1
|
Waters JK, Eijkelkamp BA. Bacterial acquisition of host fatty acids has far-reaching implications on virulence. Microbiol Mol Biol Rev 2024; 88:e0012624. [PMID: 39475267 DOI: 10.1128/mmbr.00126-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
SUMMARYThe lipid homeostasis pathways of bacterial pathogens have been studied comprehensively for their biochemical functionality. However, new and refined technologies have supported the interrogation of bacterial lipid and fatty acid homeostasis mechanisms in more complex environments, such as mammalian host niches. In particular, emerging findings on the breadth and depth of host fatty acid uptake have demonstrated their importance beyond merely fatty acid utilization for membrane synthesis, as they can contribute to virulence factor regulation, pathogenesis, and group-based behaviors. Lipid homeostasis is also intertwined with other metabolic and physiological processes in the bacterial cells, which appear to be largely unique per species, but overarching themes can be derived. This review combines the latest biochemical and structural findings and places these in the context of bacterial pathogenesis, thereby shedding light on the far-reaching implications of lipid homeostasis on bacterial success.
Collapse
Affiliation(s)
- Jack K Waters
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Martin RA, Tate AT. Pleiotropy alleviates the fitness costs associated with resource allocation trade-offs in immune signalling networks. Proc Biol Sci 2024; 291:20240446. [PMID: 38835275 DOI: 10.1098/rspb.2024.0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Many genes and signalling pathways within plant and animal taxa drive the expression of multiple organismal traits. This form of genetic pleiotropy instigates trade-offs among life-history traits if a mutation in the pleiotropic gene improves the fitness contribution of one trait at the expense of another. Whether or not pleiotropy gives rise to conflict among traits, however, likely depends on the resource costs and timing of trait deployment during organismal development. To investigate factors that could influence the evolutionary maintenance of pleiotropy in gene networks, we developed an agent-based model of co-evolution between parasites and hosts. Hosts comprise signalling networks that must faithfully complete a developmental programme while also defending against parasites, and trait signalling networks could be independent or share a pleiotropic component as they evolved to improve host fitness. We found that hosts with independent developmental and immune networks were significantly more fit than hosts with pleiotropic networks when traits were deployed asynchronously during development. When host genotypes directly competed against each other, however, pleiotropic hosts were victorious regardless of trait synchrony because the pleiotropic networks were more robust to parasite manipulation, potentially explaining the abundance of pleiotropy in immune systems despite its contribution to life history trade-offs.
Collapse
Affiliation(s)
- Reese A Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
3
|
Asensio-López J, Lázaro-Díez M, Hernández-Cruz TM, Blanco-Cabra N, Sorzabal-Bellido I, Arroyo-Urea EM, Buetas E, González-Paredes A, Ortiz de Solórzano C, Burgui S, Torrents E, Monteserín M, Garmendia J. Multimodal evaluation of drug antibacterial activity reveals cinnamaldehyde analog anti-biofilm effects against Haemophilus influenzae. Biofilm 2024; 7:100178. [PMID: 38317668 PMCID: PMC10839773 DOI: 10.1016/j.bioflm.2024.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Biofilm formation by the pathobiont Haemophilus influenzae is associated with human nasopharynx colonization, otitis media in children, and chronic respiratory infections in adults suffering from chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD). β-lactam and quinolone antibiotics are commonly used to treat these infections. However, considering the resistance of biofilm-resident bacteria to antibiotic-mediated killing, the use of antibiotics may be insufficient and require being replaced or complemented with novel strategies. Moreover, unlike the standard minimal inhibitory concentration assay used to assess antibacterial activity against planktonic cells, standardization of methods to evaluate anti-biofilm drug activity is limited. In this work, we detail a panel of protocols for systematic analysis of drug antimicrobial effect on bacterial biofilms, customized to evaluate drug effects against H. influenzae biofilms. Testing of two cinnamaldehyde analogs, (E)-trans-2-nonenal and (E)-3-decen-2-one, demonstrated their effectiveness in both H. influenzae inhibition of biofilm formation and eradication or preformed biofilms. Assay complementarity allowed quantifying the dynamics and extent of the inhibitory effects, also observed for ampicillin resistant clinical strains forming biofilms refractory to this antibiotic. Moreover, cinnamaldehyde analog encapsulation into poly(lactic-co-glycolic acid) (PLGA) polymeric nanoparticles allowed drug vehiculization while maintaining efficacy. Overall, we demonstrate the usefulness of cinnamaldehyde analogs against H. influenzae biofilms, present a test panel that can be easily adapted to a wide range of pathogens and drugs, and highlight the benefits of drug nanoencapsulation towards safe controlled release.
Collapse
Affiliation(s)
- Javier Asensio-López
- Centro de Ingeniería de Superficies y Materiales Avanzados, Asociación de la Industria Navarra (AIN), Cordovilla, Spain
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - María Lázaro-Díez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Tania M. Hernández-Cruz
- Centro de Ingeniería de Superficies y Materiales Avanzados, Asociación de la Industria Navarra (AIN), Cordovilla, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Ioritz Sorzabal-Bellido
- Laboratory of Microphysiological Systems and Quantitative Biology, Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Eva M. Arroyo-Urea
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
- Conexión Nanomedicina, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Elena Buetas
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Ana González-Paredes
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
- Conexión Nanomedicina, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Ortiz de Solórzano
- Laboratory of Microphysiological Systems and Quantitative Biology, Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Oncológicas (CIBERONC), Madrid, Spain
| | - Saioa Burgui
- Centro de Ingeniería de Superficies y Materiales Avanzados, Asociación de la Industria Navarra (AIN), Cordovilla, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - María Monteserín
- Centro de Ingeniería de Superficies y Materiales Avanzados, Asociación de la Industria Navarra (AIN), Cordovilla, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
4
|
Gil-Campillo C, González-Díaz A, Rapún-Araiz B, Iriarte-Elizaintzin O, Elizalde-Gutiérrez I, Fernández-Calvet A, Lázaro-Díez M, Martí S, Garmendia J. Imipenem heteroresistance but not tolerance in Haemophilus influenzae during chronic lung infection associated with chronic obstructive pulmonary disease. Front Microbiol 2023; 14:1253623. [PMID: 38179447 PMCID: PMC10765533 DOI: 10.3389/fmicb.2023.1253623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Antibiotic resistance is a major Public Health challenge worldwide. Mechanisms other than resistance are described as contributors to therapeutic failure. These include heteroresistance and tolerance, which escape the standardized procedures used for antibiotic treatment decision-making as they do not involve changes in minimal inhibitory concentration (MIC). Haemophilus influenzae causes chronic respiratory infection and is associated with exacerbations suffered by chronic obstructive pulmonary disease (COPD) patients. Although resistance to imipenem is rare in this bacterial species, heteroresistance has been reported, and antibiotic tolerance cannot be excluded. Moreover, development of antibiotic heteroresistance or tolerance during within-host H. influenzae pathoadaptive evolution is currently unknown. In this study, we assessed imipenem resistance, heteroresistance and tolerance in a previously sequenced longitudinal collection of H. influenzae COPD respiratory isolates. The use of Etest, disc diffusion, population analysis profiling, tolerance disc (TD)-test methods, and susceptibility breakpoint criteria when available, showed a significant proportion of imipenem heteroresistance with differences in terms of degree among strains, absence of imipenem tolerance, and no specific trends among serial and clonally related strains could be established. Analysis of allelic variation in the ftsI, acrA, acrB, and acrR genes rendered a panel of polymorphisms only found in heteroresistant strains, but gene expression and genome-wide analyses did not show clear genetic traits linked to heteroresistance. In summary, a significant proportion of imipenem heteroresistance was observed among H. influenzae strains isolated from COPD respiratory samples over time. These data should be useful for making more accurate clinical recommendations to COPD patients.
