1
|
Cui Y, Xiao Y, Wang Z, Ji P, Zhang C, Li Y, Fang J, Yu X. Microbial community structure and functional traits involved in the adaptation of culturable bacteria within the gut of amphipods from the deepest ocean. Microbiol Spectr 2025; 13:e0072324. [PMID: 39655934 PMCID: PMC11705852 DOI: 10.1128/spectrum.00723-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
The Hadal Zone is acknowledged for its extreme environmental conditions, especially high hydrostatic pressures. The dominant scavengers in the Hadal Zone, Hadal amphipods, fulfill vital roles in the Hadal food web and ecological niches. However, research on the gut microbiota of amphipods related to ecological functions and environmental adaptation is still limited. Here, we used 16S rRNA sequencing technology and a culture-dependent method to analyze the composition of the gut microbiota in Amphipoda living in the Mariana Trench. A total of 16 bacterial genera were identified. Among them, Firmicutes and Proteobacteria were the predominant phyla. The adaptability of gut probiotics to the environment was investigated. Pediococcus pentosaceus XY62 was picked up as the representative strain to elucidate the ecological functions of gut microbes in amphipods. The ProBio database and the K-B agar diffusion method indicated that P. pentosaceus XY62 exhibited the highest probiotic activity compared with all other isolated strains. Specific metabolic pathways and transporter systems that contribute to a range of environmental adaptation strategies have been revealed by genomic analysis of P. pentosaceus XY62. The environmental response genes and a specialized KDP transport system allow it to adapt to the challenging conditions of the Hadal Zone. In addition, the presence of antibacterial compounds and antibiotic resistance genes, as well as the ability to form a biofilm, facilitated the successful colonization of P. pentosaceus XY62 in the gut environment. IMPORTANCE Amphipods are widely distributed in the Hadal trenches, and the study of their gut microbes has garnered considerable scientific interest. Our research breaks away from traditional omics approaches, innovatively combining sequencing technologies with culture-dependent methods to analyze the gut microbiome structure of amphipods from the Mariana Trench. This not only complements the current omics-dominated field but also paves the way for future resource development of extreme microbes. Furthermore, by conducting genomic analyses and functional validations on a representative strain, we have uncovered its probiotic effects and strategies for adapting to extreme environments. This provides new insights into the theoretical study of the ecological functions of deep-sea bacteria. Overall, our findings offer a fresh perspective on the microbial community structure and environmental adaptation strategies of gut microorganisms in the Hadal Zone.
Collapse
Affiliation(s)
- Yukun Cui
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yu Xiao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhuo Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Paiyao Ji
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Changhao Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Liu R, Feng J, Ni Y, Chen K, Wang Y, Zhang T, Zhou M, Zhao C. Dysbiosis and diabetic foot ulcers: A metabolic perspective of Staphylococcus aureus infection. Biomed Pharmacother 2024; 180:117498. [PMID: 39353317 DOI: 10.1016/j.biopha.2024.117498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) infection is the most prevalent and resistant bacterial infection, posing a worldwide health risk. Compared with healthy people, diabetes patients with weak immune function and abnormal metabolism are more vulnerable to bacterial infection, which aggravates the intensity of infection and causes a series of common and dangerous complications, such as diabetes foot ulcer (DFU). Due to metabolic abnormalities of diabetic patients, S. aureus on the skin surface of DFU transitions from a commensal to an invasive infection. During this process, S. aureus resists a series of unfavorable conditions for bacterial growth by altering energy utilization and metabolic patterns, and secretes various virulence factors, causing persistent infection. With the emergence of multiple super-resistant bacteria, antibiotic treatment is no longer the only treatment option, and developing new drugs and therapies is urgent. Regulating the metabolic signaling pathway of S. aureus plays a decisive role in regulating its virulence factors and impacts adjuvant therapy for DFU. This article focuses on studying the impact of regulating metabolic signals on the virulence of S. aureus from a metabolism perspective. It provides an outlook on the future direction of the novel development of antimicrobial therapy.
Collapse
Affiliation(s)
- Ruisi Liu
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Kaixin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
3
|
Hu J, Yao J, Lei C, Sun X. c-di-AMP accumulation impairs toxin expression of Bacillus anthracis by down-regulating potassium importers. Microbiol Spectr 2024; 12:e0378623. [PMID: 38899864 PMCID: PMC11302148 DOI: 10.1128/spectrum.03786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/20/2024] [Indexed: 06/21/2024] Open
Abstract
The Gram-positive bacterium Bacillus anthracis is the causative agent of anthrax and a bioterrorism threat worldwide. As a crucial second messenger in many bacterial species, cyclic di-AMP (c-di-AMP) modulates various key processes for bacterial homeostasis and pathogenesis. Overaccumulation of c-di-AMP alters cellular growth and reduces anthrax toxin expression as well as virulence in Bacillus anthracis by unresolved underlying mechanisms. In this report, we discovered that c-di-AMP binds to a series of receptors involved in potassium uptake in B. anthracis. By analyzing Kdp and Ktr mutants for osmotic stress, gene expression, and anthrax toxin expression, we also showed that c-di-AMP inhibits Kdp operon expression through binding to the KdpD and ydaO riboswitch; up-regulating intracellular potassium promotes anthrax toxin expression in c-di-AMP accumulated B. anthracis. Decreased anthrax toxin expression at high c-di-AMP occurs through the inhibition of potassium uptake. Understanding the molecular basis of how potassium uptake affects anthrax toxin has the potential to provide new insight into the control of B. anthracis.IMPORTANCEThe bacterial second messenger cyclic di-AMP (c-di-AMP) is a conserved global regulator of potassium homeostasis. How c-di-AMP regulates bacterial virulence is unknown. With this study, we provide a link between potassium uptake and anthrax toxin expression in Bacillus anthracis. c-di-AMP accumulation might inhibit anthrax toxin expression by suppressing potassium uptake.
Collapse
Affiliation(s)
- Jia Hu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Junmin Yao
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
4
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Campbell K, Kowalski CH, Kohler KM, Barber MF. Evolution of polyamine resistance in Staphylococcus aureus through modulation of potassium transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599172. [PMID: 38915543 PMCID: PMC11195161 DOI: 10.1101/2024.06.15.599172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Microbes must adapt to diverse biotic and abiotic factors encountered in host environments. Polyamines are an abundant class of aliphatic molecules that play essential roles in fundamental cellular processes across the tree of life. Surprisingly, the bacterial pathogen Staphylococcus aureus is highly sensitive to polyamines encountered during infection, and acquisition of a polyamine resistance locus has been implicated in spread of the prominent USA300 methicillin-resistant S. aureus lineage. At present, alternative pathways of polyamine resistance in staphylococci are largely unknown. Here we applied experimental evolution to identify novel mechanisms and consequences of S. aureus adaption when exposed to increasing concentrations of the polyamine spermine. Evolved populations of S. aureus exhibited striking evidence of parallel adaptation, accumulating independent mutations in the potassium transporter genes ktrA and ktrD. Mutations in either ktrA or ktrD are sufficient to confer polyamine resistance and function in an additive manner. Moreover, we find that ktr mutations provide increased resistance to multiple classes of unrelated cationic antibiotics, suggesting a common mechanism of resistance. Consistent with this hypothesis, ktr mutants exhibit alterations in cell surface charge indicative of reduced affinity and uptake of cationic molecules. Finally, we observe that laboratory-evolved ktr mutations are also present in diverse natural S. aureus isolates, suggesting these mutations may contribute to antimicrobial resistance during human infections. Collectively this study identifies a new role for potassium transport in S. aureus polyamine resistance with consequences for susceptibility to both host-derived and clinically-used antimicrobials.
Collapse
Affiliation(s)
- Killian Campbell
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
- Department of Biology, University of Oregon, Eugene, OR USA
| | | | - Kristin M. Kohler
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Matthew F. Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
- Department of Biology, University of Oregon, Eugene, OR USA
| |
Collapse
|
6
|
Hoffmann A, Steffens U, Maček B, Franz-Wachtel M, Nieselt K, Harbig TA, Scherlach K, Hertweck C, Sahl HG, Bierbaum G. The unusual mode of action of the polyketide glycoside antibiotic cervimycin C. mSphere 2024; 9:e0076423. [PMID: 38722162 PMCID: PMC11237698 DOI: 10.1128/msphere.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.
Collapse
Affiliation(s)
- Alina Hoffmann
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| | - Ursula Steffens
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| | - Boris Maček
- University of Tübingen, Proteome Center Tübingen, Tübingen, Germany
| | | | - Kay Nieselt
- University of Tübingen, Interfaculty Institute for Bioinformatics and Medical Informatics, Tübingen, Germany
| | - Theresa Anisja Harbig
- University of Tübingen, Interfaculty Institute for Bioinformatics and Medical Informatics, Tübingen, Germany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Friedrich Schiller University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany
| | - Hans-Georg Sahl
- University of Bonn, Institute for Pharmaceutical Microbiology, Bonn, Germany
| | - Gabriele Bierbaum
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| |
Collapse
|
7
|
Rapsinski GJ, Michaels LA, Hill M, Yarrington KD, Haas AL, D’Amico EJ, Armbruster CR, Zemke A, Limoli D, Bomberger JM. Pseudomonas aeruginosa senses and responds to epithelial potassium flux via Kdp operon to promote biofilm. PLoS Pathog 2024; 20:e1011453. [PMID: 38820569 PMCID: PMC11168685 DOI: 10.1371/journal.ppat.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/12/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Mucosa-associated biofilms are associated with many human disease states, but the host mechanisms promoting biofilm remain unclear. In chronic respiratory diseases like cystic fibrosis (CF), Pseudomonas aeruginosa establishes chronic infection through biofilm formation. P. aeruginosa can be attracted to interspecies biofilms through potassium currents emanating from the biofilms. We hypothesized that P. aeruginosa could, similarly, sense and respond to the potassium efflux from human airway epithelial cells (AECs) to promote biofilm. Using respiratory epithelial co-culture biofilm imaging assays of P. aeruginosa grown in association with CF bronchial epithelial cells (CFBE41o-), we found that P. aeruginosa biofilm was increased by potassium efflux from AECs, as examined by potentiating large conductance potassium channel, BKCa (NS19504) potassium efflux. This phenotype is driven by increased bacterial attachment and increased coalescence of bacteria into aggregates. Conversely, biofilm formation was reduced when AECs were treated with a BKCa blocker (paxilline). Using an agar-based macroscopic chemotaxis assay, we determined that P. aeruginosa chemotaxes toward potassium and screened transposon mutants to discover that disruption of the high-sensitivity potassium transporter, KdpFABC, and the two-component potassium sensing system, KdpDE, reduces P. aeruginosa potassium chemotaxis. In respiratory epithelial co-culture biofilm imaging assays, a KdpFABCDE deficient P. aeruginosa strain demonstrated reduced biofilm growth in association with AECs while maintaining biofilm formation on abiotic surfaces. Furthermore, we determined that the Kdp operon is expressed in vivo in people with CF and the genes are conserved in CF isolates. Collectively, these data suggest that P. aeruginosa biofilm formation can be increased by attracting bacteria to the mucosal surface and enhancing coalescence into microcolonies through aberrant AEC potassium efflux sensed by the KdpFABCDE system. These findings suggest host electrochemical signaling can enhance biofilm, a novel host-pathogen interaction, and potassium flux could be a therapeutic target to prevent chronic infections in diseases with mucosa-associated biofilms, like CF.
