1
|
Meirelles LA, Vayena E, Debache A, Schmidt E, Rossy T, Distler T, Hatzimanikatis V, Persat A. Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection. Nat Microbiol 2024:10.1038/s41564-024-01842-3. [PMID: 39455898 DOI: 10.1038/s41564-024-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Pseudomonas aeruginosa frequently causes antibiotic-recalcitrant pneumonia, but the mechanisms driving its adaptation during human infections remain unclear. To reveal the selective pressures and adaptation strategies at the mucosal surface, here we investigated P. aeruginosa growth and antibiotic tolerance in tissue-engineered airways by transposon insertion sequencing (Tn-seq). Metabolic modelling based on Tn-seq data revealed the nutritional requirements for P. aeruginosa growth, highlighting reliance on glucose and lactate and varying requirements for amino acid biosynthesis. Tn-seq also revealed selection against biofilm formation during mucosal growth in the absence of antibiotics. Live imaging in engineered organoids showed that biofilm-dwelling cells remained sessile while colonizing the mucosal surface, limiting nutrient foraging and reduced growth. Conversely, biofilm formation increased antibiotic tolerance at the mucosal surface. Moreover, mutants with exacerbated biofilm phenotypes protected less tolerant but more cytotoxic strains, contributing to phenotypic heterogeneity. P. aeruginosa must therefore navigate conflicting physical and biological selective pressures to establish chronic infections.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Auriane Debache
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Schmidt
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tamara Rossy
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tania Distler
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
2
|
Núñez-García LÁ, Feliciano-Guzmán JM, Mireles-Davalos CD, López-Sántiz JR, Ovando-Fonseca JE, Becerril-Vargas E, Jiménez-Martínez ME, Rodríguez-Medina N, Garza-Ramos U, Córdova-Fletes C, Garza-González E. Genomic and phenotypic characterization of Pseudomonas aeruginosa isolates from two Mexican cystic fibrosis attention centers. Microbiol Spectr 2024:e0110024. [PMID: 39440985 DOI: 10.1128/spectrum.01100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Thirty-nine clinical isolates of Pseudomonas aeruginosa collected from 11 cystic fibrosis (CF) patients at two CF attention centers over 10 years were subjected to whole genome sequencing (WGS). Phenotypic tests (i.e., elastase, motility, biofilm, growth rate, and antibiotic susceptibility) were performed to correlate results. A single strain of P. aeruginosa was found to persist over time in longitudinal isolates. No transmission between patients or centers was observed. A tendency to lack genes related to pyoverdine, flagellum, pili, and O-antigen was observed, whereas those related to biofilm, phenazine, and pyochelin were conserved among isolates. In a patient with a 10-year follow-up, a single strain of P. aeruginosa persisted and showed a gradual decrease in elastase activity and growth rate, demonstrating an adaptive phenotype.IMPORTANCEThis study investigates the genomic and phenotypic characteristics of Pseudomonas aeruginosa isolates from Mexican cystic fibrosis (CF) patients, an underrepresented group in CF research. To our knowledge, it is the first to use whole genome sequencing (WGS) to study longitudinally collected P. aeruginosa isolates from this population, evaluating both genomic features and clonal relationships. Remarkably, the study includes samples from one patient over 10 years, offering an extended observation time compared to existing literature. Unlike similar studies, which often lack phenotypic testing, this research incorporates various virulence-related phenotypic assays, enhancing our understanding of gene-to-phenotype correlations. Two potential mechanisms for the loss of elastolytic activity were identified. Furthermore, we conduct an in-depth mobilome analysis, an area that remains largely unexplored in CF contexts. Whole genome sequencing data are publicly available through the NCBI SRA database, facilitating further re-analysis for studies on P. aeruginosa in CF, as well as epidemiological and population structure research.
Collapse
Affiliation(s)
- Luis Ángel Núñez-García
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | | | | | - Eduardo Becerril-Vargas
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de Mexico, Mexico
| | | | - Nadia Rodríguez-Medina
- Instituto Nacional de Salud Pública, Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública, Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico
| | - Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| |
Collapse
|
3
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
4
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Hyun JE, Hwang CY. Antimicrobial Peptide Reduces Cytotoxicity and Inflammation in Canine Epidermal Keratinocyte Progenitor Cells Induced by Pseudomonas aeruginosa Infection. Vet Sci 2024; 11:235. [PMID: 38921982 PMCID: PMC11209461 DOI: 10.3390/vetsci11060235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The direct effects and antimicrobial activity of synthetic antimicrobial peptides (AMPs) obtained from dogs, including cBD, cBD103, and cCath, against P. aeruginosa wild-type strain PAO1 and canine keratinocytes were analyzed. Antibacterial effects on planktonic bacteria were assessed by determining the minimum bactericidal concentrations (MBCs) of AMPs and by a time-kill assay. Antibiofilm effects were assessed using the microtiter plate assay. We also evaluated the effects of AMPs on cell cytotoxicity and host immune response induced by stimulating canine epidermal keratinocyte progenitor (CPEK) cells with PAO1 and its LPS. cBD, cBD103, and cCath all exhibited dose-dependent antimicrobial and antibiofilm effects. In particular, 25 μg/mL cBD103 showed rapid bactericidal activity within 60 min and inhibited biofilm formation. In addition, pretreatment with cBD103 (25 µg/mL) and cCath (50 µg/mL) 1 h before stimulation significantly reduced the cytotoxicity of the CPEK cells by PAO1 and LPS-induced IL-6 and TNF-a expressions. cBD had little effect on the response to PAO1 and LPS in the cells. These results indicate the therapeutic potential of AMPs in P. aeruginosa skin infections. However, further studies on the mechanism of action of AMPs in keratinocytes and clinical trials are needed.
Collapse
Affiliation(s)
- Jae-Eun Hyun
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Cheol-Yong Hwang
- Laboratory of Veterinary Dermatology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Neve RL, Giedraitis E, Akbari MS, Cohen S, Phelan VV. Secondary metabolite profiling of Pseudomonas aeruginosa isolates reveals rare genomic traits. mSystems 2024; 9:e0033924. [PMID: 38619244 PMCID: PMC11097636 DOI: 10.1128/msystems.00339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram-negative opportunistic pathogen with remarkable phylogenetic and phenotypic variabilities. In this work, we applied classical molecular networking analysis to secondary metabolite profiling data from seven Pseudomonas aeruginosa strains, including five clinical isolates from the lung secretions of people with cystic fibrosis (CF). We provide three vignettes illustrating how secondary metabolite profiling aids in the identification of rare genomics traits in P. aeruginosa. First, we describe the identification of a previously unreported class of acyl putrescines produced by isolate mFLRO1. Secondary analysis of publicly available metabolomics data revealed that acyl putrescines are produced by <5% of P. aeruginosa strains. Second, we show that isolate SH3A does not produce di-rhamnolipids. Whole-genome sequencing and comparative genomics revealed that SH3A cannot produce di-rhamnolipids because its genome belongs to clade 5 of the P. aeruginosa phylogenetic tree. Previous phylogenetic analysis of thousands of P. aeruginosa strains concluded that <1% of publicly available genome sequences contribute to this clade. Last, we show that isolate SH1B does not produce the phenazine pyocyanin or rhamnolipids because it has a one-base insertion frameshift mutation (678insC) in the gene rhlR, which disrupts rhl-driven quorum sensing. Secondary analysis of the tens of thousands of publicly available genomes in the National Center for Biotechnology Information (NCBI) and the Pseudomonas Genome Database revealed that this mutation was present in only four P. aeruginosa genomes. Taken together, this study highlights that secondary metabolite profiling combined with genomic analysis can identify rare genetic traits of P. aeruginosa isolates.IMPORTANCESecondary metabolite profiling of five Pseudomonas aeruginosa isolates from cystic fibrosis sputum captured three traits present in <1%-5% of publicly available data, pointing to how our current library of P. aeruginosa strains may not represent the diversity within this species or the genetic variance that occurs in the CF lung.
Collapse
Affiliation(s)
- Rachel L. Neve
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Giedraitis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Madeline S. Akbari
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shirli Cohen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Baty JJ, Stoner SN, McDaniel MS, Huffines JT, Edmonds SE, Evans NJ, Novak L, Scoffield JA. An oral commensal attenuates Pseudomonas aeruginosa-induced airway inflammation and modulates nitrite flux in respiratory epithelium. Microbiol Spectr 2023; 11:e0219823. [PMID: 37800950 PMCID: PMC10715204 DOI: 10.1128/spectrum.02198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/14/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Respiratory infections are a leading cause of morbidity and mortality in people with cystic fibrosis (CF). These infections are polymicrobial in nature with overt pathogens and other colonizing microbes present. Microbiome data have indicated that the presence of oral commensal bacteria in the lungs is correlated with improved outcomes. We hypothesize that one oral commensal, Streptococcus parasanguinis, inhibits CF pathogens and modulates the host immune response. One major CF pathogen is Pseudomonas aeruginosa, a Gram-negative, opportunistic bacterium with intrinsic drug resistance and an arsenal of virulence factors. We have previously shown that S. parasanguinis inhibits P. aeruginosa in vitro in a nitrite-dependent manner through the production of reactive nitrogen intermediates. In this study, we demonstrate that while this mechanism is evident in a cell culture model of the CF airway, an alternative mechanism by which S. parasanguinis may improve outcomes for people with CF is through immunomodulation.
