 34616654 PMCID: PMC8462028 DOI: 10.5492/wjccm.v10.i5.170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
The genetic variants of orosomucoid-like protein 3 (ORMDL3) gene are associated with highly significant increases in the number of human rhinovirus (HRV)-induced wheezing episodes in children. Recent investigations have been focused on the mechanisms of ORMDL3 in rhinovirus infection for asthma and asthma exacerbations. ORMDL3 not only regulates major human rhinovirus receptor intercellular adhesion molecule 1 expression, but also plays pivotal roles in viral infection through metabolisms of ceramide and sphingosine-1-phosphate, endoplasmic reticulum (ER) stress, ER-Golgi interface and glycolysis. Research on the roles of ORMDL3 in HRV infection will lead us to identify new biomarkers and novel therapeutic targets in childhood asthma and viral induced asthma exacerbations.
Collapse
Affiliation(s)
- You-Ming Zhang
- Section of Genomic and Environmental Medicine, National Heart and Lung Institute, Molecular Genetics Group, Division of Respiratory Sciences, Imperial College London, London SW3 6LY, United Kingdom
| |
Collapse
|
7
|
Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22126574. [PMID: 34207476 PMCID: PMC8235362 DOI: 10.3390/ijms22126574] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.
Collapse
|
8
|
Hao D, Wang H, Zang Y, Zhang L, Yang Z, Zhang S. Mechanism of Glycans Modulating Cholesteryl Ester Transfer Protein: Unveiled by Molecular Dynamics Simulation. J Chem Inf Model 2021; 62:5246-5257. [PMID: 33858135 DOI: 10.1021/acs.jcim.1c00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of the cholesteryl ester transfer protein (CETP) has been considered as a promising way for the treatment of cardiovascular disease (CVD) for three decades. However, clinical trials of several CETP inhibitors with various potencies have been marginally successful at best, raising doubts on the target drugability of CETP. The in-depth understanding of the glycosylated CETP structure could be beneficial to more definitive descriptions of the CETP function and the underlying mechanism. In this work, large-scale molecular dynamics simulations were performed to thoroughly explore the mechanism of glycans modulating CETP. Here, the extensive simulation results intensely suggest that glycan88 tends to assist CETP in forming a continuous tunnel throughout interacting with the upper-right region of the N-barrel, while it also could prevent the formation of a continuous tunnel by swinging toward the right-rear of the N-barrel. Furthermore, glycan240 formed stable H-bonds with Helix-B and might further stabilize the central cavity of CETP. Furthermore, the nonspecific involvement of the hydroxyl groups from the various glycans with protein core interactions and the similar influence of different glycans trapped at similar regions on the protein structure suggest that physiological glycan may lead to a similar effect. This study would provide valuable insights into devising novel methods for CVD treatment targeting CETP and functional studies about glycosylation for other systems.
Collapse
Affiliation(s)
- Dongxiao Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Wadowski PP, Jilma B, Kopp CW, Ertl S, Gremmel T, Koppensteiner R. Glycocalyx as Possible Limiting Factor in COVID-19. Front Immunol 2021; 12:607306. [PMID: 33692785 PMCID: PMC7937603 DOI: 10.3389/fimmu.2021.607306] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Patricia P Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christoph W Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Sebastian Ertl
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Egorova A, Bogner E, Novoselova E, Zorn KM, Ekins S, Makarov V. Dispirotripiperazine-core compounds, their biological activity with a focus on broad antiviral property, and perspectives in drug design (mini-review). Eur J Med Chem 2020; 211:113014. [PMID: 33218683 PMCID: PMC7658596 DOI: 10.1016/j.ejmech.2020.113014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022]
Abstract
Viruses are obligate intracellular parasites and have evolved to enter the host cell. To gain access they come into contact with the host cell through an initial adhesion, and some viruses from different genus may use heparan sulfate proteoglycans for it. The successful inhibition of this early event of the infection by synthetic molecules has always been an attractive target for medicinal chemists. Numerous reports have yielded insights into the function of compounds based on the dispirotripiperazine scaffold. Analysis suggests that this is a structural requirement for inhibiting the interactions between viruses and cell-surface heparan sulfate proteoglycans, thus preventing virus entry and replication. This review summarizes our current knowledge about the early history of development, synthesis, structure-activity relationships and antiviral evaluation of dispirotripiperazine-based compounds and where they are going in the future.
Collapse
Affiliation(s)
- Anna Egorova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow, Russia
| | - Elke Bogner
- Institute of Virology, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Chariteplatz 1, 10117, Berlin, Germany
| | - Elena Novoselova
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow, Russia
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab, 3510, Raleigh, NC, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow, Russia.
| |
Collapse
|
11
|
Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition. Blood 2020; 136:2080-2089. [PMID: 32877502 PMCID: PMC7596849 DOI: 10.1182/blood.2020008248] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious respiratory virus that can lead to venous/arterial thrombosis, stroke, renal failure, myocardial infarction, thrombocytopenia, and other end-organ damage. Animal models demonstrating end-organ protection in C3-deficient mice and evidence of complement activation in humans have led to the hypothesis that SARS-CoV-2 triggers complement-mediated endothelial damage, but the mechanism is unclear. Here, we demonstrate that the SARS-CoV-2 spike protein (subunit 1 and 2), but not the N protein, directly activates the alternative pathway of complement (APC). Complement-dependent killing using the modified Ham test is blocked by either C5 or factor D inhibition. C3 fragments and C5b-9 are deposited on TF1PIGAnull target cells, and complement factor Bb is increased in the supernatant from spike protein–treated cells. C5 inhibition prevents the accumulation of C5b-9 on cells, but not C3c; however, factor D inhibition prevents both C3c and C5b-9 accumulation. Addition of factor H mitigates the complement attack. In conclusion, SARS-CoV-2 spike proteins convert nonactivator surfaces to activator surfaces by preventing the inactivation of the cell-surface APC convertase. APC activation may explain many of the clinical manifestations (microangiopathy, thrombocytopenia, renal injury, and thrombophilia) of COVID-19 that are also observed in other complement-driven diseases such as atypical hemolytic uremic syndrome and catastrophic antiphospholipid antibody syndrome. C5 inhibition prevents accumulation of C5b-9 in vitro but does not prevent upstream complement activation in response to SARS-CoV-2 spike proteins.