Collapse
Affiliation(s)
- Celia Gil-Campillo
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Conexion Nanomedicina CSIC (NanomedCSIC), Madrid, Spain
| | - Aida González-Díaz
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Beatriz Rapún-Araiz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexion Nanomedicina CSIC (NanomedCSIC), Madrid, Spain
| | - Oihane Iriarte-Elizaintzin
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Iris Elizalde-Gutiérrez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - María Lázaro-Díez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Microbiology Department, Hospital Universitari Bellvitge, IDIBELL-UB, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Conexion Nanomedicina CSIC (NanomedCSIC), Madrid, Spain
| |
Collapse
|
5
|
Rapún-Araiz B, Sorzabal-Bellido I, Asensio-López J, Lázaro-Díez M, Ariz M, Sobejano de la Merced C, Euba B, Fernández-Calvet A, Cortés-Domínguez I, Burgui S, Toledo-Arana A, Ortiz-de-Solórzano C, Garmendia J. In vitro modeling of polyclonal infection dynamics within the human airways by Haemophilus influenzae differential fluorescent labeling. Microbiol Spectr 2023; 11:e0099323. [PMID: 37795992 PMCID: PMC10714817 DOI: 10.1128/spectrum.00993-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Genomic diversity of nontypeable H. influenzae strains confers phenotypic heterogeneity. Multiple strains of H. influenzae can be simultaneously isolated from clinical specimens, but we lack detailed information about polyclonal infection dynamics by this pathogen. A long-term barrier to our understanding of this host-pathogen interplay is the lack of genetic tools for strain engineering and differential labeling. Here, we present a novel plasmid toolkit named pTBH (toolbox for Haemophilus), with standardized modules for fluorescent or bioluminescent labeling, adapted to H. influenzae requirements but designed to be versatile so it can be utilized in other bacterial species. We present detailed experimental and quantitative image analysis methods, together with proof-of-principle examples, and show the ample possibilities of 3D microscopy, combined with quantitative image analysis, to model H. influenzae polyclonal infection lifestyles and unravel the co-habitation and co-infection dynamics of this respiratory pathogen.
Collapse
Grants
- RTI2018-094494-B-C22 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- PDI2021-122409OB-C22 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- RTI2018-096369-B-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- PID2021-125947OB-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- 875/2019 Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
- PC150 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- PC136 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- PC151 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- PC137 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
Collapse
Affiliation(s)
- Beatriz Rapún-Araiz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
| | - Ioritz Sorzabal-Bellido
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Javier Asensio-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - María Lázaro-Díez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
| | - Mikel Ariz
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Carlos Sobejano de la Merced
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Begoña Euba
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
| | - Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Ivan Cortés-Domínguez
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Saioa Burgui
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Carlos Ortiz-de-Solórzano
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Oncológicas (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
6
|
Martin R, Tate AT. Pleiotropy alleviates the fitness costs associated with resource allocation trade-offs in immune signaling networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561276. [PMID: 37873469 PMCID: PMC10592669 DOI: 10.1101/2023.10.06.561276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Many genes and signaling pathways within plant and animal taxa drive the expression of multiple organismal traits. This form of genetic pleiotropy instigates trade-offs among life-history traits if a mutation in the pleiotropic gene improves the fitness contribution of one trait at the expense of another. Whether or not pleiotropy gives rise to conflict among traits, however, likely depends on the resource costs and timing of trait deployment during organismal development. To investigate factors that could influence the evolutionary maintenance of pleiotropy in gene networks, we developed an agent-based model of co-evolution between parasites and hosts. Hosts comprise signaling networks that must faithfully complete a developmental program while also defending against parasites, and trait signaling networks could be independent or share a pleiotropic component as they evolved to improve host fitness. We found that hosts with independent developmental and immune networks were significantly more fit than hosts with pleiotropic networks when traits were deployed asynchronously during development. When host genotypes directly competed against each other, however, pleiotropic hosts were victorious regardless of trait synchrony because the pleiotropic networks were more robust to parasite manipulation, potentially explaining the abundance of pleiotropy in immune systems despite its contribution to life history trade-offs.
Collapse
Affiliation(s)
- Reese Martin
- Department of Biological Sciences, Vanderbilt University, Nashville TN, 37235
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville TN, 37235
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Euba B, Gil-Campillo C, Asensio-López J, López-López N, Sen-Kilic E, Díez-Martínez R, Burgui S, Barbier M, Garmendia J. In Vivo Genome-Wide Gene Expression Profiling Reveals That Haemophilus influenzae Purine Synthesis Pathway Benefits Its Infectivity within the Airways. Microbiol Spectr 2023; 11:e0082323. [PMID: 37195232 PMCID: PMC10269889 DOI: 10.1128/spectrum.00823-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Haemophilus influenzae is a human-adapted bacterial pathogen that causes airway infections. Bacterial and host elements associated with the fitness of H. influenzae within the host lung are not well understood. Here, we exploited the strength of in vivo-omic analyses to study host-microbe interactions during infection. We used in vivo transcriptome sequencing (RNA-seq) for genome-wide profiling of both host and bacterial gene expression during mouse lung infection. Profiling of murine lung gene expression upon infection showed upregulation of lung inflammatory response and ribosomal organization genes, and downregulation of cell adhesion and cytoskeleton genes. Transcriptomic analysis of bacteria recovered from bronchoalveolar lavage fluid samples from infected mice showed a significant metabolic rewiring during infection, which was highly different from that obtained upon bacterial in vitro growth in an artificial sputum medium suitable for H. influenzae. In vivo RNA-seq revealed upregulation of bacterial de novo purine biosynthesis, genes involved in non-aromatic amino acid biosynthesis, and part of the natural competence machinery. In contrast, the expression of genes involved in fatty acid and cell wall synthesis and lipooligosaccharide decoration was downregulated. Correlations between upregulated gene expression and mutant attenuation in vivo were established, as observed upon purH gene inactivation leading to purine auxotrophy. Likewise, the purine analogs 6-thioguanine and 6-mercaptopurine reduced H. influenzae viability in a dose-dependent manner. These data expand our understanding of H. influenzae requirements during infection. In particular, H. influenzae exploits purine nucleotide synthesis as a fitness determinant, raising the possibility of purine synthesis as an anti-H. influenzae target. IMPORTANCE In vivo-omic strategies offer great opportunities for increased understanding of host-pathogen interplay and for identification of therapeutic targets. Here, using transcriptome sequencing, we profiled host and pathogen gene expression during H. influenzae infection within the murine airways. Lung pro-inflammatory gene expression reprogramming was observed. Moreover, we uncovered bacterial metabolic requirements during infection. In particular, we identified purine synthesis as a key player, highlighting that H. influenzae may face restrictions in purine nucleotide availability within the host airways. Therefore, blocking this biosynthetic process may have therapeutic potential, as supported by the observed inhibitory effect of 6-thioguanine and 6-mercaptopurine on H. influenzae growth. Together, we present key outcomes and challenges for implementing in vivo-omics in bacterial airway pathogenesis. Our findings provide metabolic insights into H. influenzae infection biology, raising the possibility of purine synthesis as an anti-H. influenzae target and of purine analog repurposing as an antimicrobial strategy against this pathogen.
