1
|
Rüttiger AS, Ryan D, Spiga L, Lamm-Schmidt V, Prezza G, Reichardt S, Langford M, Barquist L, Faber F, Zhu W, Westermann AJ. The global RNA-binding protein RbpB is a regulator of polysaccharide utilization in Bacteroides thetaiotaomicron. Nat Commun 2025; 16:208. [PMID: 39747016 PMCID: PMC11697453 DOI: 10.1038/s41467-024-55383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Paramount to human health, symbiotic bacteria in the gastrointestinal tract rely on the breakdown of complex polysaccharides to thrive in this sugar-deprived environment. Gut Bacteroides are metabolic generalists and deploy dozens of polysaccharide utilization loci (PULs) to forage diverse dietary and host-derived glycans. The expression of the multi-protein PUL complexes is tightly regulated at the transcriptional level. However, how PULs are orchestrated at translational level in response to the fluctuating levels of their cognate substrates is unknown. Here, we identify the RNA-binding protein RbpB and a family of noncoding RNAs as key players in post-transcriptional PUL regulation. We demonstrate that RbpB interacts with numerous cellular transcripts, including a paralogous noncoding RNA family comprised of 14 members, the FopS (family of paralogous sRNAs). Through a series of in-vitro and in-vivo assays, we reveal that FopS sRNAs repress the translation of SusC-like glycan transporters when substrates are limited-an effect antagonized by RbpB. Ablation of RbpB in Bacteroides thetaiotaomicron compromises colonization in the mouse gut in a diet-dependent manner. Together, this study adds to our understanding of RNA-coordinated metabolic control as an important factor contributing to the in-vivo fitness of predominant microbiota species in dynamic nutrient landscapes.
Collapse
Affiliation(s)
- Ann-Sophie Rüttiger
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Daniel Ryan
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Vanessa Lamm-Schmidt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, D-97080, Germany
| | - Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Madison Langford
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, D-97080, Germany
- Department of Biology, University of Toronto, Mississauga, L5L 1C6, Ontario, Canada
| | - Franziska Faber
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, D-97080, Germany
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Alexander J Westermann
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany.
| |
Collapse
|
2
|
Kabonick S, Verma K, Modesto JL, Pearce VH, Winokur KM, Groisman EA, Townsend GE. Hierarchical glycolytic pathways control the carbohydrate utilization regulator in human gut Bacteroides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623061. [PMID: 39605394 PMCID: PMC11601483 DOI: 10.1101/2024.11.13.623061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Human dietary choices control the gut microbiome. Industrialized populations consume abundant glucose and fructose, resulting in microbe-dependent intestinal disorders. Simple sugars inhibit the carbohydrate utilization regulator (Cur), a transcription factor in the prominent gut bacterial phylum, Bacteroidetes. Cur encodes products necessary for carbohydrate utilization, host immunomodulation, and intestinal colonization. Here, we demonstrate how simple sugars decrease Cur activity in the mammalian gut. Our findings in two Bacteroides species show that ATP-dependent fructose-1,6-bisphosphate (FBP) synthesis is necessary for glucose or fructose to inhibit Cur, but dispensable for growth because of an essential pyrophosphate (PPi)-dependent enzyme. Furthermore, we show that ATP-dependent FBP synthesis is required to regulate Cur in the gut but does not contribute to fitness when cur is absent, indicating PPi is sufficient to drive glycolysis in these bacteria. Our findings reveal how sugar-rich diets inhibit Cur, thereby disrupting Bacteroides fitness and diminishing products that are beneficial to the host.
Collapse
Affiliation(s)
- Seth Kabonick
- Penn State College of Medicine, Hershey, PA, USA
- Penn State OneHealth Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Kamalesh Verma
- Penn State College of Medicine, Hershey, PA, USA
- Penn State OneHealth Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Jennifer L. Modesto
- Penn State College of Medicine, Hershey, PA, USA
- Penn State OneHealth Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Victoria H. Pearce
- Penn State College of Medicine, Hershey, PA, USA
- Penn State OneHealth Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Kailyn M. Winokur
- Penn State College of Medicine, Hershey, PA, USA
- Penn State OneHealth Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | | | - Guy E. Townsend
- Penn State College of Medicine, Hershey, PA, USA
- Penn State OneHealth Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
3
|
Basu A, Adams AND, Degnan PH, Vanderpool CK. Determinants of raffinose family oligosaccharide use in Bacteroides species. J Bacteriol 2024; 206:e0023524. [PMID: 39330254 PMCID: PMC11501099 DOI: 10.1128/jb.00235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Bacteroides species are successful colonizers of the human colon and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in polysaccharide utilization loci (PULs). While recent work has uncovered the PULs required for the use of some polysaccharides, how Bacteroides utilize smaller oligosaccharides is less well studied. Raffinose family oligosaccharides (RFOs) are abundant in plants, especially legumes, and consist of variable units of galactose linked by α-1,6 bonds to a sucrose (glucose α-1-β-2 fructose) moiety. Previous work showed that an α-galactosidase, BT1871, is required for RFO utilization in Bacteroides thetaiotaomicron. Here, we identify two different types of mutations that increase BT1871 mRNA levels and improve B. thetaiotaomicron growth on RFOs. First, a novel spontaneous duplication of BT1872 and BT1871 places these genes under the control of a ribosomal promoter, driving high BT1871 transcription. Second, nonsense mutations in a gene encoding the PUL24 anti-sigma factor likewise increase BT1871 transcription. We then show that hydrolases from PUL22 work together with BT1871 to break down the sucrose moiety of RFOs and determine that the master regulator of carbohydrate utilization (BT4338) plays a role in RFO utilization in B. thetaiotaomicron. Examining the genomes of other Bacteroides species, we found homologs of BT1871 in a subset and showed that representative strains of species with a BT1871 homolog grew better on melibiose than species that lack a BT1871 homolog. Altogether, our findings shed light on how an important gut commensal utilizes an abundant dietary oligosaccharide. IMPORTANCE The gut microbiome is important in health and disease. The diverse and densely populated environment of the gut makes competition for resources fierce. Hence, it is important to study the strategies employed by microbes for resource usage. Raffinose family oligosaccharides are abundant in plants and are a major source of nutrition for the microbiota in the colon since they remain undigested by the host. Here, we study how the model commensal organism, Bacteroides thetaiotaomicron utilizes raffinose family oligosaccharides. This work highlights how an important member of the microbiota uses an abundant dietary resource.