Collapse
Affiliation(s)
- Glenn J. Rapsinski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
- Division of Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lia A. Michaels
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Madison Hill
- Department of Biology, Saint Vincent College, Latrobe, Pennsylvania, United States of America
| | - Kaitlin D. Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Allison L. Haas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Emily J. D’Amico
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Catherine R. Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Anna Zemke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dominique Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| |
Collapse
|
8
|
Hilliard JK, Gries CM. Temporal control of Staphylococcus aureus intracellular pH by sodium and potassium. FEMS Microbiol Lett 2024; 371:fnae100. [PMID: 39567841 PMCID: PMC11636269 DOI: 10.1093/femsle/fnae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Adaptation to environmental change during both colonization and infection is essential to the pathogenesis of Staphylococcus aureus. Like other bacterial pathogens that require potassium to fulfill nutritional and chemiosmotic requirements, S. aureus has been shown to utilize potassium transport to modulate virulence gene expression, antimicrobial resistance, and osmotic tolerance. Recent studies examining the role for potassium uptake in mediating S. aureus physiology have also described its contribution in mediating carbon flux within central metabolism and generation of a proton motive force. Here, we utilize a pH-sensitive green fluorescent protein to examine the temporal regulation of S. aureus intracellular pH by potassium and sodium under various environmental conditions, including extracellular pH and antibiotic stress. Our results distinguish unique conditions and transport mechanisms that utilize these ions to modulate cytoplasmic pH homeostasis, and they identify these processes as a novel mechanism of intrinsic ampicillin resistance in S. aureus.
Collapse
Affiliation(s)
- Julia K Hilliard
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - Casey M Gries
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
9
|
Joglekar P, Conlan S, Lee-Lin SQ, Deming C, Kashaf SS, Kong HH, Segre JA. Integrated genomic and functional analyses of human skin-associated Staphylococcus reveal extensive inter- and intra-species diversity. Proc Natl Acad Sci U S A 2023; 120:e2310585120. [PMID: 37956283 PMCID: PMC10666031 DOI: 10.1073/pnas.2310585120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Human skin is stably colonized by a distinct microbiota that functions together with epidermal cells to maintain a protective physical barrier. Staphylococcus, a prominent genus of the skin microbiota, participates in colonization resistance, tissue repair, and host immune regulation in strain-specific manners. To unlock the potential of engineering skin microbial communities, we aim to characterize the diversity of this genus within the context of the skin environment. We reanalyzed an extant 16S rRNA amplicon dataset obtained from distinct body sites of healthy volunteers, providing a detailed biogeographic depiction of staphylococcal species that colonize our skin. S. epidermidis, S. capitis, and S. hominis were the most abundant staphylococcal species present in all volunteers and were detected at all body sites. Pan-genome analysis of isolates from these three species revealed that the genus-core was dominated by central metabolism genes. Species-restricted-core genes encoded known host colonization functions. The majority (~68%) of genes were detected only in a fraction of isolate genomes, underscoring the immense strain-specific gene diversity. Conspecific genomes grouped into phylogenetic clades, exhibiting body site preference. Each clade was enriched for distinct gene sets that are potentially involved in site tropism. Finally, we conducted gene expression studies of select isolates showing variable growth phenotypes in skin-like medium. In vitro expression revealed extensive intra- and inter-species gene expression variation, substantially expanding the functional diversification within each species. Our study provides an important resource for future ecological and translational studies to examine the role of shared and strain-specific staphylococcal genes within the skin environment.
Collapse
Affiliation(s)
- Payal Joglekar
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Shih-Queen Lee-Lin
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Clay Deming
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Sara Saheb Kashaf
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | | | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
10
|
Loi VV, Busche T, Kuropka B, Müller S, Methling K, Lalk M, Kalinowski J, Antelmann H. Staphylococcus aureus adapts to the immunometabolite itaconic acid by inducing acid and oxidative stress responses including S-bacillithiolations and S-itaconations. Free Radic Biol Med 2023; 208:859-876. [PMID: 37793500 DOI: 10.1016/j.freeradbiomed.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Staphylococcus aureus is a major pathogen, which has to defend against reactive oxygen and electrophilic species encountered during infections. Activated macrophages produce the immunometabolite itaconate as potent electrophile and antimicrobial upon pathogen infection. In this work, we used transcriptomics, metabolomics and shotgun redox proteomics to investigate the specific stress responses, metabolic changes and redox modifications caused by sublethal concentrations of itaconic acid in S. aureus. In the RNA-seq transcriptome, itaconic acid caused the induction of the GlnR, KdpDE, CidR, SigB, GraRS, PerR, CtsR and HrcA regulons and the urease-encoding operon, revealing an acid and oxidative stress response and impaired proteostasis. Neutralization using external urea as ammonium source improved the growth and decreased the expression of the glutamine synthetase-controlling GlnR regulon, indicating that S. aureus experienced ammonium starvation upon itaconic acid stress. In the extracellular metabolome, the amounts of acetate and formate were decreased, while secretion of pyruvate and the neutral product acetoin were strongly enhanced to avoid intracellular acidification. Exposure to itaconic acid affected the amino acid uptake and metabolism as revealed by the strong intracellular accumulation of lysine, threonine, histidine, aspartate, alanine, valine, leucine, isoleucine, cysteine and methionine. In the proteome, itaconic acid caused widespread S-bacillithiolation and S-itaconation of redox-sensitive antioxidant and metabolic enzymes, ribosomal proteins and translation factors in S. aureus, supporting its oxidative and electrophilic mode of action in S. aureus. In phenotype analyses, the catalase KatA, the low molecular weight thiol bacillithiol and the urease provided protection against itaconic acid-induced oxidative and acid stress in S. aureus. Altogether, our results revealed that under physiological infection conditions, such as in the acidic phagolysome, itaconic acid is a highly effective antimicrobial against multi-resistant S. aureus isolates, which acts as weak acid causing an acid, oxidative and electrophilic stress response, leading to S-bacillithiolation and itaconation.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, D-14195, Berlin, Germany
| | - Susanne Müller
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Karen Methling
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487, Greifswald, Germany
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487, Greifswald, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
11
|
Jung H, Lee D, Lee S, Kong HJ, Park J, Seo YS. Comparative genomic analysis of Chryseobacterium species: deep insights into plant-growth-promoting and halotolerant capacities. Microb Genom 2023; 9:001108. [PMID: 37796250 PMCID: PMC10634447 DOI: 10.1099/mgen.0.001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
Members of the genus Chryseobacterium have attracted great interest as beneficial bacteria that can promote plant growth and biocontrol. Given the recent risks of climate change, it is important to develop tolerance strategies for efficient applications of plant-beneficial bacteria in saline environments. However, the genetic determinants of plant-growth-promoting and halotolerance effects in Chryseobacterium have not yet been investigated at the genomic level. Here, a comparative genomic analysis was conducted with seven Chryseobacterium species. Phylogenetic and phylogenomic analyses revealed niche-specific evolutionary distances between soil and freshwater Chryseobacterium species, consistent with differences in genomic statistics, indicating that the freshwater bacteria have smaller genome sizes and fewer genes than the soil bacteria. Phosphorus- and zinc-cycling genes (required for nutrient acquisition in plants) were universally present in all species, whereas nitrification and sulphite reduction genes (required for nitrogen- and sulphur-cycling, respectively) were distributed only in soil bacteria. A pan-genome containing 6842 gene clusters was constructed, which reflected the general features of the core, accessory and unique genomes. Halotolerant species with an accessory genome shared a Kdp potassium transporter and biosynthetic pathways for branched-chain amino acids and the carotenoid lycopene, which are associated with countermeasures against salt stress. Protein-protein interaction network analysis was used to define the genetic determinants of Chryseobacterium salivictor NBC122 that reduce salt damage in bacteria and plants. Sixteen hub genes comprised the aromatic compound degradation and Por secretion systems, which are required to cope with complex stresses associated with saline environments. Horizontal gene transfer and CRISPR-Cas analyses indicated that C. salivictor NBC122 underwent more evolutionary events when interacting with different environments. These findings provide deep insights into genomic adaptation to dynamic interactions between plant-growth-promoting Chryseobacterium and salt stress.
Collapse
Affiliation(s)
- Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, South Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Duyoung Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, South Korea
| | - Seungchul Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, South Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, South Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
12
|
Pei H, Zhu C, Shu F, Lu Z, Wang H, Ma K, Wang J, Lan R, Shang F, Xue T. CodY: An Essential Transcriptional Regulator Involved in Environmental Stress Tolerance in Foodborne Staphylococcus aureus RMSA24. Foods 2023; 12:3166. [PMID: 37685098 PMCID: PMC10486358 DOI: 10.3390/foods12173166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus), as the main pathogen in milk and dairy products, usually causes intoxication with vomiting and various kinds of inflammation after entering the human body. CodY, an important transcriptional regulator in S. aureus, plays an important role in regulating metabolism, growth, and virulence. However, little is known about the role of CodY on environmental stress tolerance. In this research, we revealed the role of CodY in environmental stress tolerance in foodborne S. aureus RMSA24. codY mutation significantly reduced the tolerance of S. aureus to desiccation and oxidative, salt, and high-temperature stresses. However, S. aureus was more tolerant to low temperature stress due to mutation of codY. We found that the expressions of two important heat shock proteins-GroEL and DanJ-were significantly down-regulated in the mutant codY. This suggests that CodY may indirectly regulate the high- and low-temperature tolerance of S. aureus by regulating the expressions of groEL and danJ. This study reveals a new mechanism of environmental stress tolerance in S. aureus and provides new insights into controlling the contamination and harm caused by S. aureus in the food industry.