Collapse
|
12
|
Heparan sulfate attachment receptor is a major selection factor for attenuated enterovirus 71 mutants during cell culture adaptation. PLoS Pathog 2020; 16:e1008428. [PMID: 32187235 PMCID: PMC7105141 DOI: 10.1371/journal.ppat.1008428] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/30/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease (HFMD). However, this infection is sometimes associated with severe neurological complications. Identification of neurovirulence determinants is important to understand the pathogenesis of EV71. One of the problems in evaluating EV71 virulence is that its genome sequence changes rapidly during replication in cultured cells. The factors that induce rapid mutations in the EV71 genome in cultured cells are unclear. Here, we illustrate the population dynamics during adaptation to RD-A cells using EV71 strains isolated from HFMD patients. We identified a reproducible amino acid substitution from glutamic acid (E) to glycine (G) or glutamine (Q) in residue 145 of the VP1 protein (VP1-145) after adaptation to RD-A cells, which was associated with attenuation in human scavenger receptor B2 transgenic (hSCARB2 tg) mice. Because previous reports demonstrated that VP1-145G and Q mutants efficiently infect cultured cells by binding to heparan sulfate (HS), we hypothesized that HS expressed on the cell surface is a major factor for this selection. Supporting this hypothesis, selection of the VP1-145 mutant was prevented by depletion of HS and overexpression of hSCARB2 in RD-A cells. In addition, this mutation promotes the acquisition of secondary amino acid substitutions at various positions of the EV71 capsid to increase its fitness in cultured cells. These results indicate that attachment receptors, especially HS, are important factors for selection of VP1-145 mutants and subsequent capsid mutations. Moreover, we offer an efficient method for isolation and propagation of EV71 virulent strains with minimal selection pressure for attenuation. Viruses must overcome various setbacks in a variety of tissues and cells during transmission from the initial replication site to the final target site. To achieve this, RNA viruses employ a strategy to adapt to different environments by creating a diverse viral population using low-fidelity RNA-dependent RNA polymerases. On the other hand, when the viruses are propagated in clonal cell cultures, in vitro adaptation occurs. The viruses may acquire new properties or lose some properties they had in vivo. In vitro adaptation is often associated with attenuation. Therefore, the selection pressures imposed on viruses replicating in vitro and in vivo are quite different. It is unclear how this environmental difference affects viral populations. Clinical isolates of EV71 replicate in cultured cells poorly. However, after a few passages, the viruses adapt to this condition and replicate efficiently. In this study, we demonstrate that attachment receptor usage is a major selection pressure for in vitro adaptation of EV71 by analyzing the population dynamics of cell culture-adapted viruses. This mechanism appears to be a major mode of attenuation.
Collapse
|
13
|
Abstract
Enterovirus 71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease. EV-A71 infection is sometimes associated with severe neurological diseases such as acute encephalitis, acute flaccid paralysis, and cardiopulmonary failure. Therefore, EV-A71 is a serious public health concern. Scavenger receptor class B, member 2 (SCARB2) is a type III transmembrane protein that belongs to the CD36 family and is a major receptor for EV-A71. SCARB2 supports attachment and internalization of the virus and initiates conformational changes that lead to uncoating of viral RNA in the cytoplasm. The three-dimensional structure of the virus-receptor complex was elucidated by cryo-electron microscopy. Two α-helices in the head domain of SCARB2 bind to the G-H loop of VP1 and the E-F loop of VP2 capsid proteins of EV-A71. Uncoating takes place in a SCARB2- and low pH-dependent manner. In addition to SCARB2, other molecules support cell surface binding of EV-A71. Heparan sulfate proteoglycans, P-selectin glycoprotein ligand-1, sialylated glycan, annexin II, vimentin, fibronectin, and prohibitin enhance viral infection by retaining the virus on the cell surface. These molecules are known as “attachment receptors” because they cannot initiate uncoating. In vivo, SCARB2 expression was observed in EV-A71 antigen-positive neurons and epithelial cells in the crypts of the palatine tonsils in patients that died of EV-A71 infection. Adult mice are not susceptible to infection by EV-A71, but transgenic mice that express human SCARB2 become susceptible to EV-A71 infection and develop neurological diseases similar to those observed in humans. Attachment receptors may also be involved in EV-A71 infection in vivo. Although heparan sulfate proteoglycans are expressed by many cultured cell lines and enhance infection by a subset of EV-A71 strains, they are not expressed by cells that express SCARB2 at high levels in vivo. Thus, heparan sulfate-positive cells merely adsorb the virus and do not contribute to replication or dissemination of the virus in vivo. In addition to these attachment receptors, cyclophilin A and human tryptophanyl aminoacyl-tRNA synthetase act as an uncoating regulator and an entry mediator that can confer susceptibility to non-susceptibile cells in the absence of SCARB2, respectively. The roles of attachment receptors and other molecules in EV-A71 pathogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
14
|
Barrass SV, Butcher SJ. Advances in high-throughput methods for the identification of virus receptors. Med Microbiol Immunol 2019; 209:309-323. [PMID: 31865406 PMCID: PMC7248041 DOI: 10.1007/s00430-019-00653-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
Abstract
Viruses have evolved many mechanisms to invade host cells and establish successful infections. The interaction between viral attachment proteins and host cell receptors is the first and decisive step in establishing such infections, initiating virus entry into the host cells. Therefore, the identification of host receptors is fundamental in understanding pathogenesis and tissue tropism. Furthermore, receptor identification can inform the development of antivirals, vaccines, and diagnostic technologies, which have a substantial impact on human health. Nevertheless, due to the complex nature of virus entry, the redundancy in receptor usage, and the limitations in current identification methods, many host receptors remain elusive. Recent advances in targeted gene perturbation, high-throughput screening, and mass spectrometry have facilitated the discovery of virus receptors in recent years. In this review, we compare the current methods used within the field to identify virus receptors, focussing on genomic- and interactome-based approaches.
Collapse
Affiliation(s)
- Sarah V Barrass
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
15
|
Polyamine Depletion Abrogates Enterovirus Cellular Attachment. J Virol 2019; 93:JVI.01054-19. [PMID: 31341056 DOI: 10.1128/jvi.01054-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
Polyamines are small polycationic molecules with flexible carbon chains that are found in all eukaryotic cells. Polyamines are involved in the regulation of many host processes and have been shown to be implicated in viral replication. Depletion of polyamine pools in cells treated with FDA-approved drugs restricts replication of diverse RNA viruses. Viruses can exploit host polyamines to facilitate nucleic acid packaging, transcription, and translation, but other mechanisms remain largely unknown. Picornaviruses, including Coxsackievirus B3 (CVB3), are sensitive to the depletion of polyamines and remain a significant public health threat. We employed CVB3 as a model system to investigate a potential proviral role for polyamines using a forward screen. Passaging CVB3 in polyamine-depleted cells generated a mutation in capsid protein VP3 at residue 234. We show that this mutation confers resistance to polyamine depletion. Through attachment assays, we demonstrate that polyamine depletion limits CVB3 attachment to susceptible cells, which is rescued by incubating virus with polyamines. Furthermore, the capsid mutant rescues this inhibition in polyamine-depleted cells. More divergent viruses also exhibited reduced attachment to polyamine-depleted cells, suggesting that polyamines may facilitate attachment of diverse RNA viruses. These studies inform additional mechanisms of action for polyamine-depleting pharmaceuticals, with implications for potential antiviral therapies.IMPORTANCE Enteroviruses are significant human pathogens that can cause severe disease. These viruses rely on polyamines, small positively charged molecules, for robust replication, and polyamine depletion limits infection in vitro and in vivo The mechanisms by which polyamines enhance enteroviral replication are unknown. Here, we describe how Coxsackievirus B3 (CVB3) utilizes polyamines to attach to susceptible cells and initiate infection. Using a forward genetic screen, we identified a mutation in a receptor-binding amino acid that promotes infection of polyamine-depleted cells. These data suggest that pharmacologically inhibiting polyamine biosynthesis may combat virus infection by preventing virus attachment to susceptible cells.