Collapse
Affiliation(s)
- Begoña Euba
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Javier Asensio-López
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Nahikari López-López
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Emel Sen-Kilic
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | - Saioa Burgui
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Mariette Barbier
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Junkal Garmendia
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Conexión Nanomedicina-CSIC, Madrid, Spain
| |
Collapse
|
8
|
Zhou Y, Liu M, Liu K, Wu G, Tan Y. Lung microbiota and potential treatment of respiratory diseases. Microb Pathog 2023:106197. [PMID: 37321423 DOI: 10.1016/j.micpath.2023.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
The unique microbiome found in the lungs has been studied and shown to be associated with both pulmonary homeostasis and lung diseases. The lung microbiome has the potential to produce metabolites that modulate host-microbe interactions. Specifically, short-chain fatty acids (SCFAs) produced by certain strains of the lung microbiota have been shown to regulate immune function and maintain gut mucosal health. In response, this review described the distribution and composition of the microbiota in lung diseases and discussed the impact of the lung microbiota on health and lung disease. In addition, the review further elaborated on the mechanism of microbial metabolites in microbial-host interaction and their application in the treatment of lung diseases. A better understanding of the interaction between the microbiota, metabolites, and host will provide potential strategies for the development of novel methods for the treatment of pulmonary microbial induced lung diseases.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Psychiatry, Department of Medicine, Xiangya School of Medical, Central South University, Changsha, 410083, Hunan, China
| | - Mengjun Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Kaixuan Liu
- Department of Excellent Doctor Training, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medicine, Central South University, Changsha, 410083, Hunan, China.
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medicine, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
9
|
Chatziparasidis G, Kantar A, Grimwood K. Pathogenesis of nontypeable Haemophilus influenzae infections in chronic suppurative lung disease. Pediatr Pulmonol 2023. [PMID: 37133207 DOI: 10.1002/ppul.26446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/04/2023]
Abstract
The respiratory tract antimicrobial defense system is a multilayered defense mechanism that relies upon mucociliary clearance and components of both the innate and adaptive immune systems to protect the lungs from inhaled or aspirated microorganisms. One of these potential pathogens, nontypeable Haemophilus influenzae (NTHi), adopts several, multifaceted redundant strategies to successfully colonize the lower airways and establish a persistent infection. NTHi can impair mucociliary clearance, express multiple multifunctional adhesins for various cell types within the respiratory tract and evade host defenses by surviving within and between cells, forming biofilms, increasing antigenic drift, secreting proteases and antioxidants, and by host-pathogen cross-talk, impair macrophage and neutrophil function. NTHi is recognized as an important pathogen in several chronic lower respiratory disorders, such as protracted bacterial bronchitis, bronchiectasis, cystic fibrosis, and primary ciliary dyskinesia. The persistence of NTHi in human airways, including its capacity to form biofilms, results in chronic infection and inflammation, which can ultimately injure airway wall structures. The complex nature of the molecular pathogenetic mechanisms employed by NTHi is incompletely understood but improved understanding of its pathobiology will be important for developing effective therapies and vaccines, especially given the marked genetic heterogeneity of NTHi and its possession of phase-variable genes. Currently, no vaccine candidates are ready for large phase III clinical trials.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Paediatric Respiratory Unit, IASO Hospital, Larissa, Thessaly, Greece
- Faculty of Nursing, Thessaly University, Larissa, Greece
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, Bergamo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Keith Grimwood
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Departments of Infectious Disease and Paediatrics, Gold Coast Health, Southport, Queensland, Australia
| |
Collapse
|
10
|
Carrera-Salinas A, González-Díaz A, Ehrlich RL, Berbel D, Tubau F, Pomares X, Garmendia J, Domínguez MÁ, Ardanuy C, Huertas D, Marín A, Montón C, Mell JC, Santos S, Marti S. Genetic Adaptation and Acquisition of Macrolide Resistance in Haemophilus spp. during Persistent Respiratory Tract Colonization in Chronic Obstructive Pulmonary Disease (COPD) Patients Receiving Long-Term Azithromycin Treatment. Microbiol Spectr 2023; 11:e0386022. [PMID: 36475849 PMCID: PMC9927455 DOI: 10.1128/spectrum.03860-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) benefit from the immunomodulatory effect of azithromycin, but long-term administration may alter colonizing bacteria. Our goal was to identify changes in Haemophilus influenzae and Haemophilus parainfluenzae during azithromycin treatment. Fifteen patients were followed while receiving prolonged azithromycin treatment (Hospital Universitari de Bellvitge, Spain). Four patients (P02, P08, P11, and P13) were persistently colonized by H. influenzae for at least 3 months and two (P04 and P11) by H. parainfluenzae. Isolates from these patients (53 H. influenzae and 18 H. parainfluenzae) were included to identify, by whole-genome sequencing, antimicrobial resistance changes and genetic variation accumulated during persistent colonization. All persistent lineages isolated before treatment were azithromycin-susceptible but developed resistance within the first months, apart from those belonging to P02, who discontinued the treatment. H. influenzae isolates from P08-ST107 acquired mutations in 23S rRNA, and those from P11-ST2480 and P13-ST165 had changes in L4 and L22. In H. parainfluenzae, P04 persistent isolates acquired changes in rlmC, and P11 carried genes encoding MefE/MsrD efflux pumps in an integrative conjugative element, which was also identified in H. influenzae P11-ST147. Other genetic variation occurred in genes associated with cell wall and inorganic ion metabolism. Persistent H. influenzae strains all showed changes in licA and hgpB genes. Other genes (lex1, lic3A, hgpC, and fadL) had variation in multiple lineages. Furthermore, persistent strains showed loss, acquisition, or genetic changes in prophage-associated regions. Long-term azithromycin therapy results in macrolide resistance, as well as genetic changes that likely favor bacterial adaptation during persistent respiratory colonization. IMPORTANCE The immunomodulatory properties of azithromycin reduce the frequency of exacerbations and improve the quality of life of COPD patients. However, long-term administration may alter the respiratory microbiota, such as Haemophilus influenzae, an opportunistic respiratory colonizing bacteria that play an important role in exacerbations. This study contributes to a better understanding of COPD progression by characterizing the clinical evolution of H. influenzae in a cohort of patients with prolonged azithromycin treatment. The emergence of macrolide resistance during the first months, combined with the role of Haemophilus parainfluenzae as a reservoir and source of resistance dissemination, is a cause for concern that may lead to therapeutic failure. Furthermore, genetic variations in cell wall and inorganic ion metabolism coding genes likely favor bacterial adaptation to host selective pressures. Therefore, the bacterial pathoadaptive evolution in these severe COPD patients raise our awareness of the possible spread of macrolide resistance and selection of host-adapted clones.
Collapse
Affiliation(s)
- Anna Carrera-Salinas
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Rachel L. Ehrlich
- Department of Microbiology and Immunology, Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Fe Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Xavier Pomares
- Department of Respiratory Medicine, Hospital de Sabadell, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Junkal Garmendia
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva, Spain
| | - M. Ángeles Domínguez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Daniel Huertas
- Department of Respiratory Medicine, Hospital Residència Sant Camil, Consorci Sanitari Alt Penedès-Garraf, Barcelona, Spain
| | - Alicia Marín
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Respiratory Medicine, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Conchita Montón
- Department of Respiratory Medicine, Hospital de Sabadell, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Center for Genomic Sciences, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Salud Santos
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Respiratory Medicine, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Sara Marti
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
The natural history and genetic diversity of Haemophilus influenzae infecting the airways of adults with cystic fibrosis. Sci Rep 2022; 12:15765. [PMID: 36131075 PMCID: PMC9492733 DOI: 10.1038/s41598-022-19240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Haemophilus influenzae is a Gram-negative pathobiont, frequently recovered from the airways of persons with cystic fibrosis (pwCF). Previous studies of H. influenzae infection dynamics and transmission in CF predominantly used molecular methods, lacking resolution. In this retrospective cohort study, representative yearly H. influenzae isolates from all pwCF attending the Calgary Adult CF Clinic with H. influenzae positive sputum cultures between 2002 and 2016 were typed by pulsed-field gel electrophoresis. Isolates with shared pulsotypes common to ≥ 2 pwCF were sequenced by Illumina MiSeq. Phylogenetic and pangenomic analyses were used to assess genetic relatedness within shared pulsotypes, and epidemiological investigations were performed to assess potential for healthcare associated transmission. H. influenzae infection was observed to be common (33% of patients followed) and dynamic in pwCF. Most infected pwCF exhibited serial infections with new pulsotypes (75% of pwCF with ≥ 2 positive cultures), with up to four distinct pulsotypes identified from individual patients. Prolonged infection by a single pulsotype was only rarely observed. Intra-patient genetic diversity was observed at the single-nucleotide polymorphism and gene content levels. Seven shared pulsotypes encompassing 39% of pwCF with H. influenzae infection were identified, but there was no evidence, within our sampling scheme, of direct patient-to-patient infection transmission.