Collapse
Affiliation(s)
- Joshua J. Baty
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara N. Stoner
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melissa S. McDaniel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joshua T. Huffines
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara E. Edmonds
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicholas J. Evans
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lea Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica A. Scoffield
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Van den Bossche S, Abatih E, Grassi L, De Broe E, Rigole P, Boelens J, Van Caenegem J, Verhasselt B, Janssens I, Van Braeckel E, Versmessen N, Cools P, Coenye T, Crabbé A. Pooling isolates to address the diversity in antimicrobial susceptibility of Pseudomonas aeruginosa in cystic fibrosis. Microbiol Spectr 2023; 11:e0044923. [PMID: 37982625 PMCID: PMC10714813 DOI: 10.1128/spectrum.00449-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE People with cystic fibrosis (pwCF) often suffer from chronic lung infections with Pseudomonas aeruginosa. While antibiotics are still commonly used to treat P. aeruginosa infections, there is a high discordance between in vitro and in vivo antibiotic efficacy, which contributes to suboptimal antibiotic therapy. In the present study, we found that isolates from the same sputum sample had highly diverse antibiotic resistance profiles [based on the minimal inhibitory concentration (MIC)], which may explain the reported discrepancy between in vitro and in vivo antibiotic efficacy. Through systematic analysis, we report that pooling nine isolates per sputum sample significantly decreased intrasample diversity in MIC and influenced clinical interpretation of antibiotic susceptibility tests compared to single isolate testing. Hence, pooling of isolates may offer a solution to obtain a consistent MIC test result and could lead to optimizing antibiotic therapy in pwCF and other infectious diseases where diversity in antibiotic resistance is observed.
Collapse
Affiliation(s)
| | - Emmanuel Abatih
- Data Analysis and Statistical Science (DASS), Ghent University, Ghent, Belgium
| | - Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Jerina Boelens
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Joris Van Caenegem
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Bruno Verhasselt
- Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Iris Janssens
- Department of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nick Versmessen
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Piet Cools
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Ferguson DL, Gloag ES, Parsek MR, Wozniak DJ. Extracellular DNA enhances biofilm integrity and mechanical properties of mucoid Pseudomonas aeruginosa. J Bacteriol 2023; 205:e0023823. [PMID: 37791754 PMCID: PMC10601617 DOI: 10.1128/jb.00238-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most common biofilm-forming pathogens responsible for lung infections of individuals with cystic fibrosis (CF). P. aeruginosa becomes tolerant to antimicrobials in the biofilm state and is difficult to treat. Production of extracellular polymeric substances (EPS), such as alginate and extracellular DNA (eDNA), can allow adherence to abiotic and biotic surfaces, antimicrobial evasion, and resilience to environmental pressures. Alginate-producing mucoid variants of P. aeruginosa are frequently isolated from CF airway samples and are associated with worsening patient outcomes. While eDNA is a major structural component of nonmucoid P. aeruginosa biofilms, the potential role of eDNA in mucoid biofilms is unclear. Here, we investigate how eDNA contributes to clinical mucoid biofilm physiology and integrity. We predicted that eDNA plays a structural and mechanical role in mucoid biofilms. To test this, we quantified biofilm eDNA in mucoid biofilms and used microscopy and rheology to visualize eDNA and detect changes in biofilm structure and mechanics upon DNaseI treatment. We showed that biofilm eDNA abundance is diverse across clinical mucoid strains and observed a temporal increase in foci of eDNA within intact mucoid biofilms. Increased cell dispersal and reduced biomass were also observed following DNaseI treatment of mucoid biofilms. Degradation of eDNA also impacted the mechanical integrity of mucoid biofilms by increasing the stiffness and decreasing the cohesion of the biofilm. These findings advance our understanding of clinical mucoid P. aeruginosa biofilms and facilitate the development of new approaches to target biofilms by exploiting the functions of EPS components. IMPORTANCE Understanding the role of eDNA in mucoid Pseudomonas aeruginosa biofilms will lead to therapeutic strategies that combat the biophysical and structural function of EPS for the eradication of bacteria in mucoid biofilms during chronic infections. This knowledge can be used to further identify unknown matrix component interactions within pathogenic biofilm-forming clinical isolates.
Collapse
Affiliation(s)
- Danielle L. Ferguson
- Department of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Erin S. Gloag
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Oliveira M, Cunha E, Tavares L, Serrano I. P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiol 2023; 9:612-646. [PMID: 38173971 PMCID: PMC10758579 DOI: 10.3934/microbiol.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2024] Open
Abstract
This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.
Collapse
Affiliation(s)
- Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
12
|
Holzinger JM, Toelge M, Werner M, Ederer KU, Siegmund HI, Peterhoff D, Blaas SH, Gisch N, Brochhausen C, Gessner A, Bülow S. Scorpionfish BPI is highly active against multiple drug-resistant Pseudomonas aeruginosa isolates from people with cystic fibrosis. eLife 2023; 12:e86369. [PMID: 37461324 PMCID: PMC10353861 DOI: 10.7554/elife.86369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Chronic pulmonary infection is a hallmark of cystic fibrosis (CF) and requires continuous antibiotic treatment. In this context, Pseudomonas aeruginosa (Pa) is of special concern since colonizing strains frequently acquire multiple drug resistance (MDR). Bactericidal/permeability-increasing protein (BPI) is a neutrophil-derived, endogenous protein with high bactericidal potency against Gram-negative bacteria. However, a significant range of people with CF (PwCF) produce anti-neutrophil cytoplasmic antibodies against BPI (BPI-ANCA), thereby neutralizing its bactericidal function. In accordance with literature, we describe that 51.0% of a total of 39 PwCF expressed BPI-ANCA. Importantly, an orthologous protein to human BPI (huBPI) derived from the scorpionfish Sebastes schlegelii (scoBPI) completely escaped recognition by these autoantibodies. Moreover, scoBPI exhibited high anti-inflammatory potency towards Pa LPS and was bactericidal against MDR Pa derived from PwCF at nanomolar concentrations. In conclusion, our results highlight the potential of highly active orthologous proteins of huBPI in treatment of MDR Pa infections, especially in the presence of BPI-ANCA.
Collapse
Affiliation(s)
- Jonas Maurice Holzinger
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Maren Werner
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Katharina Ursula Ederer
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | | | - David Peterhoff
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, Regensburg, Germany
| | | | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, Regensburg, Germany
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, Regensburg, Germany
| | - Sigrid Bülow
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Marzhoseyni Z, Mousavi MJ, Saffari M, Ghotloo S. Immune escape strategies of Pseudomonas aeruginosa to establish chronic infection. Cytokine 2023; 163:156135. [PMID: 36724716 DOI: 10.1016/j.cyto.2023.156135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
The infection caused by P. aeruginosa still is dangerous throughout the world. This is partly due to its immune escape mechanisms considerably increasing the bacterial survival in the host. By escape from recognition by TLRs, interference with complement system activation, phagocytosis inhibition, production of ROS, inhibition of NET production, interference with the generation of cytokines, inflammasome inhibition, reduced antigen presentation, interference with cellular and humoral immunity, and induction of apoptotic cell death and MDSc, P. aeruginosa breaks down the barriers of the immune system and causes lethal infections in the host. Recognition of other immune escape mechanisms of P. aeruginosa may provide a basis for the future treatment of the infection. This manuscript may provide new insights and information for the development of new strategies to combat P. aeruginosa infection. In the present manuscript, the escape mechanisms of P. aeruginosa against immune response would be reviewed.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Pseudomonas aeruginosa Nonphosphorylated AlgR Induces Ribonucleotide Reductase Expression under Oxidative Stress Infectious Conditions. mSystems 2023; 8:e0100522. [PMID: 36794960 PMCID: PMC10134789 DOI: 10.1128/msystems.01005-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Ribonucleotide reductases (RNRs) are key enzymes which catalyze the synthesis of deoxyribonucleotides, the monomers needed for DNA replication and repair. RNRs are classified into three classes (I, II, and III) depending on their overall structure and metal cofactors. Pseudomonas aeruginosa is an opportunistic pathogen which harbors all three RNR classes, increasing its metabolic versatility. During an infection, P. aeruginosa can form a biofilm to be protected from host immune defenses, such as the production of reactive oxygen species by macrophages. One of the essential transcription factors needed to regulate biofilm growth and other important metabolic pathways is AlgR. AlgR is part of a two-component system with FimS, a kinase that catalyzes its phosphorylation in response to external signals. Additionally, AlgR is part of the regulatory network of cell RNR regulation. In this study, we investigated the regulation of RNRs through AlgR under oxidative stress conditions. We determined that the nonphosphorylated form of AlgR is responsible for class I and II RNR induction after an H2O2 addition in planktonic culture and during flow biofilm growth. We observed similar RNR induction patterns upon comparing the P. aeruginosa laboratory strain PAO1 with different P. aeruginosa clinical isolates. Finally, we showed that during Galleria mellonella infection, when oxidative stress is high, AlgR is crucial for transcriptional induction of a class II RNR gene (nrdJ). Therefore, we show that the nonphosphorylated form of AlgR, in addition to being crucial for infection chronicity, regulates the RNR network in response to oxidative stress during infection and biofilm formation. IMPORTANCE The emergence of multidrug-resistant bacteria is a serious problem worldwide. Pseudomonas aeruginosa is a pathogen that causes severe infections because it can form a biofilm that protects it from immune system mechanisms such as the production of oxidative stress. Ribonucleotide reductases are essential enzymes which synthesize deoxyribonucleotides used in the replication of DNA. RNRs are classified into three classes (I, II, and III), and P. aeruginosa harbors all three of these classes, increasing its metabolic versatility. Transcription factors, such as AlgR, regulate the expression of RNRs. AlgR is involved in the RNR regulation network and regulates biofilm growth and other metabolic pathways. We determined that AlgR induces class I and II RNRs after an H2O2 addition in planktonic culture and biofilm growth. Additionally, we showed that a class II RNR is essential during Galleria mellonella infection and that AlgR regulates its induction. Class II RNRs could be considered excellent antibacterial targets to be explored to combat P. aeruginosa infections.
