1
|
Becker ME, Martin-Sancho L, Simons LM, McRaven MD, Chanda SK, Hultquist JF, Hope TJ. Live imaging of airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. Nat Commun 2024; 15:9480. [PMID: 39488529 PMCID: PMC11531594 DOI: 10.1038/s41467-024-53791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
SARS-CoV-2 initiates infection in the conducting airways, where mucociliary clearance inhibits pathogen penetration. However, it is unclear how mucociliary clearance impacts SARS-CoV-2 spread after infection is established. To investigate viral spread at this site, we perform live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 12 days. Using a fluorescent reporter virus and markers for cilia and mucus, we longitudinally monitor mucus motion, ciliary motion, and infection. Infected cell numbers peak at 4 days post infection, forming characteristic foci that tracked mucus movement. Inhibition of MCC using physical and genetic perturbations limits foci. Later in infection, mucociliary clearance deteriorates. Increased mucus secretion accompanies ciliary motion defects, but mucociliary clearance and vectorial infection spread resume after mucus removal, suggesting that mucus secretion may mediate MCC deterioration. Our work shows that while MCC can facilitate SARS-CoV-2 spread after initial infection, subsequent MCC decreases inhibit spread, revealing a complex interplay between SARS-CoV-2 and MCC.
Collapse
Affiliation(s)
- Mark E Becker
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lacy M Simons
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael D McRaven
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumit K Chanda
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas J Hope
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Kim MC, Gate R, Lee DS, Tolopko A, Lu A, Gordon E, Shifrut E, Garcia-Nieto PE, Marson A, Ntranos V, Ye CJ. Method of moments framework for differential expression analysis of single-cell RNA sequencing data. Cell 2024; 187:6393-6410.e16. [PMID: 39454576 DOI: 10.1016/j.cell.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/06/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Differential expression analysis of single-cell RNA sequencing (scRNA-seq) data is central for characterizing how experimental factors affect the distribution of gene expression. However, distinguishing between biological and technical sources of cell-cell variability and assessing the statistical significance of quantitative comparisons between cell groups remain challenging. We introduce Memento, a tool for robust and efficient differential analysis of mean expression, variability, and gene correlation from scRNA-seq data, scalable to millions of cells and thousands of samples. We applied Memento to 70,000 tracheal epithelial cells to identify interferon-responsive genes, 160,000 CRISPR-Cas9 perturbed T cells to reconstruct gene-regulatory networks, 1.2 million peripheral blood mononuclear cells (PBMCs) to map cell-type-specific quantitative trait loci (QTLs), and the 50-million-cell CELLxGENE Discover corpus to compare arbitrary cell groups. In all cases, Memento identified more significant and reproducible differences in mean expression compared with existing methods. It also identified differences in variability and gene correlation that suggest distinct transcriptional regulation mechanisms imparted by perturbations.
Collapse
Affiliation(s)
- Min Cheol Kim
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Gate
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - David S Lee
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Andrew Lu
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Erin Gordon
- Division of Pulmonary and Critical Care, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Shifrut
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Alexander Marson
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Vasilis Ntranos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA; Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Marcink TC, Zipursky G, Sobolik EB, Golub K, Herman E, Stearns K, Greninger AL, Porotto M, Moscona A. How a paramyxovirus fusion/entry complex adapts to escape a neutralizing antibody. Nat Commun 2024; 15:8831. [PMID: 39396053 PMCID: PMC11470942 DOI: 10.1038/s41467-024-53082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Paramyxoviruses including measles, Nipah, and parainfluenza viruses are public health threats with pandemic potential. Human parainfluenza virus type 3 (HPIV3) is a leading cause of illness in pediatric, older, and immunocompromised populations. There are no approved vaccines or therapeutics for HPIV3. Neutralizing monoclonal antibodies (mAbs) that target viral fusion are a potential strategy for mitigating paramyxovirus infection, however their utility may be curtailed by viral evolution that leads to resistance. Paramyxoviruses enter cells by fusing with the cell membrane in a process mediated by a complex consisting of a receptor binding protein (HN) and a fusion protein (F). Existing atomic resolution structures fail to reveal physiologically relevant interactions during viral entry. We present cryo-ET structures of pre-fusion HN-F complexes in situ on surfaces of virions that evolved resistance to an anti-HPIV3 F neutralizing mAb. Single mutations in F abolish mAb binding and neutralization. In these complexes, the HN protein that normally restrains F triggering has shifted to uncap the F apex. These complexes are more readily triggered to fuse. These structures shed light on the adaptability of the pre-fusion HN-F complex and mechanisms of paramyxoviral resistance to mAbs, and help define potential barriers to resistance for the design of mAbs.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Gillian Zipursky
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Elizabeth B Sobolik
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kate Golub
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Emily Herman
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
4
|
Stearns K, Lampe G, Hanan R, Marcink T, Niewiesk S, Sternberg SH, Greninger AL, Porotto M, Moscona A. Human parainfluenza virus 3 field strains undergo extracellular fusion protein cleavage to activate entry. mBio 2024:e0232724. [PMID: 39382296 DOI: 10.1128/mbio.02327-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Human parainfluenza virus 3 (HPIV3) infection is driven by the coordinated action of viral surface glycoproteins hemagglutinin-neuraminidase (HN) and fusion protein (F). Receptor-engaged HN activates F to insert into the target cell membrane and drive virion-cell membrane fusion. For F to mediate entry, its precursor (F0) must first be cleaved by host proteases. F0 cleavage has been thought to be executed during viral glycoprotein transit through the trans-Golgi network by the ubiquitously expressed furin because F0 proteins of laboratory-adapted viruses contain a furin recognition dibasic cleavage motif RXKR around residue 108. Here, we show that the F proteins of field strains have a different cleavage motif from laboratory-adapted strains and are cleaved by unidentified proteases expressed in only a narrow subset of cell types. We demonstrate that extracellular serine protease inhibitors block HPIV3 F0 cleavage for field strains, suggesting F0 cleavage occurs at the cell surface facilitated by transmembrane proteases. Candidate proteases that may process HPIV3 F in vivo were identified by a genome-wide CRISPRa screen in HEK293/dCas9-VP64 + MPH cells. The lung-expressed extracellular serine proteases TMPRSS2 and TMPRSS13 are both sufficient to cleave HPIV3 F and enable infectious virus release by otherwise non-permissive cells. Our findings support an alternative mechanism of F activation in vivo, reliant on extracellular membrane-bound serine proteases expressed in a narrow subset of cells. The proportion of HPIV3 F proteins cleaved and infectious virus release is determined by host cell expression of requisite proteases, allowing just-in-time activation of F and positioning F cleavage as another key regulator of HPIV3 spread. IMPORTANCE Enveloped viruses cause a wide range of diseases in humans. At the first step of infection, these viruses must fuse their envelope with a cell membrane to initiate infection. This fusion is mediated by viral proteins that require a critical activating cleavage event. It was previously thought that for parainfluenza virus 3, an important cause of respiratory disease and a representative of a group of important pathogens, this cleavage event was mediated by furin in the cell secretory pathways prior to formation of the virions. We show that this is only true for laboratory strain viruses, and that clinical viruses that infect humans utilize extracellular proteases that are only made by a small subset of cells. These results highlight the importance of studying authentic clinical viruses that infect human tissues for understanding natural infection.
Collapse
Affiliation(s)
- Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - George Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Rachel Hanan
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Tara Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
5
|
Togami K, Wolf W, Olson LC, Card M, Shen L, Schaefer A, Okuda K, Zeitlin L, Pauly M, Whaley K, Pickles RJ, Lai SK. Impact of mAb-FcRn affinity on IgG transcytosis across human well-differentiated airway epithelium. Front Immunol 2024; 15:1371156. [PMID: 39351230 PMCID: PMC11439726 DOI: 10.3389/fimmu.2024.1371156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024] Open
Abstract
Effective treatment and immunoprophylaxis of viral respiratory infections with neutralizing monoclonal antibodies (mAbs) require maintaining inhibitory concentrations of mAbs at the airway surface. While engineered mAbs with increased affinity to the neonatal Fc receptor (FcRn) are increasingly employed, little is known how increased affinity of Fc to FcRn influences basal-to-apical transepithelial transport (transcytosis) of mAbs across the airway epithelium. To investigate this, we utilized a model of well-differentiated human airway epithelium (WD-HAE) that exhibited robust FcRn expression, and measured the transepithelial transport of a mAb against SARS-CoV-2 Spike protein (CR3022) with either wildtype IgG1-Fc or Fc modified with YTE or LS mutations known to increase affinity for FcRn. Despite the marked differences in the affinity of these CR3022 variants for FcRn, we did not find substantial differences in basal-to-apical transport reflective of systemic dosing, or apical-to-basal transport reflective of inhaled dosing, compared to the transport of wildtype IgG1-Fc. These results suggest increasing FcRn affinity may only have limited influence over transcytosis rates of systemically dosed mAbs across the human airway epithelium over short time scales. Over longer time scales, the elevated circulating levels of mAbs with greater FcRn affinity, due to more effective FcRn-mediated recycling, may better resupply mAb into the respiratory tract, leading to more effective extended immunoprophylaxis.