Collapse
|
12
|
Lindemann PC, Mylvaganam H, Oppegaard O, Anthonisen IL, Zecic N, Skaare D. Case Report: Whole-Genome Sequencing of Serially Collected Haemophilus influenzae From a Patient With Common Variable Immunodeficiency Reveals Within-Host Evolution of Resistance to Trimethoprim-Sulfamethoxazole and Azithromycin After Prolonged Treatment With These Antibiotics. Front Cell Infect Microbiol 2022; 12:896823. [PMID: 35719354 PMCID: PMC9199433 DOI: 10.3389/fcimb.2022.896823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022] Open
Abstract
We report within-host evolution of antibiotic resistance to trimethoprim-sulfamethoxazole and azithromycin in a nontypeable Haemophilus influenzae strain from a patient with common variable immunodeficiency (CVID), who received repeated or prolonged treatment with these antibiotics for recurrent respiratory tract infections. Whole-genome sequencing of three longitudinally collected sputum isolates during the period April 2016 to January 2018 revealed persistence of a strain of sequence type 2386. Reduced susceptibility to trimethoprim-sulfamethoxazole in the first two isolates was associated with mutations in genes encoding dihydrofolate reductase (folA) and its promotor region, dihydropteroate synthase (folP), and thymidylate synthase (thyA), while subsequent substitution of a single amino acid in dihydropteroate synthase (G225A) rendered high-level resistance in the third isolate from 2018. Azithromycin co-resistance in this isolate was associated with amino acid substitutions in 50S ribosomal proteins L4 (W59R) and L22 (G91D), possibly aided by a substitution in AcrB (A604E) of the AcrAB efflux pump. All three isolates were resistant to aminopenicillins and cefotaxime due to TEM-1B beta-lactamase and identical alterations in penicillin-binding protein 3. Further resistance development to trimethoprim-sulfamethoxazole and azithromycin resulted in a multidrug-resistant phenotype. Evolution of multidrug resistance due to horizontal gene transfer and/or spontaneous mutations, along with selection of resistant subpopulations is a particular risk in CVID and other patients requiring repeated and prolonged antibiotic treatment or prophylaxis. Such challenging situations call for careful antibiotic stewardship together with supportive and supplementary treatment. We describe the clinical and microbiological course of events in this case report and address the challenges encountered.
Collapse
Affiliation(s)
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Nermin Zecic
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Dagfinn Skaare
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
13
|
Interrogation of Essentiality in the Reconstructed Haemophilus influenzae Metabolic Network Identifies Lipid Metabolism Antimicrobial Targets: Preclinical Evaluation of a FabH β-Ketoacyl-ACP Synthase Inhibitor. mSystems 2022; 7:e0145921. [PMID: 35293791 PMCID: PMC9040583 DOI: 10.1128/msystems.01459-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expediting drug discovery to fight antibacterial resistance requires holistic approaches at system levels. In this study, we focused on the human-adapted pathogen Haemophilus influenzae, and by constructing a high-quality genome-scale metabolic model, we rationally identified new metabolic drug targets in this organism. Contextualization of available gene essentiality data within in silico predictions identified most genes involved in lipid metabolism as promising targets. We focused on the β-ketoacyl-acyl carrier protein synthase III FabH, responsible for catalyzing the first step in the FASII fatty acid synthesis pathway and feedback inhibition. Docking studies provided a plausible three-dimensional model of FabH in complex with the synthetic inhibitor 1-(5-(2-fluoro-5-(hydroxymethyl)phenyl)pyridin-2-yl)piperidine-4-acetic acid (FabHi). Validating our in silico predictions, FabHi reduced H. influenzae viability in a dose- and strain-dependent manner, and this inhibitory effect was independent of fabH gene expression levels. fabH allelic variation was observed among H. influenzae clinical isolates. Many of these polymorphisms, relevant for stabilization of the dimeric active form of FabH and/or activity, may modulate the inhibitory effect as part of a complex multifactorial process with the overall metabolic context emerging as a key factor tuning FabHi activity. Synergies with antibiotics were not observed and bacteria were not prone to develop resistance. Inhibitor administration during H. influenzae infection on a zebrafish septicemia infection model cleared bacteria without signs of host toxicity. Overall, we highlight the potential of H. influenzae metabolism as a source of drug targets, metabolic models as target-screening tools, and FASII targeting suitability to counteract this bacterial infection. IMPORTANCE Antimicrobial resistance drives the need of synergistically combined powerful computational tools and experimental work to accelerate target identification and drug development. Here, we present a high-quality metabolic model of H. influenzae and show its usefulness both as a computational framework for large experimental data set contextualization and as a tool to discover condition-independent drug targets. We focus on β-ketoacyl-acyl carrier protein synthase III FabH chemical inhibition by using a synthetic molecule with good synthetic and antimicrobial profiles that specifically binds to the active site. The mechanistic complexity of FabH inhibition may go beyond allelic variation, and the strain-dependent effect of the inhibitor tested supports the impact of metabolic context as a key factor driving bacterial cell behavior. Therefore, this study highlights the systematic metabolic evaluation of individual strains through computational frameworks to identify secondary metabolic hubs modulating drug response, which will facilitate establishing synergistic and/or more precise and robust antibacterial treatments.
Collapse
|
14
|
Guellil M, Keller M, Dittmar JM, Inskip SA, Cessford C, Solnik A, Kivisild T, Metspalu M, Robb JE, Scheib CL. An invasive Haemophilus influenzae serotype b infection in an Anglo-Saxon plague victim. Genome Biol 2022; 23:22. [PMID: 35109894 PMCID: PMC8812261 DOI: 10.1186/s13059-021-02580-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human pathogen Haemophilus influenzae was the main cause of bacterial meningitis in children and a major cause of worldwide infant mortality before the introduction of a vaccine in the 1980s. Although the occurrence of serotype b (Hib), the most virulent type of H. influenzae, has since decreased, reports of infections with other serotypes and non-typeable strains are on the rise. While non-typeable strains have been studied in-depth, very little is known of the pathogen's evolutionary history, and no genomes dating prior to 1940 were available. RESULTS We describe a Hib genome isolated from a 6-year-old Anglo-Saxon plague victim, from approximately 540 to 550 CE, Edix Hill, England, showing signs of invasive infection on its skeleton. We find that the genome clusters in phylogenetic division II with Hib strain NCTC8468, which also caused invasive disease. While the virulence profile of our genome was distinct, its genomic similarity to NCTC8468 points to mostly clonal evolution of the clade since the 6th century. We also reconstruct a partial Yersinia pestis genome, which is likely identical to a published first plague pandemic genome of Edix Hill. CONCLUSIONS Our study presents the earliest genomic evidence for H. influenzae, points to the potential presence of larger genomic diversity in the phylogenetic division II serotype b clade in the past, and allows the first insights into the evolutionary history of this major human pathogen. The identification of both plague and Hib opens questions on the effect of plague in immunocompromised individuals already affected by infectious diseases.