Collapse
Affiliation(s)
- Anubhav Basu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Amanda N. D. Adams
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Patrick H. Degnan
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Basu A, Adams AN, Degnan PH, Vanderpool CK. Determinants of raffinose family oligosaccharide use in Bacteroides species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597959. [PMID: 38895307 PMCID: PMC11185731 DOI: 10.1101/2024.06.07.597959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Bacteroides species are successful colonizers of the human gut and can utilize a wide variety of complex polysaccharides and oligosaccharides that are indigestible by the host. To do this, they use enzymes encoded in Polysaccharide Utilization Loci (PULs). While recent work has uncovered the PULs required for use of some polysaccharides, how Bacteroides utilize smaller oligosaccharides is less well studied. Raffinose family oligosaccharides (RFOs) are abundant in plants, especially legumes, and consist of variable units of galactose linked by α-1,6 bonds to a sucrose (glucose α-1-β-2 fructose) moiety. Previous work showed that an α-galactosidase, BT1871, is required for RFO utilization in Bacteroides thetaiotaomicron. Here, we identify two different types of mutations that increase BT1871 mRNA levels and improve B. thetaiotaomicron growth on RFOs. First, a novel spontaneous duplication of BT1872 and BT1871 places these genes under control of a ribosomal promoter, driving high BT1871 transcription. Second, nonsense mutations in a gene encoding the PUL24 anti-sigma factor likewise increase BT1871 transcription. We then show that hydrolases from PUL22 work together with BT1871 to break down the sucrose moiety of RFOs and determine that the master regulator of carbohydrate utilization (BT4338) plays a role in RFO utilization in B. thetaiotaomicron. Examining the genomes of other Bacteroides species, we found homologs of BT1871 in subset and show that representative strains of species containing a BT1871 homolog grew better on melibiose than species that lack a BT1871 homolog. Altogether, our findings shed light on how an important gut commensal utilizes an abundant dietary oligosaccharide.
Collapse
Affiliation(s)
- Anubhav Basu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Amanda N.D. Adams
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Patrick H. Degnan
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Cottam C, White RT, Beck LC, Stewart CJ, Beatson SA, Lowe EC, Grinter R, Connolly JPR. Metabolism of L-arabinose converges with virulence regulation to promote enteric pathogen fitness. Nat Commun 2024; 15:4462. [PMID: 38796512 PMCID: PMC11127945 DOI: 10.1038/s41467-024-48933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/16/2024] [Indexed: 05/28/2024] Open
Abstract
Virulence and metabolism are often interlinked to control the expression of essential colonisation factors in response to host-associated signals. Here, we identified an uncharacterised transporter of the dietary monosaccharide ʟ-arabinose that is widely encoded by the zoonotic pathogen enterohaemorrhagic Escherichia coli (EHEC), required for full competitive fitness in the mouse gut and highly expressed during human infection. Discovery of this transporter suggested that EHEC strains have an enhanced ability to scavenge ʟ-arabinose and therefore prompted us to investigate the impact of this nutrient on pathogenesis. Accordingly, we discovered that ʟ-arabinose enhances expression of the EHEC type 3 secretion system, increasing its ability to colonise host cells, and that the underlying mechanism is dependent on products of its catabolism rather than the sensing of ʟ-arabinose as a signal. Furthermore, using the murine pathogen Citrobacter rodentium, we show that ʟ-arabinose metabolism provides a fitness benefit during infection via virulence factor regulation, as opposed to supporting pathogen growth. Finally, we show that this mechanism is not restricted to ʟ-arabinose and extends to other pentose sugars with a similar metabolic fate. This work highlights the importance integrating central metabolism with virulence regulation in order to maximise competitive fitness of enteric pathogens within the host-niche.
Collapse
Affiliation(s)
- Curtis Cottam
- Newcastle University Biosciences Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Rhys T White
- Institute of Environmental Science and Research, Wellington, New Zealand
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren C Beck
- Newcastle University Translation and Clinical Research Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Christopher J Stewart
- Newcastle University Translation and Clinical Research Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Elisabeth C Lowe
- Newcastle University Biosciences Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James P R Connolly
- Newcastle University Biosciences Institute, Newcastle University, NE2 4HH, Newcastle-upon-Tyne, UK.
| |
Collapse
|
6
|
Dong J, Cui Y, Qu X. Metabolism mechanism of glycosaminoglycans by the gut microbiota: Bacteroides and lactic acid bacteria: A review. Carbohydr Polym 2024; 332:121905. [PMID: 38431412 DOI: 10.1016/j.carbpol.2024.121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Jiahuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
7
|
Ryan D, Bornet E, Prezza G, Alampalli SV, Franco de Carvalho T, Felchle H, Ebbecke T, Hayward RJ, Deutschbauer AM, Barquist L, Westermann AJ. An expanded transcriptome atlas for Bacteroides thetaiotaomicron reveals a small RNA that modulates tetracycline sensitivity. Nat Microbiol 2024; 9:1130-1144. [PMID: 38528147 PMCID: PMC10994844 DOI: 10.1038/s41564-024-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/07/2024] [Indexed: 03/27/2024]
Abstract
Plasticity in gene expression allows bacteria to adapt to diverse environments. This is particularly relevant in the dynamic niche of the human intestinal tract; however, transcriptional networks remain largely unknown for gut-resident bacteria. Here we apply differential RNA sequencing (RNA-seq) and conventional RNA-seq to the model gut bacterium Bacteroides thetaiotaomicron to map transcriptional units and profile their expression levels across 15 in vivo-relevant growth conditions. We infer stress- and carbon source-specific transcriptional regulons and expand the annotation of small RNAs (sRNAs). Integrating this expression atlas with published transposon mutant fitness data, we predict conditionally important sRNAs. These include MasB, which downregulates tetracycline tolerance. Using MS2 affinity purification and RNA-seq, we identify a putative MasB target and assess its role in the context of the MasB-associated phenotype. These data-publicly available through the Theta-Base web browser ( http://micromix.helmholtz-hiri.de/bacteroides/ )-constitute a valuable resource for the microbiome community.