Collapse
Affiliation(s)
- Kohei Togami
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lucas C Olson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Madison Card
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alison Schaefer
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | | | | - Raymond J Pickles
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Lin Y, Khan M, Weynand B, Laporte M, Coenjaerts F, Babusis D, Bilello JP, Mombaerts P, Jochmans D, Neyts J. A robust mouse model of HPIV-3 infection and efficacy of GS-441524 against virus-induced lung pathology. Nat Commun 2024; 15:7765. [PMID: 39237507 PMCID: PMC11377736 DOI: 10.1038/s41467-024-52071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Human parainfluenza virus type 3 (HPIV-3) can cause severe respiratory tract infections. There are no convenient small-animal infection models. Here, we show viral replication in the upper and lower airways of AG129 mice (double IFNα/β and IFNγ receptor knockout mice) upon intranasal inoculation. By multiplex fluorescence RNAscope and immunohistochemistry followed by confocal microscopy, we demonstrate viral tropism to ciliated cells and club cells of the bronchiolar epithelium. HPIV-3 causes a marked lung pathology. No virus transmission of the virus was observed by cohousing HPIV-3-infected AG129 mice with other mice. Oral treatment with GS-441524, the parent nucleoside of remdesivir, reduced infectious virus titers in the lung, with a relatively normal histology. Intranasal treatment also affords an antiviral effect. Thus, AG129 mice serve as a robust preclinical model for developing therapeutic and prophylactic strategies against HPIV-3. We suggest further investigation of GS-441524 and its prodrug forms to treat HPIV-3 infection in humans.
Collapse
Affiliation(s)
- Yuxia Lin
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Division of Translational Cell and Tissue Research, Leuven, Belgium
| | - Manon Laporte
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Frank Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium.
- VirusBank Platform, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
8
|
Dai X, Xu R, Li N. The Interplay between Airway Cilia and Coronavirus Infection, Implications for Prevention and Control of Airway Viral Infections. Cells 2024; 13:1353. [PMID: 39195243 DOI: 10.3390/cells13161353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Coronaviruses (CoVs) are a class of respiratory viruses with the potential to cause severe respiratory diseases by infecting cells of the upper respiratory tract, bronchial epithelium, and lung. The airway cilia are distributed on the surface of respiratory epithelial cells, forming the first point of contact between the host and the inhaled coronaviruses. The function of the airway cilia is to oscillate and sense, thereby defending against and removing pathogens to maintain the cleanliness and patency of the respiratory tract. Following infection of the respiratory tract, coronaviruses exploit the cilia to invade and replicate in epithelial cells while also damaging the cilia to facilitate the spread and exacerbation of respiratory diseases. It is therefore imperative to investigate the interactions between coronaviruses and respiratory cilia, as well as to elucidate the functional mechanism of respiratory cilia following coronavirus invasion, in order to develop effective strategies for the prevention and treatment of respiratory viral infections. This review commences with an overview of the fundamental characteristics of airway cilia, and then, based on the interplay between airway cilia and coronavirus infection, we propose that ciliary protection and restoration may represent potential therapeutic approaches in emerging and re-emerging coronavirus pandemics.
Collapse
Affiliation(s)
- Xuyao Dai
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
9
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
10
|
Johnson NV, van Scherpenzeel RC, Bakkers MJG, Ramamohan AR, van Overveld D, Le L, Langedijk JPM, Kolkman JA, McLellan JS. Structural basis for potent neutralization of human respirovirus type 3 by protective single-domain camelid antibodies. Nat Commun 2024; 15:5458. [PMID: 38937429 PMCID: PMC11211449 DOI: 10.1038/s41467-024-49757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Respirovirus 3 is a leading cause of severe acute respiratory infections in vulnerable human populations. Entry into host cells is facilitated by the attachment glycoprotein and the fusion glycoprotein (F). Because of its crucial role, F represents an attractive therapeutic target. Here, we identify 13 F-directed heavy-chain-only antibody fragments that neutralize recombinant respirovirus 3. High-resolution cryo-EM structures of antibody fragments bound to the prefusion conformation of F reveal three distinct, previously uncharacterized epitopes. All three antibody fragments bind quaternary epitopes on F, suggesting mechanisms for neutralization that may include stabilization of the prefusion conformation. Studies in cotton rats demonstrate the prophylactic efficacy of these antibody fragments in reducing viral load in the lungs and nasal passages. These data highlight the potential of heavy-chain-only antibody fragments as effective interventions against respirovirus 3 infection and identify neutralizing epitopes that can be targeted for therapeutic development.
Collapse
Affiliation(s)
- Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Mark J G Bakkers
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- ForgeBio B.V., Amsterdam, The Netherlands
| | - Ajit R Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Lam Le
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
| | - Johannes P M Langedijk
- Janssen Vaccines & Prevention BV, Leiden, The Netherlands
- ForgeBio B.V., Amsterdam, The Netherlands
| | - Joost A Kolkman
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
11
|
Bondeelle L, Salmona M, Houdouin V, Diaz E, Dutrieux J, Mercier-Delarue S, Constant S, Huang S, Bergeron A, LeGoff J. Inefficient antiviral response in reconstituted small-airway epithelium from chronic obstructive pulmonary disease patients following human parainfluenza virus type 3 infection. Virol J 2024; 21:78. [PMID: 38566231 PMCID: PMC10988791 DOI: 10.1186/s12985-024-02353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects over 250 million individuals globally and stands as the third leading cause of mortality. Respiratory viral infections serve as the primary drivers of acute exacerbations, hastening the decline in lung function and worsening the prognosis. Notably, Human Parainfluenza Virus type 3 (HPIV-3) is responsible for COPD exacerbations with a frequency comparable to that of Respiratory Syncytial Virus and Influenza viruses. However, the impact of HPIV-3 on respiratory epithelium within the context of COPD remains uncharacterized.In this study, we employed in vitro reconstitution of lower airway epithelia from lung tissues sourced from healthy donors (n = 4) and COPD patients (n = 5), maintained under air-liquid interface conditions. Through a next-generation sequencing-based transcriptome analysis, we compared the cellular response to HPIV-3 infection.Prior to infection, COPD respiratory epithelia exhibited a pro-inflammatory profile, notably enriched in canonical pathways linked to antiviral response, B cell signaling, IL-17 signaling, and epithelial-mesenchymal transition, in contrast to non-COPD epithelia. Intriguingly, post HPIV-3 infection, only non-COPD epithelia exhibited significant enrichment in interferon signaling, pattern recognition receptors of viruses and bacteria, and other pathways involved in antiviral responses. This deficiency could potentially hinder immune cell recruitment essential for controlling viral infections, thus fostering prolonged viral presence and persistent inflammation.
Collapse
Affiliation(s)
- Louise Bondeelle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Maud Salmona
- Virology Department, AP-HP, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris, F-75010, France
| | - Véronique Houdouin
- Service de Pneumologie, APHP, Hôpital Robert-Debré, Paris, F-75010, France
| | - Elise Diaz
- Université Paris Cité, Inserm U976, INSIGHT Team, Paris, F-75010, France
| | - Jacques Dutrieux
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, F-75014, France
| | - Séverine Mercier-Delarue
- Virology Department, AP-HP, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris, F-75010, France
| | | | - Song Huang
- Epithelix Sarl, Geneva, 1228, Switzerland
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Jérôme LeGoff
- Virology Department, AP-HP, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris, F-75010, France.
- Université Paris Cité, Inserm U976, INSIGHT Team, Paris, F-75010, France.
| |
Collapse
|
12
|
Xiong Y, Tao K, Li T, Ou W, Zhou Y, Zhang W, Wang S, Qi R, Ji J. Resveratrol inhibits respiratory syncytial virus replication by targeting heparan sulfate proteoglycans. Food Funct 2024; 15:1948-1962. [PMID: 38270052 DOI: 10.1039/d3fo05131e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Resveratrol, renowned as an antioxidant, also exhibits significant potential in combatting severe respiratory infections, particularly the respiratory syncytial virus (RSV). Nevertheless, the specific mechanism underlying its inhibition of RSV replication remains unexplored. Heparan sulfate proteoglycans (HSPGs) play a pivotal role as attachment factors for numerous viruses, offering a promising avenue for countering viral infections. Our research has unveiled that resveratrol effectively curbs RSV infection in a dose-dependent manner. Remarkably, resveratrol disrupts the early stages of RSV infection by engaging with HSPGs, rather than interacting with RSV surface proteins like fusion (F) protein and glycoprotein (G). Resveratrol's affinity appears to be predominantly directed towards the negatively charged sites on HSPGs, thus impeding the binding of viral receptors. In an in vivo study involving RSV-infected mice, resveratrol demonstrates its potential by ameliorating pulmonary pathology. This improvement is attributed to the inhibition of pro-inflammatory cytokine expression and a reduction in viral load within the lungs. Notably, resveratrol specifically alleviates inflammation characterized by an abundance of neutrophils in RSV-infected mice. In summation, our data first shows how resveratrol combats RSV infection through interactions with HSPGs, positioning it as a promising candidate for innovative drug development targeting RSV infections. Our study provides insight into the mechanism of resveratrol antiviral infection.