Collapse
|
15
|
Grace A, Sahu R, Owen DR, Dennis VA. Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Front Microbiol 2022; 13:1023523. [PMID: 36312971 PMCID: PMC9607943 DOI: 10.3389/fmicb.2022.1023523] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous, motile, gram-negative bacterium that has been recently identified as a multi-drug resistant pathogen in critical need of novel therapeutics. Of the approximately 5,000 strains, PAO1 and PA14 are common laboratory reference strains, modeling moderately and hyper-virulent phenotypes, respectively. PAO1 and PA14 have been instrumental in facilitating the discovery of novel drug targets, testing novel therapeutics, and supplying critical genomic information on the bacterium. While the two strains have contributed to a wide breadth of knowledge on the natural behaviors and therapeutic susceptibilities of P. aeruginosa, they have demonstrated significant deviations from observations in human infections. Many of these deviations are related to experimental inconsistencies in laboratory strain environment that complicate and, at times, terminate translation from laboratory results to clinical applications. This review aims to provide a comparative analysis of the two strains and potential methods to improve their clinical relevance.
Collapse
Affiliation(s)
- Amber Grace
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | | | - Vida A. Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- *Correspondence: Vida A. Dennis,
| |
Collapse
|
16
|
Gong X, Zhao Q, Wu Y, Zhou H, Ding S, Zhu K. Mucoid Acinetobacter baumannii enhances anti-phagocytosis through reducing C3b deposition. Front Med (Lausanne) 2022; 9:879361. [PMID: 36186828 PMCID: PMC9521736 DOI: 10.3389/fmed.2022.879361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMultidrug resistant (MDR) Acinetobacter baumannii causes serious infections in intensive care units and is hard to be eradicated by antibiotics. Many A. baumannii isolates are identified as the mucoid type recently, but the biological characteristics of mucoid A. baumannii and their interactions with host cells remains unclear.MethodsThe mucoid phenotype, antimicrobial susceptibility, biofilm-forming ability, acid resistance ability, peroxide tolerance, and in vivo toxicity of clinical ICUs derived A. baumannii isolates were first investigated. Secondly, the phagocytic resistance and invasive capacity of A. baumannii isolates to macrophages (MH-S, RAW264.7) and epithelial cells (A549) were analyzed. Furthermore, the abundance of C3b (complement factor C3 degradation product) deposition on the surface of A. baumannii was investigated. Last, the relationship between C3b deposition and the abundance of capsule in A. baumannii isolates were analyzed.ResultsThese A. baumannii strains showed different mucoid phenotypes including hyper mucoid (HM), medium mucoid (MM), and low mucoid (LM). All tested strains were MDR with high tolerance to either acid or hydrogen peroxide exposure. Notably, these mucoid strains showed the increase of mortality in the Galleria mellonella infection models. Besides, the HM strain exhibited less biofilm abundance, higher molecular weight (MW) of capsule, and greater anti-phagocytic activity to macrophages than the LM strain. Together with the increased abundance of capsule, high expression of tuf gene (associated with the hydrolysis of C3b), the HM strain effectively inhibits C3b deposition on bacterial surface, resulting in the low-opsonization phenotype.ConclusionCapsular characteristics facilitate the anti-phagocytic activity in hyper mucoid A. baumannii through the reduction of C3b deposition. Mucoid A. baumannii exhibits high phagocytosis resistance to both macrophages and epithelial cells.
Collapse
Affiliation(s)
- Xiaoxia Gong
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qian Zhao
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yifan Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongwei Zhou
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Kui Zhu,
| |
Collapse
|
17
|
Hall-Stoodley L, McCoy KS. Biofilm aggregates and the host airway-microbial interface. Front Cell Infect Microbiol 2022; 12:969326. [PMID: 36081767 PMCID: PMC9445362 DOI: 10.3389/fcimb.2022.969326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are multicellular microbial aggregates that can be associated with host mucosal epithelia in the airway, gut, and genitourinary tract. The host environment plays a critical role in the establishment of these microbial communities in both health and disease. These host mucosal microenvironments however are distinct histologically, functionally, and regarding nutrient availability. This review discusses the specific mucosal epithelial microenvironments lining the airway, focusing on: i) biofilms in the human respiratory tract and the unique airway microenvironments that make it exquisitely suited to defend against infection, and ii) how airway pathophysiology and dysfunctional barrier/clearance mechanisms due to genetic mutations, damage, and inflammation contribute to biofilm infections. The host cellular responses to infection that contribute to resolution or exacerbation, and insights about evaluating and therapeutically targeting airway-associated biofilm infections are briefly discussed. Since so many studies have focused on Pseudomonas aeruginosa in the context of cystic fibrosis (CF) or on Haemophilus influenzae in the context of upper and lower respiratory diseases, these bacteria are used as examples. However, there are notable differences in diseased airway microenvironments and the unique pathophysiology specific to the bacterial pathogens themselves.
Collapse
Affiliation(s)
- Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, United States
- *Correspondence: Luanne Hall-Stoodley,
| | - Karen S. McCoy
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
18
|
Baty JJ, Huffines JT, Stoner SN, Scoffield JA. A Commensal Streptococcus Dysregulates the Pseudomonas aeruginosa Nitrosative Stress Response. Front Cell Infect Microbiol 2022; 12:817336. [PMID: 35619650 PMCID: PMC9127344 DOI: 10.3389/fcimb.2022.817336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic infections in the cystic fibrosis (CF) airway are composed of both pathogenic and commensal bacteria. However, chronic Pseudomonas aeruginosa infections are the leading cause of lung deterioration in individuals with CF. Interestingly, oral commensals can translocate to the CF lung and their presence is associated with improved lung function, presumably due to their ability to antagonize P. aeruginosa. We have previously shown that one commensal, Streptococcus parasanguinis, produces hydrogen peroxide that reacts with nitrite to generate reactive nitrogen intermediates (RNI) which inhibit P. aeruginosa growth. In this study, we sought to understand the global impact of commensal-mediated RNI on the P. aeruginosa transcriptome. RNA sequencing analysis revealed that S. parasanguinis and nitrite-mediated RNI dysregulated expression of denitrification genes in a CF isolate of P. aeruginosa compared to when this isolate was only exposed to S. parasanguinis. Further, loss of a nitric oxide reductase subunit (norB) rendered an acute P. aeruginosa isolate more susceptible to S. parasanguinis-mediated RNI. Additionally, S. parasanguinis-mediated RNI inactivated P. aeruginosa aconitase activity. Lastly, we report that P. aeruginosa isolates recovered from CF individuals are uniquely hypersensitive to S. parasanguinis-mediated RNI compared to acute infection or environmental P. aeruginosa isolates. These findings illustrate that S. parasanguinis hinders the ability of P. aeruginosa to respond to RNI, which potentially prevents P. aeruginosa CF isolates from resisting commensal and host-induced RNI in the CF airway.
Collapse
|
19
|
Mucoid Pseudomonas aeruginosa Can Produce Calcium-Gelled Biofilms Independent of the Matrix Components Psl and CdrA. J Bacteriol 2022; 204:e0056821. [PMID: 35416688 PMCID: PMC9112934 DOI: 10.1128/jb.00568-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilms are aggregates of microorganisms embedded in an extracellular matrix comprised largely of exopolysaccharides (EPSs), nucleic acids, and proteins. Pseudomonas aeruginosa is an opportunistic human pathogen that is also a model organism for studying biofilms in the laboratory. Here, we define a novel program of biofilm development used by mucoid (alginate-overproducing) P. aeruginosa in the presence of elevated calcium. Calcium cations cross-link negatively charged alginate polymers, resulting in individual cells being suspended in an alginate gel. The formation of this type of structurally distinct biofilm is not reliant on the canonical biofilm EPS components Psl and Pel or the matrix protein CdrA. We also observed that mucoid P. aeruginosa biofilm cells do not have the typical elevated levels of the secondary messenger cyclic di-GMP (c-di-GMP), as expected of biofilm cells, nor does the overproduction of alginate rely on high c-di-GMP. This contrasts with nonmucoid biofilms in which the production of the matrix components Psl, Pel, and CdrA is positively regulated by elevated c-di-GMP. We further demonstrate that calcium-gelled alginate biofilms impede the penetration of the antibiotic tobramycin, thus protecting the biofilm community from antibiotic-mediated killing. Finally, we show that bacterial aggregates with a dispersed cell arrangement like laboratory-grown calcium-alginate biofilm structures are present in explanted cystic fibrosis (CF) lung samples. Our findings illustrate the diverse nature of biofilm formation and structure in P. aeruginosa. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa produces a complex biofilm matrix comprised of exopolysaccharides (EPSs), nucleic acids, and proteins. P. aeruginosa biofilm formation canonically depends on a variable combination of the exopolysaccharides Psl and Pel and the matrix protein CdrA. We demonstrate that mucoid P. aeruginosa, which overproduces the EPS alginate, possesses an entirely alternate and calcium-dependent method of biofilm formation. These mucoid biofilm structures do not require Psl, Pel, or CdrA, and they display a unique organization of individually suspended cells similar to bacterial aggregates observed in cystic fibrosis airways. Furthermore, calcium-gelled mucoid biofilms impede the penetration and killing action of the antibiotic tobramycin, illustrating their potential clinical significance. Our findings highlight the compositional and structural variety of P. aeruginosa biofilm aggregates.