Collapse
Affiliation(s)
- Daniel Ryan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Elise Bornet
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Shuba Varshini Alampalli
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Taís Franco de Carvalho
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Hannah Felchle
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Department of Radiation Oncology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Titus Ebbecke
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Regan J Hayward
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Wong JPH, Chillier N, Fischer-Stettler M, Zeeman SC, Battin TJ, Persat A. Bacteroides thetaiotaomicron metabolic activity decreases with polysaccharide molecular weight. mBio 2024; 15:e0259923. [PMID: 38376161 PMCID: PMC10936149 DOI: 10.1128/mbio.02599-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
The human colon hosts hundreds of commensal bacterial species, many of which ferment complex dietary carbohydrates. To transform these fibers into metabolically accessible compounds, microbes often express a series of dedicated enzymes homologous to the starch utilization system (Sus) encoded in polysaccharide utilization loci (PULs). The genome of Bacteroides thetaiotaomicron (Bt), a common member of the human gut microbiota, encodes nearly 100 PULs, conferring a strong metabolic versatility. While the structures and functions of individual enzymes within the PULs have been investigated, little is known about how polysaccharide complexity impacts the function of Sus-like systems. We here show that the activity of Sus-like systems depends on polysaccharide size, ultimately impacting bacterial growth. We demonstrate the effect of size-dependent metabolism in the context of dextran metabolism driven by the specific utilization system PUL48. We find that as the molecular weight of dextran increases, Bt growth rate decreases and lag time increases. At the enzymatic level, the dextranase BT3087, a glycoside hydrolase (GH) belonging to the GH family 66, is the main GH for dextran utilization, and BT3087 and BT3088 contribute to Bt dextran metabolism in a size-dependent manner. Finally, we show that the polysaccharide size-dependent metabolism of Bt impacts its metabolic output in a way that modulates the composition of a producer-consumer community it forms with Bacteroides fragilis. Altogether, our results expose an overlooked aspect of Bt metabolism that can impact the composition and diversity of microbiota. IMPORTANCE Polysaccharides are complex molecules that are commonly found in our diet. While humans lack the ability to degrade many polysaccharides, their intestinal microbiota contain bacterial commensals that are versatile polysaccharide utilizers. The gut commensal Bacteroides thetaiotaomicron dedicates roughly 20% of their genomes to the expression of polysaccharide utilization loci for the broad range utilization of polysaccharides. Although it is known that different polysaccharide utilization loci are dedicated to the degradation of specific polysaccharides with unique glycosidic linkages and monosaccharide compositions, it is often overlooked that specific polysaccharides may also exist in various molecular weights. These different physical attributes may impact their processability by starch utilization system-like systems, leading to differing growth rates and nutrient-sharing properties at the community level. Therefore, understanding how molecular weight impacts utilization by gut microbe may lead to the potential design of novel precision prebiotics.
Collapse
Affiliation(s)
- Jeremy P. H. Wong
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Noémie Chillier
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Tom J. Battin
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Clausen U, Vital ST, Lambertus P, Gehler M, Scheve S, Wöhlbrand L, Rabus R. Catabolic Network of the Fermentative Gut Bacterium Phocaeicola vulgatus (Phylum Bacteroidota) from a Physiologic-Proteomic Perspective. Microb Physiol 2024; 34:88-107. [PMID: 38262373 DOI: 10.1159/000536327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Phocaeicola vulgatus (formerly Bacteroides vulgatus) is a prevalent member of human and animal guts, where it influences by its dietary-fiber-fueled, fermentative metabolism the microbial community as well as the host health. Moreover, the fermentative metabolism of P. vulgatus bears potential for a sustainable production of bulk chemicals. The aim of the present study was to refine the current understanding of the P. vulgatus physiology. METHODS P. vulgatus was adapted to anaerobic growth with 14 different carbohydrates, ranging from hexoses, pentoses, hemicellulose, via an uronic acid to deoxy sugars. These substrate-adapted cells formed the basis to define the growth stoichiometries by quantifying growth/fermentation parameters and to reconstruct the catabolic network by applying differential proteomics. RESULTS The determination of growth performance revealed, e.g., doubling times (h) from 1.39 (arabinose) to 14.26 (glucuronate), biomass yields (gCDW/mmolS) from 0.01 (fucose) to 0.27 (α-cyclodextrin), and ATP yields (mMATP/mMC) from 0.21 (rhamnose) to 0.60 (glucuronate/xylan). Furthermore, fermentation product spectra were determined, ranging from broad and balanced (with xylan: acetate, succinate, formate, and propanoate) to rather one sided (with rhamnose or fucose: mainly propane-1,2-diol). The fermentation network serving all tested compounds is composed of 56 proteins (all identified), with several peripheral reaction sequences formed with high substrate specificity (e.g., conversion of arabinose to d-xylulose-3-phosphate) implicating a fine-tuned regulation. By contrast, central modules (e.g., glycolysis or the reaction sequence from PEP to succinate) were constitutively formed. Extensive formation of propane-1,2-diol from rhamnose and fucose involves rhamnulokinase (RhaB), rhamnulose-1-phosphate kinase (RhaD), and lactaldehyde reductase (FucO). Furthermore, Sus-like systems are apparently the most relevant uptake systems and a complex array of transmembrane electron-transfer systems (e.g., Na+-pumping Rnf and Nqr complexes, fumarate reductase) as well as F- and V-type ATP-synthases were detected. CONCLUSIONS The present study provides insights into the potential contribution of P. vulgatus to the gut metabolome and into the strain's biotechnological potential for sustainable production of short-chain fatty acids and alcohols.