Collapse
Affiliation(s)
- Hao Pei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Chengfeng Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fang Shu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Zhengfei Lu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Jun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Ranxiang Lan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
13
|
Joglekar P, Conlan S, Lee-Lin SQ, Deming C, Kashaf SS, Kong HH, Segre JA. Integrated genomic and functional analyses of human skin-associated Staphylococcus reveals extensive inter- and intra-species diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.22.546190. [PMID: 37503282 PMCID: PMC10370188 DOI: 10.1101/2023.06.22.546190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Human skin is stably colonized by a distinct microbiota that functions together with epidermal cells to maintain a protective physical barrier. Staphylococcus, a prominent genus of the skin microbiota, participates in colonization resistance, tissue repair, and host immune regulation in strain specific manners. To unlock the potential of engineering skin microbial communities, we aim to fully characterize the functional diversity of this genus within the context of the skin environment. We conducted metagenome and pan-genome analyses of isolates obtained from distinct body sites of healthy volunteers, providing a detailed biogeographic depiction of staphylococcal species that colonize our skin. S. epidermidis, S. capitis, and S. hominis were the most abundant species present in all volunteers and were detected at all body sites. Pan-genome analysis of these three species revealed that the genus-core was dominated by central metabolism genes. Species-specific core genes were enriched in host colonization functions. The majority (~68%) of genes were detected only in a fraction of isolate genomes, underscoring the immense strain-specific gene diversity. Conspecific genomes grouped into phylogenetic clades, exhibiting body site preference. Each clade was enriched for distinct gene-sets that are potentially involved in site tropism. Finally, we conducted gene expression studies of select isolates showing variable growth phenotypes in skin-like medium. In vitro expression revealed extensive intra- and inter-species gene expression variation, substantially expanding the functional diversification within each species. Our study provides an important resource for future ecological and translational studies to examine the role of shared and strain-specific staphylococcal genes within the skin environment.
Collapse
Affiliation(s)
- Payal Joglekar
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| | - Shih-Queen Lee-Lin
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| | - Clay Deming
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| | - Sara Saheb Kashaf
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| | | | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, NIAMS, NIH, Bethesda, Maryland, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Jang WJ, Hasan MT, Park SY, Heo YJ, Kim DP, Lee JM. Synergy of Nisin Z and Sodium Chloride in the Inhibition of Food-Borne Pathogens and Quality Control of Aquatic Foods. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2023. [DOI: 10.1080/10498850.2023.2174824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Won Je Jang
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Md Tawheed Hasan
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, Bangladesh
| | - So Young Park
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Yun Jy Heo
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Dong Pil Kim
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Jong Min Lee
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
15
|
Acciarri G, Gizzi FO, Torres Manno MA, Stülke J, Espariz M, Blancato VS, Magni C. Redundant potassium transporter systems guarantee the survival of Enterococcus faecalis under stress conditions. Front Microbiol 2023; 14:1117684. [PMID: 36846772 PMCID: PMC9945522 DOI: 10.3389/fmicb.2023.1117684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Enterococcus is able to grow in media at pH from 5.0 to 9.0 and a high concentration of NaCl (8%). The ability to respond to these extreme conditions requires the rapid movement of three critical ions: proton (H+), sodium (Na+), and potassium (K+). The activity of the proton F0F1 ATPase and the sodium Na+ V0V1 type ATPase under acidic or alkaline conditions, respectively, is well established in these microorganisms. The potassium uptake transporters KtrI and KtrII were described in Enterococcus hirae, which were associated with growth in acidic and alkaline conditions, respectively. In Enterococcus faecalis, the presence of the Kdp (potassium ATPase) system was early established. However, the homeostasis of potassium in this microorganism is not completely explored. In this study, we demonstrate that Kup and KimA are high-affinity potassium transporters, and the inactivation of these genes in E. faecalis JH2-2 (a Kdp laboratory natural deficient strain) had no effect on the growth parameters. However, in KtrA defective strains (ΔktrA, ΔkupΔktrA) an impaired growth was observed under stress conditions, which was restored to wild type levels by external addition of K+ ions. Among the multiplicity of potassium transporters identify in the genus Enterococcus, Ktr channels (KtrAB and KtrAD), and Kup family symporters (Kup and KimA) are present and may contribute to the particular resistance of these microorganisms to different stress conditions. In addition, we found that the presence of the Kdp system in E. faecalis is strain-dependent, and this transporter is enriched in strains of clinical origin as compared to environmental, commensal, or food isolates.
Collapse
Affiliation(s)
- Giuliana Acciarri
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina
| | - Fernán O. Gizzi
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina
| | - Mariano A. Torres Manno
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina,Área Bioinformática, Departamento de Matemática y Estadística, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Jörg Stülke
- Department of General Microbiology, Georg August University, Göttingen, Germany
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina,Área Bioinformática, Departamento de Matemática y Estadística, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Víctor S. Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos, FBioyF, UNR–Municipalidad de Granadero Baigorria, Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los Alimentos, FBioyF, UNR–Municipalidad de Granadero Baigorria, Rosario, Argentina,*Correspondence: Christian Magni, ✉
| |
Collapse
|
16
|
Covaleda-Cortés G, Mechaly A, Brissac T, Baehre H, Devaux L, England P, Raynal B, Hoos S, Gominet M, Firon A, Trieu-Cuot P, Kaminski PA. The c-di-AMP-binding protein CbpB modulates the level of ppGpp alarmone in Streptococcus agalactiae. FEBS J 2023. [PMID: 36629470 DOI: 10.1111/febs.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Cyclic di-AMP is an essential signalling molecule in Gram-positive bacteria. This second messenger regulates the osmotic pressure of the cell by interacting directly with the regulatory domains, either RCK_C or CBS domains, of several potassium and osmolyte uptake membrane protein systems. Cyclic di-AMP also targets stand-alone CBS domain proteins such as DarB in Bacillus subtilis and CbpB in Listeria monocytogenes. We show here that the CbpB protein of Group B Streptococcus binds c-di-AMP with a very high affinity. Crystal structures of CbpB reveal the determinants of binding specificity and significant conformational changes occurring upon c-di-AMP binding. Deletion of the cbpB gene alters bacterial growth in low potassium conditions most likely due to a decrease in the amount of ppGpp caused by a loss of interaction between CbpB and Rel, the GTP/GDP pyrophosphokinase.
Collapse
Affiliation(s)
- Giovanni Covaleda-Cortés
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Ariel Mechaly
- CNRS-UMR 3528, Crystallography Platform, Center for Technological Resources and Research, Institut Pasteur, Université Paris Cité, France
| | - Terry Brissac
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Heike Baehre
- Research Core Unit Metabolomics, Hannover Medical School, Germany
| | - Laura Devaux
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Patrick England
- CNRS UMR 3528, Molecular Biophysics Platform, Center for Technological Resources and Research, Institut Pasteur, Université Paris Cité, France
| | - Bertrand Raynal
- CNRS UMR 3528, Molecular Biophysics Platform, Center for Technological Resources and Research, Institut Pasteur, Université Paris Cité, France
| | - Sylviane Hoos
- CNRS UMR 3528, Molecular Biophysics Platform, Center for Technological Resources and Research, Institut Pasteur, Université Paris Cité, France
| | - Myriam Gominet
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Arnaud Firon
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Patrick Trieu-Cuot
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| | - Pierre Alexandre Kaminski
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, France
| |
Collapse
|
17
|
Truong-Bolduc QC, Wang Y, Hooper DC. Role of Staphylococcus aureus Tet38 in Transport of Tetracycline and Its Regulation in a Salt Stress Environment. J Bacteriol 2022; 204:e0014222. [PMID: 35699453 PMCID: PMC9295565 DOI: 10.1128/jb.00142-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus Tet38 efflux pump has multiple functions, including conferring resistance to tetracycline and other compounds and enabling internalization and survival within epithelial cells. In this study, we evaluated the effects of sodium and potassium on tet38 expression. These monovalent cations are known to play a role in transport by the related S. aureus TetK and B. subtilis TetL transporters. tet38 transcription decreased with increasing sodium concentrations by means of direct repression by the salt stress-dependent KdpD/E regulator. tet38 transcription increased 20-fold and tetracycline minimum inhibitory concentration (MIC) increased 4-fold in a ΔkdpD mutant. KdpE bound specifically to the tet38 promoter. Under extreme salt stress, the survival of S. aureus with intact tet38 was reduced compared to that of a Δtet38 mutant. To study the effect of sodium on Tet38 function, we generated constructs overexpressing tet38 and tetK and introduced them into Escherichia coli TO114, which is deficient in major sodium transporters. Tet38 tetracycline efflux was directly demonstrated in a fluorescence assay, and tetracycline efflux of both Tet38 and TetK was abolished by the protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In contrast, NaCl inhibited efflux by Tet38 but not TetK, whereas KCl inhibited efflux by TetK but not Tet38. Cell-associated Na increased with heterologous overexpression of Tet38. These data indicate that S. aureus Tet38 is a tetracycline efflux pump regulated by the KdpD/E regulator. Under salt stress, S. aureus adjusted its survival in part by reducing the expression of tet38 through KdpD/E. The mechanisms by which Tet38 is detrimental to salt tolerance in S. aureus and inhibited by sodium remain to be determined. IMPORTANCE This study shows that S. aureus Tet38 is a tetracycline efflux pump regulated by KdpD/E regulator. These findings are the first direct demonstration of Tet38-mediated tetracycline efflux, which had previously been inferred from its ability to confer tetracycline resistance. Under salt stress, S. aureus adjusts its survival in part by reducing the expression of tet38 through KdpD/E. We demonstrated the differences in the respective functions of S. aureus Tet38 and other tetracycline efflux transporters (S. aureus TetK, B. subtilis TetL) regarding their transport of tetracycline and Na+/K+. Notably, sodium selectively reduced tetracycline efflux by Tet38, and potassium selectively reduced tetracycline efflux by TetK. The multiple functions of Tet38 emphasize its importance in bacterial adaptation to and survival in diverse environments.
Collapse
Affiliation(s)
- Q. C. Truong-Bolduc
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Wang
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. C. Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Bioremediation potential of hexavalent chromium-resistant Arthrobacter globiformis 151B: study of the uptake of cesium and other alkali ions. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:745-758. [PMID: 35768673 DOI: 10.1007/s10123-022-00258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/04/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Cesium (Cs+) enters environments largely because of global release into the environment from weapons testing and accidents such as Fukushima Daiichi and Chernobyl nuclear waste. Even at low concentrations, Cs+ is highly toxic to ecological receptors because of its physicochemical similarity to macronutrient potassium (K+). We investigated the uptake and accumulation of Cs+ by Arthrobacter globiformis strain 151B in reference to three similar alkali metal cations rubidium (Rb+), sodium (Na+), and potassium (K+). The impact of hexavalent chromium (Cr+6) as a co-contaminant was also evaluated. A. globiformis 151B accumulated Cs+ and Cr6+ in a time-dependent fashion. In contrast, the uptake and accumulation of Rb+ did not exhibit any trends. An exposure to Cs+, Rb+, and Cr+6 triggered a drastic increase in K+ and Na+ uptake by the bacterial cells. That was followed by the efflux of K+ and Na+, suggesting a Cs+ "substitution." Two-dimensional gel-electrophoresis of bacterial cell proteomes with the following mass-spectrometry of differentially expressed bands revealed that incubation of bacterial cells with Cs+ induced changes in the expression of proteins involved in the maintenance of cellular homeostasis and reactive oxygen species removal. The ability of A. globiformis 151B to mediate the uptake and accumulation of cesium and hexavalent chromium suggests that it possesses wide-range bioremediation potential.