Collapse
|
20
|
Di Bonaventura G, Lupetti V, Verginelli F, Giancristofaro S, Barbieri R, Gherardi G, Pompilio A. Repurposing the Veterinary Antibiotic Apramycin for Antibacterial and Antibiofilm Activity Against Pseudomonas aeruginosa From Cystic Fibrosis Patients. Front Microbiol 2022; 12:801152. [PMID: 35185826 PMCID: PMC8851335 DOI: 10.3389/fmicb.2021.801152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: To evaluate the in vitro antibacterial, antibiofilm, and antivirulence activities of apramycin, comparatively to tobramycin, against a set of P. aeruginosa from chronically infected cystic fibrosis (CF) patients. Methods The activity of antibiotics against planktonic cells was assessed by performing MIC, MBC, and time-kill assays. The activity against mature biofilms was evaluated, in a microtiter plate, both in terms of dispersion (crystal violet assay) and residual viability (viable cell count). The effect of drug exposure on selected P. aeruginosa virulence genes expression was assessed by real-time Reverse Transcription quantitative PCR (RT-qPCR). Results Apramycin MIC90 and MBC90 values were found at least fourfold lower than those for tobramycin. A comparable trend was observed for mucoid strains. Only 4 out of 24 strains (16.6%) showed an apramycin MIC higher than the epidemiological cut-off value of 64 mg/L, whereas a higher resistance rate was observed for tobramycin (62.5%; p < 0.01 vs. apramycin). In time-kill analyses, both aminoglycosides were found bactericidal, although apramycin showed a more rapid effect and did not allow for regrowth. Apramycin generally stimulated biofilm biomass formation, whereas tobramycin showed opposite trends depending on the strain tested. Both drugs caused a highly significant, dose-dependent reduction of biofilm viability, regardless of strain and concentration tested. The exposure to apramycin and tobramycin caused increased expression of mexA and mexC (multidrug efflux pumps), whereas tobramycin specifically increased the expression of aprA (alkaline protease) and toxA (exotoxin A). Neither apramycin nor tobramycin showed cytotoxic potential toward IB3-1 bronchial epithelial CF cells. Conclusion Our results warrant future pharmacokinetic and pharmacodynamic studies for supporting the rationale to repurpose apramycin, a veterinary aminoglycoside, for CF lung infections.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- *Correspondence: Giovanni Di Bonaventura,
| | - Veronica Lupetti
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Fabio Verginelli
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Fabio Verginelli,
| | - Sara Giancristofaro
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Rosemary Barbieri
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | | | - Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
21
|
Balmuri SR, Phandanouvong-Lozano V, House SD, Yang JC, Niepa TH. Mucoid Coating Provides a Growth Advantage to Pseudomonas aeruginosa at Oil–Water Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:1868-1878. [DOI: 10.1021/acsabm.1c01198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Van den Bossche S, De Broe E, Coenye T, Van Braeckel E, Crabbé A. The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. Eur Respir Rev 2021; 30:30/161/210055. [PMID: 34526313 DOI: 10.1183/16000617.0055-2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic airway colonisation by Pseudomonas aeruginosa, a hallmark of cystic fibrosis (CF) lung disease, is associated with increased morbidity and mortality and despite aggressive antibiotic treatment, P. aeruginosa is able to persist in CF airways. In vitro antibiotic susceptibility assays are poor predictors of antibiotic efficacy to treat respiratory tract infections in the CF patient population and the selection of the antibiotic(s) is often made on an empirical base. In the current review, we discuss the factors that are responsible for the discrepancies between antibiotic activity in vitro and clinical efficacy in vivo We describe how the CF lung microenvironment, shaped by host factors (such as iron, mucus, immune mediators and oxygen availability) and the microbiota, influences antibiotic activity and varies widely between patients. A better understanding of the CF microenvironment and population diversity may thus help improve in vitro antibiotic susceptibility testing and clinical decision making, in turn increasing the success rate of antibiotic treatment.
Collapse
Affiliation(s)
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Dept of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium.,Dept of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Majka G, Mazurek H, Strus M, Ciszek-Lenda M, Szatanek R, Pac A, Golińska E, Marcinkiewicz J. Chronic bacterial pulmonary infections in advanced cystic fibrosis differently affect the level of sputum neutrophil elastase, IL-8 and IL-6. Clin Exp Immunol 2021; 205:391-405. [PMID: 34031873 DOI: 10.1111/cei.13624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced cystic fibrosis (CF) lung disease is commonly characterized by a chronic Pseudomonas aeruginosa infection and destructive inflammation caused by neutrophils. However, the lack of convincing evidence from most informative biomarkers of severe lung dysfunction (SLD-CF) has hampered the formulation of a conclusive, targeted diagnosis of CF. The aim of this study was to determine whether SLD-CF is related to the high concentration of sputum inflammatory mediators and the presence of biofilm-forming bacterial strains. Forty-one patients with advanced CF lung disease were studied. The severity of pulmonary dysfunction was defined by forced expiratory volume in 1 second (FEV1) < 40%. C-reactive protein (CRP) and NLR (neutrophil-lymphocyte ratio) were examined as representative blood-based markers of inflammation. Expectorated sputum was collected and analysed for cytokines and neutrophil-derived defence proteins. Isolated sputum bacteria were identified and their biofilm-forming capacity was determined. There was no association between FEV1% and total number of sputum bacteria. However, in the high biofilm-forming group the median FEV1 was < 40%. Importantly, high density of sputum bacteria was associated with increased concentrations of neutrophil elastase and interleukin (IL)-8 and low concentrations of IL-6 and IL-10. The low concentration of sputum IL-6 is unique for CF and distinct from that observed in other chronic pulmonary inflammatory diseases. These findings strongly suggest that expectorated sputum is an informative source of pulmonary biomarkers representative for advanced CF and may replace more invasive bronchoalveolar lavage analysis to monitor the disease. We recommend to use of the following inflammatory biomarkers: blood CRP, NLR and sputum elastase, IL-6, IL-8 and IL-10.
Collapse
Affiliation(s)
- Grzegorz Majka
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, Institute of Tuberculosis and Lung Disorders, Rabka-Zdrój, Poland
| | - Magdalena Strus
- Faculty of Medicine, Department of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Ciszek-Lenda
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Rafał Szatanek
- Faculty of Medicine, Institute of Pediatrics, Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Pac
- Faculty of Medicine, Chair of Epidemiology and Preventive Medicine, Department of Epidemiology, Jagiellonian University Medical College, Kraków, Poland
| | - Edyta Golińska
- Faculty of Medicine, Department of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Marcinkiewicz
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
24
|
Ridyard KE, Overhage J. The Potential of Human Peptide LL-37 as an Antimicrobial and Anti-Biofilm Agent. Antibiotics (Basel) 2021; 10:antibiotics10060650. [PMID: 34072318 PMCID: PMC8227053 DOI: 10.3390/antibiotics10060650] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in antimicrobial resistant bacteria threatens the current methods utilized to treat bacterial infections. The development of novel therapeutic agents is crucial in avoiding a post-antibiotic era and the associated deaths from antibiotic resistant pathogens. The human antimicrobial peptide LL-37 has been considered as a potential alternative to conventional antibiotics as it displays broad spectrum antibacterial and anti-biofilm activities as well as immunomodulatory functions. While LL-37 has shown promising results, it has yet to receive regulatory approval as a peptide antibiotic. Despite the strong antimicrobial properties, LL-37 has several limitations including high cost, lower activity in physiological environments, susceptibility to proteolytic degradation, and high toxicity to human cells. This review will discuss the challenges associated with making LL-37 into a viable antibiotic treatment option, with a focus on antimicrobial resistance and cross-resistance as well as adaptive responses to sub-inhibitory concentrations of the peptide. The possible methods to overcome these challenges, including immobilization techniques, LL-37 delivery systems, the development of LL-37 derivatives, and synergistic combinations will also be considered. Herein, we describe how combination therapy and structural modifications to the sequence, helicity, hydrophobicity, charge, and configuration of LL-37 could optimize the antimicrobial and anti-biofilm activities of LL-37 for future clinical use.
Collapse
|
25
|
Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19:331-342. [PMID: 33214718 DOI: 10.1038/s41579-020-00477-5] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 01/29/2023]
Abstract
Intense genome sequencing of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) airways has shown inefficient eradication of the infecting bacteria, as well as previously undocumented patient-to-patient transmission of adapted clones. However, genome sequencing has limited potential as a predictor of chronic infection and of the adaptive state during infection, and thus there is increasing interest in linking phenotypic traits to the genome sequences. Phenotypic information ranges from genome-wide transcriptomic analysis of patient samples to determination of more specific traits associated with metabolic changes, stress responses, antibiotic resistance and tolerance, biofilm formation and slow growth. Environmental conditions in the CF lung shape both genetic and phenotypic changes of P. aeruginosa during infection. In this Review, we discuss the adaptive and evolutionary trajectories that lead to early diversification and late convergence, which enable P. aeruginosa to succeed in this niche, and we point out how knowledge of these biological features may be used to guide diagnosis and therapy.
Collapse
|
26
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
27
|
Yung DBY, Sircombe KJ, Pletzer D. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol Microbiol 2021; 116:1-15. [PMID: 33576132 DOI: 10.1111/mmi.14699] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa) are opportunistic pathogens that are most commonly co-isolated from chronic wounds and the sputum of cystic fibrosis patients. Over the last few years, there have been plenty of contrasting results from studies involving P. aeruginosa and S. aureus co-cultures. The general concept that P. aeruginosa outcompetes S. aureus has been challenged and there is more evidence now that they can co-exist. Nevertheless, it still remains difficult to mimic polymicrobial infections in vitro and in vivo. In this review, we discuss recent advances in regard to Pa-Sa molecular interactions, their physical responses, and in vitro and in vivo models. We believe it is important to optimize growth conditions in the laboratory, determine appropriate bacterial starting ratios, and consider environmental factors to study the co-existence of these two pathogens. Ideally, optimized growth media should reflect host-mimicking conditions with or without host cells that allow both bacteria to co-exist. To further identify mechanisms that could help to treat these complex infections, we propose to use relevant polymicrobial animal models. Ultimately, we briefly discuss how polymicrobial infections can increase antibiotic tolerance.