Collapse
Affiliation(s)
- Urte Clausen
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sören-Tobias Vital
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Pia Lambertus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Martina Gehler
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Wang W, Fan Z, Yan Q, Pan T, Luo J, Wei Y, Li B, Fang Z, Lu W. Gut microbiota determines the fate of dietary fiber-targeted interventions in host health. Gut Microbes 2024; 16:2416915. [PMID: 39418223 PMCID: PMC11487953 DOI: 10.1080/19490976.2024.2416915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Epidemiological investigation confirmed that the intake of dietary fiber (DF) is closely related to human health, and the most important factor affecting the physiological function of DF, besides its physicochemical properties, is the gut microbiota. This paper mainly summarizes the interaction between DF and gut microbiota, including the influence of DF on the colonization of gut microbiota based on its different physicochemical properties, and the physiological role of gut microbiota in destroying the complex molecular structure of DF by encoding carbohydrate-active enzymes, thus producing small molecular products that affect the metabolism of the host. Taking cardiovascular disease (Atherosclerosis and hypertension), liver disease, and immune diseases as examples, it is confirmed that some DF, such as fructo-oligosaccharide, galactooligosaccharide, xylo-oligosaccharide, and inulin, have prebiotic-like physiological effects. These effects are dependent on the metabolites produced by the gut microbiota. Therefore, this paper further explores how DF affects the gut microbiota's production of substances such as short-chain fatty acids, bile acids, and tryptophan metabolites, and provides a preliminary explanation of the mechanisms associated with their impact on host health. Finally, based on the structural properties of DF and the large heterogeneity in the composition of the population gut microbiota, it may be a future trend to utilize DF and the gut microbiota to correlate host health for precision nutrition by combining the information from population disease databases.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Zhexin Fan
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qingqing Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Tong Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yijiang Wei
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baokun Li
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhifeng Fang
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
12
|
Zhu XY, Li Y, Xue CX, Lidbury IDEA, Todd JD, Lea-Smith DJ, Tian J, Zhang XH, Liu J. Deep-sea Bacteroidetes from the Mariana Trench specialize in hemicellulose and pectin degradation typically associated with terrestrial systems. MICROBIOME 2023; 11:175. [PMID: 37550707 PMCID: PMC10405439 DOI: 10.1186/s40168-023-01618-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Hadal trenches (>6000 m) are the deepest oceanic regions on Earth and depocenters for organic materials. However, how these enigmatic microbial ecosystems are fueled is largely unknown, particularly the proportional importance of complex polysaccharides introduced through deposition from the photic surface waters above. In surface waters, Bacteroidetes are keystone taxa for the cycling of various algal-derived polysaccharides and the flux of carbon through the photic zone. However, their role in the hadal microbial loop is almost unknown. RESULTS Here, culture-dependent and culture-independent methods were used to study the potential of Bacteroidetes to catabolize diverse polysaccharides in Mariana Trench waters. Compared to surface waters, the bathypelagic (1000-4000 m) and hadal (6000-10,500 m) waters harbored distinct Bacteroidetes communities, with Mesoflavibacter being enriched at ≥ 4000 m and Bacteroides and Provotella being enriched at 10,400-10,500 m. Moreover, these deep-sea communities possessed distinct gene pools encoding for carbohydrate active enzymes (CAZymes), suggesting different polysaccharide sources are utilised in these two zones. Compared to surface counterparts, deep-sea Bacteroidetes showed significant enrichment of CAZyme genes frequently organized into polysaccharide utilization loci (PULs) targeting algal/plant cell wall polysaccharides (i.e., hemicellulose and pectin), that were previously considered an ecological trait associated with terrestrial Bacteroidetes only. Using a hadal Mesoflavibacter isolate (MTRN7), functional validation of this unique genetic potential was demonstrated. MTRN7 could utilize pectic arabinans, typically associated with land plants and phototrophic algae, as the carbon source under simulated deep-sea conditions. Interestingly, a PUL we demonstrate is likely horizontally acquired from coastal/land Bacteroidetes was activated during growth on arabinan and experimentally shown to encode enzymes that hydrolyze arabinan at depth. CONCLUSIONS Our study implies that hadal Bacteroidetes exploit polysaccharides poorly utilized by surface populations via an expanded CAZyme gene pool. We propose that sinking cell wall debris produced in the photic zone can serve as an important carbon source for hadal heterotrophs and play a role in shaping their communities and metabolism. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chun-Xu Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ian D E A Lidbury
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266273, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
13
|
Panwar D, Shubhashini A, Kapoor M. Complex alpha and beta mannan foraging by the human gut bacteria. Biotechnol Adv 2023; 66:108166. [PMID: 37121556 DOI: 10.1016/j.biotechadv.2023.108166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The human gut microbiota (HGM), a community of trillions of microbes, underscores its contribution by impacting many facets of host health and disease. In the HGM, Bacteroidota and Bacillota represent dominant bacterial phyla, which mainly rely on the glycans recalcitrant to host digestion to meet their energy requirements. Accordingly, the impact of dietary and host-derived glycans in the assembly and operation of these dominant microbial communities continues to be an area of active research. Among various glycans, mannans represent an integral component of the human diet. Apart from their health effects, the diverse and complex mannan structures bears molecular signatures that alter the expression of specific gene clusters in selected Bacteroidota and Bacillota species. Both the phyla possess variable and sophisticated loci of mannan recognition proteins, hydrolytic enzymes, transporters, and other metabolic proteins to sense, capture and utilize mannans as an energy source. The current review summarizes mannan structural diversity, and strategies adopted by select species of the HGM bacteria to forage mannans by focusing primarily on glycoside hydrolases and their effects on host health and metabolism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - A Shubhashini
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India.