Collapse
Affiliation(s)
- Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Marcel Keller
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Jenna M Dittmar
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- Department of Archaeology, University of Aberdeen, St. Mary's, Elphinstone Road, Aberdeen, Scotland, AB24 3UF, UK
| | - Sarah A Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Craig Cessford
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- Cambridge Archaeological Unit, University of Cambridge, 34 A&B Storey's Way, Cambridge, CB3 0DT, UK
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - John E Robb
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3DZ, UK
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
- St John's College, University of Cambridge, St John's Street, Cambridge, CB2 1TP, UK.
| |
Collapse
|
15
|
Rodríguez-Arce I, Morales X, Ariz M, Euba B, López-López N, Esparza M, Hood DW, Leiva J, Ortíz-de-Solórzano C, Garmendia J. Development and multimodal characterization of an elastase-induced emphysema mouse disease model for the COPD frequent bacterial exacerbator phenotype. Virulence 2021; 12:1672-1688. [PMID: 34252004 PMCID: PMC8276669 DOI: 10.1080/21505594.2021.1937883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 11/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients undergo infectious exacerbations whose frequency identifies a clinically meaningful phenotype. Mouse models have been mostly used to separately study both COPD and the infectious processes, but a reliable model of the COPD frequent exacerbator phenotype is still lacking. Accordingly, we first established a model of single bacterial exacerbation by nontypeable Haemophilus influenzae (NTHi) infection on mice with emphysema-like lesions. We characterized this single exacerbation model combining both noninvasive in vivo imaging and ex vivo techniques, obtaining longitudinal information about bacterial load and the extent of the developing lesions and host responses. Bacterial load disappeared 48 hours post-infection (hpi). However, lung recovery, measured using tests of pulmonary function and the disappearance of lung inflammation as revealed by micro-computed X-ray tomography, was delayed until 3 weeks post-infection (wpi). Then, to emulate the frequent exacerbator phenotype, we performed two recurrent episodes of NTHi infection on the emphysematous murine lung. Consistent with the amplified infectious insult, bacterial load reduction was now observed 96 hpi, and lung function recovery and disappearance of lesions on anatomical lung images did not happen until 12 wpi. Finally, as a proof of principle of the use of the model, we showed that azithromycin successfully cleared the recurrent infection, confirming this macrolide utility to ameliorate infectious exacerbation. In conclusion, we present a mouse model of recurrent bacterial infection of the emphysematous lung, aimed to facilitate investigating the COPD frequent exacerbator phenotype by providing complementary, dynamic information of both infectious and inflammatory processes.
Collapse
Affiliation(s)
- Irene Rodríguez-Arce
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Xabier Morales
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Mikel Ariz
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Begoña Euba
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Nahikari López-López
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Maider Esparza
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Derek W. Hood
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - José Leiva
- Instituto De Investigación Sanitaria De Navarra (IdiSNA), Pamplona, Spain
- Servicio De Microbiología, Clínica Universidad De Navarra, Pamplona, Spain
| | - Carlos Ortíz-de-Solórzano
- Department of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Laboratory of Preclinical Models and Analytical Tools, Pamplona, Spain
- Laboratory of Preclinical Models and Analytical Tools, Division of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Instituto De Investigación Sanitaria De Navarra (IdiSNA), Pamplona, Spain
| | - Junkal Garmendia
- Instituto De Agrobiotecnología, CSIC (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro De Investigación Biomédica En Red De Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
16
|
Phase Variation in HMW1A Controls a Phenotypic Switch in Haemophilus influenzae Associated with Pathoadaptation during Persistent Infection. mBio 2021; 12:e0078921. [PMID: 34154422 PMCID: PMC8262952 DOI: 10.1128/mbio.00789-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genetic variants arising from within-patient evolution shed light on bacterial adaptation during chronic infection. Contingency loci generate high levels of genetic variation in bacterial genomes, enabling adaptation to the stringent selective pressures exerted by the host. A significant gap in our understanding of phase-variable contingency loci is the extent of their contribution to natural infections. The human-adapted pathogen nontypeable Haemophilus influenzae (NTHi) causes persistent infections, which contribute to underlying disease progression. The phase-variable high-molecular-weight (HMW) adhesins located on the NTHi surface mediate adherence to respiratory epithelial cells and, depending on the allelic variant, can also confer high epithelial invasiveness or hyperinvasion. In this study, we characterize the dynamics of HMW-mediated hyperinvasion in living cells and identify a specific HMW binding domain shared by hyperinvasive NTHi isolates of distinct pathological origins. Moreover, we observed that HMW expression decreased over time by using a longitudinal set of persistent NTHi strains collected from chronic obstructive pulmonary disease (COPD) patients, resulting from increased numbers of simple-sequence repeats (SSRs) downstream of the functional P2hmw1A promoter, which is the one primarily driving HMW expression. Notably, the increased SSR numbers at the hmw1 promoter region also control a phenotypic switch toward lower bacterial intracellular invasion and higher biofilm formation, likely conferring adaptive advantages during chronic airway infection by NTHi. Overall, we reveal novel molecular mechanisms of NTHi pathoadaptation based on within-patient lifestyle switching controlled by phase variation.
Collapse
|
17
|
Abstract
Bacterial fatty acids are critical components of the cellular membrane. A shift in environmental conditions or in the bacterium’s lifestyle may result in the requirement for a distinct pool of fatty acids with unique biophysical properties. This can be achieved by the modification of existing fatty acids or via de novo synthesis. Furthermore, bacteria have evolved efficient means to acquire these energy-rich molecules from their environment. However, the balance between de novo fatty acid synthesis and exogenous acquisition during pathogenesis is poorly understood. Here, we studied the mouse fatty acid landscape prior to and after infection with Acinetobacter baumannii, a Gram-negative, opportunistic human pathogen. The lipid fluxes observed following infection revealed fatty acid- and niche-specific changes. Lipidomic profiling of A. baumannii isolated from the pleural cavity of mice identified novel A. baumannii membrane phospholipid species and an overall increased abundance of unsaturated fatty acid species. Importantly, we found that A. baumannii relies largely upon fatty acid acquisition in all but one of the studied niches, the blood, where the pathogen biosynthesizes its own fatty acids. This work is the first to reveal the significance of balancing the making and taking of fatty acids in a Gram-negative bacterium during infection, which provides new insights into the validity of targeting fatty acid synthesis as a treatment strategy.
Collapse
|
18
|
López-López N, Gil-Campillo C, Díez-Martínez R, Garmendia J. Learning from -omics strategies applied to uncover Haemophilus influenzae host-pathogen interactions: Current status and perspectives. Comput Struct Biotechnol J 2021; 19:3042-3050. [PMID: 34136102 PMCID: PMC8178019 DOI: 10.1016/j.csbj.2021.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
Haemophilus influenzae has contributed to key bacterial genome sequencing hallmarks, as being not only the first bacterium to be genome-sequenced, but also starring the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, and pioneering Tn-seq methodologies. Over the years, the phenomenal and constantly evolving development of -omic technologies applied to a whole range of biological questions of clinical relevance in the H. influenzae-host interplay, has greatly moved forward our understanding of this human-adapted pathogen, responsible for multiple acute and chronic infections of the respiratory tract. In this way, essential genes, virulence factors, pathoadaptive traits, and multi-layer gene expression regulatory networks with both genomic and epigenomic complexity levels are being elucidated. Likewise, the unstoppable increasing whole genome sequencing information underpinning H. influenzae great genomic plasticity, mainly when referring to non-capsulated strains, poses major challenges to understand the genomic basis of clinically relevant phenotypes and even more, to clearly highlight potential targets of clinical interest for diagnostic, therapeutic or vaccine development. We review here how genomic, transcriptomic, proteomic and metabolomic-based approaches are great contributors to our current understanding of the interactions between H. influenzae and the human airways, and point possible strategies to maximize their usefulness in the context of biomedical research and clinical needs on this human-adapted bacterial pathogen.