Collapse
Affiliation(s)
- Deborah Bow Yue Yung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Chaudhry W, Lee E, Worthy A, Weiss Z, Grabowicz M, Vega N, Levin B. Mucoidy, a general mechanism for maintaining lytic phage in populations of bacteria. FEMS Microbiol Ecol 2021; 96:5897354. [PMID: 32845324 PMCID: PMC7532286 DOI: 10.1093/femsec/fiaa162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
We present evidence that phage resistance resulting from overproduction of exopolysaccharides, mucoidy, provides a general answer to the longstanding question of how lytic viruses are maintained in populations dominated by bacteria upon which they cannot replicate. In serial transfer culture, populations of mucoid Escherichia coli MG1655 that are resistant to lytic phages with different receptors, and thereby requiring independent mutations for surface resistance, are capable of maintaining these phages with little effect on their total density. Based on the results of our analysis of a mathematical model, we postulate that the maintenance of phage in populations dominated by mucoid cells can be attributed primarily to high rates of transition from the resistant mucoid states to susceptible non-mucoid states. Our tests with both population dynamic and single cell experiments as well as genomic analysis are consistent with this hypothesis. We discuss reasons for the generalized resistance of these mucoid E. coli, and the genetic and molecular mechanisms responsible for the high rate of transition from mucoid to sensitive states responsible for the maintenance of lytic phage in mucoid populations of E. coli.
Collapse
Affiliation(s)
- Waqas Chaudhry
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Esther Lee
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Andrew Worthy
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Zoe Weiss
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Marcin Grabowicz
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole Vega
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Bruce Levin
- Department of Biology, Emory University, Atlanta, GA 30322, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Therapeutic Potential of Antimicrobial Peptides in Polymicrobial Biofilm-Associated Infections. Int J Mol Sci 2021; 22:ijms22020482. [PMID: 33418930 PMCID: PMC7825036 DOI: 10.3390/ijms22020482] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/10/2023] Open
Abstract
It is widely recognized that many chronic infections of the human body have a polymicrobial etiology. These include diabetic foot ulcer infections, lung infections in cystic fibrosis patients, periodontitis, otitis, urinary tract infections and even a proportion of systemic infections. The treatment of mixed infections poses serious challenges in the clinic. First, polymicrobial communities of microorganisms often organize themselves as biofilms that are notoriously recalcitrant to antimicrobial therapy and clearance by the host immune system. Secondly, a plethora of interactions among community members may affect the expression of virulence factors and the susceptibility to antimicrobials of individual species in the community. Therefore, new strategies able to target multiple pathogens in mixed populations need to be urgently developed and evaluated. In this regard, antimicrobial or host defense peptides (AMPs) deserve particular attention as they are endowed with many favorable features that may serve to this end. The aim of the present review is to offer a comprehensive and updated overview of studies addressing the therapeutic potential of AMPs in mixed infections, highlighting the opportunities offered by this class of antimicrobials in the fight against polymicrobial infections, but also the limits that may arise in their use for this type of application.
Collapse
|
30
|
UPR modulation of host immunity by Pseudomonas aeruginosa in cystic fibrosis. Clin Sci (Lond) 2020; 134:1911-1934. [PMID: 32537652 DOI: 10.1042/cs20200066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.
Collapse
|
31
|
Mould DL, Botelho NJ, Hogan DA. Intraspecies Signaling between Common Variants of Pseudomonas aeruginosa Increases Production of Quorum-Sensing-Controlled Virulence Factors. mBio 2020; 11:e01865-20. [PMID: 32843558 PMCID: PMC7448281 DOI: 10.1128/mbio.01865-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa damages hosts through the production of diverse secreted products, many of which are regulated by quorum sensing (QS). The lasR gene, which encodes a central QS regulator, is frequently mutated in clinical isolates from chronic infections, and loss of LasR function (LasR-) generally impairs the activity of downstream QS regulators RhlR and PqsR. We found that in cocultures containing LasR+ and LasR- strains, LasR- strains hyperproduce the RhlR/RhlI-regulated antagonistic factors pyocyanin and rhamnolipids in diverse models and media and in different strain backgrounds. Diffusible QS autoinducers produced by the wild type were not required for this effect. Using transcriptomics, genetics, and biochemical approaches, we uncovered a reciprocal interaction between wild-type and lasR mutant pairs wherein the iron-scavenging siderophore pyochelin produced by the lasR mutant induced citrate release and cross-feeding from the wild type. Citrate, a metabolite often secreted in low iron environments, stimulated RhlR signaling and RhlI levels in LasR-but not in LasR+ strains. These studies reveal the potential for complex interactions between recently diverged, genetically distinct isolates within populations from single chronic infections.IMPORTANCE Coculture interactions between lasR loss-of-function and LasR+ Pseudomonas aeruginosa strains may explain the worse outcomes associated with the presence of LasR- strains. More broadly, this report illustrates how interactions within a genotypically diverse population, similar to those that frequently develop in natural settings, can promote unpredictably high virulence factor production.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico J Botelho
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
32
|
Beswick E, Amich J, Gago S. Factoring in the Complexity of the Cystic Fibrosis Lung to Understand Aspergillus fumigatus and Pseudomonas aeruginosa Interactions. Pathogens 2020; 9:pathogens9080639. [PMID: 32781694 PMCID: PMC7460534 DOI: 10.3390/pathogens9080639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa has long been established as the most prevalent respiratory pathogen in Cystic Fibrosis (CF) patients, with opportunistic infection causing profound morbidity and mortality. Recently, Aspergillus fumigatus has also been recognised as a key contributor to CF lung deterioration, being consistently associated with decreased lung function and worsened prognosis in these patients. As clinical evidence for the common occurrence of combined infection with these two pathogens increases, research into the mechanism and consequences of their interaction is becoming more relevant. Clinical evidence suggests a synergistic effect of combined infection, which translates into a poorer prognosis for the patients. In vitro results from the laboratory have identified a variety of possible synergistic and antagonistic interactions between A. fumigatus and P. aeruginosa. Here, we present a comprehensive overview of the complex environment of the CF lung and discuss how it needs to be considered to determine the exact molecular interactions that A. fumigatus and P. aeruginosa undergo during combined infection and their effects on the host.
Collapse
Affiliation(s)
- Emily Beswick
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Academic Unit of Medical Education, Medical School, University of Sheffield, Beech Hill Road, Broomhall, Sheffield S10 2TG, UK;
| | - Jorge Amich
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Correspondence: (J.A.); (S.G.)
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Correspondence: (J.A.); (S.G.)
| |
Collapse
|
33
|
Li Q, Tan L, Wang H, Kou Y, Shi X, Zhang S, Pan Y. Fusobacterium nucleatum Interaction with Pseudomonas aeruginosa Induces Biofilm-Associated Antibiotic Tolerance via Fusobacterium Adhesin A. ACS Infect Dis 2020; 6:1686-1696. [PMID: 32320601 DOI: 10.1021/acsinfecdis.9b00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Respiratory infections with Pseudomonas aeruginosa or Fusobacterium nucleatum are associated with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) and failure in antibiotic treatment. However, the impact of these dual-species interactions on the severity of chronic obstructive pulmonary disease (COPD) and biofilm antibiotic susceptibility remains poorly understood. This study demonstrated that F. nucleatum frequently coexisted with P. aeruginosa in the respiratory tract, and the number of F. nucleatum was negatively correlated with the lung function of AECOPD patients. The coculture of P. aeruginosa and F. nucleatum promoted bacterial proliferation and induced antibiotic tolerance through the formation of a dense biofilm surrounded by excessive Pel and Psl polysaccharides. Moreover, Fusobacterium adhesin A (FadA), rather than F. nucleatum spent medium, induced antibiotic tolerance of the P. aeruginosa biofilm. These results indicate that F. nucleatum is a biomarker of lung function decline in AECOPD patients and interacts with P. aeruginosa in vitro to resist antibiotics via FadA, which would be a potential anti-infective target of these dual-species infection.
Collapse
Affiliation(s)
- Qian Li
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Lisi Tan
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Hongyan Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Yurong Kou
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Xiaoting Shi
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Shuwei Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Yaping Pan
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| |
Collapse
|
34
|
Sarkar S. Release mechanisms and molecular interactions of Pseudomonas aeruginosa extracellular DNA. Appl Microbiol Biotechnol 2020; 104:6549-6564. [PMID: 32500267 DOI: 10.1007/s00253-020-10687-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
Abstract
Pseudomonas aeruginosa infection is a significant threat for clinicians. Increasing incidents of resistant biofilm infection result in high mortality rates worldwide. There is a considerable current interest in the field of extracellular DNA (eDNA)-mediated P. aeruginosa biofilm formation. eDNA acts as a glue to make biofilm more stable. This review focuses on the diverse mechanisms and factors, which enhance the eDNA release into the extracellular milieu. Furthermore, eDNA-mediated molecular interactions within the biofilm are emphasized. In addition, drug resistance mechanisms due to the versatility of eDNA are discussed. Spatial physiological diversity is expected due to different metabolic activity of bacterial subpopulation present in P. aeruginosa biofilm layers. In P. aeruginosa, eDNA release is accomplished by cell lysis and OMVs (outer membrane vesicles). eDNA release is a spontaneous and multifactorial process, which may be accomplished by PQS, pyocyanin, and lambda prophage induction. Hydrogen peroxide and pyocin trigger cell death, which may facilitate eDNA release. Lung mucosa of cystic fibrosis patients is enriched with eDNA, which acidifies biofilm and develops P. aeruginosa resistance to aminoglycosides. Further studies on spatial and molecular characterization of bacterial subpopulation in biofilm will shed light on eDNA-biofilm interaction more precisely.Key Points• Extracellular DNA (eDNA) is a key component of Pseudomonas aeruginosa biofilm.• P. aeruginosa eDNA acts as a glue to make biofilm more stronger.• Bacterial cell death or lysis may be the potential way to release P. aeruginosa eDNA into extracellular milieu.• P. aeruginosa eDNA contributes to develop resistance to antimicrobials.