| |
Collapse
|
14
|
Ryan D, Bornet E, Prezza G, Alampalli SV, de Carvalho TF, Felchle H, Ebbecke T, Hayward R, Deutschbauer AM, Barquist L, Westermann AJ. An integrated transcriptomics-functional genomics approach reveals a small RNA that modulates Bacteroides thetaiotaomicron sensitivity to tetracyclines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528795. [PMID: 36824877 PMCID: PMC9949090 DOI: 10.1101/2023.02.16.528795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Gene expression plasticity allows bacteria to adapt to diverse environments, tie their metabolism to available nutrients, and cope with stress. This is particularly relevant in a niche as dynamic and hostile as the human intestinal tract, yet transcriptional networks remain largely unknown in gut Bacteroides spp. Here, we map transcriptional units and profile their expression levels in Bacteroides thetaiotaomicron over a suite of 15 defined experimental conditions that are relevant in vivo , such as variation of temperature, pH, and oxygen tension, exposure to antibiotic stress, and growth on simple carbohydrates or on host mucin-derived glycans. Thereby, we infer stress- and carbon source-specific transcriptional regulons, including conditional expression of capsular polysaccharides and polysaccharide utilization loci, and expand the annotation of small regulatory RNAs (sRNAs) in this organism. Integrating this comprehensive expression atlas with transposon mutant fitness data, we identify conditionally important sRNAs. One example is MasB, whose inactivation led to increased bacterial tolerance of tetracyclines. Using MS2 affinity purification coupled with RNA sequencing, we predict targets of this sRNA and discuss their potential role in the context of the MasB-associated phenotype. Together, this transcriptomic compendium in combination with functional sRNA genomics-publicly available through a new iteration of the 'Theta-Base' web browser (www.helmholtz-hiri.de/en/datasets/bacteroides-v2)-constitutes a valuable resource for the microbiome and sRNA research communities alike.
Collapse
|
15
|
Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting. Nat Commun 2023; 14:662. [PMID: 36750571 PMCID: PMC9905522 DOI: 10.1038/s41467-023-36365-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
The composition and metabolism of the human gut microbiota are strongly influenced by dietary complex glycans, which cause downstream effects on the physiology and health of hosts. Despite recent advances in our understanding of glycan metabolism by human gut bacteria, we still need methods to link glycans to their consuming bacteria. Here, we use a functional assay to identify and isolate gut bacteria from healthy human volunteers that take up different glycans. The method combines metabolic labeling using fluorescent oligosaccharides with fluorescence-activated cell sorting (FACS), followed by amplicon sequencing or culturomics. Our results demonstrate metabolic labeling in various taxa, such as Prevotella copri, Collinsella aerofaciens and Blautia wexlerae. In vitro validation confirms the ability of most, but not all, labeled species to consume the glycan of interest for growth. In parallel, we show that glycan consumers spanning three major phyla can be isolated from cultures of sorted labeled cells. By linking bacteria to the glycans they consume, this approach increases our basic understanding of glycan metabolism by gut bacteria. Going forward, it could be used to provide insight into the mechanism of prebiotic approaches, where glycans are used to manipulate the gut microbiota composition.
Collapse
|
16
|
Modesto JL, Pearce VH, Townsend GE. Harnessing gut microbes for glycan detection and quantification. Nat Commun 2023; 14:275. [PMID: 36650134 PMCID: PMC9845299 DOI: 10.1038/s41467-022-35626-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Glycans facilitate critical biological functions and control the mammalian gut microbiota composition by supplying differentially accessible nutrients to distinct microbial subsets. Therefore, identifying unique glycan substrates that support defined microbial populations could inform therapeutic avenues to treat diseases via modulation of the gut microbiota composition and metabolism. However, examining heterogeneous glycan mixtures for individual microbial substrates is hindered by glycan structural complexity and diversity, which presents substantial challenges to glycomics approaches. Fortuitously, gut microbes encode specialized sensor proteins that recognize unique glycan structures and in-turn activate predictable, specific, and dynamic transcriptional responses. Here, we harness this microbial machinery to indicate the presence and abundance of compositionally similar, yet structurally distinct glycans, using a transcriptional reporter we develop. We implement these tools to examine glycan mixtures, isolate target molecules for downstream characterization, and quantify the recovered products. We assert that this toolkit could dramatically enhance our understanding of the mammalian intestinal environment and identify host-microbial interactions critical for human health.
Collapse
Affiliation(s)
- Jennifer L Modesto
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA.,Penn State Microbiome Center, The Pennsylvania State University, State College, PA, 16802, USA.,Center for Molecular Carcinogenesis and Toxicology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Victoria H Pearce
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA.,Penn State Microbiome Center, The Pennsylvania State University, State College, PA, 16802, USA.,Center for Molecular Carcinogenesis and Toxicology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Guy E Townsend
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA. .,Penn State Microbiome Center, The Pennsylvania State University, State College, PA, 16802, USA. .,Center for Molecular Carcinogenesis and Toxicology, The Pennsylvania State University, State College, PA, 16802, USA.