Collapse
Affiliation(s)
- Yingcai Xiong
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Keyu Tao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Tao Li
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Weiying Ou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Yinghui Zhou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Wenyang Zhang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
13
|
Mueller F, Witteveldt J, Macias S. Antiviral Defence Mechanisms during Early Mammalian Development. Viruses 2024; 16:173. [PMID: 38399949 PMCID: PMC10891733 DOI: 10.3390/v16020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The type-I interferon (IFN) response constitutes the major innate immune pathway against viruses in mammals. Despite its critical importance for antiviral defence, this pathway is inactive during early embryonic development. There seems to be an incompatibility between the IFN response and pluripotency, the ability of embryonic cells to develop into any cell type of an adult organism. Instead, pluripotent cells employ alternative ways to defend against viruses that are typically associated with safeguard mechanisms against transposable elements. The absence of an inducible IFN response in pluripotent cells and the constitutive activation of the alternative antiviral pathways have led to the hypothesis that embryonic cells are highly resistant to viruses. However, some findings challenge this interpretation. We have performed a meta-analysis that suggests that the susceptibility of pluripotent cells to viruses is directly correlated with the presence of receptors or co-receptors for viral adhesion and entry. These results challenge the current view of pluripotent cells as intrinsically resistant to infections and raise the fundamental question of why these cells have sacrificed the major antiviral defence pathway if this renders them susceptible to viruses.
Collapse
Affiliation(s)
- Felix Mueller
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (F.M.); (J.W.)
- Centre for Virus Research, MRC-University of Glasgow, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Jeroen Witteveldt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (F.M.); (J.W.)
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (F.M.); (J.W.)
| |
Collapse
|
14
|
Wang Y, Zhang Y, Wang P, Jing T, Hu Y, Chen X. Research Progress on Antiviral Activity of Heparin. Curr Med Chem 2024; 31:7-24. [PMID: 36740803 DOI: 10.2174/0929867330666230203124032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 02/07/2023]
Abstract
Heparin, as a glycosaminoglycan, is known for its anticoagulant and antithrombotic properties for several decades. Heparin is a life-saving drug and is widely used for anticoagulation in medical practice. In recent years, there have been extensive studies that heparin plays an important role in non-anticoagulant diseases, such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, anti-metastatic effects, and so on. Clinical observation and in vitro experiments indicate that heparin displays a potential multitarget effect. In this brief review, we will summarize heparin and its derivative's recently studied progress for the treatment of various viral infections. The aim is to maximize the benefits of drugs through medically targeted development, to meet the unmet clinical needs of serious viral diseases.
Collapse
Affiliation(s)
- Yi Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Yanqing Zhang
- Shandong VeriSign Test Detection Co., LTD, Jinan, China
| | - Ping Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Tianyuan Jing
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Hu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiushan Chen
- Zhenjiang Runjing High Purity Chemical Technology Co., Ltd., Zhenjiang, Jiangsu, China
| |
Collapse
|
15
|
Munro AP, Martinón-Torres F, Drysdale SB, Faust SN. The disease burden of respiratory syncytial virus in Infants. Curr Opin Infect Dis 2023; 36:379-384. [PMID: 37610444 PMCID: PMC10487373 DOI: 10.1097/qco.0000000000000952] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
PURPOSE OF REVIEW To describe the current global burden of respiratory syncytial virus (RSV) in infants and its implications for morbidity, health resources and economic costs. RECENT FINDINGS New prophylactic therapies are on the horizon for RSV in the form of long-acting monoclonal antibodies suitable for healthy infants and maternal immunizations. SUMMARY Despite being responsible for significant global infant morbidity and mortality, until recently there have been no effective therapeutics available for healthy infants to protect them from RSV. Several new drugs are likely to be available within the next few years which could help relieve a huge burden on healthcare systems over the coming winters.
Collapse
Affiliation(s)
- Alasdair P.S. Munro
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Hospital Clínico Universitario and Universidad de Santiago de Compostela
- Genetics, Vaccines and Paediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidad de Santiago de Compostela (USC), Galicia
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Simon B. Drysdale
- Centre for Neonatal and Paediatric Infection, Institute for Infection and Immunity, St George's, University of London
- Department of Paediatrics, St George's University Hospital NHS Foundation Trust, London, UK
| | - Saul N. Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
16
|
Hope T, Becker M, Martin-Sancho L, Simons L, McRaven M, Chanda S, Hultquist J. Live imaging of the airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. RESEARCH SQUARE 2023:rs.3.rs-3246773. [PMID: 37720034 PMCID: PMC10503848 DOI: 10.21203/rs.3.rs-3246773/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 initiates infection in the conducting airways, which rely on mucocilliary clearance (MCC) to minimize pathogen penetration. However, it is unclear how MCC impacts SARS-CoV-2 spread after infection is established. To understand viral spread at this site, we performed live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 9 days. Fluorescent markers for cilia and mucus allowed longitudinal monitoring of MCC, ciliary motion, and infection. The number of infected cells peaked at 4 days post-infection in characteristic foci that followed mucus movement. Inhibition of MCC using physical and genetic perturbations limited foci. Later in infection, MCC was diminished despite relatively subtle ciliary function defects. Resumption of MCC and infection spread after mucus removal suggests that mucus secretion mediates this effect. We show that MCC facilitates SARS-CoV-2 spread early in infection while later decreases in MCC inhibit spread, suggesting a complex interplay between SARS-CoV-2 and MCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumit Chanda
- Sanford Burnham Prebys Medical Discovery Institute
| | | |
Collapse
|
17
|
Derderian C, Canales GI, Reiter JF. Seriously cilia: A tiny organelle illuminates evolution, disease, and intercellular communication. Dev Cell 2023; 58:1333-1349. [PMID: 37490910 PMCID: PMC10880727 DOI: 10.1016/j.devcel.2023.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/18/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
The borders between cell and developmental biology, which have always been permeable, have largely dissolved. One manifestation is the blossoming of cilia biology, with cell and developmental approaches (increasingly complemented by human genetics, structural insights, and computational analysis) fruitfully advancing understanding of this fascinating, multifunctional organelle. The last eukaryotic common ancestor probably possessed a motile cilium, providing evolution with ample opportunity to adapt cilia to many jobs. Over the last decades, we have learned how non-motile, primary cilia play important roles in intercellular communication. Reflecting their diverse motility and signaling functions, compromised cilia cause a diverse range of diseases collectively called "ciliopathies." In this review, we highlight how cilia signal, focusing on how second messengers generated in cilia convey distinct information; how cilia are a potential source of signals to other cells; how evolution may have shaped ciliary function; and how cilia research may address thorny outstanding questions.
Collapse
Affiliation(s)
- Camille Derderian
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriela I Canales
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Kwak G, Lee D, Suk JS. Advanced approaches to overcome biological barriers in respiratory and systemic routes of administration for enhanced nucleic acid delivery to the lung. Expert Opin Drug Deliv 2023; 20:1531-1552. [PMID: 37946533 PMCID: PMC10872418 DOI: 10.1080/17425247.2023.2282535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Numerous delivery strategies, primarily novel nucleic acid delivery carriers, have been developed and explored to enable therapeutically relevant lung gene therapy. However, its clinical translation is yet to be achieved despite over 30 years of efforts, which is attributed to the inability to overcome a series of biological barriers that hamper efficient nucleic acid transfer to target cells in the lung. AREAS COVERED This review is initiated with the fundamentals of nucleic acid therapy and a brief overview of previous and ongoing efforts on clinical translation of lung gene therapy. We then walk through the nature of biological barriers encountered by nucleic acid carriers administered via respiratory and/or systemic routes. Finally, we introduce advanced strategies developed to overcome those barriers to achieve therapeutically relevant nucleic acid delivery efficiency in the lung. EXPERT OPINION We are now stepping close to the clinical translation of lung gene therapy, thanks to the discovery of novel delivery strategies that overcome biological barriers via comprehensive preclinical studies. However, preclinical findings should be cautiously interpreted and validated to ultimately realize meaningful therapeutic outcomes with newly developed delivery strategies in humans. In particular, individual strategies should be selected, tailored, and implemented in a manner directly relevant to specific therapeutic applications and goals.
Collapse
Affiliation(s)
- Gijung Kwak
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daiheon Lee
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Qi P, Lv J, Yan X, Bai L, Zhang L. Microfluidics: Insights into Intestinal Microorganisms. Microorganisms 2023; 11:1134. [PMID: 37317109 DOI: 10.3390/microorganisms11051134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Microfluidics is a system involving the treatment or manipulation of microscale (10-9 to 10-18 L) fluids using microchannels (10 to 100 μm) contained on a microfluidic chip. Among the different methodologies used to study intestinal microorganisms, new methods based on microfluidic technology have been receiving increasing attention in recent years. The intestinal tracts of animals are populated by a vast array of microorganisms that have been established to play diverse functional roles beneficial to host physiology. This review is the first comprehensive coverage of the application of microfluidics technology in intestinal microbial research. In this review, we present a brief history of microfluidics technology and describe its applications in gut microbiome research, with a specific emphasis on the microfluidic technology-based intestine-on-a-chip, and also discuss the advantages and application prospects of microfluidic drug delivery systems in intestinal microbial research.