Collapse
|
19
|
Boase K, González C, Vergara E, Neira G, Holmes D, Watkin E. Prediction and Inferred Evolution of Acid Tolerance Genes in the Biotechnologically Important Acidihalobacter Genus. Front Microbiol 2022; 13:848410. [PMID: 35516430 PMCID: PMC9062700 DOI: 10.3389/fmicb.2022.848410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Acidihalobacter is a genus of acidophilic, gram-negative bacteria known for its ability to oxidize pyrite minerals in the presence of elevated chloride ions, a capability rare in other iron-sulfur oxidizing acidophiles. Previous research involving Acidihalobacter spp. has focused on their applicability in saline biomining operations and their genetic arsenal that allows them to cope with chloride, metal and oxidative stress. However, an understanding of the molecular adaptations that enable Acidihalobacter spp. to thrive under both acid and chloride stress is needed to provide a more comprehensive understanding of how this genus can thrive in such extreme biomining conditions. Currently, four genomes of the Acidihalobacter genus have been sequenced: Acidihalobacter prosperus DSM 5130T, Acidihalobacter yilgarnensis DSM 105917T, Acidihalobacter aeolianus DSM 14174T, and Acidihalobacter ferrooxydans DSM 14175T. Phylogenetic analysis shows that the Acidihalobacter genus roots to the Chromatiales class consisting of mostly halophilic microorganisms. In this study, we aim to advance our knowledge of the genetic repertoire of the Acidihalobacter genus that has enabled it to cope with acidic stress. We provide evidence of gene gain events that are hypothesized to help the Acidihalobacter genus cope with acid stress. Potential acid tolerance mechanisms that were found in the Acidihalobacter genomes include multiple potassium transporters, chloride/proton antiporters, glutamate decarboxylase system, arginine decarboxylase system, urease system, slp genes, squalene synthesis, and hopanoid synthesis. Some of these genes are hypothesized to have entered the Acidihalobacter via vertical decent from an inferred non-acidophilic ancestor, however, horizontal gene transfer (HGT) from other acidophilic lineages is probably responsible for the introduction of many acid resistance genes.
Collapse
Affiliation(s)
- Katelyn Boase
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - David Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes,
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Elizabeth Watkin,
| |
Collapse
|
20
|
Bleul L, Francois P, Wolz C. Two-Component Systems of S. aureus: Signaling and Sensing Mechanisms. Genes (Basel) 2021; 13:34. [PMID: 35052374 PMCID: PMC8774646 DOI: 10.3390/genes13010034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.
Collapse
Affiliation(s)
- Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals of Geneva University Medical Center, Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| |
Collapse
|
21
|
Feng Y, Gu D, Wang Z, Lu C, Fan J, Zhou J, Wang R, Su X. Comprehensive evaluation and analysis of the salinity stress response mechanisms based on transcriptome and metabolome of Staphylococcus aureus. Arch Microbiol 2021; 204:28. [PMID: 34921629 DOI: 10.1007/s00203-021-02624-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus possesses an extraordinary ability to deal with a wide range of osmotic pressure. This study performed transcriptomic and metabolomic analyses on the potential mechanism of gradient salinity stress adaptation in S. aureus ZS01. The results revealed that CPS biosynthetic protein genes were candidate target genes for directly regulating the phenotypic changes of biofilm. Inositol phosphate metabolism was downregulated to reduce the conversion of functional molecules. The gluconeogenesis pathway and histidine synthesis were downregulated to reduce the production of endogenous glucose. The pyruvate metabolism pathway was upregulated to promote the accumulation of succinate. TCA cycle metabolism pathway was downregulated to reduce unnecessary energy loss. L-Proline was accumulated to regulate osmotic pressure. Therefore, these self-protection mechanisms can protect cells from hypertonic environments and help them focus on survival. In addition, we identified ten hub genes. The findings will aid in the prevention and treatment strategies of S. aureus infections.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,College of Life Sciences, Tonghua Normal University, Tonghua, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Dizhou Gu
- College of Life Sciences, Tonghua Normal University, Tonghua, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, Dalian, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China. .,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China.
| |
Collapse
|
22
|
Shao L, Liu Y, Tian X, Zou B, Zhao Y, Li X, Dai R. Global proteomic responses of sublethally injured Staphylococcus aureus induced by ohmic heating. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Abstract
Potassium is an essential mineral nutrient required by all living cells for normal physiological function. Therefore, maintaining intracellular potassium homeostasis during bacterial infection is a requirement for the survival of both host and pathogen. However, pathogenic bacteria require potassium transport to fulfill nutritional and chemiosmotic requirements, and potassium has been shown to directly modulate virulence gene expression, antimicrobial resistance, and biofilm formation. Host cells also require potassium to maintain fundamental biological processes, such as renal function, muscle contraction, and neuronal transmission; however, potassium flux also contributes to critical immunological and antimicrobial processes, such as cytokine production and inflammasome activation. Here, we review the role and regulation of potassium transport and signaling during infection in both mammalian and bacterial cells and highlight the importance of potassium to the success and survival of each organism.
Collapse
|
24
|
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol 2021; 433:166968. [PMID: 33798529 DOI: 10.1016/j.jmb.2021.166968] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob M Silberberg
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason R Devlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Dwivedi M, Shaw A. Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie 2021; 182:85-98. [PMID: 33453344 DOI: 10.1016/j.biochi.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Cation and protons perform a substantial role in all the organism and its homeostasis within the cells are maintained by the cation-proton antiporters (CPAs). CPA is the huge family of the membrane transporter protein throughout the plant and animal kingdom including microorganism. In human, any malfunctioning of these proteins may lead to severe diseases like hypertension, heart diseases etc and CPAs are recently proposed to be responsible for the virulent property of various pathogens including Vibrio cholerae, Yersinia pestis etc. Human Sodium-Proton exchangers (Na+/H+ exchangers, NHEs) are crucial in ion homeostasis whereas Ec-NhaA, Na + -H + Antiporters maintain a balance of Na+ and proton in E. coli, regulating pH and cell volume within the cell. These Sodium-Proton antiporters are found to be responsible for the virulence in various pathogens causing human diseases. Understanding of these CPAs may assist investigators to target such human diseases, that further may lead to establishing the effective path for therapeutics or drug designing against associated human disease. Here we have compiled all such information on CPAs and provide a systematic approach to unravel the mechanism and role of antiporter proteins in a wide range of organisms. Being involved throughout all the species, this review on cation-proton antiporters may attract the attention of many investigators and concerned researchers and will be provided with the recent detailed information on the role of CPA in human health.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India.
| | | |
Collapse
|
26
|
Gao B, Friedman ES, Regunathan R, Shrivastava A, Barrows IR, Amdur RL, Andrews SC, Barrows ED, Raj DS. Gut Microbiota and Host Cometabolism Are Altered by Patiromer-Induced Changes in Serum and Stool Potassium. Kidney Int Rep 2020; 6:821-829. [PMID: 33732997 PMCID: PMC7938084 DOI: 10.1016/j.ekir.2020.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China
| | - Elliot S Friedman
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Renu Regunathan
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Anvesha Shrivastava
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Ian R Barrows
- Division of Cardiology, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Richard L Amdur
- Department of Surgery, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Sarah C Andrews
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Elizabeth D Barrows
- Department of Medicine, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Dominic S Raj
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
27
|
Casey D, Sleator RD. A genomic analysis of osmotolerance in Staphylococcus aureus. Gene 2020; 767:145268. [PMID: 33157201 DOI: 10.1016/j.gene.2020.145268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/07/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
A key phenotypic characteristic of the Gram-positive bacterial pathogen, Staphylococcus aureus, is its ability to grow in low aw environments. A homology transfer based approach, using the well characterised osmotic stress response systems of Bacillus subtilis and Escherichia coli, was used to identify putative osmotolerance loci in Staphylococcus aureus ST772-MRSA-V. A total of 17 distinct putative hyper and hypo-osmotic stress response systems, comprising 78 genes, were identified. The ST772-MRSA-V genome exhibits significant degeneracy in terms of the osmotic stress response; with three copies of opuD, two copies each of nhaK and mrp/mnh, and five copies of opp. Furthermore, regulation of osmotolerance in ST772-MRSA-V appears to be mediated at the transcriptional, translational, and post-translational levels.
Collapse
Affiliation(s)
- Dylan Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland.
| |
Collapse
|
28
|
Niccum BA, Kastman EK, Kfoury N, Robbat A, Wolfe BE. Strain-Level Diversity Impacts Cheese Rind Microbiome Assembly and Function. mSystems 2020; 5:e00149-20. [PMID: 32546667 PMCID: PMC7300356 DOI: 10.1128/msystems.00149-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Diversification can generate genomic and phenotypic strain-level diversity within microbial species. This microdiversity is widely recognized in populations, but the community-level consequences of microbial strain-level diversity are poorly characterized. Using the cheese rind model system, we tested whether strain diversity across microbiomes from distinct geographic regions impacts assembly dynamics and functional outputs. We first isolated the same three bacterial species (Staphylococcus equorum, Brevibacterium auranticum, and Brachybacterium alimentarium) from nine cheeses produced in different regions of the United States and Europe to construct nine synthetic microbial communities consisting of distinct strains of the same three bacterial species. Comparative genomics identified distinct phylogenetic clusters and significant variation in genome content across the nine synthetic communities. When we assembled each synthetic community with initially identical compositions, community structure diverged over time, resulting in communities with different dominant taxa. The taxonomically identical communities showed differing responses to abiotic (high salt) and biotic (the fungus Penicillium) perturbations, with some communities showing no response and others substantially shifting in composition. Functional differences were also observed across the nine communities, with significant variation in pigment production (light yellow to orange) and in composition of volatile organic compound profiles emitted from the rinds (nutty to sulfury).IMPORTANCE Our work demonstrated that the specific microbial strains used to construct a microbiome could impact the species composition, perturbation responses, and functional outputs of that system. These findings suggest that 16S rRNA gene taxonomic profiles alone may have limited potential to predict the dynamics of microbial communities because they usually do not capture strain-level diversity. Observations from our synthetic communities also suggest that strain-level diversity has the potential to drive variability in the aesthetics and quality of surface-ripened cheeses.