Collapse
Affiliation(s)
- Subendu Sarkar
- Department of Surgery, University School of Medicine, Indiana University, Indianapolis, IN, 46202, USA. .,Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
35
|
Mues N, Chu HW. Out-Smarting the Host: Bacteria Maneuvering the Immune Response to Favor Their Survival. Front Immunol 2020; 11:819. [PMID: 32477341 PMCID: PMC7235365 DOI: 10.3389/fimmu.2020.00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Bacteria adapt themselves to various environmental conditions in nature, which can lead to bacterial adaptation and persistence in the host as commensals or pathogens. In healthy individuals, host defense mechanisms prevent the opportunistic bacteria/commensals from becoming a pathological infection. However, certain pathological conditions can impair normal defense barriers leading to bacterial survival and persistence. Under pathological conditions such as chronic lung inflammation, bacteria employ various mechanisms from structural changes to protease secretion to manipulate and evade the host immune response and create a niche permitting commensal bacteria to thrive into infections. Therefore, understanding the mechanisms by which pathogenic bacteria survive in the host tissues and organs may offer new strategies to overcome persistent bacterial infections. In this review, we will discuss and highlight the complex interactions between airway pathogenic bacteria and immune responses in several major chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
36
|
Ragno R, Papa R, Patsilinakos A, Vrenna G, Garzoli S, Tuccio V, Fiscarelli E, Selan L, Artini M. Essential oils against bacterial isolates from cystic fibrosis patients by means of antimicrobial and unsupervised machine learning approaches. Sci Rep 2020; 10:2653. [PMID: 32060344 PMCID: PMC7021809 DOI: 10.1038/s41598-020-59553-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
Recurrent and chronic respiratory tract infections in cystic fibrosis (CF) patients result in progressive lung damage and represent the primary cause of morbidity and mortality. Staphylococcus aureus (S. aureus) is one of the earliest bacteria in CF infants and children. Starting from early adolescence, patients become chronically infected with Gram-negative non-fermenting bacteria, and Pseudomonas aeruginosa (P. aeruginosa) is the most relevant and recurring. Intensive use of antimicrobial drugs to fight lung infections inevitably leads to the onset of antibiotic resistant bacterial strains. New antimicrobial compounds should be identified to overcome antibiotic resistance in these patients. Recently interesting data were reported in literature on the use of natural derived compounds that inhibited in vitro S. aureus and P. aeruginosa bacterial growth. Essential oils, among these, seemed to be the most promising. In this work is reported an extensive study on 61 essential oils (EOs) against a panel of 40 clinical strains isolated from CF patients. To reduce the in vitro procedure and render the investigation as convergent as possible, machine learning clusterization algorithms were firstly applied to pick-up a fewer number of representative strains among the panel of 40. This approach allowed us to easily identify three EOs able to strongly inhibit bacterial growth of all bacterial strains. Interestingly, the EOs antibacterial activity is completely unrelated to the antibiotic resistance profile of each strain. Taking into account the results obtained, a clinical use of EOs could be suggested.
Collapse
Affiliation(s)
- Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185, Rome, Italy. .,Alchemical Dynamics s.r.l, 00125, Rome, Italy.
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Alexandros Patsilinakos
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185, Rome, Italy.,Alchemical Dynamics s.r.l, 00125, Rome, Italy
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Vanessa Tuccio
- Laboratories and Pediatrics Departments, Children's Hospital and Institute Research Bambino Gesù, Rome, 00165, Italy
| | - ErsiliaVita Fiscarelli
- Laboratories and Pediatrics Departments, Children's Hospital and Institute Research Bambino Gesù, Rome, 00165, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185, Rome, Italy.
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
37
|
Quantitative Visualization of Gene Expression in Mucoid and Nonmucoid Pseudomonas aeruginosa Aggregates Reveals Localized Peak Expression of Alginate in the Hypoxic Zone. mBio 2019; 10:mBio.02622-19. [PMID: 31848278 PMCID: PMC6918079 DOI: 10.1128/mbio.02622-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well appreciated that oxygen- and other nutrient-limiting gradients characterize microenvironments within chronic infections that foster bacterial tolerance to treatment and the immune response. However, determining how bacteria respond to these microenvironments has been limited by a lack of tools to study bacterial functions at the relevant spatial scales in situ Here, we report the application of the hybridization chain reaction (HCR) v3.0 to provide analog mRNA relative quantitation of Pseudomonas aeruginosa single cells as a step toward this end. To assess the potential for this method to be applied to bacterial populations, we visualized the expression of genes needed for the production of alginate (algD) and the dissimilatory nitrate reductase (narG) at single-cell resolution within laboratory-grown aggregates. After validating new HCR probes, we quantified algD and narG expression across microenvironmental gradients within both single aggregates and aggregate populations using the agar block biofilm assay (ABBA). For mucoid and nonmucoid ABBA populations, narG was expressed in hypoxic and anoxic regions, while alginate expression was restricted to the hypoxic zone (∼40 to 200 μM O2). Within individual aggregates, surface-adjacent cells expressed alginate genes at higher levels than interior cells, revealing that alginate expression is not constitutive in mucoid P. aeruginosa but instead varies with oxygen availability. These results establish HCR v3.0 as a versatile and robust tool to resolve subtle differences in gene expression at spatial scales relevant to microbial assemblages. This advance has the potential to enable quantitative studies of microbial gene expression in diverse contexts, including pathogen activities during infections.IMPORTANCE A goal for microbial ecophysiological research is to reveal microbial activities in natural environments, including sediments, soils, or infected human tissues. Here, we report the application of the hybridization chain reaction (HCR) v3.0 to quantitatively measure microbial gene expression in situ at single-cell resolution in bacterial aggregates. Using quantitative image analysis of thousands of Pseudomonas aeruginosa cells, we validated new P. aeruginosa HCR probes. Within in vitro P. aeruginosa aggregates, we found that bacteria just below the aggregate surface are the primary cells expressing genes that protect the population against antibiotics and the immune system. This observation suggests that therapies targeting bacteria growing with small amounts of oxygen may be most effective against these hard-to-treat infections. More generally, this proof-of-concept study demonstrates that HCR v3.0 has the potential to identify microbial activities in situ at small spatial scales in diverse contexts.
Collapse
|
38
|
O'Brien TJ, Welch M. Recapitulation of polymicrobial communities associated with cystic fibrosis airway infections: a perspective. Future Microbiol 2019; 14:1437-1450. [PMID: 31778075 DOI: 10.2217/fmb-2019-0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The airways of persons with cystic fibrosis are prone to infection by a diverse and dynamic polymicrobial consortium. Currently, no models exist that permit recapitulation of this consortium within the laboratory. Such microbial ecosystems likely have a network of interspecies interactions, serving to modulate metabolic pathways and impact upon disease severity. The contribution of less abundant/fastidious microbial species on this cross-talk has often been neglected due to lack of experimental tractability. Here, we critically assess the existing models for studying polymicrobial infections. Particular attention is paid to 3Rs-compliant in vitro and in silico infection models, offering significant advantages over mammalian infection models. We outline why these models will likely become the 'go to' approaches when recapitulating polymicrobial cystic fibrosis infection.