Collapse
Affiliation(s)
- Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
21
|
Marcink TC, Zipursky G, Cheng W, Stearns K, Stenglein S, Golub K, Cohen F, Bovier F, Pfalmer D, Greninger AL, Porotto M, des Georges A, Moscona A. Subnanometer structure of an enveloped virus fusion complex on viral surface reveals new entry mechanisms. SCIENCE ADVANCES 2023; 9:eade2727. [PMID: 36763666 PMCID: PMC9917000 DOI: 10.1126/sciadv.ade2727] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Paramyxoviruses-including important pathogens like parainfluenza, measles, and Nipah viruses-use a receptor binding protein [hemagglutinin-neuraminidase (HN) for parainfluenza] and a fusion protein (F), acting in a complex, to enter cells. We use cryo-electron tomography to visualize the fusion complex of human parainfluenza virus 3 (HN/F) on the surface of authentic clinical viruses at a subnanometer resolution sufficient to answer mechanistic questions. An HN loop inserts in a pocket on F, showing how the fusion complex remains in a ready but quiescent state until activation. The globular HN heads are rotated with respect to each other: one downward to contact F, and the other upward to grapple cellular receptors, demonstrating how HN/F performs distinct steps before F activation. This depiction of viral fusion illuminates potentially druggable targets for paramyxoviruses and sheds light on fusion processes that underpin wide-ranging biological processes but have not been visualized in situ or at the present resolution.
Collapse
Affiliation(s)
- Tara C. Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Gillian Zipursky
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Wenjing Cheng
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shari Stenglein
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kate Golub
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Frances Cohen
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Francesca Bovier
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Daniel Pfalmer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli,” 81100 Caserta, Italy
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, USA
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, USA
- PhD Programs in Chemistry and Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Center for Host-Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
22
|
Nakayama M, Marchi H, Dmitrieva AM, Chakraborty A, Merl-Pham J, Hennen E, Le Gleut R, Ruppert C, Guenther A, Kahnert K, Behr J, Hilgendorff A, Hauck SM, Adler H, Staab-Weijnitz CA. Quantitative proteomics of differentiated primary bronchial epithelial cells from chronic obstructive pulmonary disease and control identifies potential novel host factors post-influenza A virus infection. Front Microbiol 2023; 13:957830. [PMID: 36713229 PMCID: PMC9875134 DOI: 10.3389/fmicb.2022.957830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) collectively refers to chronic and progressive lung diseases that cause irreversible limitations in airflow. Patients with COPD are at high risk for severe respiratory symptoms upon influenza virus infection. Airway epithelial cells provide the first-line antiviral defense, but whether or not their susceptibility and response to influenza virus infection changes in COPD have not been elucidated. Therefore, this study aimed to compare the susceptibility of COPD- and control-derived airway epithelium to the influenza virus and assess protein changes during influenza virus infection by quantitative proteomics. Materials and methods The presence of human- and avian-type influenza A virus receptor was assessed in control and COPD lung sections as well as in fully differentiated primary human bronchial epithelial cells (phBECs) by lectin- or antibody-based histochemical staining. PhBECs were from COPD lungs, including cells from moderate- and severe-stage diseases, and from age-, sex-, smoking, and history-matched control lung specimens. Protein profiles pre- and post-influenza virus infection in vitro were directly compared using quantitative proteomics, and selected findings were validated by qRT-PCR and immunoblotting. Results The human-type influenza receptor was more abundant in human airways than the avian-type influenza receptor, a property that was retained in vitro when differentiating phBECs at the air-liquid interface. Proteomics of phBECs pre- and post-influenza A virus infection with A/Puerto Rico/8/34 (PR8) revealed no significant differences between COPD and control phBECs in terms of flu receptor expression, cell type composition, virus replication, or protein profile pre- and post-infection. Independent of health state, a robust antiviral response to influenza virus infection was observed, as well as upregulation of several novel influenza virus-regulated proteins, including PLSCR1, HLA-F, CMTR1, DTX3L, and SHFL. Conclusion COPD- and control-derived phBECs did not differ in cell type composition, susceptibility to influenza virus infection, and proteomes pre- and post-infection. Finally, we identified novel influenza A virus-regulated proteins in bronchial epithelial cells that might serve as potential targets to modulate the pathogenicity of infection and acute exacerbations.
Collapse
Affiliation(s)
- Misako Nakayama
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany,Faculty of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Anna M. Dmitrieva
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ashesh Chakraborty
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Kathrin Kahnert
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,*Correspondence: Heiko Adler,
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Claudia A. Staab-Weijnitz, ; https://orcid.org/0000-0002-1211-7834
| |
Collapse
|
23
|
Wu CT, Lidsky PV, Xiao Y, Cheng R, Lee IT, Nakayama T, Jiang S, He W, Demeter J, Knight MG, Turn RE, Rojas-Hernandez LS, Ye C, Chiem K, Shon J, Martinez-Sobrido L, Bertozzi CR, Nolan GP, Nayak JV, Milla C, Andino R, Jackson PK. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 2023; 186:112-130.e20. [PMID: 36580912 PMCID: PMC9715480 DOI: 10.1016/j.cell.2022.11.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Ran Cheng
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Ivan T Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei He
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Miguel G Knight
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Rachel E Turn
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Laura S Rojas-Hernandez
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chengjin Ye
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kevin Chiem
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Carlos Milla
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA.
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
24
|
Escuret V, Terrier O. Co-infection of the respiratory epithelium, scene of complex functional interactions between viral, bacterial, and human neuraminidases. Front Microbiol 2023; 14:1137336. [PMID: 37213507 PMCID: PMC10192862 DOI: 10.3389/fmicb.2023.1137336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023] Open
Abstract
The activity of sialic acids, known to play critical roles in biology and many pathological processes, is finely regulated by a class of enzymes called sialidases, also known as neuraminidases. These are present in mammals and many other biological systems, such as viruses and bacteria. This review focuses on the very particular situation of co-infections of the respiratory epithelium, the scene of complex functional interactions between viral, bacterial, and human neuraminidases. This intrinsically multidisciplinary topic combining structural biology, biochemistry, physiology, and the study of host-pathogen interactions, opens up exciting research perspectives that could lead to a better understanding of the mechanisms underlying virus-bacteria co-infections and their contribution to the aggravation of respiratory pathology, notably in the context of pre-existing pathological contexts. Strategies that mimic or inhibit the activity of the neuraminidases could constitute interesting treatment options for viral and bacterial infections.
Collapse
|
25
|
Bergeron HC, Tripp RA. RSV Replication, Transmission, and Disease Are Influenced by the RSV G Protein. Viruses 2022; 14:v14112396. [PMID: 36366494 PMCID: PMC9692685 DOI: 10.3390/v14112396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/31/2023] Open
Abstract
It is important to understand the features affecting virus replication, fitness, and transmissibility as they contribute to the outcome of infection and affect disease intervention approaches. Respiratory syncytial virus (RSV) is a major contributor to respiratory disease, particularly in the infant and elderly populations. Although first described over 60 years ago, there are no approved vaccines and there are limited specific antiviral treatments due in part to our incomplete understanding of the features affecting RSV replication, immunity, and disease. RSV studies have typically focused on using continuous cell lines and conventional RSV strains to establish vaccine development and various antiviral countermeasures. This review outlines how the RSV G protein influences viral features, including replication, transmission, and disease, and how understanding the role of the G protein can improve the understanding of preclinical studies.
Collapse
|
26
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
27
|
McSweeney MD, Stewart I, Richardson Z, Kang H, Park Y, Kim C, Tiruthani K, Wolf W, Schaefer A, Kumar P, Aurora H, Hutchins J, Cho JM, Hickey AJ, Lee SY, Lai SK. Stable nebulization and muco-trapping properties of regdanvimab/IN-006 support its development as a potent, dose-saving inhaled therapy for COVID-19. Bioeng Transl Med 2022; 8:e10391. [PMID: 36248234 PMCID: PMC9537933 DOI: 10.1002/btm2.10391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 01/21/2023] Open
Abstract
The respiratory tract represents the key target for antiviral delivery in early interventions to prevent severe COVID-19. While neutralizing monoclonal antibodies (mAb) possess considerable efficacy, their current reliance on parenteral dosing necessitates very large doses and places a substantial burden on the healthcare system. In contrast, direct inhaled delivery of mAb therapeutics offers the convenience of self-dosing at home, as well as much more efficient mAb delivery to the respiratory tract. Here, building on our previous discovery of Fc-mucin interactions crosslinking viruses to mucins, we showed that regdanvimab, a potent neutralizing mAb already approved for COVID-19 in several countries, can effectively trap SARS-CoV-2 virus-like particles in fresh human airway mucus. IN-006, a reformulation of regdanvimab, was stably nebulized across a wide range of concentrations, with no loss of activity and no formation of aggregates. Finally, nebulized delivery of IN-006 resulted in 100-fold greater mAb levels in the lungs of rats compared to serum, in marked contrast to intravenously dosed mAbs. These results not only support our current efforts to evaluate the safety and efficacy of IN-006 in clinical trials, but more broadly substantiate nebulized delivery of human antiviral mAbs as a new paradigm in treating SARS-CoV-2 and other respiratory pathologies.