| |
Collapse
|
17
|
Mu J, Guo Z, Wang X, Wang X, Fu Y, Li X, Zhu F, Hu G, Ma X. Seaweed polysaccharide relieves hexavalent chromium-induced gut microbial homeostasis. Front Microbiol 2023; 13:1100988. [PMID: 36726569 PMCID: PMC9884827 DOI: 10.3389/fmicb.2022.1100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Heavy metals released in the environment pose a huge threat to soil and water quality, food safety and public health. Additionally, humans and other mammals may also be directly exposed to heavy metals or exposed to heavy metals through the food chain, which seriously threatens the health of animals and humans. Chromium, especially hexavalent chromium [Cr (VI)], as a common heavy metal, has been shown to cause serious environmental pollution as well as intestinal damage. Thus, increasing research is devoted to finding drugs to mitigate the negative health effects of hexavalent chromium exposure. Seaweed polysaccharides have been demonstrated to have many pharmacological effects, but whether it can alleviate gut microbial dysbiosis caused by hexavalent chromium exposure has not been well characterized. Here, we hypothesized that seaweed polysaccharides could alleviate hexavalent chromium exposure-induced poor health in mice. Mice in Cr and seaweed polysaccharide treatment group was compulsively receive K2Cr2O7. At the end of the experiment, all mice were euthanized, and colon contents were collected for DNA sequencing analysis. Results showed that seaweed polysaccharide administration can restore the gut microbial dysbiosis and the reduction of gut microbial diversity caused by hexavalent chromium exposure in mice. Hexavalent chromium exposure also caused significant changes in the gut microbial composition of mice, including an increase in some pathogenic bacteria and a decrease in beneficial bacteria. However, seaweed polysaccharides administration could ameliorate the composition of gut microbiota. In conclusion, this study showed that seaweed polysaccharides can restore the negative effects of hexavalent chromium exposure in mice, including gut microbial dysbiosis. Meanwhile, this research also lays the foundation for the application of seaweed polysaccharides.
Collapse
Affiliation(s)
- Jinghao Mu
- Department of Urology, Chinese PLA General Hospital, Beijing, China,Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenhuan Guo
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,*Correspondence: Zhenhuan Guo, ✉
| | - Xiujun Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xuefei Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yunxing Fu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xianghui Li
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Fuli Zhu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Guangyuan Hu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xia Ma
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,Xia Ma, ✉
| |
Collapse
|
18
|
Han W, Peng B, Wang C, Townsend GE, Barry NA, Peske F, Goodman AL, Liu J, Rodnina MV, Groisman EA. Gut colonization by Bacteroides requires translation by an EF-G paralog lacking GTPase activity. EMBO J 2023; 42:e112372. [PMID: 36472247 PMCID: PMC9841332 DOI: 10.15252/embj.2022112372] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis is crucial for cell growth and survival yet one of the most energy-consuming cellular processes. How, then, do cells sustain protein synthesis under starvation conditions when energy is limited? To accelerate the translocation of mRNA-tRNAs through the ribosome, bacterial elongation factor G (EF-G) hydrolyzes energy-rich guanosine triphosphate (GTP) for every amino acid incorporated into a protein. Here, we identify an EF-G paralog-EF-G2-that supports translocation without hydrolyzing GTP in the gut commensal bacterium Bacteroides thetaiotaomicron. EF-G2's singular ability to sustain protein synthesis, albeit at slow rates, is crucial for bacterial gut colonization. EF-G2 is ~10-fold more abundant than canonical EF-G1 in bacteria harvested from murine ceca and, unlike EF-G1, specifically accumulates during carbon starvation. Moreover, we uncover a 26-residue region unique to EF-G2 that is essential for protein synthesis, EF-G2 dissociation from the ribosome, and responsible for the absence of GTPase activity. Our findings reveal how cells curb energy consumption while maintaining protein synthesis to advance fitness in nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Weiwei Han
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Bee‐Zen Peng
- Department of Physical BiochemistryMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Chunyan Wang
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Guy E Townsend
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
- Present address:
Department of Biochemistry and Molecular BiologyPenn State College of MedicineHersheyPAUSA
| | - Natasha A Barry
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Frank Peske
- Department of Physical BiochemistryMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Andrew L Goodman
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Jun Liu
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Marina V Rodnina
- Department of Physical BiochemistryMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Eduardo A Groisman
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| |
Collapse
|
19
|
Pearce VH, Groisman EA, Townsend GE. Dietary sugars silence the master regulator of carbohydrate utilization in human gut Bacteroides species. Gut Microbes 2023; 15:2221484. [PMID: 37358144 PMCID: PMC10294740 DOI: 10.1080/19490976.2023.2221484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/08/2023] [Indexed: 06/27/2023] Open
Abstract
The mammalian gut microbiota is a critical human health determinant with therapeutic potential for remediation of many diseases. The host diet is a key factor governing the gut microbiota composition by altering nutrient availability and supporting the expansion of distinct microbial populations. Diets rich in simple sugars modify the abundance of microbial subsets, enriching for microbiotas that elicit pathogenic outcomes. We previously demonstrated that diets rich in fructose and glucose can reduce the fitness and abundance of a human gut symbiont, Bacteroides thetaiotaomicron, by silencing the production of a critical intestinal colonization protein, called Roc, via its mRNA leader through an unknown mechanism. We have now determined that dietary sugars silence Roc by reducing the activity of BT4338, a master regulator of carbohydrate utilization. Here, we demonstrate that BT4338 is required for Roc synthesis, and that BT4338 activity is silenced by glucose or fructose. We show that the consequences of glucose and fructose on orthologous transcription factors are conserved across human intestinal Bacteroides species. This work identifies a molecular pathway by which a common dietary additive alters microbial gene expression in the gut that could be harnessed to modulate targeted microbial populations for future therapeutic interventions.