Collapse
|
16
|
Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019; 11:v11070596. [PMID: 31266258 PMCID: PMC6669472 DOI: 10.3390/v11070596] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface.
Collapse
Affiliation(s)
- Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland.
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| | - Samuel T Jones
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| |
Collapse
|
17
|
Basnet S, Palmenberg AC, Gern JE. Rhinoviruses and Their Receptors. Chest 2019; 155:1018-1025. [PMID: 30659817 DOI: 10.1016/j.chest.2018.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 01/14/2023] Open
Abstract
Human rhinoviruses (RVs) are picornaviruses that can cause a variety of upper and lower respiratory tract illnesses, including the common cold, bronchitis, pneumonia, and exacerbations of chronic respiratory diseases such as asthma. There are currently > 160 known types of RVs classified into three species (A, B, and C) that use three different cellular membrane glycoproteins expressed in the respiratory epithelium to enter the host cell. These viral receptors are intercellular adhesion molecule 1 (used by the majority of RV-A and all RV-B types), low-density lipoprotein receptor family members (used by 12 RV-A types), and cadherin-related family member 3 (CDHR3; used by RV-C). RV-A and RV-B interactions with intercellular adhesion molecule 1 and low-density lipoprotein receptor glycoproteins are well defined and their cellular functions have been described, whereas the mechanisms of the RV-C interaction with CDHR3 and its cellular functions are being studied. A single nucleotide polymorphism (rs6967330) in CDHR3 increases cell surface expression of this protein and, as a result, also promotes RV-C infections and illnesses. There are currently no approved vaccines or antiviral therapies available to treat or prevent RV infections, which is a major unmet medical need. Understanding interactions between RV and cellular receptors could lead to new insights into the pathogenesis of respiratory illnesses as well as lead to new approaches to control respiratory illnesses caused by RV infections.
Collapse
Affiliation(s)
- Sarmila Basnet
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI.
| | - Ann C Palmenberg
- Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
18
|
Patel MC, Pletneva LM, Boukhvalova MS, Vogel SN, Kajon AE, Blanco JCG. Immunization with Live Human Rhinovirus (HRV) 16 Induces Protection in Cotton Rats against HRV14 Infection. Front Microbiol 2017; 8:1646. [PMID: 28912760 PMCID: PMC5583225 DOI: 10.3389/fmicb.2017.01646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Human rhinoviruses (HRVs) are the main cause of cold-like illnesses, and currently no vaccine or antiviral therapies against HRVs are available to prevent or mitigate HRV infection. There are more than 150 antigenically heterogeneous HRV serotypes, with ∼90 HRVs belonging to major group species A and B. Development of small animal models that are susceptible to infection with major group HRVs would be beneficial for vaccine research. Previously, we showed that the cotton rat (Sigmodon hispidus) is semi-permissive to HRV16 (major group, species HRV-A virus) infection, replicating in the upper and lower respiratory tracts with measurable pathology, mucus production, and expression of inflammatory mediators. Herein, we report that intranasal infection of cotton rats with HRV14 (major group, species HRV-B virus) results in isolation of infectious virus from the nose and lung. Similar to HRV16, intramuscular immunization with live HRV14 induces homologous protection that correlated with high levels of serum neutralizing antibodies. Vaccination and challenge experiments with HRV14 and HRV16 to evaluate the development of cross-protective immunity demonstrate that intramuscular immunization with live HRV16 significantly protects animals against HRV14 challenge. Determination of the immunological mechanisms involved in heterologous protection and further characterization of infection with other major HRV serotypes in the cotton rat could enhance the robustness of the model to define heterotypic relationships between this diverse group of viruses and thereby increase its potential for development of a multi-serotype HRV vaccine.
Collapse
Affiliation(s)
- Mira C Patel
- Sigmovir Biosystems, Inc., RockvilleMD, United States
| | | | | | - Stefanie N Vogel
- University of Maryland School of Medicine, BaltimoreMD, United States
| | - Adriana E Kajon
- Infectious Disease Program, Lovelace Respiratory Research Institute, AlbuquerqueNM, United States
| | | |
Collapse
|
19
|
Sopel N, Pflaum A, Kölle J, Finotto S. The Unresolved Role of Interferon-λ in Asthma Bronchiale. Front Immunol 2017; 8:989. [PMID: 28861088 PMCID: PMC5559474 DOI: 10.3389/fimmu.2017.00989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
Asthma bronchiale is a disease of the airways with increasing incidence, that often begins during infancy. So far, therapeutic options are mainly symptomatic and thus there is an increasing need for better treatment and/or prevention strategies. Human rhinoviruses (HRVs) are a major cause of asthma exacerbations and might cause acute wheezing associated with local production of pro-inflammatory mediators resulting in neutrophilic inflammatory response. Viral infections induce a characteristic activation of immune response, e.g., TLR3, 4, 7, 8, 9 in the endosome and their downstream targets, especially MyD88. Moreover, other cytoplasmic pattern recognition molecules (PRMs) like RIG1 and MDA5 play important roles in the activation of interferons (IFNs) of all types. Depending on the stimulation of the different PRMs, the levels of the IFNs induced might differ. Recent studies focused on Type I IFNs in samples from control and asthma patients. However, the administration of type I IFN-α was accompanied by side-effects, thus this possible therapy was abandoned. Type III IFN-λ acts more specifically, as fewer cells express the IFN-λ receptor chain 1. In addition, it has been shown that asthmatic mice treated with recombinant or adenoviral expressed IFN-λ2 (IL–28A) showed an amelioration of symptoms, indicating that treatment with IFN-λ might be beneficial for asthmatic patients.
Collapse
Affiliation(s)
- Nina Sopel
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Pflaum
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Kölle
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
20
|
Coxsackievirus A16 utilizes cell surface heparan sulfate glycosaminoglycans as its attachment receptor. Emerg Microbes Infect 2017; 6:e65. [PMID: 28745308 PMCID: PMC5567171 DOI: 10.1038/emi.2017.55] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022]
Abstract
Coxsackievirus A16 (CVA16) is one of the major pathogens responsible for hand, foot and mouth disease, which affects more than two million children in the Asian-Pacific region annually. Previous studies have shown that scavenger receptor B2 is a functional receptor for CVA16 that facilitates the uncoating process. However, it remains unclear whether other receptors are required for efficient CVA16 infection. In this study, by using a variety of assays we demonstrated that CVA16 utilizes surface heparan sulfate glycosaminoglycans as its attachment receptor. We further showed that five surface-exposed positively charged residues located in a cluster at the five-fold vertex of the virion are critical to heparan sulfate binding and cellular attachment of CVA16. Among the five residues, the arginine at position 166 (R166) of VP1 capsid protein appeared to be the most important for the interaction between CVA16 and heparan sulfate. Alanine substitution at this site (R166A) almost completely abolished heparan sulfate binding and cellular attachment of the virus. Our work achieves insight into the early events of CVA16 infection, thereby providing information that may facilitate the rational design of antiviral drugs and vaccines against CVA16 infection.