Collapse
Affiliation(s)
- Morgan D. McSweeney
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
- Mucommune LLCResearch Triangle ParkNorth CarolinaUSA
| | - Ian Stewart
- RTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Zach Richardson
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
- Mucommune LLCResearch Triangle ParkNorth CarolinaUSA
| | - Hyunah Kang
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Yoona Park
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Cheolmin Kim
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
| | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
| | - Alison Schaefer
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
| | - Priya Kumar
- Department of Anesthesiology, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Harendra Aurora
- Department of Anesthesiology, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Jeff Hutchins
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
| | - Jong Moon Cho
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | | | - Soo Young Lee
- Biotechnology Research InstituteCelltrion IncIncheonRepublic of Korea
| | - Samuel K. Lai
- Inhalon Biopharma IncResearch Triangle ParkNorth CarolinaUSA
- Mucommune LLCResearch Triangle ParkNorth CarolinaUSA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina‐Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and Immunology, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
28
|
Du X, Yuan L, Yao Y, Yang Y, Zhou K, Wu X, Wang L, Qin L, Li W, Xiang Y, Qu X, Liu H, Qin X, Yang M, Liu C. ITGB4 Deficiency in Airway Epithelium Aggravates RSV Infection and Increases HDM Sensitivity. Front Immunol 2022; 13:912095. [PMID: 35958591 PMCID: PMC9357881 DOI: 10.3389/fimmu.2022.912095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background The heterogeneity of RSV-infected pathology phenotype in early life is strongly associate with increased susceptibility of asthma in later life. However, the inner mechanism of this heterogeneity is still obscure. ITGB4 is a down-regulated adhesion molecular in the airway epithelia of asthma patients which may participate in the regulation of RSV infection related intracellular pathways. Object This study was designed to observe the involvement of ITGB4 in the process of RSV infection and the effect of ITGB4 deficiency on anti-RSV responses of airway epithelia. Results RSV infection caused a transient decrease of ITGB4 expression both in vitro and in vivo. Besides, ITGB4 deficiency induced not only exacerbated RSV infection, but also enhanced HDM sensitivity in later life. Moreover, IFN III (IFN-λ) was significantly suppressed during RSV infection in ITGB4 deficient airway epithelial cells. Furthermore, the suppression of IFN-λ were regulated by IRF-1 through the phosphorylation of EGFR in airway epithelial cells after RSV infection. Conclusion These results demonstrated the involvement of ITGB4 deficiency in the development of enhance RSV infection in early life and the increased HDM sensitivity in later life by down-regulation of IFN-λ through EGFR/IRF-1 pathway in airway epithelial cells.
Collapse
Affiliation(s)
- Xizi Du
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ye Yao
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Wenkai Li
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ming Yang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
- Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine Central South University, Changsha, China
- *Correspondence: Chi Liu,
| |
Collapse
|
29
|
Praena B, Wan XF. Influenza Virus Infections in Polarized Cells. Viruses 2022; 14:1307. [PMID: 35746778 PMCID: PMC9231244 DOI: 10.3390/v14061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
In humans and other mammals, the respiratory tract is represented by a complex network of polarized epithelial cells, forming an apical surface facing the external environment and a basal surface attached to the basement layer. These cells are characterized by differential expression of proteins and glycans, which serve as receptors during influenza virus infection. Attachment between these host receptors and the viral surface glycoprotein hemagglutinin (HA) initiates the influenza virus life cycle. However, the virus receptor binding specificities may not be static. Sialylated N-glycans are the most well-characterized receptors but are not essential for the entry of influenza viruses, and other molecules, such as O-glycans and non-sialylated glycans, may be involved in virus-cell attachment. Furthermore, correct cell polarity and directional trafficking of molecules are essential for the orderly development of the system and affect successful influenza infection; on the other hand, influenza infection can also change cell polarity. Here we review recent advances in our understanding of influenza virus infection in the respiratory tract of humans and other mammals, particularly the attachment between the virus and the surface of the polar cells and the polarity variation of these cells due to virus infection.
Collapse
Affiliation(s)
- Beatriz Praena
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| |
Collapse
|
30
|
Guo D, Yu X, Wang D, Li Z, Zhou Y, Xu G, Yuan B, Qin Y, Chen M. SLC35B2 Acts in a Dual Role in the Host Sulfation Required for EV71 Infection. J Virol 2022; 96:e0204221. [PMID: 35420441 PMCID: PMC9093107 DOI: 10.1128/jvi.02042-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
As an important neurotropic enterovirus, enterovirus 71 (EV71) is occasionally associated with severe neurological diseases and high mortality rates in infants and young children. Understanding the interaction between host factors and EV71 will play a vital role in developing antivirals and optimizing vaccines. Here, we performed a genome-wide CRISPR-Cas9 knockout screen and revealed that scavenger receptor class B member 2 (SCARB2), solute carrier family 35 member B2 (SLC35B2), and beta-1,3-glucuronyltransferase 3 (B3GAT3) are essential in facilitating EV71 replication. Subsequently, the exploration of molecular mechanisms suggested that the knockout of SLC35B2 or B3GAT3, not SCARB2, led to a remarkable decrease in the binding of EV71 to cells and internalization into cells. Furthermore, we found that the infection efficiency for EV71 was positively correlated with the level of host cell sulfation, not simply with the amount of heparan sulfate, suggesting that an unidentified sulfated protein(s) must contribute to EV71 infection. In support of this idea, we screened possible sulfated proteins among the proteinous receptors for EV71 and confirmed that SCARB2 could uniquely interact with both tyrosyl protein sulfotransferases in humans. We then performed mass spectrometric analysis of SCARB2, identifying five sites with tyrosine sulfation. The function verification test indicated that there were more than five tyrosine-sulfated sites on SCARB2. Finally, we constructed a model for EV71 entry in which both heparan sulfate and SCARB2 are regulated by SLC35B2 and act cooperatively to support viral binding, internalization, and uncoating. Taken together, this is the first time that we performed the pooled CRISPR-Cas9 genetic screening to investigate the interplay of host cells and EV71. Furthermore, we found that a novel host factor, SLC35B2, played a dual role in regulating the overall sulfation comprising heparan sulfate sulfation and protein tyrosine sulfation, which are critical for EV71 entry. IMPORTANCE As the most important nonpolio neurotropic enterovirus lacking specific treatments, EV71 can transmit to the central nervous system, leading to severe and fatal neurological complications in infants and young children. The identification of new factors that facilitate or inhibit EV71 replication is crucial to uncover the mechanisms of viral infection and pathogenesis. To date, only a few host factors involved in EV71 infection have been characterized. Herein, we conducted a genome-wide CRISPR-Cas9 functional knockout (GeCKO) screen for the first time to study EV71 in HeLa cells. The screening results are presented as a ranked list of candidates, including 518 hits in the positive selection that facilitate EV71 replication and 1,044 hits in the negative selection that may be essential for cell growth and survival or for suppressing EV71 infection. We subsequently concentrated on the top three hits in the positive selection: SCARB2, SLC35B2, and B3GAT3. The knockout of any of these three genes confers strong resistance against EV71 infection. We confirmed that EV71 infection is codependent on two receptors, heparan sulfate and SCARB2. We also identified a host entry factor, SLC35B2, indirectly facilitating EV71 infection through regulation of the host cell sulfation, and determined a novel posttranslational modification, protein tyrosine sulfation existing in SCARB2. This study revealed that EV71 infectivity exhibits a significant positive correlation with the level of cellular sulfation regulated by SLC35B2. Due to the sulfation pathway being required for many distinct viruses, including but not limited to EV71 and respiratory syncytial virus (RSV), which were tested in this study, SLC35B2 represents a target of broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Dong Guo
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinghai Yu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guodong Xu
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Bing Yuan
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Goldstein ME, Scull MA. Modeling Innate Antiviral Immunity in Physiological Context. J Mol Biol 2022; 434:167374. [PMID: 34863779 PMCID: PMC8940657 DOI: 10.1016/j.jmb.2021.167374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
An effective innate antiviral response is critical for the mitigation of severe disease and host survival following infection. In vivo, the innate antiviral response is triggered by cells that detect the invading pathogen and then communicate through autocrine and paracrine signaling to stimulate the expression of genes that inhibit viral replication, curtail cell proliferation, or modulate the immune response. In other words, the innate antiviral response is complex and dynamic. Notably, in the laboratory, culturing viruses and assaying viral life cycles frequently utilizes cells that are derived from tissues other than those that support viral replication during natural infection, while the study of viral pathogenesis often employs animal models. In recapitulating the human antiviral response, it is important to consider that variation in the expression and function of innate immune sensors and antiviral effectors exists across species, cell types, and cell differentiation states, as well as when cells are placed in different contexts. Thus, to gain novel insight into the dynamics of the host response and how specific sensors and effectors impact infection kinetics by a particular virus, the model system must be selected carefully. In this review, we briefly introduce key signaling pathways involved in the innate antiviral response and highlight how these differ between systems. We then review the application of tissue-engineered or 3D models for studying the antiviral response, and suggest how these in vitro culture systems could be further utilized to assay physiologically-relevant host responses and reveal novel insight into virus-host interactions.