Collapse
Affiliation(s)
- Nahikari López-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | | | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
19
|
Haemophilus influenzae Meningitis Direct Diagnosis by Metagenomic Next-Generation Sequencing: A Case Report. Pathogens 2021; 10:pathogens10040461. [PMID: 33921275 PMCID: PMC8069228 DOI: 10.3390/pathogens10040461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Current routine real-time PCR methods used for the point-of-care diagnosis of infectious meningitis do not allow for one-shot genotyping of the pathogen, as in the case of deadly Haemophilus influenzae meningitis. Real-time PCR diagnosed H. influenzae meningitis in a 22-year-old male patient, during his hospitalisation following a more than six-metre fall. Using an Oxford Nanopore Technologies real-time sequencing run in parallel to real-time PCR, we detected the H. influenzae genome directly from the cerebrospinal fluid sample in six hours. Furthermore, BLAST analysis of the sequence encoding for a partial DUF417 domain-containing protein diagnosed a non-b serotype, non-typeable H.influenzae belonging to lineage H. influenzae 22.1-21. The Oxford Nanopore metagenomic next-generation sequencing approach could be considered for the point-of-care diagnosis of infectious meningitis, by direct identification of pathogenic genomes and their genotypes/serotypes.
Collapse
|
20
|
Abstract
Within-host adaptation is a hallmark of chronic bacterial infections, involving substantial genomic changes. Recent large-scale genomic data from prolonged infections allow the examination of adaptive strategies employed by different pathogens and open the door to investigate whether they converge toward similar strategies. Here, we compiled extensive data of whole-genome sequences of bacterial isolates belonging to miscellaneous species sampled at sequential time points during clinical infections. Analysis of these data revealed that different species share some common adaptive strategies, achieved by mutating various genes. Although the same genes were often mutated in several strains within a species, different genes related to the same pathway, structure, or function were changed in other species utilizing the same adaptive strategy (e.g., mutating flagellar genes). Strategies exploited by various bacterial species were often predicted to be driven by the host immune system, a powerful selective pressure that is not species specific. Remarkably, we find adaptive strategies identified previously within single species to be ubiquitous. Two striking examples are shifts from siderophore-based to heme-based iron scavenging (previously shown for Pseudomonas aeruginosa) and changes in glycerol-phosphate metabolism (previously shown to decrease sensitivity to antibiotics in Mycobacterium tuberculosis). Virulence factors were often adaptively affected in different species, indicating shifts from acute to chronic virulence and virulence attenuation during infection. Our study presents a global view on common within-host adaptive strategies employed by different bacterial species and provides a rich resource for further studying these processes.
Collapse
Affiliation(s)
- Yair E Gatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Short B, Carson S, Devlin AC, Reihill JA, Crilly A, MacKay W, Ramage G, Williams C, Lundy FT, McGarvey LP, Thornbury KD, Martin SL. Non-typeable Haemophilus influenzae chronic colonization in chronic obstructive pulmonary disease (COPD). Crit Rev Microbiol 2021; 47:192-205. [PMID: 33455514 DOI: 10.1080/1040841x.2020.1863330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haemophilus influenzae is the most common cause of bacterial infection in the lungs of chronic obstructive pulmonary disease (COPD) patients and contributes to episodes of acute exacerbation which are associated with increased hospitalization and mortality. Due to the ability of H. influenzae to adhere to host epithelial cells, initial colonization of the lower airways can progress to a persistent infection and biofilm formation. This is characterized by changes in bacterial behaviour such as reduced cellular metabolism and the production of an obstructive extracellular matrix (ECM). Herein we discuss the multiple mechanisms by which H. influenzae contributes to the pathogenesis of COPD. In particular, mechanisms that facilitate bacterial adherence to host airway epithelial cells, biofilm formation, and microbial persistence through immune system evasion and antibiotic tolerance will be discussed.
Collapse
Affiliation(s)
- Bryn Short
- University of the West of Scotland, Paisley, United Kingdom
| | - Stephen Carson
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Anna-Claire Devlin
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Anne Crilly
- University of the West of Scotland, Paisley, United Kingdom
| | - William MacKay
- University of the West of Scotland, Paisley, United Kingdom
| | - Gordon Ramage
- Glasgow Biofilm Research Group, Oral Sciences, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Craig Williams
- University of the West of Scotland, Paisley, United Kingdom
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Lorcan P McGarvey
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Keith D Thornbury
- Smooth Muscle Research Group, Dundalk Institute of Technology, Dundalk, Ireland
| | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
22
|
Hammond JA, Gordon EA, Socarras KM, Chang Mell J, Ehrlich GD. Beyond the pan-genome: current perspectives on the functional and practical outcomes of the distributed genome hypothesis. Biochem Soc Trans 2020; 48:2437-2455. [PMID: 33245329 PMCID: PMC7752077 DOI: 10.1042/bst20190713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
The principle of monoclonality with regard to bacterial infections was considered immutable prior to 30 years ago. This view, espoused by Koch for acute infections, has proven inadequate regarding chronic infections as persistence requires multiple forms of heterogeneity among the bacterial population. This understanding of bacterial plurality emerged from a synthesis of what-were-then novel technologies in molecular biology and imaging science. These technologies demonstrated that bacteria have complex life cycles, polymicrobial ecologies, and evolve in situ via the horizontal exchange of genic characters. Thus, there is an ongoing generation of diversity during infection that results in far more highly complex microbial communities than previously envisioned. This perspective is based on the fundamental tenet that the bacteria within an infecting population display genotypic diversity, including gene possession differences, which result from horizontal gene transfer mechanisms including transformation, conjugation, and transduction. This understanding is embodied in the concepts of the supragenome/pan-genome and the distributed genome hypothesis (DGH). These paradigms have fostered multiple researches in diverse areas of bacterial ecology including host-bacterial interactions covering the gamut of symbiotic relationships including mutualism, commensalism, and parasitism. With regard to the human host, within each of these symbiotic relationships all bacterial species possess attributes that contribute to colonization and persistence; those species/strains that are pathogenic also encode traits for invasion and metastases. Herein we provide an update on our understanding of bacterial plurality and discuss potential applications in diagnostics, therapeutics, and vaccinology based on perspectives provided by the DGH with regard to the evolution of pathogenicity.
Collapse
Affiliation(s)
- Jocelyn A. Hammond
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Emma A. Gordon
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Kayla M. Socarras
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Joshua Chang Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Meta-omics Shared Resource Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, U.S.A
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Meta-omics Shared Resource Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, U.S.A
- Department of Otolaryngology – Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
23
|
Kc R, Leong KWC, Harkness NM, Lachowicz J, Gautam SS, Cooley LA, McEwan B, Petrovski S, Karupiah G, O'Toole RF. Whole-genome analyses reveal gene content differences between nontypeable Haemophilus influenzae isolates from chronic obstructive pulmonary disease compared to other clinical phenotypes. Microb Genom 2020; 6. [PMID: 32706329 PMCID: PMC7641420 DOI: 10.1099/mgen.0.000405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) colonizes human upper respiratory airways and plays a key role in the course and pathogenesis of acute exacerbations of chronic obstructive pulmonary disease (COPD). Currently, it is not possible to distinguish COPD isolates of NTHi from other clinical isolates of NTHi using conventional genotyping methods. Here, we analysed the core and accessory genome of 568 NTHi isolates, including 40 newly sequenced isolates, to look for genetic distinctions between NTHi isolates from COPD with respect to other illnesses, including otitis media, meningitis and pneumonia. Phylogenies based on polymorphic sites in the core-genome did not show discrimination between NTHi strains collected from different clinical phenotypes. However, pan-genome-wide association studies identified 79 unique NTHi accessory genes that were significantly associated with COPD. Furthermore, many of the COPD-related NTHi genes have known or predicted roles in virulence, transmembrane transport of metal ions and nutrients, cellular respiration and maintenance of redox homeostasis. This indicates that specific genes may be required by NTHi for its survival or virulence in the COPD lung. These results advance our understanding of the pathogenesis of NTHi infection in COPD lungs.