Collapse
|
21
|
Characterization of Viral Exposures in United States Occupational Environments. EXPOSURE TO MICROBIOLOGICAL AGENTS IN INDOOR AND OCCUPATIONAL ENVIRONMENTS 2017. [PMCID: PMC7122517 DOI: 10.1007/978-3-319-61688-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses are considered to be the most abundant biological particles and have the capability to infect all forms of life leading to a variety of diseases. American workers in specific occupational environments are threatened by viral exposures, highlighting the importance to recognize the type and risk of exposure, as well as the preventive measures that can be taken to reduce the risk of exposure. For example, healthcare workers can potentially be exposed to air and blood-borne pathogens, such as hepatitis and the human immunodeficiency virus. These types of exposures have led to the development of preventive equipment and regulations intended to reduce viral exposures in occupational settings. This chapter will discuss the characteristics of viruses and the occupationally relevant viruses of which people in varying occupations can potentially encounter. Regulatory guidelines and protective strategies will also be reviewed.
Collapse
|
22
|
Bochkov YA, Watters K, Basnet S, Sijapati S, Hill M, Palmenberg AC, Gern JE. Mutations in VP1 and 3A proteins improve binding and replication of rhinovirus C15 in HeLa-E8 cells. Virology 2016; 499:350-360. [PMID: 27743961 PMCID: PMC5110265 DOI: 10.1016/j.virol.2016.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 11/21/2022]
Abstract
Viruses in the rhinovirus C species (RV-C) can cause severe respiratory illnesses in children including pneumonia and asthma exacerbations. A transduced cell line (HeLa-E8) stably expressing the CDHR3-Y529 receptor variant, supports propagation of RV-C after infection. C15 clinical or recombinant isolates replicate in HeLa-E8, however progeny yields are lower than those of related strains of RV-A and RV-B. Serial passaging of C15 in HeLa-E8 resulted in stronger cytopathic effects and increased (≥10-fold) virus binding to cells and progeny yields. The adaptation was acquired by two mutations which increased binding (VP1 T125K) and replication (3A E41K), respectively. A similar 3A mutation engineered into C2 and C41 cDNAs also improved viral replication (2-8 fold) in HeLa but the heparan sulfate mediated cell-binding enhancement by the VP1 change was C15-specific. The findings now enable large-scale cost-effective C15 production by infection and the testing of RV-C infectivity by plaque assay.
Collapse
Affiliation(s)
- Yury A Bochkov
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| | - Kelly Watters
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarmila Basnet
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Shakher Sijapati
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Marchel Hill
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Bochkov YA, Gern JE. Rhinoviruses and Their Receptors: Implications for Allergic Disease. Curr Allergy Asthma Rep 2016; 16:30. [PMID: 26960297 DOI: 10.1007/s11882-016-0608-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human rhinoviruses (RVs) are picornaviruses that can cause a variety of illnesses including the common cold, lower respiratory tract illnesses such as bronchitis and pneumonia, and exacerbations of asthma. RVs are classified into three species, RV-A, B, and C, which include over 160 types. They utilize three major types of cellular membrane glycoproteins to gain entry into the host cell: intercellular adhesion molecule 1 (ICAM-1) (the majority of RV-A and all RV-B), low-density lipoprotein receptor (LDLR) family members (12 RV-A types), and cadherin-related family member 3 (CDHR3) (RV-C). CDHR3 is a member of cadherin superfamily of transmembrane proteins with yet unknown biological function, and there is relatively little information available about the mechanisms of RV-C interaction with CDHR3. A coding single nucleotide polymorphism (rs6967330) in CDHR3 could promote RV-C infections and illnesses in infancy, which could in turn adversely affect the developing lung to increase the risk of asthma. Further studies are needed to determine how RV infections contribute to pathogenesis of asthma and to develop the optimal treatment approach to control asthma exacerbations.
Collapse
Affiliation(s)
- Yury A Bochkov
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
| | - James E Gern
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| |
Collapse
|
24
|
Blaas D. Viral entry pathways: the example of common cold viruses. Wien Med Wochenschr 2016; 166:211-26. [PMID: 27174165 PMCID: PMC4871925 DOI: 10.1007/s10354-016-0461-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/12/2016] [Indexed: 02/02/2023]
Abstract
For infection, viruses deliver their genomes into the host cell. These nucleic acids are usually tightly packed within the viral capsid, which, in turn, is often further enveloped within a lipid membrane. Both protect them against the hostile environment. Proteins and/or lipids on the viral particle promote attachment to the cell surface and internalization. They are likewise often involved in release of the genome inside the cell for its use as a blueprint for production of new viruses. In the following, I shall cursorily discuss the early more general steps of viral infection that include receptor recognition, uptake into the cell, and uncoating of the viral genome. The later sections will concentrate on human rhinoviruses, the main cause of the common cold, with respect to the above processes. Much of what is known on the underlying mechanisms has been worked out by Renate Fuchs at the Medical University of Vienna.
Collapse
Affiliation(s)
- Dieter Blaas
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Dr. Bohr Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
25
|
Single Neutralizing Monoclonal Antibodies Targeting the VP1 GH Loop of Enterovirus 71 Inhibit both Virus Attachment and Internalization during Viral Entry. J Virol 2015; 89:12084-95. [PMID: 26401034 DOI: 10.1128/jvi.02189-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Antibodies play a critical role in immunity against enterovirus 71 (EV71). However, how EV71-specific antibodies neutralize infections remains poorly understood. Here we report the working mechanism for a group of three monoclonal antibodies (MAbs) that potently neutralize EV71. We found that these three MAbs (termed D5, H7, and C4, respectively) recognize the same conserved neutralizing epitope within the VP1 GH loop of EV71. Single MAbs in this group, exemplified by D5, could inhibit EV71 infection in cell cultures at both the pre- and postattachment stages in a cell type-independent manner. Specifically, MAb treatment resulted in the blockade of multiple steps of EV71 entry, including virus attachment, internalization, and subsequent uncoating and RNA release. Furthermore, we show that the D5 and C4 antibodies can interfere with EV71 binding to its key receptors, including heparan sulfate, SCARB2, and PSGL-1, thus providing a possible explanation for the observed multi-inhibitory function of the MAbs. Collectively, our study unravels the mechanism of neutralization by a unique group of anti-EV71 MAbs targeting the conserved VP1 GH loop. The findings should enhance our understanding of MAb-mediated immunity against enterovirus infections and accelerate the development of MAb-based anti-EV71 therapeutic drugs. IMPORTANCE Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), which has caused significant morbidities and mortalities in young children. Neither a vaccine nor an antiviral drug is available. Neutralizing antibodies are major protective components in EV71 immunity. Here, we unraveled an unusual mechanism of EV71 neutralization by a group of three neutralizing monoclonal antibodies (MAbs). All of these MAbs bound the same conserved epitope located at the VP1 GH loop of EV71. Interestingly, mechanistic studies showed that single antibodies in this MAb group could block EV71 attachment and internalization during the viral entry process and interfere with EV71 binding to heparan sulfate, SCARB2, and PSGL-1 molecules, which are key receptors involved in different steps of EV71 entry. Our findings greatly enhance the understanding of the interplays among EV71, neutralizing antibodies, and host receptors, which in turn should facilitate the development of an MAb-based anti-EV71 therapy.