Collapse
Affiliation(s)
- Thomas J O'Brien
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
39
|
Wang C, Chen W, Xia A, Zhang R, Huang Y, Yang S, Ni L, Jin F. Carbon Starvation Induces the Expression of PprB-Regulated Genes in Pseudomonas aeruginosa. Appl Environ Microbiol 2019; 85:e01705-19. [PMID: 31492668 PMCID: PMC6821963 DOI: 10.1128/aem.01705-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa can cause severe infections in humans. This bacterium often adopts a biofilm lifestyle that is hard to treat. In several previous studies, the PprA-PprB two-component system (TCS), which controls the expression of type IVb pili, BapA adhesin, and CupE fimbriae, was shown to be involved in biofilm formation (M. Romero, H. Silistre, L. Lovelock, V. J. Wright, K.-G. Chan, et al., Nucleic Acids Res 46:6823-6840, 2018, https://doi.org/10.1093/nar/gky324; S. de Bentzmann, C. Giraud, C. S. Bernard, V. Calderon, F. Ewald F, et al., PLoS Pathog 8:e1003052, 2012, https://doi.org/10.1371/journal.ppat.1003052). However, signals or environmental conditions that can trigger the PprA-PprB TCS are still unknown, and the molecular mechanisms of PprB-mediated biofilm formation are poorly characterized. Here, we report that carbon starvation stress (CSS) can induce the expression of pprB and genes in the PprB regulon. CSS-induced pprB transcription is mediated by the stress response sigma factor RpoS rather than the two-component sensor PprA. We also observed a strong negative regulation of PprB on the transcription of itself. Further experiments showed that PprB overexpression greatly enhanced cell-cell adhesion (CCA) and cell-surface adhesion (CSA) in P. aeruginosa Specifically, under the background of PprB overexpression, both the BapA adhesin and CupE fimbriae displayed positive effects on CCA and CSA, while the type IVb pili showed an unexpected negative effect on CCA and no effect on CSA. In addition, expression of the PprB regulon genes were significantly increased in 3-day colony biofilms, indicating a possible carbon limitation state. The CSS-RpoS-PprB-Bap/Flp/CupE pathway identified in this study provides a new perspective on the process of biofilm formation in carbon-limited environments.IMPORTANCE Typically, the determination of the external signals that can trigger a regulatory system is crucial to understand the regulatory logic and inward function of that system. The PprA-PprB two-component system was reported to be involved in biofilm formation in Pseudomonas aeruginosa, but the signals triggering this system are unknown. In this study, we found that carbon starvation stress (CSS) induces transcription of pprB and genes in the PprB regulon through an RpoS-dependent pathway. Increased PprB expression leads to enhanced cell-cell adhesion (CCA) and cell-surface adhesion (CSA) in P. aeruginosa Both CCA and CSA are largely dependent on the Bap secretion system and are moderately dependent on the CupE fimbriae. Our findings suggest that PprB reinforces the structure of biofilms under carbon-limited conditions, and the Bap secretion system and CupE fimbriae are two potential targets for biofilm treatment.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Wenhui Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Aiguo Xia
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Rongrong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Yajia Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Shuai Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Lei Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
40
|
López-Jácome LE, Garza-Ramos G, Hernández-Durán M, Franco-Cendejas R, Loarca D, Romero-Martínez D, Nguyen PTD, Maeda T, González-Pedrajo B, Díaz-Guerrero M, Sánchez-Reyes JL, Díaz-Ramírez D, García-Contreras R. AiiM Lactonase Strongly Reduces Quorum Sensing Controlled Virulence Factors in Clinical Strains of Pseudomonas aeruginosa Isolated From Burned Patients. Front Microbiol 2019; 10:2657. [PMID: 31798568 PMCID: PMC6868103 DOI: 10.3389/fmicb.2019.02657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/31/2019] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium associated with healthcare infections in intensive care units (ICUs), ventilator-associated pneumonia (VAP), surgical site infections, and burns. This bacterium causes 75% of death in burned patients, since it can develop a persistent biofilm associated with infections, express several virulence factors, and antibiotic-resistance mechanisms. Some of these virulence factors are proteases such as elastase and alkaline protease, or toxic metabolites such as pyocyanin and is one of the few microorganisms able to produce cyanide, which inhibits the cytochrome oxidase of host cells. These virulence factors are controlled by quorum sensing (QS). In this work, 30 P. aeruginosa clinical strains isolated from burned patients from a tertiary hospital in Mexico City were studied. Antibiotic susceptibility tests were done, and virulence factors (elastase, alkaline protease, HCN, and pyocyanin) were determined in presence of an N-acylhomoserine lactonase, AiiM able to hydrolyze a wide range of acyl homoserine lactones. The treatment reduced significantly the activities of elastase and alkaline protease, and the production of pyocyanin and HCN in all producer strains but not the secretion of toxins through the type III secretion system. Our work suggests that AiiM treatment may be an effective therapy to combat P. aeruginosa infection in burn patients.
Collapse
Affiliation(s)
- Luis Esaú López-Jácome
- Laboratorio de Bacteriología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Infectología, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Georgina Garza-Ramos
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Melissa Hernández-Durán
- Laboratorio de Infectología, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Rafael Franco-Cendejas
- Laboratorio de Infectología, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | - Daniel Loarca
- Laboratorio de Bacteriología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Romero-Martínez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Phuong Thi Dong Nguyen
- Department of Biological Functions Engineering, Gradute School of Life Sciences and System Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Gradute School of Life Sciences and System Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Luis Sánchez-Reyes
- Laboratorio de Bacteriología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dánae Díaz-Ramírez
- Laboratorio de Bacteriología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
41
|
Budden KF, Shukla SD, Rehman SF, Bowerman KL, Keely S, Hugenholtz P, Armstrong-James DPH, Adcock IM, Chotirmall SH, Chung KF, Hansbro PM. Functional effects of the microbiota in chronic respiratory disease. THE LANCET. RESPIRATORY MEDICINE 2019; 7:907-920. [PMID: 30975495 DOI: 10.1016/s2213-2600(18)30510-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 01/19/2023]
Abstract
The composition of the lung microbiome is increasingly well characterised, with changes in microbial diversity or abundance observed in association with several chronic respiratory diseases such as asthma, cystic fibrosis, bronchiectasis, and chronic obstructive pulmonary disease. However, the precise effects of the microbiome on pulmonary health and the functional mechanisms by which it regulates host immunity are only now beginning to be elucidated. Bacteria, viruses, and fungi from both the upper and lower respiratory tract produce structural ligands and metabolites that interact with the host and alter the development and progression of chronic respiratory diseases. Here, we review recent advances in our understanding of the composition of the lung microbiome, including the virome and mycobiome, the mechanisms by which these microbes interact with host immunity, and their functional effects on the pathogenesis, exacerbations, and comorbidities of chronic respiratory diseases. We also describe the present understanding of how respiratory microbiota can influence the efficacy of common therapies for chronic respiratory disease, and the potential of manipulation of the microbiome as a therapeutic strategy. Finally, we highlight some of the limitations in the field and propose how these could be addressed in future research.
Collapse
Affiliation(s)
- Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Saima Firdous Rehman
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kate L Bowerman
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biology, The University of Queensland, QLD, Australia
| | - Simon Keely
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biology, The University of Queensland, QLD, Australia
| | | | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia; Centre for Inflammation, Centenary Institute, and University of Technology Sydney, NSW, Australia.
| |
Collapse
|
42
|
Alcaraz-Serrano V, Fernández-Barat L, Scioscia G, Llorens-Llacuna J, Gimeno-Santos E, Herrero-Cortina B, Vàzquez N, Puig de la Bellacasa J, Gabarrús A, Amaro-Rodriguez R, Menéndez R, Torres A. Mucoid Pseudomonas aeruginosa alters sputum viscoelasticity in patients with non-cystic fibrosis bronchiectasis. Respir Med 2019; 154:40-46. [DOI: 10.1016/j.rmed.2019.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/14/2023]
|
43
|
Malhotra S, Hayes D, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev 2019; 32:e00138-18. [PMID: 31142499 PMCID: PMC6589863 DOI: 10.1128/cmr.00138-18] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In human pathophysiology, the clash between microbial infection and host immunity contributes to multiple diseases. Cystic fibrosis (CF) is a classical example of this phenomenon, wherein a dysfunctional, hyperinflammatory immune response combined with chronic pulmonary infections wreak havoc upon the airway, leading to a disease course of substantial morbidity and shortened life span. Pseudomonas aeruginosa is an opportunistic pathogen that commonly infects the CF lung, promoting an accelerated decline of pulmonary function. Importantly, P. aeruginosa exhibits significant resistance to innate immune effectors and to antibiotics, in part, by expressing specific virulence factors (e.g., antioxidants and exopolysaccharides) and by acquiring adaptive mutations during chronic infection. In an effort to review our current understanding of the host-pathogen interface driving CF pulmonary disease, we discuss (i) the progression of disease within the primitive CF lung, specifically focusing on the role of host versus bacterial factors; (ii) critical, neutrophil-derived innate immune effectors that are implicated in CF pulmonary disease, including reactive oxygen species (ROS) and antimicrobial peptides (e.g., LL-37); (iii) P. aeruginosa virulence factors and adaptive mutations that enable evasion of the host response; and (iv) ongoing work examining the distribution and colocalization of host and bacterial factors within distinct anatomical niches of the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel J Wozniak
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
44
|
Sharma D, Pakravan N, Pritchard JC, Hartmann FA, Young KM. Mucoid Pseudomonas aeruginosa infection in a cat with severe chronic rhinosinusitis. Vet Clin Pathol 2019; 48:300-304. [PMID: 31210366 DOI: 10.1111/vcp.12749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/16/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
A 6-year-old male neutered Bengal cat was presented to the University of Wisconsin Veterinary Care Hospital with a history of severe chronic rhinitis that was unresolved from kittenhood. In weeks prior to presentation, the cat's upper respiratory signs had significantly worsened and a left-sided facial swelling overlying the left frontal sinus was noted. Skull computed tomography, rhinoscopy, bilateral nasal biopsies, bacterial and fungal cultures of fluid from the left frontal sinus, and cryptococcal fungal antigen testing were performed. The cat was diagnosed with severe chronic rhinosinusitis and determined to have an infection with a mucoid variant of Pseudomonas aeruginosa (P aeruginosa). This case highlights an atypical cytomorphologic appearance of the well-known bacterial pathogen, P aeruginosa, an appearance that could be confused cytologically with other microorganisms, such as septate fungi. Mucoid variants of P aeruginosa are often associated with progressive lung or airway disease in people with cystic fibrosis and have not been previously documented in feline respiratory tract disease. This report also presents a brief review of chronic rhinosinusitis (CRS) in cats and describes a novel interventional treatment approach to feline CRS via sinusotomy and sinus flushing for severely affected cats.