Collapse
Affiliation(s)
- Rajendra Kc
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Kelvin W C Leong
- Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, College of Science, Health and Engineering, La Trobe University, Victoria, Australia
| | - Nicholas M Harkness
- Department of Respiratory and Sleep Medicine, Royal Hobart Hospital, Tasmania, Australia
| | - Julia Lachowicz
- Department of Respiratory and Sleep Medicine, Royal Hobart Hospital, Tasmania, Australia
| | - Sanjay S Gautam
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Louise A Cooley
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmania, Australia
| | - Belinda McEwan
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmania, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Victoria, Australia
| | - Gunasegaran Karupiah
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Ronan F O'Toole
- Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, College of Science, Health and Engineering, La Trobe University, Victoria, Australia
| |
Collapse
|
24
|
López-López N, Euba B, Hill J, Dhouib R, Caballero L, Leiva J, Hosmer J, Cuesta S, Ramos-Vivas J, Díez-Martínez R, Schirra HJ, Blank LM, Kappler U, Garmendia J. Haemophilus influenzae Glucose Catabolism Leading to Production of the Immunometabolite Acetate Has a Key Contribution to the Host Airway-Pathogen Interplay. ACS Infect Dis 2020; 6:406-421. [PMID: 31933358 DOI: 10.1021/acsinfecdis.9b00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammatory responses and impaired airway immunity, which provides an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. Clinical evidence supports that the COPD airways present increased concentrations of glucose, which may facilitate proliferation of pathogenic bacteria able to use glucose as a carbon source. NTHi metabolizes glucose through respiration-assisted fermentation, leading to the excretion of acetate, formate, and succinate. We hypothesized that such specialized glucose catabolism may be a pathoadaptive trait playing a pivotal role in the NTHi airway infection. To find out whether this is true, we engineered and characterized bacterial mutant strains impaired to produce acetate, formate, or succinate by inactivating the ackA, pflA, and frdA genes, respectively. While the inactivation of the pflA and frdA genes only had minimal physiological effects, the inactivation of the ackA gene affected acetate production and led to reduced bacterial growth, production of lactate under low oxygen tension, and bacterial attenuation in vivo. Moreover, bacterially produced acetate was able to stimulate the expression of inflammatory genes by cultured airway epithelial cells. These results back the notion that the COPD lung supports NTHi growth on glucose, enabling production of fermentative end products acting as immunometabolites at the site of infection. Thus, glucose catabolism may contribute not only to NTHi growth but also to bacterially driven airway inflammation. This information has important implications for developing nonantibiotic antimicrobials, given that airway glucose homeostasis modifying drugs could help prevent microbial infections associated with chronic lung disease.
Collapse
Affiliation(s)
| | - Begoña Euba
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Julian Hill
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rabeb Dhouib
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lucı́a Caballero
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
| | - José Leiva
- Servicio de Microbiologı́a, Clı́nica Universidad de Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Jennifer Hosmer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sergio Cuesta
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
| | - José Ramos-Vivas
- Servicio Microbiologı́a, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain
- Red Española de Investigación en Patologı́a Infecciosa (REIPI), ISCIII, Madrid, Spain
| | - Roberto Díez-Martínez
- Telum Therapeutics, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noáin, Spain
| | - Horst Joachim Schirra
- Centre for Advanced Imaging, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Lars M. Blank
- Institute of Applied Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Junkal Garmendia
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
25
|
Santos-Cortez RLP, Bhutta MF, Earl JP, Hafrén L, Jennings M, Mell JC, Pichichero ME, Ryan AF, Tateossian H, Ehrlich GD. Panel 3: Genomics, precision medicine and targeted therapies. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109835. [PMID: 32007292 PMCID: PMC7155947 DOI: 10.1016/j.ijporl.2019.109835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media. DATA SOURCES PubMed articles published since the last meeting in June 2015 up to June 2019. REVIEW METHODS A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. CONCLUSION Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media. IMPLICATIONS FOR PRACTICE In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics.
Collapse
Affiliation(s)
- Regie Lyn P. Santos-Cortez
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19 Ave., Aurora, CO 80045, USA
| | - Mahmood F. Bhutta
- Department of ENT, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, UK
| | - Joshua P. Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Tukholmankatu 8A, 00290 Helsinki, Finland
| | - Michael Jennings
- Institute for Glycomics, Gold Coast campus, Griffith University, QLD 4222, Australia
| | - Joshua C. Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, 1425 Portland Ave., Rochester, NY 14621, USA
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hilda Tateossian
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxford, Didcot OX11 0RD, UK
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| |
Collapse
|
26
|
Muda NM, Nasreen M, Dhouib R, Hosmer J, Hill J, Mahawar M, Schirra HJ, McEwan AG, Kappler U. Metabolic analyses reveal common adaptations in two invasive Haemophilus influenzae strains. Pathog Dis 2020; 77:5420469. [PMID: 30915434 DOI: 10.1093/femspd/ftz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/19/2019] [Indexed: 01/22/2023] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a major pathogen in upper and lower respiratory tract infections in humans, and is increasingly also associated with invasive disease. We have examined two unrelated NTHi invasive disease isolates, R2866 and C188, in order to identify metabolic and physiological properties that distinguish them from respiratory tract disease isolates such as Hi2019. While the general use of the Hi metabolic network was similar across all three strains, the two invasive isolates secreted increased amounts of succinate, which can have anti-inflammatory properties. In addition, they showed a common shift in their carbon source utilization patterns, with strongly enhanced metabolism of nucleoside substrates, glucose and sialic acid. The latter two are major compounds present in blood and cerebrospinal fluid (CSF). Interestingly, C188 and R2866 also shared a reduced ability to invade or survive intracellularly in 16HBE14 bronchial epithelial cells relative to Hi2019 (4-fold (4 h), 25-fold (24 h) reduction). Altered metabolic properties, such as the ones observed here, could arise from genomic adaptations that NTHi undergo during infection. Together these data indicate that shifts in substrate preferences in otherwise conserved metabolic pathways may underlie strain niche specificity and thus have the potential to alter the outcomes of host-NTHi interactions.