Collapse
|
26
|
Abstract
ABSTRACT Viruses are a diverse class of nanoparticles. However, they have evolved a few common mechanisms that enable successful infection of their host cells. The first stage of this process involves entry into the cell. For enveloped viruses this process has been well characterized. For nonenveloped viruses, the focus of this review, the entry mechanisms are less well understood. For these viruses, a typical pathway involves receptor attachment followed by internalization into cellular vesicles and subsequent viral escape to the cytosol and transport to the site of genome replication. Significantly, these viruses have evolved numerous mechanisms to fulfill this seemingly simple infection scheme. We focus on the latest observations for several families of nonenveloped viruses and highlight specific members for eukaryotic families: Adenoviridae, Papillomaviridae, Parvoviridae, Picornaviridae, Polyomaviridae and Reoviridae; and prokaryotic families: Microviridae, Myoviridae, Podoviridae and Siphoviridae.
Collapse
Affiliation(s)
- Bridget Lins
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
27
|
Abstract
Human rhinovirus (HRV) infections are now widely accepted as the commonest cause of acute respiratory illnesses (ARIs) in children. Advanced PCR techniques have enabled HRV infections to be identified as causative agents in most common ARIs in childhood including bronchiolitis, acute asthma, pneumonia and croup. However, the long-term implications of rhinovirus infections are less clear. The aim of this review is to examine the relationship between rhinovirus infections and disorders of the lower airways in childhood.
Collapse
Affiliation(s)
- D W Cox
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia; Respiratory Department, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - P N Le Souëf
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia; Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia
| |
Collapse
|
28
|
Dang M, Wang X, Wang Q, Wang Y, Lin J, Sun Y, Li X, Zhang L, Lou Z, Wang J, Rao Z. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein Cell 2014; 5:692-703. [PMID: 24986489 PMCID: PMC4145081 DOI: 10.1007/s13238-014-0087-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
Unlike the well-established picture for the entry of enveloped viruses, the mechanism of cellular entry of non-enveloped eukaryotic viruses remains largely mysterious. Picornaviruses are representative models for such viruses, and initiate this entry process by their functional receptors. Here we present the structural and functional studies of SCARB2, a functional receptor of the important human enterovirus 71 (EV71). SCARB2 is responsible for attachment as well as uncoating of EV71. Differences in the structures of SCARB2 under neutral and acidic conditions reveal that SCARB2 undergoes a pivotal pH-dependent conformational change which opens a lipid-transfer tunnel to mediate the expulsion of a hydrophobic pocket factor from the virion, a pre-requisite for uncoating. We have also identified the key residues essential for attachment to SCARB2, identifying the canyon region of EV71 as mediating the receptor interaction. Together these results provide a clear understanding of cellular attachment and initiation of uncoating for enteroviruses.
Collapse
MESH Headings
- Acids/chemistry
- Amino Acid Sequence
- Animals
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Enterovirus A, Human/genetics
- Enterovirus A, Human/metabolism
- Enterovirus A, Human/physiology
- HEK293 Cells
- Host-Pathogen Interactions
- Humans
- Hydrogen-Ion Concentration
- Lysosomal Membrane Proteins/chemistry
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/metabolism
- Molecular Docking Simulation
- Molecular Sequence Data
- Protein Binding
- Protein Conformation
- Protein Interaction Mapping
- Protein Structure, Tertiary
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Scavenger/chemistry
- Receptors, Scavenger/genetics
- Receptors, Scavenger/metabolism
- Sequence Homology, Amino Acid
- Sf9 Cells
- Static Electricity
- Virion/genetics
- Virion/metabolism
- Virus Attachment
Collapse
Affiliation(s)
- Minghao Dang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Quan Wang
- School of Life Sciences, School of Pharmacy, Nankai University, Tianjin, 300071 China
| | - Yaxin Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Jianping Lin
- School of Life Sciences, School of Pharmacy, Nankai University, Tianjin, 300071 China
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Xuemei Li
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Liguo Zhang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
| | - Zhiyong Lou
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084 China
| | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, 100050 China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101 China
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084 China
- School of Life Sciences, School of Pharmacy, Nankai University, Tianjin, 300071 China
| |
Collapse
|
29
|
Heartlein M, Kimura A. Discovery and Clinical Development of Idursulfase (Elaprase®) for the Treatment of Mucopolysaccharidosis II (Hunter Syndrome). ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mucopolysaccharidosis II (MPS II), also known as Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder with an incidence of 1 in 100 000 to 160 000 live births. The clinical disease is caused by a deficiency of iduronate-2-sulfatase, which results in a chronic and progressive accumulation of glycosaminoglycans or GAGs in nearly all cell types, tissues and organs of the body. Clinical manifestations of MPS II disease include airway obstruction and compromised lung capacity, cardiomyopathy and valvular heart disease, hepatosplenomegaly, severe skeletal deformities, and neurological decline in most patients. The lack of an effective treatment and the successes of enzyme replacement therapies (ERTs) for other lysosomal storage diseases motivated the development of an ERT for MPS II. Iduronate-2-sulfatase (idursulfase) was produced by recombinant DNA technology in a fully human protein production system which, importantly, resulted in the production of idursulfase with human glycosylation. The non-clinical development of idursulfase progressed from proof-of-principle pharmacodynamic studies, to dose and dose-frequency studies, to an analysis of tissue biodistribution of the enzyme, and finally to pharmacokinetic and toxicological assessments. The clinical development of the final drug product, called Elaprase® (Shire Human Genetic Therapies, Inc., Lexington, MA), consisted of an initial Phase I/II study, followed by a Phase II/III pivotal trial. The results of the Phase II/III showed that intravenous infusions of Elaprase were generally well tolerated, and that a weekly dosing regimen provided significant clinical benefit to MPS II patients as demonstrated by improvements in walking ability and pulmonary function. Elaprase received marketing authorisation in the USA in 2006 and in Europe in 2007. During this era, the development of Elaprase as an effective therapy for MPS II patients, was part of a continuum of many important scientific and medical advances in the field of rare genetic diseases.
Collapse
|
30
|
Abstract
A large number of viruses, including many human pathogens, bind cell-surface glycans during the initial steps of infection. Viral glycan receptors such as glycosaminoglycans and sialic acid-containing carbohydrates are often negatively charged, but neutral glycans such as histo-blood group antigens can also function as receptors. The engagement of glycans facilitates attachment and entry and, consequently, is often a key determinant of the host range, tissue tropism, pathogenicity, and transmissibility of viruses. Here, we review current knowledge about virus-glycan interactions using representative crystal structures of viral attachment proteins in complex with glycans. We illuminate the determinants of specificity utilized by different glycan-binding viruses and explore the potential of these interactions for switching receptor specificities within or even between glycan classes. A detailed understanding of these parameters is important for the prediction of binding sites where structural information is not available, and is invaluable for the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Luisa J Ströh
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany;
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany; .,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
31
|
Rhinoviruses. VIRAL INFECTIONS OF HUMANS 2014. [PMCID: PMC7120790 DOI: 10.1007/978-1-4899-7448-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Bergelson JM, Coyne CB. Picornavirus entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:24-41. [PMID: 23884584 DOI: 10.1007/978-1-4614-7651-1_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The essential event in picornavirus entry is the delivery of the RNA genome to the cytoplasm of a target cell, where replication occurs. In the past several years progress has been made in understanding the structural changes in the virion important for uncoating and RNA release. In addition, for several viruses the endocytic mechanisms responsible for internalization have been identified, as have the cellular sites at which uncoating occurs. It has become clear that entry is not a passive process, and that viruses initiate specific signals required for entry. And we have begun to recognize that for a given virus, there may be multiple routes of entry, depending on the particular target cell and the receptors available on that cell.