Collapse
Affiliation(s)
- Brittany A Niccum
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Erik K Kastman
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Nicole Kfoury
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
| | - Albert Robbat
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
| | - Benjamin E Wolfe
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| |
Collapse
|
29
|
Rapun-Araiz B, Haag AF, Solano C, Lasa I. The impact of two-component sensorial network in staphylococcal speciation. Curr Opin Microbiol 2020; 55:40-47. [PMID: 32199334 PMCID: PMC7322546 DOI: 10.1016/j.mib.2020.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/26/2023]
Abstract
Bacteria use two-component systems (TCSs) to sense and respond to their environments. Free-living bacteria usually contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Differences in the content of two-component systems are related with the capacity of the bacteria to colonize different niches or improve the efficiency to grow under the conditions of the existing niche. This review highlights differences in the TCS content between Staphylococcus aureus and Staphylococcus saprophyticus as a case study to exemplify how the ability to sense and respond to the environment is relevant for bacterial capacity to colonize and survive in/on different body surfaces.
Collapse
Affiliation(s)
- Beatriz Rapun-Araiz
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IDISNA, Pamplona, 31008, Spain
| | - Andreas F Haag
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IDISNA, Pamplona, 31008, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IDISNA, Pamplona, 31008, Spain.
| |
Collapse
|
30
|
Wu X, Zhou H, Li L, Wang E, Zhou X, Gu Y, Wu X, Shen L, Zeng W. Whole Genome Sequencing and Comparative Genomic Analyses of Lysinibacillus pakistanensis LZH-9, a Halotolerant Strain with Excellent COD Removal Capability. Microorganisms 2020; 8:microorganisms8050716. [PMID: 32408484 PMCID: PMC7284689 DOI: 10.3390/microorganisms8050716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/26/2022] Open
Abstract
Halotolerant microorganisms are promising in bio-treatment of hypersaline industrial wastewater. Four halotolerant bacteria strains were isolated from wastewater treatment plant, of which a strain LZH-9 could grow in the presence of up to 14% (w/v) NaCl, and it removed 81.9% chemical oxygen demand (COD) at 96 h after optimization. Whole genome sequencing of Lysinibacillus pakistanensis LZH-9 and comparative genomic analysis revealed metabolic versatility of different species of Lysinibacillus, and abundant genes involved in xenobiotics biodegradation, resistance to toxic compound, and salinity were found in all tested species of Lysinibacillus, in which Horizontal Gene Transfer (HGT) contributed to the acquisition of many important properties of Lysinibacillus spp. such as toxic compound resistance and osmotic stress resistance as revealed by phylogenetic analyses. Besides, genome wide positive selection analyses revealed seven genes that contained adaptive mutations in Lysinibacillus spp., most of which were multifunctional. Further expression assessment with Codon Adaption Index (CAI) also reflected the high metabolic rate of L. pakistanensis to digest potential carbon or nitrogen sources in organic contaminants, which was closely linked with efficient COD removal ability of strain LZH-9. The high COD removal efficiency and halotolerance as well as genomic evidences suggested that L. pakistanensis LZH-9 was promising in treating hypersaline industrial wastewater.
Collapse
Affiliation(s)
- Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (H.Z.); (L.L.); (E.W.); (X.Z.); (Y.G.); (X.W.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Han Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (H.Z.); (L.L.); (E.W.); (X.Z.); (Y.G.); (X.W.); (L.S.)
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (H.Z.); (L.L.); (E.W.); (X.Z.); (Y.G.); (X.W.); (L.S.)
| | - Enhui Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (H.Z.); (L.L.); (E.W.); (X.Z.); (Y.G.); (X.W.); (L.S.)
| | - Xiangyu Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (H.Z.); (L.L.); (E.W.); (X.Z.); (Y.G.); (X.W.); (L.S.)
| | - Yichao Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (H.Z.); (L.L.); (E.W.); (X.Z.); (Y.G.); (X.W.); (L.S.)
| | - Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (H.Z.); (L.L.); (E.W.); (X.Z.); (Y.G.); (X.W.); (L.S.)
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (H.Z.); (L.L.); (E.W.); (X.Z.); (Y.G.); (X.W.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (X.W.); (H.Z.); (L.L.); (E.W.); (X.Z.); (Y.G.); (X.W.); (L.S.)
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
- Correspondence: ; Tel.: +86-0731-88877472
| |
Collapse
|
31
|
Tascón I, Sousa JS, Corey RA, Mills DJ, Griwatz D, Aumüller N, Mikusevic V, Stansfeld PJ, Vonck J, Hänelt I. Structural basis of proton-coupled potassium transport in the KUP family. Nat Commun 2020; 11:626. [PMID: 32005818 PMCID: PMC6994465 DOI: 10.1038/s41467-020-14441-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/10/2020] [Indexed: 12/05/2022] Open
Abstract
Potassium homeostasis is vital for all organisms, but is challenging in single-celled organisms like bacteria and yeast and immobile organisms like plants that constantly need to adapt to changing external conditions. KUP transporters facilitate potassium uptake by the co-transport of protons. Here, we uncover the molecular basis for transport in this widely distributed family. We identify the potassium importer KimA from Bacillus subtilis as a member of the KUP family, demonstrate that it functions as a K+/H+ symporter and report a 3.7 Å cryo-EM structure of the KimA homodimer in an inward-occluded, trans-inhibited conformation. By introducing point mutations, we identify key residues for potassium and proton binding, which are conserved among other KUP proteins. KUP transporters facilitate potassium uptake by the co-transport of protons and are key players in potassium homeostasis. Here authors identify the potassium importer KimA from Bacillus subtilis as a new member of the KUP transporter family and show the cryo-EM structure of KimA in an inward-occluded, trans-inhibited conformation.
Collapse
Affiliation(s)
- Igor Tascón
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - David Griwatz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nadine Aumüller
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Vedrana Mikusevic
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK.,School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Schuster CF, Wiedemann DM, Kirsebom FCM, Santiago M, Walker S, Gründling A. High-throughput transposon sequencing highlights the cell wall as an important barrier for osmotic stress in methicillin resistant Staphylococcus aureus and underlines a tailored response to different osmotic stressors. Mol Microbiol 2019; 113:699-717. [PMID: 31770461 PMCID: PMC7176532 DOI: 10.1111/mmi.14433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen that can cause soft tissue infections but is also a frequent cause of foodborne illnesses. One contributing factor for this food association is its high salt tolerance allowing this organism to survive commonly used food preservation methods. How this resistance is mediated is poorly understood, particularly during long-term exposure. In this study, we used transposon sequencing (TN-seq) to understand how the responses to osmotic stressors differ. Our results revealed distinctly different long-term responses to NaCl, KCl and sucrose stresses. In addition, we identified the DUF2538 domain containing gene SAUSA300_0957 (gene 957) as essential under salt stress. Interestingly, a 957 mutant was less susceptible to oxacillin and showed increased peptidoglycan crosslinking. The salt sensitivity phenotype could be suppressed by amino acid substitutions in the transglycosylase domain of the penicillin-binding protein Pbp2, and these changes restored the peptidoglycan crosslinking to WT levels. These results indicate that increased crosslinking of the peptidoglycan polymer can be detrimental and highlight a critical role of the bacterial cell wall for osmotic stress resistance. This study will serve as a starting point for future research on osmotic stress response and help develop better strategies to tackle foodborne staphylococcal infections.
Collapse
Affiliation(s)
- Christopher F Schuster
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David M Wiedemann
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Freja C M Kirsebom
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Angelika Gründling
- Section of Molecular Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
33
|
Gibhardt J, Hoffmann G, Turdiev A, Wang M, Lee VT, Commichau FM. c-di-AMP assists osmoadaptation by regulating the Listeria monocytogenes potassium transporters KimA and KtrCD. J Biol Chem 2019; 294:16020-16033. [PMID: 31506295 DOI: 10.1074/jbc.ra119.010046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Indexed: 12/30/2022] Open
Abstract
Many bacteria and some archaea produce the second messenger cyclic diadenosine monophosphate (c-di-AMP). c-di-AMP controls the uptake of osmolytes in Firmicutes, including the human pathogen Listeria monocytogenes, making it essential for growth. c-di-AMP is known to directly regulate several potassium channels involved in osmolyte transport in species such as Bacillus subtilis and Streptococcus pneumoniae, but whether this same mechanism is involved in L. monocytogenes, or even whether similar ion channels were present, was not known. Here, we have identified and characterized the putative L. monocytogenes' potassium transporters KimA, KtrCD, and KdpABC. We demonstrate that Escherichia coli expressing KimA and KtrCD, but not KdpABC, transport potassium into the cell, and both KimA and KtrCD are inhibited by c-di-AMP in vivo For KimA, c-di-AMP-dependent regulation requires the C-terminal domain. In vitro assays demonstrated that the dinucleotide binds to the cytoplasmic regulatory subunit KtrC and to the KdpD sensor kinase of the KdpDE two-component system, which in Staphylococcus aureus regulates the corresponding KdpABC transporter. Finally, we also show that S. aureus contains a homolog of KimA, which mediates potassium transport. Thus, the c-di-AMP-dependent control of systems involved in potassium homeostasis seems to be conserved in phylogenetically related bacteria. Surprisingly, the growth of an L. monocytogenes mutant lacking the c-di-AMP-synthesizing enzyme cdaA is only weakly inhibited by potassium. Thus, the physiological impact of the c-di-AMP-dependent control of potassium uptake seems to be less pronounced in L. monocytogenes than in other Firmicutes.