Collapse
Affiliation(s)
- Victoria H. Pearce
- Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| | - Eduardo A. Groisman
- Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Guy E. Townsend
- Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Microbiome Center, Pennsylvania State University, State College, PA, USA
- Center for Molecular Carcinogenesis and Toxicology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
20
|
Tomioka S, Seki N, Sugiura Y, Akiyama M, Uchiyama J, Yamaguchi G, Yakabe K, Ejima R, Hattori K, Kimizuka T, Fujimura Y, Sato H, Gondo M, Ozaki S, Honme Y, Suematsu M, Kimura I, Inohara N, Núñez G, Hase K, Kim YG. Cooperative action of gut-microbiota-accessible carbohydrates improves host metabolic function. Cell Rep 2022; 40:111087. [PMID: 35858544 DOI: 10.1016/j.celrep.2022.111087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Microbiota-accessible carbohydrates (MACs) exert health-promoting effects, but how each MAC impacts gut microbiota and regulates host physiology remains unclear. Here, we show that l-arabinose and sucrose cooperatively act on gut microbiota and exert anti-obesogenic effects. Specifically, l-arabinose, a monosaccharide that is poorly absorbed in the gut and inhibits intestinal sucrase, suppresses diet-induced obesity in mice in the presence of sucrose. Additionally, the suppressive effect of l-arabinose on adiposity is abrogated in mice lacking the short-chain fatty acid (SCFA) receptors GPR43 and GPR41. Mechanistically, l-arabinose increases the relative abundance of acetate and propionate producers (e.g., Bacteroides), while sucrose enhances SCFA production. Furthermore, l-arabinose and sucrose activate the glycolytic and pentose phosphate pathways of Bacteroides, respectively, indicating that they synergistically promote acetate production through distinct pathways. These findings suggest that each MAC has a unique property and thus may serve as a precision gut-microbiota modulator to promote host homeostasis.
Collapse
Affiliation(s)
- Sawako Tomioka
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Natsumi Seki
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masahiro Akiyama
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Jun Uchiyama
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Genki Yamaguchi
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Kyosuke Yakabe
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Ryuta Ejima
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Kouya Hattori
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Tatsuki Kimizuka
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Yumiko Fujimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Hiroki Sato
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Monica Gondo
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan; Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Satoru Ozaki
- Co-Creation Center, Meiji Holdings Co., Ltd., Tokyo 192-0919, Japan
| | - Yoshiko Honme
- Co-Creation Center, Meiji Holdings Co., Ltd., Tokyo 192-0919, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery and Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
| |
Collapse
|
21
|
Feng J, Qian Y, Zhou Z, Ertmer S, Vivas EI, Lan F, Hamilton JJ, Rey FE, Anantharaman K, Venturelli OS. Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Host Microbe 2022; 30:200-215.e12. [PMID: 34995484 PMCID: PMC9060796 DOI: 10.1016/j.chom.2021.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/22/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Polysaccharide utilization loci (PULs) are co-regulated bacterial genes that sense nutrients and enable glycan digestion. Human gut microbiome members, notably Bacteroides, contain numerous PULs that enable glycan utilization and shape ecological dynamics. To investigate the role of PULs on fitness and inter-species interactions, we develop a CRISPR-based genome editing tool to study 23 PULs in Bacteroides uniformis (BU). BU PULs show distinct glycan-degrading functions and transcriptional coordination that enables the population to adapt upon loss of other PULs. Exploiting a BU mutant barcoding strategy, we demonstrate that in vitro fitness and BU colonization in the murine gut are enhanced by deletion of specific PULs and modulated by glycan availability. PULs mediate glycan-dependent interactions with butyrate producers that depend on the degradation mechanism and glycan utilization ability of the butyrate producer. Thus, PULs determine community dynamics and butyrate production and provide a selective advantage or disadvantage depending on the nutritional landscape.
Collapse
Affiliation(s)
- Jun Feng
- The Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah Ertmer
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eugenio I. Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA,Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Freeman Lan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J. Hamilton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ophelia S. Venturelli
- The Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA,Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA,Lead contact,Correspondence:
| |
Collapse
|
22
|
Lazar JT, Tabor JJ. Bacterial two-component systems as sensors for synthetic biology applications. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:100398. [PMID: 34917859 PMCID: PMC8670732 DOI: 10.1016/j.coisb.2021.100398] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Two-component systems (TCSs) are a ubiquitous family of signal transduction pathways that enable bacteria to sense and respond to diverse physical, chemical, and biological stimuli outside and inside the cell. Synthetic biologists have begun to repurpose TCSs for applications in optogenetics, materials science, gut microbiome engineering, and soil nutrient biosensing, among others. New engineering methods including genetic refactoring, DNA-binding domain swapping, detection threshold tuning, and phosphorylation cross-talk insulation are being used to increase the reliability of TCS sensor performance and tailor TCS signaling properties to the requirements of specific applications. There is now potential to combine these methods with large-scale gene synthesis and laboratory screening to discover the inputs sensed by many uncharacterized TCSs and develop a large new family of genetically-encoded sensors that respond to an unrivaled breadth of stimuli.
Collapse
Affiliation(s)
- John T Lazar
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
23
|
Li M, Li S, Guo X, Guo C, Wang Y, Du Z, Zhang Z, Xie C, Ding K. Discrete genetic loci in human gut Bacteroides thetaiotaomicron confer pectin metabolism. Carbohydr Polym 2021; 272:118534. [PMID: 34420703 DOI: 10.1016/j.carbpol.2021.118534] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 02/09/2023]
Abstract
Although the polysaccharide utilization loci (PULs) activated by pectin have been defined, due to the complex of side-chain structure, the degradative mechanisms still remain vague. Thus, we hypothesize that there may have other specific PULs to target pectin. Here, we characterize loci-encoded proteins expressed by Bacteroides thetaiotaomicron (BT) that are involved in the pectin capturing, importation, de-branching and degradation into monosaccharides. Totally, four PULs contain ten enzymes and four glycan binding proteins which including a novel surface enzyme and a surface glycan binding protein are identified. Notably, PUL2 and PUL3 have not been reported so far. Further, we show that the degradation products support the growth of other Bacteroides spp. and probiotics. In addition, genes involved in this process are conservative in other Bacteroides spp. Our results further highlight the contribution of Bacteroides spp. to metabolism the pectic network.
Collapse
Affiliation(s)
- Meixia Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China
| | - Saijuan Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China
| | - Xiaozhen Guo
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China
| | - Ciliang Guo
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China
| | - Yeqin Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China
| | - Zhenyun Du
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Cen Xie
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China.