Collapse
Affiliation(s)
- Jeffrey M Bergelson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
33
|
Productive entry pathways of human rhinoviruses. Adv Virol 2012; 2012:826301. [PMID: 23227049 PMCID: PMC3513715 DOI: 10.1155/2012/826301] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/18/2012] [Indexed: 12/20/2022] Open
Abstract
Currently, complete or partial genome sequences of more than 150 human rhinovirus (HRV) isolates are known. Twelve species A use members of the low-density lipoprotein receptor family for cell entry, whereas the remaining HRV-A and all HRV-B bind ICAM-1. HRV-Cs exploit an unknown receptor. At least all A and B type viruses depend on receptor-mediated endocytosis for infection. In HeLa cells, they are internalized mainly by a clathrin- and dynamin-dependent mechanism. Upon uptake into acidic compartments, the icosahedral HRV capsid expands by ~4% and holes open at the 2-fold axes, close to the pseudo-3-fold axes and at the base of the star-shaped dome protruding at the vertices. RNA-protein interactions are broken and new ones are established, the small internal myristoylated capsid protein VP4 is expelled, and amphipathic N-terminal sequences of VP1 become exposed. The now hydrophobic subviral particle attaches to the inner surface of endosomes and transfers its genomic (+) ssRNA into the cytosol. The RNA leaves the virus starting with the poly(A) tail at its 3′-end and passes through a membrane pore contiguous with one of the holes in the capsid wall. Alternatively, the endosome is disrupted and the RNA freely diffuses into the cytoplasm.
Collapse
|
34
|
Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol 2012; 87:611-20. [PMID: 23097443 DOI: 10.1128/jvi.02226-12] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor.
Collapse
|
35
|
Symmetry-related clustering of positive charges is a common mechanism for heparan sulfate binding in enteroviruses. J Virol 2012; 86:11163-70. [PMID: 22855495 DOI: 10.1128/jvi.00640-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus A9 (CAV9), a member of the Picornaviridae family, uses an RGD motif in the VP1 capsid protein to bind to integrin αvβ6 during cell entry. Here we report that two CAV9 isolates can bind to the heparan sulfate/heparin class of proteoglycans (HSPG). Sequence analysis identified an arginine (R) at position 132 in VP1 in these two isolates, rather than a threonine (T) as seen in the nonbinding strains tested. We introduced a T132R substitution into the HSPG-nonbinding strain Griggs and recovered infectious virus capable of binding to immobilized heparin, unlike the parental Griggs strain. The known CAV9 structure was used to identify the location of VP1 position 132, 5 copies of which were found to cluster around the 5-fold axis of symmetry, presumably producing a region of positive charge which can interact with the negatively charged HSPG. Analysis of several enteroviruses of the same species as CAV9, Human enterovirus B (HEV-B), identified examples from 5 types in which blocking of infection by heparin was coincident with an arginine (or another basic amino acid, lysine) at a position corresponding to 132 in VP1 in CAV9. Together, these data show that membrane-associated HSPG can serve as a (co)receptor for some CAV9 and other HEV-B strains and identify symmetry-related clustering of positive charges as one mechanism by which HSPG binding can be achieved. This is a potentially powerful mechanism by which a single amino acid change could generate novel receptor binding capabilities, underscoring the plasticity of host-cell interactions in enteroviruses.
Collapse
|
36
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
37
|
Samson M, Jung D. Intracellular trafficking and fate of chimeric adenovirus 5/F35 in human B lymphocytes. J Gene Med 2012; 13:451-61. [PMID: 21766397 DOI: 10.1002/jgm.1588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Investigation of the molecular processes that control the development and function of lymphocytes is essential for our understanding of humoral immunity, as well as lymphocyte-associated pathogenesis. Adenovirus-mediated gene transfer provides a powerful tool for investigating these processes. However, we observed variation in transgene expression among normal human peripheral blood B lymphocytes from different donors and at distinct stages of differentiation. It is recognized that efficient gene transfer is highly dependent on the intracellular route by which the viruses travel within the host cell. Thus, we aimed to examine this aspect in the present study. METHODS We analyzed the binding, uptake, intracellular trafficking and fate of CY3-labelled Ad5/F35 vectors in lymphoid cell lines and primary B cells. Furthermore, we decreased protein synthesis levels and rapid endocytosis in a plasma cell line exhibiting a high level of protein synthesis activity and activated transcription and endocytosis in primary B cells, which are less active than plasma cells. RESULTS Major differences in intracellular trafficking pattern between B cells and plasma cell line U266 were identified that explain the observed divergence in transgene expression efficiency. Importantly, modification of the transcriptional or translational activity of U266 cells reverted the Ad5/F35 endocytic trafficking to that seen in B cells, with a loss of transgene expression, whereas activation of B cells with phorbol 12-myristate 13-acetate had the opposite effects. CONCLUSIONS Taken together, these results suggest that Ad5/F35 is more efficiently transduced in cells with a strong transcriptional activity as a result of differences in intracellular trafficking. This finding extends our current knowledge of the mechanisms of adenovirus-mediated gene transfer.
Collapse
|
38
|
Bochkov YA, Gern JE. Clinical and molecular features of human rhinovirus C. Microbes Infect 2012; 14:485-94. [PMID: 22285901 DOI: 10.1016/j.micinf.2011.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 02/06/2023]
Abstract
A newly discovered group of human rhinoviruses (HRVs) has been classified as the HRV-C species based on distinct genomic features. HRV-Cs circulate worldwide, and are important causes of upper and lower respiratory illnesses. Methods to culture and produce these viruses have recently been developed, and should enable identification of unique features of HRV-C replication and biology.
Collapse
Affiliation(s)
- Yury A Bochkov
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53792, USA.
| | | |
Collapse
|
39
|
Garriga D, Pickl-Herk A, Luque D, Wruss J, Castón JR, Blaas D, Verdaguer N. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog 2012; 8:e1002473. [PMID: 22241997 PMCID: PMC3252380 DOI: 10.1371/journal.ppat.1002473] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/21/2011] [Indexed: 01/05/2023] Open
Abstract
Upon attachment to their respective receptor, human rhinoviruses (HRVs) are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 Å resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process. Human Rhinoviruses (HRVs), members of the Picornaviridae family, are small non-enveloped viruses possessing an icosahedral capsid that protects the single-stranded RNA genome. Although much is known about their binding to cell receptors and their uptake into the host cell, the mechanism by which their genomic RNA leaves the capsid and arrives to the cytosol to initiate replication is poorly understood. In HRV2, a member of the minor group HRVs, upon binding to lipoprotein receptors (LDL-R) on the cell surface virions are taken up into vesicles and directed to early endosomes. The low pH conditions found in the endosome, and not the binding to LDL-R, catalyze the delivery of the viral genome. The crystal structure of the HRV2 empty particle, representing the last stage of the uncoating process, unveils the structural rearrangements produced in the viral capsid during the externalization of the VP1 N-terminus and the delivery of the genomic RNA. We propose that RNA exit occurs through large capsid disruptions that are produced at the particle two-fold symmetry axes. Our data also suggests that the VP1 N-terminus would be externalized through a new pore, opening at the canyon floor.