Collapse
Affiliation(s)
- Noor Marian Muda
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Rabeb Dhouib
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Julian Hill
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Manish Mahawar
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia.,Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Horst Joachim Schirra
- Centre for Advanced Imaging, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| |
Collapse
|
27
|
Preclinical Evaluation of the Antimicrobial-Immunomodulatory Dual Action of Xenohormetic Molecules against Haemophilus influenzae Respiratory Infection. Biomolecules 2019; 9:biom9120891. [PMID: 31861238 PMCID: PMC6995536 DOI: 10.3390/biom9120891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammation and impaired airway immunity, providing an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. In this context, therapies targeting not only overactive inflammation without significant adverse effects, but also infection are of interest. Increasing evidence suggests that polyphenols, plant secondary metabolites with anti-inflammatory and antimicrobial properties, may be protective. Here, a Cistus salviifolius plant extract containing quercetin, myricetin, and punicalagin was shown to reduce NTHi viability. Analysis of these polyphenols revealed that quercetin has a bactericidal effect on NTHi, does not display synergies, and that bacteria do not seem to develop resistance. Moreover, quercetin lowered NTHi airway epithelial invasion through a mechanism likely involving inhibition of Akt phosphorylation, and reduced the expression of bacterially-induced proinflammatory markers il-8, cxcl-1, il-6, pde4b, and tnfα. We further tested quercetin’s effect on NTHi murine pulmonary infection, showing a moderate reduction in bacterial counts and significantly reduced expression of proinflammatory genes, compared to untreated mice. Quercetin administration during NTHi infection on a zebrafish septicemia infection model system showed a bacterial clearing effect without signs of host toxicity. In conclusion, this study highlights the therapeutic potential of the xenohormetic molecule quercetin against NTHi infection.
Collapse
|
28
|
Sierra Y, Tubau F, González-Díaz A, Carrera-Salinas A, Moleres J, Bajanca-Lavado P, Garmendia J, Domínguez MÁ, Ardanuy C, Martí S. Assessment of trimethoprim-sulfamethoxazole susceptibility testing methods for fastidious Haemophilus spp. Clin Microbiol Infect 2019; 26:944.e1-944.e7. [PMID: 31811916 DOI: 10.1016/j.cmi.2019.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To compare the determinants of trimethoprim-sulfamethoxazole resistance with established susceptibility values for fastidious Haemophilus spp., to provide recommendations for optimal trimethoprim-sulfamethoxazole measurement. METHODS We collected 50 strains each of Haemophilus influenzae and Haemophilus parainfluenzae at Bellvitge University Hospital. Trimethoprim-sulfamethoxazole susceptibility was tested by microdilution, E-test and disc diffusion using both Mueller-Hinton fastidious (MH-F) medium and Haemophilus test medium (HTM) following EUCAST and CLSI criteria, respectively. Mutations in folA, folP and additional determinants of resistance were identified in whole-genome-sequenced isolates. RESULTS Strains presented generally higher rates of trimethoprim-sulfamethoxazole resistance when grown on HTM than on MH-F, independent of the methodology used (average MIC 2.6-fold higher in H. influenzae and 1.2-fold higher in H. parainfluenzae). The main resistance-related determinants were as follows: I95L and F154S/V in folA; 3- and 15-bp insertions and substitutions in folP; acquisition of sul genes; and FolA overproduction potentially linked to mutations in -35 and -10 promoter motifs. Of note, 2 of 19 H. influenzae strains (10.5%) and 9 of 33 H. parainfluenzae strains (27.3%) with mutations and assigned as resistant by microdilution were inaccurately considered susceptible by disc diffusion. This misinterpretation was resolved by raising the clinical resistance breakpoint of the EUCAST guidelines to ≤30 mm. CONCLUSIONS Given the routine use of disc diffusion, a significant number of strains could potentially be miscategorized as susceptible to trimethoprim-sulfamethoxazole despite having resistance-related mutations. A simple modification to the current clinical resistance breakpoint given by the EUCAST guideline for MH-F ensures correct interpretation and correlation with the reference standard method of microdilution.
Collapse
Affiliation(s)
- Y Sierra
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
| | - F Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - A González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - A Carrera-Salinas
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
| | - J Moleres
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
| | - P Bajanca-Lavado
- Haemophilus Influenzae Reference Laboratory, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - J Garmendia
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
| | - M Ángeles Domínguez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - C Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| | - S Martí
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.
| |
Collapse
|
29
|
Discovery and Contribution of Nontypeable Haemophilus influenzae NTHI1441 to Human Respiratory Epithelial Cell Invasion. Infect Immun 2019; 87:IAI.00462-19. [PMID: 31427451 DOI: 10.1128/iai.00462-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/25/2019] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is the primary cause of bacterially induced acute exacerbations of chronic obstructive pulmonary disease (COPD). NTHi adheres to and invades host respiratory epithelial cells as a means to persist in the lower airways of adults with COPD. Therefore, we mined the genomes of NTHi strains isolated from the airways of adults with COPD to identify novel proteins to investigate their role in adherence and invasion of human respiratory epithelial cells. An isogenic knockout mutant of the open reading frame NTHI1441 showed a 76.6% ± 5.5% reduction in invasion of human bronchial and alveolar epithelial cells at 1, 3, and 6 h postinfection. Decreased invasion of the NTHI1441 mutant was independent of either intracellular survival or adherence to cells. NTHI1441 is conserved among NTHi genomes. Results of whole-bacterial-cell enzyme-linked immunosorbent assay (ELISA) and flow cytometry experiments identified that NTHI1441 has epitopes expressed on the bacterial cell surface. Adults with COPD develop increased serum IgG against NTHI1441 after experiencing an exacerbation with NTHi. This study reveals NTHI1441 as a novel NTHi virulence factor expressed during infection of the COPD lower airways that contributes to invasion of host respiratory epithelial cells. The role in host cell invasion, conservation among strains, and expression of surface-exposed epitopes suggest that NTHI1441 is a potential target for preventative and therapeutic interventions for disease caused by NTHi.
Collapse
|
30
|
Aziz A, Sarovich DS, Nosworthy E, Beissbarth J, Chang AB, Smith-Vaughan H, Price EP, Harris TM. Molecular Signatures of Non-typeable Haemophilus influenzae Lung Adaptation in Pediatric Chronic Lung Disease. Front Microbiol 2019; 10:1622. [PMID: 31379777 PMCID: PMC6646836 DOI: 10.3389/fmicb.2019.01622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/03/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi), an opportunistic pathogen of the upper airways of healthy children, can infect the lower airways, driving chronic lung disease. However, the molecular basis underpinning NTHi transition from a commensal to a pathogen is not clearly understood. Here, we performed comparative genomic and transcriptomic analyses of 12 paired, isogenic NTHi strains, isolated from the nasopharynx (NP) and bronchoalveolar lavage (BAL) of 11 children with chronic lung disease, to identify convergent molecular signatures associated with lung adaptation. Comparative genomic analyses of the 12 NP-BAL pairs demonstrated that five were genetically identical, with the remaining seven differing by only 1 to 3 mutations. Within-patient transcriptomic analyses identified between 2 and 58 differentially expressed genes in 8 of the 12 NP-BAL pairs, including pairs with no observable genomic changes. Whilst no convergence was observed at the gene level, functional enrichment analysis revealed significant under-representation of differentially expressed genes belonging to Coenzyme metabolism, Function unknown, Translation, ribosomal structure, and biogenesis Cluster of Orthologous Groups categories. In contrast, Carbohydrate transport and metabolism, Cell motility and secretion, Intracellular trafficking and secretion, and Energy production categories were over-represented. This observed trend amongst genetically unrelated NTHi strains provides evidence of convergent transcriptional adaptation of NTHi to pediatric airways that deserves further exploration. Understanding the pathoadaptative mechanisms that NTHi employs to infect and persist in the lower pediatric airways is essential for devising targeted diagnostics and treatments aimed at minimizing disease severity, and ultimately, preventing NTHi lung infections and subsequent chronic lung disease in children.
Collapse
Affiliation(s)
- Ammar Aziz
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Derek S. Sarovich
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Elizabeth Nosworthy
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Anne B. Chang
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Respiratory and Sleep Medicine, Children’s Health Queensland, Queensland University of Technology, Brisbane, QLD, Australia
| | - Heidi Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Erin P. Price
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Tegan M. Harris
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|