Collapse
Affiliation(s)
- Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Gregor Hoffmann
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Asan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Mengyi Wang
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
34
|
Ingmer H, Gerlach D, Wolz C. Temperate Phages of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0058-2018. [PMID: 31562736 PMCID: PMC10921950 DOI: 10.1128/microbiolspec.gpp3-0058-2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
Most Staphylococcus aureus isolates carry multiple bacteriophages in their genome, which provide the pathogen with traits important for niche adaptation. Such temperate S. aureus phages often encode a variety of accessory factors that influence virulence, immune evasion and host preference of the bacterial lysogen. Moreover, transducing phages are primary vehicles for horizontal gene transfer. Wall teichoic acid (WTA) acts as a common phage receptor for staphylococcal phages and structural variations of WTA govern phage-host specificity thereby shaping gene transfer across clonal lineages and even species. Thus, bacteriophages are central for the success of S. aureus as a human pathogen.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Keinhörster D, George SE, Weidenmaier C, Wolz C. Function and regulation of Staphylococcus aureus wall teichoic acids and capsular polysaccharides. Int J Med Microbiol 2019; 309:151333. [DOI: 10.1016/j.ijmm.2019.151333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023] Open
|
36
|
Espadinha D, Sobral RG, Mendes CI, Méric G, Sheppard SK, Carriço JA, de Lencastre H, Miragaia M. Distinct Phenotypic and Genomic Signatures Underlie Contrasting Pathogenic Potential of Staphylococcus epidermidis Clonal Lineages. Front Microbiol 2019; 10:1971. [PMID: 31507574 PMCID: PMC6719527 DOI: 10.3389/fmicb.2019.01971] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Staphylococcus epidermidis is a common skin commensal that has emerged as a pathogen in hospitals, mainly related to medical devices-associated infections. Noteworthy, infection rates by S. epidermidis have the tendency to rise steeply in next decades together with medical devices use and immunocompromized population growth. Staphylococcus epidermidis population structure includes two major clonal lineages (A/C and B) that present contrasting pathogenic potentials. To address this distinction and explore the basis of increased pathogenicity of A/C lineage, we performed a detailed comparative analysis using phylogenetic and integrated pangenome-wide-association study (panGWAS) approaches and compared the lineages's phenotypes in in vitro conditions mimicking carriage and infection. Results: Each S. epidermidis lineage had distinct phenotypic signatures in skin and infection conditions and differed in genomic content. Combination of phenotypic and genotypic data revealed that both lineages were well adapted to skin environmental cues. However, they appear to occupy different skin niches, perform distinct biological functions in the skin and use different mechanisms to complete the same function: lineage B strains showed evidence of specialization to survival in microaerobic and lipid rich environment, characteristic of hair follicle and sebaceous glands; lineage A/C strains showed evidence for adaption to diverse osmotic and pH conditions, potentially allowing them to occupy a broader and more superficial skin niche. In infection conditions, A/C strains had an advantage, having the potential to bind blood-associated host matrix proteins, form biofilms at blood pH, resist antibiotics and macrophage acidity and to produce proteases. These features were observed to be rare in the lineage B strains. PanGWAS analysis produced a catalog of putative S. epidermidis virulence factors and identified an epidemiological molecular marker for the more pathogenic lineage. Conclusion: The prevalence of A/C lineage in infection is probably related to a higher metabolic and genomic versatility that allows rapid adaptation during transition from a commensal to a pathogenic lifestyle. The putative virulence and phenotypic factors associated to A/C lineage constitute a reliable framework for future studies on S. epidermidis pathogenesis and the finding of an epidemiological marker for the more pathogenic lineage is an asset for the management of S. epidermidis infections.
Collapse
Affiliation(s)
- Diana Espadinha
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rita G. Sobral
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO/REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Costa de Caparica, Portugal
| | - Catarina Inês Mendes
- Molecular Microbiology and Infection Unit, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Guillaume Méric
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- MRC CLIMB Consortium, Bath, United Kingdom
| | - João A. Carriço
- Molecular Microbiology and Infection Unit, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, United States
| | - Maria Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
37
|
Graf AC, Leonard A, Schäuble M, Rieckmann LM, Hoyer J, Maass S, Lalk M, Becher D, Pané-Farré J, Riedel K. Virulence Factors Produced by Staphylococcus aureus Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity. Mol Cell Proteomics 2019; 18:1036-1053. [PMID: 30850421 PMCID: PMC6553939 DOI: 10.1074/mcp.ra118.001120] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is the causative agent of various biofilm-associated infections in humans causing major healthcare problems worldwide. This type of infection is inherently difficult to treat because of a reduced metabolic activity of biofilm-embedded cells and the protective nature of a surrounding extracellular matrix (ECM). However, little is known about S. aureus biofilm physiology and the proteinaceous composition of the ECM. Thus, we cultivated S. aureus biofilms in a flow system and comprehensively profiled intracellular and extracellular (ECM and flow-through (FT)) biofilm proteomes, as well as the extracellular metabolome compared with planktonic cultures. Our analyses revealed the expression of many pathogenicity factors within S. aureus biofilms as indicated by a high abundance of capsule biosynthesis proteins along with various secreted virulence factors, including hemolysins, leukotoxins, and lipases as a part of the ECM. The activity of ECM virulence factors was confirmed in a hemolysis assay and a Galleria mellonella pathogenicity model. In addition, we uncovered a so far unacknowledged moonlighting function of secreted virulence factors and ribosomal proteins trapped in the ECM: namely their contribution to biofilm integrity. Mechanistically, it was revealed that this stabilizing effect is mediated by the strong positive charge of alkaline virulence factors and ribosomal proteins in an acidic ECM environment, which is caused by the release of fermentation products like formate, lactate, and acetate because of oxygen limitation in biofilms. The strong positive charge of these proteins most likely mediates electrostatic interactions with anionic cell surface components, eDNA, and anionic metabolites. In consequence, this leads to strong cell aggregation and biofilm stabilization. Collectively, our study identified a new molecular mechanism during S. aureus biofilm formation and thus significantly widens the understanding of biofilm-associated S. aureus infections - an essential prerequisite for the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Alexander C Graf
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Anne Leonard
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Manuel Schäuble
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Lisa M Rieckmann
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Juliane Hoyer
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Sandra Maass
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Michael Lalk
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Dörte Becher
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Jan Pané-Farré
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Katharina Riedel
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology;
| |
Collapse
|
38
|
Ming T, Geng L, Feng Y, Lu C, Zhou J, Li Y, Zhang D, He S, Li Y, Cheong L, Su X. iTRAQ-Based Quantitative Proteomic Profiling of Staphylococcus aureus Under Different Osmotic Stress Conditions. Front Microbiol 2019; 10:1082. [PMID: 31191466 PMCID: PMC6549500 DOI: 10.3389/fmicb.2019.01082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/29/2019] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an extremely halotolerant pathogenic bacterium with high osmotic stress tolerance, and it is frequently encountered in aquatic production and preservation. However, the mechanism underlying the extremely high osmotic stress tolerance of S. aureus remains unclear. In this study, the isobaric tags for relative and absolute quantification (iTRAQ) method was used to identify the differentially expressed proteins (DEPs) under different sodium chloride (NaCl) concentrations. Compared with the control group (0% NaCl), the 10 and 20% NaCl groups had 484 DEPs and 750 DEPs, respectively. Compared with the 10% NaCl group, the 20% NaCl group had 361 DEPs. Among the DEPs, proteins involved in fatty acid synthesis, proline/glycine betaine biosynthesis and transportation, stress tolerance, cell wall biosynthesis and the TCA cycle were upregulated, whereas proteins associated with biofilm formation and pathogenic infections were downregulated. The results obtained in this study indicate that under extremely high osmotic stress, modification of the cell membrane structure, increased biosynthesis and transportation of osmotic protectants, and redistribution of energy metabolism contribute to the osmotic stress tolerance of S. aureus, and the infectious ability of the bacteria may be limited. The aim of this study was to provide new insight into how S. aureus tolerates the high-salt conditions involved in aquatic production and preservation.
Collapse
Affiliation(s)
- Tinghong Ming
- School of Marine Sciences, Ningbo University, Ningbo, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lingxin Geng
- School of Marine Sciences, Ningbo University, Ningbo, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Ying Feng
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chenyang Lu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jun Zhou
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yanyan Li
- Department of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Dijun Zhang
- Zhejiang Zhengli Antuo Biotechnology Co., Ltd, Ningbo, China
| | - Shan He
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ye Li
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lingzhi Cheong
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiurong Su
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
39
|
Wang X, Cai X, Ma H, Yin W, Zhu L, Li X, Lim HM, Chou SH, He J. A c-di-AMP riboswitch controlling kdpFABC operon transcription regulates the potassium transporter system in Bacillus thuringiensis. Commun Biol 2019; 2:151. [PMID: 31044176 PMCID: PMC6488665 DOI: 10.1038/s42003-019-0414-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
The intracellular K+ level in bacteria is strictly controlled by K+ uptake and efflux systems. Among these, KdpFABC is a high-affinity K+ transporter system that is generally activated by the KdpDE two-component system in response to K+ limitation stress. However, the regulatory mechanism remains obscure in bacteria lacking the kdpDE genes. Here we report that the transcription of a kdpFABC operon is distinctively regulated by a cyclic diadenylate monophosphate (c-di-AMP) riboswitch located at the 5'-untranslated region of kdp transcript, and binding of c-di-AMP to the riboswitch promotes its intrinsic termination that blocks the kdpFABC transcription. Further, the intracellular c-di-AMP concentration was found to decrease under the K+ limitation stress, leading to transcriptional read-through over the terminator to allow kdpFABC expression. This regulatory element is found predominantly in the Bacillus cereus group and correlate well with the K+ and c-di-AMP homeostasis that affects a variety of crucial cellular functions.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Xia Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Hongdan Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| | - Heon M. Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764 Republic of Korea
| | - Shan-Ho Chou
- Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 PR China
| |
Collapse
|
40
|
Osmotic stress induces biofilm production by Staphylococcus epidermidis isolates from neonates. Diagn Microbiol Infect Dis 2019; 94:337-341. [PMID: 30885396 DOI: 10.1016/j.diagmicrobio.2019.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 11/23/2022]
Abstract
Staphylococcus epidermidis is one of the leading causes of bloodstream infections, particularly in premature neonates, and biofilm formation is a major virulence factor. We characterized biofilm formation by 50 S. epidermidis neonatal isolates under osmotic stress and evaluated the expression of biofilm-associated genes. Phenotypical analyses of biofilm production were performed in culture medium with or without addition of NaCl or glucose. In control medium (no additions), most isolates (84%) were nonproducers or weak biofilm producers. Growth in NaCl-containing medium increased the number of moderate/strong producers, and this increase was even greater in medium containing glucose. Most of the protein-enriched biofilms (60%) could be observed only during growth in glucose, whereas 50% of the polysaccharide-enriched biofilms were observed during growth in NaCl. Studies that evaluate the conditions used to characterize biofilm production are important to help us understand the dynamics of this important virulence factor in S. epidermidis and their impact on neonatal infections.