Collapse
Affiliation(s)
- Damià Garriga
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Angela Pickl-Herk
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Daniel Luque
- Centro Nacional de Biotecnología (CSIC), Cantoblanco, Madrid, Spain
| | - Jürgen Wruss
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - José R. Castón
- Centro Nacional de Biotecnología (CSIC), Cantoblanco, Madrid, Spain
| | - Dieter Blaas
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | - Núria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
40
|
Abstract
The cell imposes multiple barriers to virus entry. However, viruses exploit fundamental cellular processes to gain entry to cells and deliver their genetic cargo. Virus entry pathways are largely defined by the interactions between virus particles and their receptors at the cell surface. These interactions determine the mechanisms of virus attachment, uptake, intracellular trafficking, and, ultimately, penetration to the cytosol. Elucidating the complex interplay between viruses and their receptors is necessary for a full understanding of how these remarkable agents invade their cellular hosts.
Collapse
Affiliation(s)
- Joe Grove
- Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK.
| | | |
Collapse
|
41
|
Watterson D, Kobe B, Young PR. Residues in domain III of the dengue virus envelope glycoprotein involved in cell-surface glycosaminoglycan binding. J Gen Virol 2011; 93:72-82. [PMID: 21957126 DOI: 10.1099/vir.0.037317-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The dengue virus (DENV) envelope (E) protein mediates virus entry into cells via interaction with a range of cell-surface receptor molecules. Cell-surface glycosaminoglycans (GAGs) have been shown to play an early role in this interaction, and charged oligosaccharides such as heparin bind to the E protein. We have examined this interaction using site-directed mutagenesis of a recombinant form of the putative receptor-binding domain III of the DENV-2E protein expressed as an MBP (maltose-binding protein)-fusion protein. Using an ELISA-based GAG-binding assay, cell-based binding analysis and antiviral-activity assays, we have identified two critical residues, K291 and K295, that are involved in GAG interactions. These studies have also demonstrated differential binding between mosquito and human cells.
Collapse
Affiliation(s)
- Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Bostjan Kobe
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul R Young
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
42
|
Khan AG, Pickl-Herk A, Gajdzik L, Marlovits TC, Fuchs R, Blaas D. Entry of a heparan sulphate-binding HRV8 variant strictly depends on dynamin but not on clathrin, caveolin, and flotillin. Virology 2011; 412:55-67. [DOI: 10.1016/j.virol.2010.12.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/22/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023]
|
43
|
Rollinger JM, Schmidtke M. The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Med Res Rev 2011; 31:42-92. [PMID: 19714577 PMCID: PMC7168442 DOI: 10.1002/med.20176] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As the major etiological agent of the common cold, human rhinoviruses (HRV) cause millions of lost working and school days annually. Moreover, clinical studies proved an association between harmless upper respiratory tract infections and more severe diseases e.g. sinusitis, asthma, and chronic obstructive pulmonary disease. Both the medicinal and socio-economic impact of HRV infections and the lack of antiviral drugs substantiate the need for intensive antiviral research. A common structural feature of the approximately 100 HRV serotypes is the icosahedrally shaped capsid formed by 60 identical copies of viral capsid proteins VP1-4. The capsid protects the single-stranded, positive sense RNA genome of about 7,400 bases in length. Both structural as well as nonstructural proteins produced during the viral life cycle have been identified as potential targets for blocking viral replication at the step of attachment, entry, uncoating, RNA and protein synthesis by synthetic or natural compounds. Moreover, interferon and phytoceuticals were shown to protect host cells. Most of the known inhibitors of HRV replication were discovered as a result of empirical or semi-empirical screening in cell culture. Structure-activity relationship studies are used for hit optimization and lead structure discovery. The increasing structural insight and molecular understanding of viral proteins on the one hand and the advent of innovative computer-assisted technologies on the other hand have facilitated a rationalized access for the discovery of small chemical entities with antirhinoviral (anti-HRV) activity. This review will (i) summarize existing structural knowledge about HRV, (ii) focus on mechanisms of anti-HRV agents from synthetic and natural origin, and (iii) demonstrate strategies for efficient lead structure discovery.
Collapse
Affiliation(s)
- Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
44
|
Abstract
To cause infections, microbial pathogens elaborate a multitude of factors that interact with host components. Using these host–pathogen interactions to their advantage, pathogens attach, invade, disseminate, and evade host defense mechanisms to promote their survival in the hostile host environment. Many viruses, bacteria, and parasites express adhesins that bind to cell surface heparan sulfate proteoglycans (HSPGs) to facilitate their initial attachment and subsequent cellular entry. Some pathogens also secrete virulence factors that modify HSPG expression. HSPGs are ubiquitously expressed on the cell surface of adherent cells and in the extracellular matrix. HSPGs are composed of one or several heparan sulfate (HS) glycosaminoglycan chains attached covalently to specific core proteins. For most intracellular pathogens, cell surface HSPGs serve as a scaffold that facilitates the interaction of microbes with secondary receptors that mediate host cell entry. Consistent with this mechanism, addition of HS or its pharmaceutical functional mimic, heparin, inhibits microbial attachment and entry into cultured host cells, and HS-binding pathogens can no longer attach or enter cultured host cells whose HS expression has been reduced by enzymatic treatment or chemical mutagenesis. In pathogens where the specific HS adhesin has been identified, mutant strains lacking HS adhesins are viable and show normal growth rates, suggesting that the capacity to interact with HSPGs is strictly a virulence activity. The goal of this chapter is to provide a mechanistic overview of our current understanding of how certain microbial pathogens subvert HSPGs to promote their infection, using specific HSPG–pathogen interactions as representative examples.
Collapse
Affiliation(s)
- Mauro S.G. Pavão
- , Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco 255, Rio de Janeiro, 21941-913 Rio de Janeiro Brazil
| |
Collapse
|
45
|
Abstract
Human rhinoviruses (HRVs) are a major cause of the common cold. The more than one hundred serotypes, divided into species HRV-A and HRV-B, either bind intercellular adhesion molecule 1 (major group viruses) or members of the low-density lipoprotein receptor (minor group viruses) for cell entry. Some major group HRVs can also access the host cell via heparan sulphate proteoglycans. The cell attachment protein(s) of the recently discovered phylogenetic clade HRV-C is unknown. The respective receptors direct virus uptake via clathrin-dependent or independent endocytosis or via macropinocytosis. Triggered by ICAM-1 and/or the low pH environment in endosomes the virions undergo conformational alterations giving rise to hydrophobic subviral particles. These are handed over from the receptors to the endosomal membrane. According to the current view, the RNA genome is released through an opening at one of the fivefold axes of the icosahedral capsid and crosses the membrane through a pore presumably formed by viral proteins. Alternatively, the membrane may be ruptured allowing subviral particles and RNA to enter the cytosol. Whether a channel is formed or the membrane is disrupted most probably depends on the respective HRV receptor.