Collapse
Affiliation(s)
- Diya Sharma
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Natasha Pakravan
- University of Wisconsin Veterinary Care (UWVC), School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jessica C Pritchard
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Faye A Hartmann
- University of Wisconsin Veterinary Care (UWVC), School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Karen M Young
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
45
|
Do H, Kwon SR, Fu K, Morales-Soto N, Shrout JD, Bohn PW. Electrochemical Surface-Enhanced Raman Spectroscopy of Pyocyanin Secreted by Pseudomonas aeruginosa Communities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7043-7049. [PMID: 31042392 PMCID: PMC8006532 DOI: 10.1021/acs.langmuir.9b00184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pyocyanin (PYO) is one of many toxins secreted by the opportunistic human pathogenic bacterium Pseudomonas aeruginosa. Direct detection of PYO in biofilms is crucial because PYO can provide important information about infection-related virulence mechanisms in P. aeruginosa. Because PYO is both redox-active and Raman-active, we seek to simultaneously acquire both spectroscopic and redox state information about PYO. The combination of surface-enhanced Raman spectroscopy (SERS) and voltammetry is used here to provide insights into the molecular redox behavior of PYO while controlling the SERS and electrochemical (EC) response of PYO with external stimuli, such as pH and applied potential. Furthermore, PYO secretion from biofilms of different P. aeruginosa strains is compared. Both SERS spectra and EC behavior are observed to change with pH, and several pH-dependent bands are identified in the SERS spectra, which can potentially be used to probe the local environment. Comparison of the voltammetric behavior of wild-type and a PYO-deficient mutant unequivocally identifies PYO as a major component of the secretome. Spectroelectrochemical studies of the PYO standard reveal decreasing SERS intensities of PYO bands under reducing conditions. Extending these experiments to pellicle biofilms shows similar behavior with applied potential, and SERS imaging indicates that secreted PYO is localized in regions approximately the size of P. aeruginosa cells. The in situ spectroelectrochemical biofilm characterization approach developed here suggests that EC-SERS monitoring of secreted molecules can be used diagnostically and correlated with the progress of infection.
Collapse
Affiliation(s)
- Hyein Do
- Department of Chemistry and Biochemistry,
University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular
Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United
States
| | - Kaiyu Fu
- Department of Chemistry and Biochemistry,
University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nydia Morales-Soto
- Department of Civil and Environmental
Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana
46556, United States
| | - Joshua D. Shrout
- Department of Civil and Environmental
Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana
46556, United States
- Department of Biological Sciences, University of
Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry,
University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular
Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United
States
- Corresponding Author
| |
Collapse
|
46
|
Ethanol Stimulates Trehalose Production through a SpoT-DksA-AlgU-Dependent Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00794-18. [PMID: 30936375 DOI: 10.1128/jb.00794-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of the treZ gene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasR ΔrhlR strain. A network analysis using a model, eADAGE, built from publicly available P. aeruginosa transcriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63-71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in which treZ and coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ transcript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in the P. aeruginosa transcriptional response to ethanol.IMPORTANCE Pseudomonas aeruginosa is often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.
Collapse
|
47
|
Malhotra S, Hayes D, Wozniak DJ. Mucoid Pseudomonas aeruginosa and regional inflammation in the cystic fibrosis lung. J Cyst Fibros 2019; 18:796-803. [PMID: 31036488 DOI: 10.1016/j.jcf.2019.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is the prominent bacterial pathogen in the cystic fibrosis (CF) lung and contributes to significant morbidity and mortality. Though P. aeruginosa strains initially colonizing the CF lung have a nonmucoid colony morphology, they often mutate into mucoid variants that are associated with clinical deterioration. Both nonmucoid and mucoid P. aeruginosa variants are often co-isolated on microbiological cultures of sputum collected from CF patients. With regional variation in bronchiectasis, tissue damage, inflammation, and microbial colonization, lobar distribution of nonmucoid and mucoid P. aeruginosa variants may impact local microenvironments in the CF lung, but this has not been well-studied. METHODS We prospectively collected lobe-specific bronchoalveolar lavage (BAL) fluid from a CF patient cohort (n = 14) using a standardized bronchoscopic protocol where collection was performed in 6 lobar regions. The lobar BAL specimens were plated on P. aeruginosa-selective media and proinflammatory cytokines (IL-1, TNF, IL-6 and IL-8) were measured via cytokine array. Correlations between infecting P. aeruginosa variants (nonmucoid, mucoid, or mixed-variant populations), the lobar regions in which these variants were found, and regional proinflammatory cytokine concentrations were measured. RESULTS P. aeruginosa mucoid and nonmucoid variants were homogenously distributed throughout the CF lung. However, infection with mucoid variants (found within single- or mixed-variant populations) was associated with significantly greater regional inflammation. The upper and lower lobes of the CF lung did not exhibit differences in inflammatory cytokine concentrations. CONCLUSIONS Mucoid P. aeruginosa infection is a microbial determinant of regional inflammation within the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Section. of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
48
|
Scott JE, Li K, Filkins LM, Zhu B, Kuchma SL, Schwartzman JD, O'Toole GA. Pseudomonas aeruginosa Can Inhibit Growth of Streptococcal Species via Siderophore Production. J Bacteriol 2019; 201:e00014-19. [PMID: 30718303 PMCID: PMC6436353 DOI: 10.1128/jb.00014-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that causes patients to accumulate thick, dehydrated mucus in the lung and develop chronic, polymicrobial infections due to reduced mucociliary clearance. These chronic polymicrobial infections and subsequent decline in lung function are significant factors in the morbidity and mortality of CF. Pseudomonas aeruginosa and Streptococcus spp. are among the most prevalent organisms in the CF lung; the presence of P. aeruginosa correlates with lung function decline, and the Streptococcus milleri group (SMG), a subgroup of the viridans streptococci, is associated with exacerbations in patients with CF. Here we characterized the interspecies interactions that occur between these two genera. We demonstrated that multiple P. aeruginosa laboratory strains and clinical CF isolates promote the growth of multiple SMG strains and oral streptococci in an in vitro coculture system. We investigated the mechanism by which P. aeruginosa enhances growth of streptococci by screening for mutants of P. aeruginosa PA14 that are unable to enhance Streptococcus growth, and we identified the P. aeruginosapqsL::TnM mutant, which failed to promote growth of Streptococcus constellatus and S. sanguinis Characterization of the P. aeruginosa ΔpqsL mutant revealed that this strain cannot promote Streptococcus growth. Our genetic data and growth studies support a model whereby the P. aeruginosa ΔpqsL mutant overproduces siderophores and thus likely outcompetes Streptococcus sanguinis for limited iron. We propose a model whereby competition for iron represents one important means of interaction between P. aeruginosa and Streptococcus spp.IMPORTANCE Cystic fibrosis (CF) lung infections are increasingly recognized for their polymicrobial nature. These polymicrobial infections may alter the biology of the organisms involved in CF-related infections, leading to changes in growth, virulence, and/or antibiotic tolerance, and could thereby affect patient health and response to treatment. In this study, we demonstrate interactions between P. aeruginosa and streptococci using a coculture model and show that one interaction between these microbes is likely competition for iron. Thus, these data indicate that one CF pathogen may influence the growth of another, and they add to our limited knowledge of polymicrobial interactions in the CF airway.
Collapse
Affiliation(s)
- Jessie E Scott
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kewei Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Laura M Filkins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bin Zhu
- VCU Philips Institute for Oral Health Research, Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sherry L Kuchma
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joseph D Schwartzman
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
49
|
Abstract
Detection of mucoid Pseudomonas aeruginosa, characterized by the overproduction of alginate, is correlated with the establishment of a chronic pulmonary infection and disease progression in people with cystic fibrosis (CF). In addition to the overproduction of alginate, loss of O antigen lipopolysaccharide production is also selected for in chronic infection isolates. In this study, we have identified the regulatory network that inversely regulates O antigen and alginate production. Understanding the regulation of these chronic phenotypes will elucidate mechanisms that are important for the establishment of a long-term P. aeruginosa lung infection and ultimately provide an opportunity for intervention. Preventing P. aeruginosa from chronically adapting to the CF lung environment could provide a better outcome for people who are infected. Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in people with cystic fibrosis (CF). Chronic P. aeruginosa isolates generally do not express O antigen and often have a mucoid phenotype, which is characterized by the overproduction of the exopolysaccharide alginate. Therefore, O antigen expression and the mucoid phenotype may be coordinately regulated upon chronic adaption to the CF lung. Here we demonstrate that PDO300, a mucoid strain derived from the nonmucoid laboratory isolate PAO1, does not produce very long O antigen due to decreased expression of Wzz2, the very long O antigen chain length control protein, and that mucoid clinical isolates express reduced levels of Wzz2 compared to nonmucoid isolates. Further, we show that forcing the expression of very long O antigen by PDO300, by providing wzz2 in trans, does not alter alginate production, suggesting that sugar precursors are not limited between the two biosynthesis pathways. Moreover, we confirm that AmrZ, a transcription factor highly expressed in mucoid strains, is a negative regulator of wzz2 promoter activity and very long O antigen expression. These experiments identify the first transcriptional regulator of O antigen chain length in P. aeruginosa and support a model where transition to a chronic mucoid phenotype is correlated with downregulation of very long O antigen through decreased Wzz2 production.
Collapse
|
50
|
Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt Within the Host? Front Immunol 2018; 9:2416. [PMID: 30405616 PMCID: PMC6204374 DOI: 10.3389/fimmu.2018.02416] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/01/2018] [Indexed: 01/29/2023] Open
Abstract
Bacteria that readily adapt to different natural environments, can also exploit this versatility upon infection of the host to persist. Pseudomonas aeruginosa, a ubiquitous Gram-negative bacterium, is harmless to healthy individuals, and yet a formidable opportunistic pathogen in compromised hosts. When pathogenic, P. aeruginosa causes invasive and highly lethal disease in certain compromised hosts. In others, such as individuals with the genetic disease cystic fibrosis, this pathogen causes chronic lung infections which persist for decades. During chronic lung infections, P. aeruginosa adapts to the host environment by evolving toward a state of reduced bacterial invasiveness that favors bacterial persistence without causing overwhelming host injury. Host responses to chronic P. aeruginosa infections are complex and dynamic, ranging from vigorous activation of innate immune responses that are ineffective at eradicating the infecting bacteria, to relative host tolerance and dampened activation of host immunity. This review will examine how P. aeruginosa subverts host defenses and modulates immune and inflammatory responses during chronic infection. This dynamic interplay between host and pathogen is a major determinant in the pathogenesis of chronic P. aeruginosa lung infections.
Collapse
Affiliation(s)
- Emmanuel Faure
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Kelly Kwong
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Dao Nguyen
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|