Collapse
Affiliation(s)
- Monty E Goldstein
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Margaret A Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, 3134 Bioscience Research Building, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
32
|
Lee Y, Wessel AW, Xu J, Reinke JG, Lee E, Kim SM, Hsu AP, Zilberman-Rudenko J, Cao S, Enos C, Brooks SR, Deng Z, Lin B, de Jesus AA, Hupalo DN, Piotto DG, Terreri MT, Dimitriades VR, Dalgard CL, Holland SM, Goldbach-Mansky R, Siegel RM, Hanson EP. Genetically programmed alternative splicing of NEMO mediates an autoinflammatory disease phenotype. J Clin Invest 2022; 132:128808. [PMID: 35289316 PMCID: PMC8920334 DOI: 10.1172/jci128808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Host defense and inflammation are regulated by the NF-κB essential modulator (NEMO), a scaffolding protein with a broad immune cell and tissue expression profile. Hypomorphic mutations in inhibitor of NF-κB kinase regulatory subunit gamma (IKBKG) encoding NEMO typically present with immunodeficiency. Here, we characterized a pediatric autoinflammatory syndrome in 3 unrelated male patients with distinct X-linked IKBKG germline mutations that led to overexpression of a NEMO protein isoform lacking the domain encoded by exon 5 (NEMO-Δex5). This isoform failed to associate with TANK binding kinase 1 (TBK1), and dermal fibroblasts from affected patients activated NF-κB in response to TNF but not TLR3 or RIG-I–like receptor (RLR) stimulation when isoform levels were high. By contrast, T cells, monocytes, and macrophages that expressed NEMO-Δex5 exhibited increased NF-κB activation and IFN production, and blood cells from these patients expressed a strong IFN and NF-κB transcriptional signature. Immune cells and TNF-stimulated dermal fibroblasts upregulated the inducible IKK protein (IKKi) that was stabilized by NEMO-Δex5, promoting type I IFN induction and antiviral responses. These data revealed how IKBKG mutations that lead to alternative splicing of skipping exon 5 cause a clinical phenotype we have named NEMO deleted exon 5 autoinflammatory syndrome (NDAS), distinct from the immune deficiency syndrome resulting from loss-of-function IKBKG mutations.
Collapse
Affiliation(s)
- Younglang Lee
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Alex W Wessel
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Jiazhi Xu
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Julia G Reinke
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Eries Lee
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Somin M Kim
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Amy P Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jevgenia Zilberman-Rudenko
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Sha Cao
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Clinton Enos
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS and
| | - Zuoming Deng
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS and
| | - Bin Lin
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel N Hupalo
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Daniela Gp Piotto
- Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria T Terreri
- Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Victoria R Dimitriades
- Division of Infectious Diseases, Immunology & Allergy University of California Davis Health, Sacramento, California, USA
| | - Clifton L Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA.,Novartis Institutes for BioMedical Research WSJ, Basel, Switzerland
| | - Eric P Hanson
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| |
Collapse
|
33
|
Van Royen T, Rossey I, Sedeyn K, Schepens B, Saelens X. How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses 2022; 14:v14020419. [PMID: 35216012 PMCID: PMC8874859 DOI: 10.3390/v14020419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe acute lower respiratory tract infections in infants worldwide. Although several pattern recognition receptors (PRRs) can sense RSV-derived pathogen-associated molecular patterns (PAMPs), infection with RSV is typically associated with low to undetectable levels of type I interferons (IFNs). Multiple RSV proteins can hinder the host’s innate immune response. The main players are NS1 and NS2 which suppress type I IFN production and signalling in multiple ways. The recruitment of innate immune cells and the production of several cytokines are reduced by RSV G. Next, RSV N can sequester immunostimulatory proteins to inclusion bodies (IBs). N might also facilitate the assembly of a multiprotein complex that is responsible for the negative regulation of innate immune pathways. Furthermore, RSV M modulates the host’s innate immune response. The nuclear accumulation of RSV M has been linked to an impaired host gene transcription, in particular for nuclear-encoded mitochondrial proteins. In addition, RSV M might also directly target mitochondrial proteins which results in a reduced mitochondrion-mediated innate immune recognition of RSV. Lastly, RSV SH might prolong the viral replication in infected cells and influence cytokine production.
Collapse
Affiliation(s)
- Tessa Van Royen
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium; (T.V.R.); (I.R.); (K.S.); (B.S.)
- Department for Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
34
|
Abstract
The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity. Bioassay-guided fractionation uncovered three bacterial metabolites capable of inhibiting SARS-CoV-2 infection. This included the nucleoside analogue N6-(Δ2-isopentenyl)adenosine, the 5-hydroxytryptamine receptor agonist tryptamine, and the pyrazine 2,5-bis(3-indolylmethyl)pyrazine. The most potent of these, N6-(Δ2-isopentenyl)adenosine, had a 50% inhibitory concentration (IC50) of 2 μM. These natural antiviral compounds exhibit structural and functional similarities to synthetic drugs that have been clinically examined for use against COVID-19. Our discovery of structurally diverse metabolites with anti-SARS-CoV-2 activity from screening a small fraction of the bacteria reported to be associated with the human microbiome suggests that continued exploration of phylogenetically diverse human-associated bacteria is likely to uncover additional small molecules that inhibit SARS-CoV-2 as well as other viral infections. IMPORTANCE The continued prevalence of COVID-19 and the emergence of new variants has once again put the spotlight on the need for the identification of SARS-CoV-2 antivirals. The human microbiome produces an array of small molecules with bioactivities (e.g., host receptor ligands), but its ability to produce antiviral small molecules is relatively underexplored. Here, using a cell-based screening platform, we describe the isolation of three microbiome-derived metabolites that are able to prevent SARS-CoV-2 infection in vitro. These molecules display structural similarities to synthetic drugs that have been explored for the treatment of COVID-19, and these results suggest that the microbiome may be a fruitful source of the discovery of small molecules with antiviral activities.
Collapse
|
35
|
Abstract
Parainfluenza viruses, members of the enveloped, negative-sense, single stranded RNA Paramyxoviridae family, impact global child health as the cause of significant lower respiratory tract infections. Parainfluenza viruses enter cells by fusing directly at the cell surface membrane. How this fusion occurs via the coordinated efforts of the two molecules that comprise the viral surface fusion complex, and how these efforts may be blocked, are the subjects of this chapter. The receptor binding protein of parainfluenza forms a complex with the fusion protein of the virus, remaining stably associated until a receptor is reached. At that point, the receptor binding protein actively triggers the fusion protein to undergo a series of transitions that ultimately lead to membrane fusion and viral entry. In recent years it has become possible to examine this remarkable process on the surface of viral particles and to begin to understand the steps in the transition of this molecular machine, using a structural biology approach. Understanding the steps in entry leads to several possible strategies to prevent fusion and inhibit infection.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Matteo Porotto
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Anne Moscona
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Center for Host-Pathogen Interaction, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy; Department of Physiology & Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
36
|
Chakrabarty K, Shetty R, Argulwar S, Das D, Ghosh A. Induced pluripotent stem cell-based disease modeling and prospective immune therapy for coronavirus disease 2019. Cytotherapy 2021; 24:235-248. [PMID: 34656419 PMCID: PMC8437760 DOI: 10.1016/j.jcyt.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022]
Abstract
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Shubham Argulwar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
37
|
Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021; 12:683002. [PMID: 34489934 PMCID: PMC8418200 DOI: 10.3389/fimmu.2021.683002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A large number of RTIs is caused by viruses, often resulting in more severe disease in infants, elderly and the immunocompromised. Upon viral infection, most individuals experience common cold-like symptoms associated with an upper RTI. However, in some cases a severe and sometimes life-threatening lower RTI may develop. Reproducible and scalable in vitro culture models that accurately reflect the human respiratory tract are needed to study interactions between respiratory viruses and the host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture systems have been described, but the majority of these are based on immortalized cell lines. Although useful for studying certain aspects of viral infections, such monomorphic, unicellular systems fall short in creating an understanding of the processes that occur at an integrated tissue level. Novel in vitro models involving primary human airway epithelial cells and, more recently, human airway organoids, are now in use. In this review, we describe the evolution of in vitro cell culture systems and their characteristics in the context of viral RTIs, starting from advances after immortalized cell cultures to more recently developed organoid systems. Furthermore, we describe how these models are used in studying virus-host interactions, e.g. tropism and receptor studies as well as interactions with the innate immune system. Finally, we provide an outlook for future developments in this field, including co-factors that mimic the microenvironment in the respiratory tract.
Collapse
Affiliation(s)
- Laurine C. Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Laura L. A. van Dijk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten F. M. Engel
- Medical Library, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
38
|
Lo MK, Shrivastava-Ranjan P, Chatterjee P, Flint M, Beadle JR, Valiaeva N, Schooley RT, Hostetler KY, Montgomery JM, Spiropoulou C. Broad-spectrum in vitro antiviral activity of ODBG-P-RVn: an orally-available, lipid-modified monophosphate prodrug of remdesivir parent nucleoside (GS-441524). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34401879 PMCID: PMC8366795 DOI: 10.1101/2021.08.06.455494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The intravenous administration of remdesivir for COVID-19 confines its utility to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524) against viruses that cause diseases of human public health concern, including SARS-CoV-2. ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had near-equivalent activity to remdesivir in primary-like human small airway epithelial cells. Our results warrant investigation of ODBG-P-RVn efficacy in vivo.