Collapse
Affiliation(s)
- Renate Fuchs
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
46
|
Abstract
Viruses, despite being relatively simple in structure and composition, have evolved to exploit complex cellular processes for their replication in the host cell. After binding to their specific receptor on the cell surface, viruses (or viral genomes) have to enter cells to initiate a productive infection. Though the entry processes of many enveloped viruses is well understood, that of most non-enveloped viruses still remains unresolved. Recent studies have shown that compared to direct fusion at the plasma membrane, endocytosis is more often the preferred means of entry into the target cell. Receptor-mediated endocytic pathways such as the dynamin-dependent clathrin and caveolar pathways are well characterized as viral entry portals. However, many viruses are able to utilize multiple uptake pathways. Fluid phase uptake, though relatively non-specific in terms of its cargo, potentially aids viral infection by its ability to intersect with the endocytic pathway. In fact, many viruses despite using specialized pathways for entry are still able to generate productive infection via fluid phase uptake. Macropinocytosis, a major fluid uptake pathway found in epithelial cells and fibroblasts, is stimulated by growth factor receptors. Many viruses can induce these signaling cascades in cells leading to macropinocytosis. Though endocytic trafficking is utilized by both enveloped and non-enveloped viruses, key differences lie in the way membranes are traversed to deposit the viral genome at its site of replication. This review will discuss recent developments in the rapidly evolving field of viral entry.
Collapse
Affiliation(s)
- Manjula Kalia
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
47
|
Blomqvist S, Savolainen-Kopra C, Paananen A, Hovi T, Roivainen M. Molecular characterization of human rhinovirus field strains isolated during surveillance of enteroviruses. J Gen Virol 2009; 90:1371-1381. [PMID: 19264616 DOI: 10.1099/vir.0.008508-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human rhinoviruses (HRVs), which are the most frequent causative agents of acute upper respiratory tract infections, are abundant worldwide. We have identified HRV strains in environmental specimens collected in Finland, Latvia and Slovakia during the surveillance of polio- and other enteroviruses. These acid-sensitive HRV strains were isolated under conditions optimized for growth of most of the enteroviruses, i.e. in stationary human rhabdomyosarcoma cells incubated at 36 degrees C. Phylogenetic analysis of the sequences derived from the partial 5' non-coding region and the capsid region coding for proteins VP4/VP2 and VP1 showed that the HRV field strains clustered together with prototype strains of the HRV minor receptor group. Partial sequences of the 3D polymerase coding region generally followed this pattern, with the exception of a set of three HRV field strains that formed a subcluster not close to any of the established HRV-A types, suggesting that recombination may have occurred during evolution of these HRV strains. Phylogenetic analysis of the VP4/VP2 capsid protein coding region showed that the 'environmental' HRV field strains were practically identical to HRV strains recently sequenced by others in Australia, the United States and Japan. Analysis of amino acids corresponding to the intercellular adhesion molecule-1 receptor footprint in major receptor group HRVs and also in the low-density lipoprotein receptor footprint of minor receptor group HRVs showed conservation of the 'minor receptor group-like' amino acids, indicating that the field strains may have maintained their minor receptor group specificity.
Collapse
Affiliation(s)
- Soile Blomqvist
- National Institute for Health and Welfare (THL)†, PO Box 30, FI-00271 Helsinki, Finland
| | | | - Anja Paananen
- National Institute for Health and Welfare (THL)†, PO Box 30, FI-00271 Helsinki, Finland
| | - Tapani Hovi
- National Institute for Health and Welfare (THL)†, PO Box 30, FI-00271 Helsinki, Finland
| | - Merja Roivainen
- National Institute for Health and Welfare (THL)†, PO Box 30, FI-00271 Helsinki, Finland
| |
Collapse
|
48
|
Recent development of nonviral gene delivery systems with virus-like structures and mechanisms. Eur J Pharm Biopharm 2009; 71:475-83. [DOI: 10.1016/j.ejpb.2008.09.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/17/2008] [Accepted: 09/02/2008] [Indexed: 01/29/2023]
|
49
|
Guy M, Chilmonczyk S, Crucière C, Eloit M, Bakkali-Kassimi L. Efficient infection of buffalo rat liver-resistant cells by encephalomyocarditis virus requires binding to cell surface sialic acids. J Gen Virol 2009; 90:187-96. [PMID: 19088288 DOI: 10.1099/vir.0.004655-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In contrast to the production of virus and cell lysis seen in baby hamster kidney cells (BHK-21) infected with the strain 1086C of encephalomyocarditis virus (EMCV), in buffalo rat liver cells (BRL) neither virus replication nor cytopathic effects were observed. After 29 passages in BRL cells, each alternating with boosts of the recovered virus in BHK-21 cells, the virus acquired the ability to replicate effectively in BRL cells, attaining virus titres comparable to those in BHK-21 cells and producing complete cell destruction. The binding of virus on BRL cells was increased after adaptation and was similar to that observed on BHK-21 cells. Treatment of BRL cells with sialidase resulted in an 87 % reduction in virus binding and inhibition of infection. Sequence analyses revealed three mutations in the VP1 amino acid sequence of the adapted virus at positions 49 (Lys-->Glu), 142 (Leu-->Phe) and 180 (Ile-->Ala). The residue 49 is exposed at the surface of the capsid and is known to be part of a neutralization epitope. These results suggest that the adaptation of EMCV to BRL cells may have occurred through a mutation in a neutralizing site that confers to the virus a capacity to interact with cell surface sialic acid residues. Taken together, these data suggest a link between virus neutralization site, receptor binding and cell permissivity to infection.
Collapse
Affiliation(s)
- Monique Guy
- UMR 1161 INRA, AFSSA, ENVA, Ecole Nationale Vétérinaire, 7 Avenue Général de Gaulle, 94704 Maisons-Alfort Cedex, France
| | | | | | | | | |
Collapse
|
50
|
De Palma AM, Vliegen I, De Clercq E, Neyts J. Selective inhibitors of picornavirus replication. Med Res Rev 2008; 28:823-84. [PMID: 18381747 DOI: 10.1002/med.20125] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Picornaviruses cover a large family of pathogens that have a major impact on human but also on veterinary health. Although most infections in man subside mildly or asymptomatically, picornaviruses can also be responsible for severe, potentially life-threatening disease. To date, no therapy has been approved for the treatment of picornavirus infections. However, efforts to develop an antiviral that is effective in treating picornavirus-associated diseases are ongoing. In 2007, Schering-Plough, under license of ViroPharma, completed a phase II clinical trial with Pleconaril, a drug that was originally rejected by the FDA after a New Drug Application in 2001. Rupintrivir, a rhinovirus protease inhibitor developed at Pfizer, reached clinical trials but was recently halted from further development. Finally, Biota's HRV drug BTA-798 is scheduled for phase II trials in 2008. Several key steps in the picornaviral replication cycle, involving structural as well as non-structural proteins, have been identified as valuable targets for inhibition. The current review aims to highlight the most important developments during the past decades in the search for antivirals against picornaviruses.
Collapse
Affiliation(s)
- Armando M De Palma
- Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|