Collapse
|
41
|
Rocha R, Teixeira-Duarte CM, Jorge JMP, Morais-Cabral JH. Characterization of the molecular properties of KtrC, a second RCK domain that regulates a Ktr channel in Bacillus subtilis. J Struct Biol 2019; 205:34-43. [PMID: 30753894 DOI: 10.1016/j.jsb.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/24/2022]
Abstract
RCK (regulating conductance of K+) domains are common regulatory domains that control the activity of eukaryotic and prokaryotic K+ channels and transporters. In bacteria these domains play roles in osmoregulation, regulation of turgor and membrane potential and in pH homeostasis. Whole-genome sequencing unveiled RCK gene redundancy, however the biological role of this redundancy is not well understood. In Bacillus subtilis, there are two closely related RCK domain proteins (KtrA and KtrC) that regulate the activity of the Ktr cation channels. KtrA has been well characterized but little is known about KtrC. We have characterized the structural and biochemical proprieties of KtrC and conclude that KtrC binds ATP and ADP, just like KtrA. However, in solution KtrC exist in a dynamic equilibrium between octamers and non-octameric species that is dependent on the bound ligand, with ATP destabilizing the octameric ring relative to ADP. Accordingly, KtrC-ADP crystal structures reveal closed octameric rings similar to those in KtrA, while KtrC-ATP adopts an open assembly with RCK domains forming a super-helix. In addition, both KtrC-ATP and -ADP octamers are stabilized by the signaling molecule cyclic-di-AMP, which binds to KtrC with high affinity. In contrast, c-di-AMP binds with 100-fold lower affinity to KtrA. Despite these differences we show with an E. coli complementation assay that KtrC and KtrA are interchangeable and able to form functional transporters with both KtrB and KtrD. The distinctive properties of KtrC, in particular ligand-dependent assembly/disassembly, suggest that this protein has a specific physiological role that is distinct from KtrA.
Collapse
Affiliation(s)
- Rita Rocha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Celso M Teixeira-Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - João M P Jorge
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João Henrique Morais-Cabral
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
42
|
Khaleque HN, González C, Shafique R, Kaksonen AH, Holmes DS, Watkin ELJ. Uncovering the Mechanisms of Halotolerance in the Extremely Acidophilic Members of the Acidihalobacter Genus Through Comparative Genome Analysis. Front Microbiol 2019; 10:155. [PMID: 30853944 PMCID: PMC6396713 DOI: 10.3389/fmicb.2019.00155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
There are few naturally occurring environments where both acid and salinity stress exist together, consequently, there has been little evolutionary pressure for microorganisms to develop systems that enable them to deal with both stresses simultaneously. Members of the genus Acidihalobacter are iron- and sulfur-oxidizing, halotolerant acidophiles that have developed the ability to tolerate acid and saline stress and, therefore, have the potential to bioleach ores with brackish or saline process waters under acidic conditions. The genus consists of four members, A. prosperus DSM 5130T, A. prosperus DSM 14174, A. prosperus F5 and "A. ferrooxidans" DSM 14175. An in depth genome comparison was undertaken in order to provide a more comprehensive description of the mechanisms of halotolerance used by the different members of this genus. Pangenome analysis identified 29, 3 and 9 protein families related to halotolerance in the core, dispensable and unique genomes, respectively. The genes for halotolerance showed Ka/Ks ratios between 0 and 0.2, confirming that they are conserved and stabilized. All the Acidihalobacter genomes contained similar genes for the synthesis and transport of ectoine, which was recently found to be the dominant osmoprotectant in A. prosperus DSM 14174 and A. prosperus DSM 5130T. Similarities also existed in genes encoding low affinity potassium pumps, however, A. prosperus DSM 14174 was also found to contain genes encoding high affinity potassium pumps. Furthermore, only A. prosperus DSM 5130T and "A. ferrooxidans" DSM 14175 contained genes allowing the uptake of taurine as an osmoprotectant. Variations were also seen in genes encoding proteins involved in the synthesis and/or transport of periplasmic glucans, sucrose, proline, and glycine betaine. This suggests that versatility exists in the Acidihalobacter genus in terms of the mechanisms they can use for halotolerance. This information is useful for developing hypotheses for the search for life on exoplanets and moons.
Collapse
Affiliation(s)
- Himel N. Khaleque
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- CSIRO Land and Water, Floreat, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
| | | | | | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Elizabeth L. J. Watkin
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
43
|
MacGilvary NJ, Kevorkian YL, Tan S. Potassium response and homeostasis in Mycobacterium tuberculosis modulates environmental adaptation and is important for host colonization. PLoS Pathog 2019; 15:e1007591. [PMID: 30716121 PMCID: PMC6375644 DOI: 10.1371/journal.ppat.1007591] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Successful host colonization by bacteria requires sensing and response to the local ionic milieu, and coordination of responses with the maintenance of ionic homeostasis in the face of changing conditions. We previously discovered that Mycobacterium tuberculosis (Mtb) responds synergistically to chloride (Cl-) and pH, as cues to the immune status of its host. This raised the intriguing concept of abundant ions as important environmental signals, and we have now uncovered potassium (K+) as an ion that can significantly impact colonization by Mtb. The bacterium has a unique transcriptional response to changes in environmental K+ levels, with both distinct and shared regulatory mechanisms controlling Mtb response to the ionic signals of K+, Cl-, and pH. We demonstrate that intraphagosomal K+ levels increase during macrophage phagosome maturation, and find using a novel fluorescent K+-responsive reporter Mtb strain that K+ is not limiting during macrophage infection. Disruption of Mtb K+ homeostasis by deletion of the Trk K+ uptake system results in dampening of the bacterial response to pH and Cl-, and attenuation in host colonization, both in primary murine bone marrow-derived macrophages and in vivo in a murine model of Mtb infection. Our study reveals how bacterial ionic homeostasis can impact environmental ionic responses, and highlights the important role that abundant ions can play during host colonization by Mtb.
Collapse
Affiliation(s)
- Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yuzo L. Kevorkian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
Reed JM, Olson S, Brees DF, Griffin CE, Grove RA, Davis PJ, Kachman SD, Adamec J, Somerville GA. Coordinated regulation of transcription by CcpA and the Staphylococcus aureus two-component system HptRS. PLoS One 2018; 13:e0207161. [PMID: 30540769 PMCID: PMC6291074 DOI: 10.1371/journal.pone.0207161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/25/2018] [Indexed: 01/24/2023] Open
Abstract
The success of Staphylococcus aureus as a pathogen is due in part to its ability to adapt to changing environmental conditions using signal transduction pathways, such as metabolite- responsive regulators and two-component systems. S. aureus has a two-component system encoded by the gene pair sav0224 (hptS) and sav0223 (hptR) that regulate the hexose phosphate transport (uhpT) system in response to extracellular glucose-6-phosphate. Glycolytic intermediates such as glucose-6-phosphate are important carbon sources that also modulate the activity of the global metabolite-responsive transcriptional regulator CcpA. Because uhpT has a putative CcpA binding site in its promoter and it is regulated by HptR, it was hypothesized the regulons of CcpA and HptR might intersect. To determine if the regulatory domains of CcpA and HptRS overlap, ccpA was deleted in strains SA564 and SA564-ΔhptRS and growth, metabolic, proteomic, and transcriptional differences were assessed. As expected, CcpA represses hptS and hptR in a glucose dependent manner; however, upon CcpA derepression, the HptRS system functions as a transcriptional activator of metabolic genes within the CcpA regulon. Importantly, inactivation of ccpA and hptRS altered sensitivity to fosfomycin and ampicillin in the absence of exogenous glucose-6-phosphate, indicating that both CcpA and HptRS modulate antibiotic susceptibility.
Collapse
Affiliation(s)
- Joseph M. Reed
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Sean Olson
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Danielle F. Brees
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Caitlin E. Griffin
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ryan A. Grove
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Paul J. Davis
- Unaffiliated, Honey Creek, Iowa, United States of America
| | - Stephen D. Kachman
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Greg A. Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
45
|
O'Connor AM, McManus BA, Kinnevey PM, Brennan GI, Fleming TE, Cashin PJ, O'Sullivan M, Polyzois I, Coleman DC. Significant Enrichment and Diversity of the Staphylococcal Arginine Catabolic Mobile Element ACME in Staphylococcus epidermidis Isolates From Subgingival Peri-implantitis Sites and Periodontal Pockets. Front Microbiol 2018; 9:1558. [PMID: 30050526 PMCID: PMC6052350 DOI: 10.3389/fmicb.2018.01558] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are frequent commensals of the nares and skin and are considered transient oral residents. Reports on their prevalence in the oral cavity, periodontal pockets and subgingivally around infected oral implants are conflicting, largely due to methodological limitations. The prevalence of these species in the oral cavities, periodontal pockets and subgingival sites of orally healthy individuals with/without implants and in patients with periodontal disease or infected implants (peri-implantitis) was investigated using selective chromogenic agar and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Staphylococcus epidermidis was predominant in all participant groups investigated. Its prevalence was significantly higher (P = 0.0189) in periodontal pockets (30%) than subgingival sites of healthy individuals (7.8%), and in subgingival peri-implantitis sites (51.7%) versus subgingival sites around non-infected implants (16.1%) (P = 0.0057). In contrast, S. aureus was recovered from subgingival sites of 0-12.9% of the participant groups, but not from periodontal pockets. The arginine catabolic mobile element (ACME), thought to enhance colonization and survival of S. aureus, was detected in 100/179 S. epidermidis and 0/83 S. aureus isolates screened using multiplex PCR and DNA microarray profiling. Five distinct ACME types, including the recently described types IV and V (I; 14, II; 60, III; 10, IV; 15, V; 1) were identified. ACME-positive S. epidermidis were significantly (P = 0.0369) more prevalent in subgingival peri-implantitis sites (37.9%) than subgingival sites around non-infected implants (12.9%) and also in periodontal pockets (25%) compared to subgingival sites of healthy individuals (4.7%) (P = 0.0167). To investigate the genetic diversity of ACME, 35 isolates, representative of patient groups, sample sites and ACME types underwent whole genome sequencing from which multilocus sequence types (STs) were identified. Sequencing data permitted ACME types II and IV to be subdivided into subtypes IIa-c and IVa-b, respectively, based on distinct flanking direct repeat sequences. Distinct ACME types were commonly associated with specific STs, rather than health/disease states or recovery sites, suggesting that ACME types/subtypes originated amongst specific S. epidermidis lineages. Ninety of the ACME-positive isolates encoded the ACME-arc operon, which likely contributes to oral S. epidermidis survival in the nutrient poor, semi-anaerobic, acidic and inflammatory conditions present in periodontal disease and peri-implantitis.