Collapse
|
39
|
Abstract
Respiratory syncytial virus (RSV) has been reported to use CX3CR1 in vitro as a receptor on cultured primary human airway epithelial cultures. To evaluate CX3CR1 as the receptor for RSV in vivo, we used the cotton rat animal model because of its high permissiveness for RSV infection. Sequencing the cotton rat CX3CR1 gene revealed 91% amino acid similarity to human CX3CR1. Previous work found that RSV binds to CX3CR1 via its attachment glycoprotein (G protein) to infect primary human airway cultures. To determine whether CX3CR1-G protein interaction is necessary for RSV infection, recombinant RSVs containing mutations in the CX3CR1 binding site of the G protein were tested in cotton rats. In contrast to wild-type virus, viral mutants did not grow in the lungs of cotton rats. When RSV was incubated with an antibody blocking the CX3CR1 binding site of G protein and subsequently inoculated intranasally into cotton rats, no virus was found in the lungs 4 days postinfection. In contrast, growth of RSV was not affected after preincubation with heparan sulfate (the receptor for RSV on immortalized cell lines). A reduction in CX3CR1 expression in the cotton rat lung through the use of peptide-conjugated morpholino oligomers led to a 10-fold reduction in RSV titers at day 4 postinfection. In summary, these results indicate that CX3CR1 functions as a receptor for RSV in cotton rats and, in combination with data from human airway epithelial cell cultures, strongly suggest that CX3CR1 is a primary receptor for naturally acquired RSV infection. IMPORTANCE The knowledge about a virus receptor is useful to better understand the uptake of a virus into a cell and potentially develop antivirals directed against either the receptor molecule on the cell or the receptor-binding protein of the virus. Among a number of potential receptor proteins, human CX3CR1 has been demonstrated to act as a receptor for respiratory syncytial virus (RSV) on human epithelial cells in tissue culture. Here, we report that the cotton rat CX3CR1, which is similar to the human molecule, acts as a receptor in vivo. This study strengthens the argument that CX3CR1 is a receptor molecule for RSV.
Collapse
|
40
|
Anderson LJ, Jadhao SJ, Paden CR, Tong S. Functional Features of the Respiratory Syncytial Virus G Protein. Viruses 2021; 13:1214. [PMID: 34372490 PMCID: PMC8310105 DOI: 10.3390/v13071214] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract infections in children <5 years of age worldwide and repeated infections throughout life leading to serious disease in the elderly and persons with compromised immune, cardiac, and pulmonary systems. The disease burden has made it a high priority for vaccine and antiviral drug development but without success except for immune prophylaxis for certain young infants. Two RSV proteins are associated with protection, F and G, and F is most often pursued for vaccine and antiviral drug development. Several features of the G protein suggest it could also be an important to vaccine or antiviral drug target design. We review features of G that effect biology of infection, the host immune response, and disease associated with infection. Though it is not clear how to fit these together into an integrated picture, it is clear that G mediates cell surface binding and facilitates cellular infection, modulates host responses that affect both immunity and disease, and its CX3C aa motif contributes to many of these effects. These features of G and the ability to block the effects with antibody, suggest G has substantial potential in vaccine and antiviral drug design.
Collapse
Affiliation(s)
- Larry J. Anderson
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Samadhan J. Jadhao
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA;
| | - Clinton R. Paden
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA; (C.R.P.); (S.T.)
| | - Suxiang Tong
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30322, USA; (C.R.P.); (S.T.)
| |
Collapse
|
41
|
Mathez G, Cagno V. Viruses Like Sugars: How to Assess Glycan Involvement in Viral Attachment. Microorganisms 2021; 9:1238. [PMID: 34200288 PMCID: PMC8230229 DOI: 10.3390/microorganisms9061238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The first step of viral infection requires interaction with the host cell. Before finding the specific receptor that triggers entry, the majority of viruses interact with the glycocalyx. Identifying the carbohydrates that are specifically recognized by different viruses is important both for assessing the cellular tropism and for identifying new antiviral targets. Advances in the tools available for studying glycan-protein interactions have made it possible to identify them more rapidly; however, it is important to recognize the limitations of these methods in order to draw relevant conclusions. Here, we review different techniques: genetic screening, glycan arrays, enzymatic and pharmacological approaches, and surface plasmon resonance. We then detail the glycan interactions of enterovirus D68 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlighting the aspects that need further clarification.
Collapse
Affiliation(s)
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
42
|
Burzyńska P, Sobala ŁF, Mikołajczyk K, Jodłowska M, Jaśkiewicz E. Sialic Acids as Receptors for Pathogens. Biomolecules 2021; 11:831. [PMID: 34199560 PMCID: PMC8227644 DOI: 10.3390/biom11060831] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrates have long been known to mediate intracellular interactions, whether within one organism or between different organisms. Sialic acids (Sias) are carbohydrates that usually occupy the terminal positions in longer carbohydrate chains, which makes them common recognition targets mediating these interactions. In this review, we summarize the knowledge about animal disease-causing agents such as viruses, bacteria and protozoa (including the malaria parasite Plasmodium falciparum) in which Sias play a role in infection biology. While Sias may promote binding of, e.g., influenza viruses and SV40, they act as decoys for betacoronaviruses. The presence of two common forms of Sias, Neu5Ac and Neu5Gc, is species-specific, and in humans, the enzyme converting Neu5Ac to Neu5Gc (CMAH, CMP-Neu5Ac hydroxylase) is lost, most likely due to adaptation to pathogen regimes; we discuss the research about the influence of malaria on this trait. In addition, we present data suggesting the CMAH gene was probably present in the ancestor of animals, shedding light on its glycobiology. We predict that a better understanding of the role of Sias in disease vectors would lead to more effective clinical interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Jaśkiewicz
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (P.B.); (Ł.F.S.); (K.M.); (M.J.)
| |
Collapse
|
43
|
King T, Mejias A, Ramilo O, Peeples ME. The larger attachment glycoprotein of respiratory syncytial virus produced in primary human bronchial epithelial cultures reduces infectivity for cell lines. PLoS Pathog 2021; 17:e1009469. [PMID: 33831114 PMCID: PMC8057581 DOI: 10.1371/journal.ppat.1009469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects the upper and lower respiratory tracts and can cause lower respiratory tract infections in children and elders. RSV has traditionally been isolated, grown, studied and quantified in immortalized cell lines, most frequently HEp-2 cells. However, in vivo RSV infection is modeled more accurately in primary well differentiated human bronchial epithelial (HBE) cultures where RSV targets the ciliated cells and where the putative RSV receptor differs from the receptor on HEp-2 cells. The RSV attachment (G) glycoprotein in virions produced by HEp-2 cells is a highly glycosylated 95 kDa protein with a 32 kDa peptide core. However, virions produced in HBE cultures, RSV (HBE), contain an even larger, 170 kDa, G protein (LgG). Here we show that LgG is found in virions from both subgroups A and B lab-adapted and clinical isolates. Unexpectedly, RSV (HBE) virions were approximately 100-fold more infectious for HBE cultures than for HEp-2 cells. Surprisingly, the cause of this differential infectivity, was reduced infectivity of RSV (HBE) on HEp-2 cells rather than enhanced infectivity on HBE cultures. The lower infectivity of RSV(HBE) for HEp-2 cells is caused by the reduced ability of LgG to interact with heparan sulfate proteoglycans (HSPG), the RSV receptor on HEp-2 cells. The discovery of different infectivity corresponding with the larger form of the RSV attachment protein when produced by HBE cultures highlights the importance of studying a virus produced by its native host cell and the potential impact on quantifying virus infectivity on cell lines where the virus entry mechanisms differ from their natural target cell.
Collapse
Affiliation(s)
- Tiffany King
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
44
|
de Carvalho ALRT, Liu HY, Chen YW, Porotto M, Moscona A, Snoeck HW. The in vitro multilineage differentiation and maturation of lung and airway cells from human pluripotent stem cell-derived lung progenitors in 3D. Nat Protoc 2021; 16:1802-1829. [PMID: 33649566 PMCID: PMC9460941 DOI: 10.1038/s41596-020-00476-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/26/2020] [Indexed: 01/31/2023]
Abstract
Lung and airway epithelial cells generated in vitro from human pluripotent stem cells (hPSCs) have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here, we describe a strategy for directed differentiation of hPSCs into mature lung and airway epithelial cells obtained through maturation of NKX2.1+ hPSC-derived lung progenitors in a 3D matrix of collagen I in the absence of glycogen synthase kinase 3 inhibition. This protocol is an extension of our previously published protocol on the directed differentiation of lung and airway epithelium from hPSCs that modifies the technique and offers additional applications. This protocol is conducted in defined media conditions, has a duration of 50-80 d, does not require reporter lines and results in cultures containing mature alveolar type II and I cells as well as airway basal, ciliated, club and neuroendocrine cells. We also present a flow cytometry strategy to assess maturation in the cultures. Several of these populations, including mature NGFR+ basal cells, can be prospectively isolated by cell sorting and expanded for further investigation.
Collapse
Affiliation(s)
- Ana Luisa Rodrigues Toste de Carvalho
- Columbia Center for Human Development, Columbia University
Medical Center, New York, NY 10032, USA,Department of Medicine, Columbia University Medical Center,
New York, NY 10032, USA,Life and Health Sciences Research Institute (ICVS), School
of Medicine, University of Minho, 4710-057 Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory,
4710-057 Braga/Guimarães, Portugal
| | - Hsiao-Yun Liu
- Columbia Center for Human Development, Columbia University
Medical Center, New York, NY 10032, USA,Department of Medicine, Columbia University Medical Center,
New York, NY 10032, USA
| | - Ya-Wen Chen
- Columbia Center for Human Development, Columbia University
Medical Center, New York, NY 10032, USA,Department of Medicine, Columbia University Medical Center,
New York, NY 10032, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Medical
Center, New York, New York, 10032, United States,Center for Host–Pathogen Interaction, Columbia
University Medical Center, New York, New York, 10032, United States,Department of Experimental Medicine, University of Campania
‘Luigi Vanvitelli’, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Medical
Center, New York, New York, 10032, United States,Center for Host–Pathogen Interaction, Columbia
University Medical Center, New York, New York, 10032, United States,Department of Microbiology & Immunology, Columbia
University Medical Center, New York, New York, 10032, United States,Department of Physiology & Cellular Biophysics,
Columbia University Medical Center, New York, New York, 10032, United States
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University
Medical Center, New York, NY 10032, USA,Department of Medicine, Columbia University Medical Center,
New York, NY 10032, USA,Columbia Center for Translational Immunology, Columbia
University Medical Center, New York, NY 10032, USA,Department of Microbiology and Immunology, Columbia
University Medical Center, New York, NY 10032, USA, Correspondence should be addressed to H.W.S
()
| |
Collapse
|
45
|
The Bacterial and Viral Agents of BRDC: Immune Evasion and Vaccine Developments. Vaccines (Basel) 2021; 9:vaccines9040337. [PMID: 33916119 PMCID: PMC8066859 DOI: 10.3390/vaccines9040337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a multifactorial disease of cattle which presents as bacterial and viral pneumonia. The causative agents of BRDC work in synergy to suppress the host immune response and increase the colonisation of the lower respiratory tracts by pathogenic bacteria. Environmental stress and/or viral infection predispose cattle to secondary bacterial infections via suppression of key innate and adaptive immune mechanisms. This allows bacteria to descend the respiratory tract unchallenged. BRDC is the costliest disease among feedlot cattle, and whilst vaccines exist for individual pathogens, there is still a lack of evidence for the efficacy of these vaccines and uncertainty surrounding the optimum timing of delivery. This review outlines the immunosuppressive actions of the individual pathogens involved in BRDC and highlights the key issues in the development of vaccinations against them.
Collapse
|
46
|
Primary differentiated respiratory epithelial cells respond to apical measles virus infection by shedding multinucleated giant cells. Proc Natl Acad Sci U S A 2021; 118:2013264118. [PMID: 33836570 DOI: 10.1073/pnas.2013264118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Measles virus (MeV) is highly infectious by the respiratory route and remains an important cause of childhood mortality. However, the process by which MeV infection is efficiently established in the respiratory tract is controversial with suggestions that respiratory epithelial cells are not susceptible to infection from the apical mucosal surface. Therefore, it has been hypothesized that infection is initiated in lung macrophages or dendritic cells and that epithelial infection is subsequently established through the basolateral surface by infected lymphocytes. To better understand the process of respiratory tract initiation of MeV infection, primary differentiated respiratory epithelial cell cultures were established from rhesus macaque tracheal and nasal tissues. Infection of these cultures with MeV from the apical surface was more efficient than from the basolateral surface with shedding of viable MeV-producing multinucleated giant cell (MGC) syncytia from the surface. Despite presence of MGCs and infectious virus in supernatant fluids after apical infection, infected cells were not detected in the adherent epithelial sheet and transepithelial electrical resistance was maintained. After infection from the basolateral surface, epithelial damage and large clusters of MeV-positive cells were observed. Treatment with fusion inhibitory peptides showed that MeV production after apical infection was not dependent on infection of the basolateral surface. These results are consistent with the hypothesis that MeV infection is initiated by apical infection of respiratory epithelial cells with subsequent infection of lymphoid tissue and systemic spread.
Collapse
|
47
|
Abstract
Human parainfluenza virus type 3 (HPIV-3) is a significant cause of lower respiratory tract infections, with the most severe disease in young infants, immunocompromised individuals, and the elderly. HPIV-3 infections are currently untreatable with licensed therapeutics, and prophylactic and therapeutic options are needed for patients at risk. To complement existing human airway models of HPIV-3 infection and develop an animal model to assess novel intervention strategies, we evaluated infection and transmission of HPIV-3 in ferrets. A well-characterized human clinical isolate (CI) of HPIV-3 engineered to express enhanced green fluorescent protein (rHPIV-3 CI-1-EGFP) was passaged on primary human airway epithelial cells (HAE) or airway organoids (AO) to avoid tissue culture adaptations. rHPIV3 CI-1-EGFP infection was assessed in vitro in ferret AO and in ferrets in vivo. Undifferentiated and differentiated ferret AO cultures supported rHPIV-3 CI-1-EGFP replication, but the ferret primary airway cells from AO were less susceptible and permissive than HAE. In vivo rHPIV-3 CI-1-EGFP replicated in the upper and lower airways of ferrets and targeted respiratory epithelial cells, olfactory epithelial cells, type I pneumocytes, and type II pneumocytes. The infection efficiently induced specific antibody responses. Taken together, ferrets are naturally susceptible to HPIV-3 infection; however, limited replication was observed that led to neither overt clinical signs nor ferret-to-ferret transmission. However, in combination with ferret AO, the ferret model of HPIV-3 infection, tissue tropism, and neutralizing antibodies complements human ex vivo lung models and can be used as a platform for prevention and treatment studies for this important respiratory pathogen. IMPORTANCE HPIV-3 is an important cause of pediatric disease and significantly impacts the elderly. Increasing numbers of immunocompromised patients suffer from HPIV-3 infections, often related to problems with viral clearance. There is a need to model HPIV-3 infections in vitro and in vivo to evaluate novel prophylaxis and treatment options. Currently existing animal models lack the potential for studying animal-to-animal transmission or the effect of immunosuppressive therapy. Here, we describe the use of the ferret model in combination with authentic clinical viruses to further complement human ex vivo models, providing a platform to study approaches to prevent and treat HPIV-3 infection. Although we did not detect ferret-to-ferret transmission in our studies, these studies lay the groundwork for further refinement of the ferret model to immunocompromised ferrets, allowing for studies of severe HPIV-3-associated disease. Such models for preclinical evaluation of prophylaxis and antivirals can contribute to reducing the global health burden of HPIV-3.
Collapse
|
48
|
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169:100-117. [PMID: 33309815 PMCID: PMC7833882 DOI: 10.1016/j.addr.2020.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/08/2023]
Abstract
To address the COVID-19 pandemic, there has been an unprecedented global effort to advance potent neutralizing mAbs against SARS-CoV-2 as therapeutics. However, historical efforts to advance antiviral monoclonal antibodies (mAbs) for the treatment of other respiratory infections have been met with categorical failures in the clinic. By investigating the mechanism by which SARS-CoV-2 and similar viruses spread within the lung, along with available biodistribution data for systemically injected mAb, we highlight the challenges faced by current antiviral mAbs for COVID-19. We summarize some of the leading mAbs currently in development, and present the evidence supporting inhaled delivery of antiviral mAb as an early intervention against COVID-19 that could prevent important pulmonary morbidities associated with the infection.
Collapse
Affiliation(s)
- Carlos Cruz-Teran
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Alice Ma
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Inhalon Biopharma, Durham, NC 27709, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
49
|
Hoffmann HH, Schneider WM, Rozen-Gagnon K, Miles LA, Schuster F, Razooky B, Jacobson E, Wu X, Yi S, Rudin CM, MacDonald MR, McMullan LK, Poirier JT, Rice CM. TMEM41B Is a Pan-flavivirus Host Factor. Cell 2021; 184:133-148.e20. [PMID: 33338421 PMCID: PMC7954666 DOI: 10.1016/j.cell.2020.12.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.
Collapse
Affiliation(s)
- H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Kathryn Rozen-Gagnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Linde A Miles
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felix Schuster
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA; Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Eliana Jacobson
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Xianfang Wu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Soon Yi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Laura K McMullan
- Virus Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers of Disease Control and Prevention, Atlanta, GA, USA
| | - John T Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
50
|
E3 ubiquitin ligase Mindbomb 1 facilitates nuclear delivery of adenovirus genomes. Proc Natl Acad Sci U S A 2020; 118:2015794118. [PMID: 33443154 DOI: 10.1073/pnas.2015794118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The journey from plasma membrane to nuclear pore is a critical step in the lifecycle of DNA viruses, many of which must successfully deposit their genomes into the nucleus for replication. Viral capsids navigate this vast distance through the coordinated hijacking of a number of cellular host factors, many of which remain unknown. We performed a gene-trap screen in haploid cells to identify host factors for adenovirus (AdV), a DNA virus that can cause severe respiratory illness in immune-compromised individuals. This work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved in neurodevelopment, as critical for AdV infectivity. In the absence of MIB1, we observed that viral capsids successfully traffic to the proximity of the nucleus but ultimately fail to deposit their genomes within. The capacity of MIB1 to promote AdV infection was dependent on its ubiquitination activity, suggesting that MIB1 may mediate proteasomal degradation of one or more negative regulators of AdV infection. Employing complementary proteomic approaches to characterize proteins proximal to MIB1 upon AdV infection and differentially ubiquitinated in the presence or absence of MIB1, we observed an intersection between MIB1 and ribonucleoproteins (RNPs) largely unexplored in mammalian cells. This work uncovers yet another way that viruses utilize host cell machinery for their own replication, highlighting a potential target for therapeutic interventions that counter AdV infection.
Collapse
|