Collapse
Affiliation(s)
- Aoife M O'Connor
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Brenda A McManus
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Peter M Kinnevey
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Gráinne I Brennan
- National MRSA Reference Laboratory, St. James's Hospital, Dublin, Ireland
| | - Tanya E Fleming
- National MRSA Reference Laboratory, St. James's Hospital, Dublin, Ireland
| | - Phillipa J Cashin
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Michael O'Sullivan
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Ioannis Polyzois
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - David C Coleman
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Devaux L, Sleiman D, Mazzuoli MV, Gominet M, Lanotte P, Trieu-Cuot P, Kaminski PA, Firon A. Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLoS Genet 2018; 14:e1007342. [PMID: 29659565 PMCID: PMC5919688 DOI: 10.1371/journal.pgen.1007342] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 03/28/2018] [Indexed: 02/03/2023] Open
Abstract
Cyclic nucleotides are universally used as secondary messengers to control cellular physiology. Among these signalling molecules, cyclic di-adenosine monophosphate (c-di-AMP) is a specific bacterial second messenger recognized by host cells during infections and its synthesis is assumed to be necessary for bacterial growth by controlling a conserved and essential cellular function. In this study, we sought to identify the main c-di-AMP dependent pathway in Streptococcus agalactiae, the etiological agent of neonatal septicaemia and meningitis. By conditionally inactivating dacA, the only diadenyate cyclase gene, we confirm that c-di-AMP synthesis is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable due to the accumulation of compensatory mutations. We identified several mutations restoring the viability of a ΔdacA mutant, in particular a loss-of-function mutation in the osmoprotectant transporter BusAB. Identification of c-di-AMP binding proteins revealed a conserved set of potassium and osmolyte transporters, as well as the BusR transcriptional factor. We showed that BusR negatively regulates busAB transcription by direct binding to the busAB promoter. Loss of BusR repression leads to a toxic busAB expression in absence of c-di-AMP if osmoprotectants, such as glycine betaine, are present in the medium. In contrast, deletion of the gdpP c-di-AMP phosphodiesterase leads to hyperosmotic susceptibility, a phenotype dependent on a functional BusR. Taken together, we demonstrate that c-di-AMP is essential for osmotic homeostasis and that the predominant mechanism is dependent on the c-di-AMP binding transcriptional factor BusR. The regulation of osmotic homeostasis is likely the conserved and essential function of c-di-AMP, but each species has evolved specific c-di-AMP mechanisms of osmoregulation to adapt to its environment. Nucleotide-based second messengers play central functions in bacterial physiology and host-pathogen interactions. Among these signalling nucleotides, cyclic-di-AMP (c-di-AMP) synthesis was originally assumed to be essential for bacterial growth. In this study, we confirmed that the only di-adenylate cyclase enzyme in the opportunistic pathogen Streptococcus agalactiae is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable by accumulating spontaneous mutations in genes involved in osmotic regulation. We identified that c-di-AMP binds directly to four proteins necessary to maintain osmotic homeostasis, including three osmolyte transporters and the BusR transcriptional factor. We demonstrated that BusR negatively controls the expression of the busAB operon and that it is the main component leading to growth inhibition in the absence of c-di-AMP synthesis if osmoprotectants are present in the environment. Overall, c-di-AMP is essential to maintain osmotic homeostasis by coordinating osmolyte uptake and thus bacteria have developed specific mechanisms to keep c-di-AMP as the central regulator of osmotic homeostasis.
Collapse
Affiliation(s)
- Laura Devaux
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dona Sleiman
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Maria-Vittoria Mazzuoli
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Myriam Gominet
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Philippe Lanotte
- Université de Tours, Infectiologie et Santé Publique, Bactéries et Risque Materno-Fœtal, INRA UMR1282, Tours France
- Hôpital Bretonneau, Centre Hospitalier Régional et Universitaire de Tours, Service de Bactériologie-Virologie, Tours France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Pierre-Alexandre Kaminski
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- * E-mail:
| |
Collapse
|
47
|
First description of novel arginine catabolic mobile elements (ACMEs) types IV and V harboring a kdp operon in Staphylococcus epidermidis characterized by whole genome sequencing. INFECTION GENETICS AND EVOLUTION 2018; 61:60-66. [PMID: 29567304 DOI: 10.1016/j.meegid.2018.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 11/23/2022]
Abstract
The arginine catabolic mobile element (ACME) was first described in the methicillin-resistant Staphylococcus aureus strain USA300 and is thought to facilitate survival on skin. To date three distinct ACME types have been characterized comprehensively in S. aureus and/or Staphylococcus epidermidis. Type I harbors the arc and opp3 operons encoding an arginine deaminase pathway and an oligopeptide permease ABC transporter, respectively, type II harbors the arc operon only, and type III harbors the opp3 operon only. To investigate the diversity and detailed genetic organization of ACME, whole genome sequencing (WGS) was performed on 32 ACME-harboring oro-nasal S. epidermidis isolates using MiSeq- and PacBio-based WGS platforms. In nine isolates the ACMEs lacked the opp3 operon, but harbored a complete kdp operon (kdpE/D/A/B/C) located a maximum of 2.8 kb upstream of the arc operon. The kdp operon exhibited 63% DNA sequence identity to the native S. aureus kdp operon. These findings identified a novel, previously undescribed ACME type (designated ACME IV), which could be subtyped (IVa and IVb) based on distinct 5' flanking direct repeat sequences (DRs). Multilocus sequence typing (MLST) sequences extracted from the WGS data identified the sequence types (STs) of the isolates investigated. Four of the nine ACME IV isolates belonged to ST153, and one to ST17, a single locus variant of ST153. A tenth isolate, identified as ST5, harbored another novel ACME type (designated ACME V) containing the kdp, arc and opp3 operons and flanked by DR_F, and DR_B but lacked any internal DRs. ACME V was colocated with a staphylococcal chromosome cassette mec (SCCmec) IV element and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in a 116.9 kb composite island. The extensive genetic diversity of ACME in S. epidermidis has been further elucidated by WGS, revealing two novel ACME types IV and V for the first time.
Collapse
|
48
|
Zeden MS, Schuster CF, Bowman L, Zhong Q, Williams HD, Gründling A. Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions. J Biol Chem 2018; 293:3180-3200. [PMID: 29326168 PMCID: PMC5836111 DOI: 10.1074/jbc.m117.818716] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/03/2018] [Indexed: 01/15/2023] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered signaling molecule important for the survival of Firmicutes, a large bacterial group that includes notable pathogens such as Staphylococcus aureus However, the exact role of this molecule has not been identified. dacA, the S. aureus gene encoding the diadenylate cyclase enzyme required for c-di-AMP production, cannot be deleted when bacterial cells are grown in rich medium, indicating that c-di-AMP is required for growth in this condition. Here, we report that an S. aureus dacA mutant can be generated in chemically defined medium. Consistent with previous findings, this mutant had a severe growth defect when cultured in rich medium. Using this growth defect in rich medium, we selected for suppressor strains with improved growth to identify c-di-AMP-requiring pathways. Mutations bypassing the essentiality of dacA were identified in alsT and opuD, encoding a predicted amino acid and osmolyte transporter, the latter of which we show here to be the main glycine betaine-uptake system in S. aureus. Inactivation of these transporters likely prevents the excessive osmolyte and amino acid accumulation in the cell, providing further evidence for a key role of c-di-AMP in osmotic regulation. Suppressor mutations were also obtained in hepS, hemB, ctaA, and qoxB, coding proteins required for respiration. Furthermore, we show that dacA is dispensable for growth in anaerobic conditions. Together, these findings reveal an essential role for the c-di-AMP signaling network in aerobic, but not anaerobic, respiration in S. aureus.
Collapse
Affiliation(s)
- Merve S Zeden
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Christopher F Schuster
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Lisa Bowman
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Qiyun Zhong
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Huw D Williams
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Angelika Gründling
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| |
Collapse
|
49
|
Roles of Staphylococcus aureus Mnh1 and Mnh2 Antiporters in Salt Tolerance, Alkali Tolerance, and Pathogenesis. J Bacteriol 2018; 200:JB.00611-17. [PMID: 29263099 PMCID: PMC5809693 DOI: 10.1128/jb.00611-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus has three types of cation/proton antiporters. The type 3 family includes two multisubunit Na+/H+ (Mnh) antiporters, Mnh1 and Mnh2. These antiporters are clusters of seven hydrophobic membrane-bound protein subunits. Mnh antiporters play important roles in maintaining cytoplasmic pH in prokaryotes, enabling their survival under extreme environmental stress. In this study, we investigated the physiological roles and catalytic properties of Mnh1 and Mnh2 in S. aureus. Both Mnh1 and Mnh2 were cloned separately into a pGEM3Z+ vector in the antiporter-deficient KNabc Escherichia coli strain. The catalytic properties of the antiporters were measured in everted (inside out) vesicles. The Mnh1 antiporter exhibited a significant exchange of Na+/H+ cations at pH 7.5. Mnh2 showed a significant exchange of both Na+/H+ and K+/H+ cations, especially at pH 8.5. Under elevated salt conditions, deletion of the mnhA1 gene resulted in a significant reduction in the growth rate of S. aureus in the range of pH 7.5 to 9. Deletion of mnhA2 had similar effects but mainly in the range of pH 8.5 to 9.5. Double deletion of mnhA1 and mnhA2 led to a severe reduction in the S. aureus growth rate mainly at pH values above 8.5. The effects of functional losses of both antiporters in S. aureus were also assessed via their support of virulence in a mouse in vivo infection model. Deletion of the mnhA1 gene led to a major loss of S. aureus virulence in mice, while deletion of mnh2 led to no change in virulence. IMPORTANCE This study focuses on the catalytic properties and physiological roles of Mnh1 and Mnh2 cation/proton antiporters in S. aureus and their contributions under different stress conditions. The Mnh1 antiporter was found to have catalytic activity for Na+/H+ antiport, and it plays a significant role in maintaining halotolerance at pH 7.5 while the Mnh2 antiporter has catalytic antiporter activities for Na+/H+ and K+/H+ that have roles in both osmotolerance and halotolerance in S. aureus. Study of S. aureus with a single deletion of either mnhA1 or mnhA2 was assessed in an infection model of mice. The result shows that mnhA1, but not mnhA2, plays a major role in S. aureus virulence.
Collapse
|
50
|
Dani P, Ujaoney AK, Apte SK, Basu B. Regulation of potassium dependent ATPase (kdp) operon of Deinococcus radiodurans. PLoS One 2017; 12:e0188998. [PMID: 29206865 PMCID: PMC5716572 DOI: 10.1371/journal.pone.0188998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022] Open
Abstract
The genome of D. radiodurans harbors genes for structural and regulatory proteins of Kdp ATPase, in an operon pattern, on Mega plasmid 1. Organization of its two-component regulatory genes is unique. Here we demonstrate that both, the structural as well as regulatory components of the kdp operon of D. radiodurans are expressed quickly as the cells experience potassium limitation but are not expressed upon increase in osmolarity. The cognate DNA binding response regulator (RR) effects the expression of kdp operon during potassium deficiency through specific interaction with the kdp promoter. Deletion of the gene encoding RR protein renders the mutant D. radiodurans (ΔRR) unable to express kdp operon under potassium limitation. The ΔRR D. radiodurans displays no growth defect when grown on rich media or when exposed to oxidative or heat stress but shows reduced growth following gamma irradiation. The study elucidates the functional and regulatory aspects of the novel kdp operon of this extremophile, for the first time.
Collapse
Affiliation(s)
- Pratiksha Dani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
- * E-mail:
| |
Collapse
|