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
24
|
Exploring the Meta-regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome. mSystems 2021; 6:e0090621. [PMID: 34636676 PMCID: PMC8510549 DOI: 10.1128/msystems.00906-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms must respond to environmental changes to survive, often by controlling transcription initiation. Intermittent aeration during wastewater treatment presents a cyclically changing environment to which microorganisms must react. We used an intermittently aerated bioreactor performing partial nitritation and anammox (PNA) to investigate how the microbiome responds to recurring change. Meta-transcriptomic analysis revealed a dramatic disconnect between the relative DNA abundance and gene expression within the metagenome-assembled genomes (MAGs) of community members, suggesting the importance of transcriptional regulation in this microbiome. To explore how community members responded to cyclic aeration via transcriptional regulation, we searched for homologs of the catabolite repressor protein/fumarate and nitrate reductase regulatory protein (CRP/FNR) family of transcription factors (TFs) within the MAGs. Using phylogenetic analyses, evaluation of sequence conservation in important amino acid residues, and prediction of genes regulated by TFs in the MAGs, we identified homologs of the oxygen-sensing FNR in Nitrosomonas and Rhodocyclaceae, nitrogen-sensing dissimilative nitrate respiration regulator that responds to nitrogen species (DNR) in Rhodocyclaceae, and nitrogen-sensing nitrite and nitric oxide reductase regulator that responds to nitrogen species (NnrR) in Nitrospira MAGs. Our data also predict that CRP/FNR homologs in Ignavibacteria, Flavobacteriales, and Saprospiraceae MAGs sense carbon availability. In addition, a CRP/FNR homolog in a Brocadia MAG was most closely related to CRP TFs known to sense carbon sources in well-studied organisms. However, we predict that in autotrophic Brocadia, this TF most likely regulates a diverse set of functions, including a response to stress during the cyclic aerobic/anoxic conditions. Overall, this analysis allowed us to define a meta-regulon of the PNA microbiome that explains functions and interactions of the most active community members. IMPORTANCE Microbiomes are important contributors to many ecosystems, including ones where nutrient cycling is stimulated by aeration control. Optimizing cyclic aeration helps reduce energy needs and maximize microbiome performance during wastewater treatment; however, little is known about how most microbial community members respond to these alternating conditions. We defined the meta-regulon of a PNA microbiome by combining existing knowledge of how the CRP/FNR family of bacterial TFs respond to stimuli, with metatranscriptomic analyses to characterize gene expression changes during aeration cycles. Our results indicated that, for some members of the community, prior knowledge is sufficient for high-confidence assignments of TF function, whereas other community members have CRP/FNR TFs for which inferences of function are limited by lack of prior knowledge. This study provides a framework to begin elucidating meta-regulons in microbiomes, where pure cultures are not available for traditional transcriptional regulation studies. Defining the meta-regulon can help in optimizing microbiome performance.
Collapse
|
25
|
Li J, Gálvez EJC, Amend L, Almási É, Iljazovic A, Lesker TR, Bielecka AA, Schorr EM, Strowig T. A versatile genetic toolbox for Prevotella copri enables studying polysaccharide utilization systems. EMBO J 2021; 40:e108287. [PMID: 34676563 PMCID: PMC8634118 DOI: 10.15252/embj.2021108287] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Prevotella copri is a prevalent inhabitant of the human gut and has been associated with plant‐rich diet consumption and diverse health states. The underlying genetic basis of these associations remains enigmatic due to the lack of genetic tools. Here, we developed a novel versatile genetic toolbox for rapid and efficient genetic insertion and allelic exchange applicable to P. copri strains from multiple clades. Enabled by the genetic platform, we systematically investigated the specificity of polysaccharide utilization loci (PULs) and identified four highly conserved PULs for utilizing arabinan, pectic galactan, arabinoxylan, and inulin, respectively. Further genetic and functional analysis of arabinan utilization systems illustrate that P. copri has evolved two distinct types of arabinan‐processing PULs (PULAra) and that the type‐II PULAra is significantly enriched in individuals consuming a vegan diet compared to other diets. In summary, this genetic toolbox will enable functional genetic studies for P. copri in future.
Collapse
Affiliation(s)
- Jing Li
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Hannover Medical School, Hannover, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Éva Almási
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aida Iljazovic
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agata A Bielecka
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eva-Magdalena Schorr
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine, Hannover, Germany
| |
Collapse
|
26
|
Adams AND, Azam MS, Costliow ZA, Ma X, Degnan PH, Vanderpool CK. A Novel Family of RNA-Binding Proteins Regulate Polysaccharide Metabolism in Bacteroides thetaiotaomicron. J Bacteriol 2021; 203:e0021721. [PMID: 34251866 PMCID: PMC8508124 DOI: 10.1128/jb.00217-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Human gut microbiome composition is constantly changing, and diet is a major driver of these changes. Gut microbial species that persist in mammalian hosts for long periods of time must possess mechanisms for sensing and adapting to nutrient shifts to avoid being outcompeted. Global regulatory mechanisms mediated by RNA-binding proteins (RBPs) that govern responses to nutrient shifts have been characterized in Proteobacteria and Firmicutes but remain undiscovered in the Bacteroidetes. Here, we report the identification of RBPs that are broadly distributed across the Bacteroidetes, with many genomes encoding multiple copies. Genes encoding these RBPs are highly expressed in many Bacteroides species. A purified RBP, RbpB, from Bacteroides thetaiotaomicron binds to single-stranded RNA in vitro with an affinity similar to other characterized regulatory RBPs. B. thetaiotaomicron mutants lacking RBPs show dramatic shifts in expression of polysaccharide utilization and capsular polysaccharide loci, suggesting that these RBPs may act as global regulators of polysaccharide metabolism. A B. thetaiotaomicron ΔrbpB mutant shows a growth defect on dietary sugars belonging to the raffinose family of oligosaccharides (RFOs). The ΔrbpB mutant had reduced expression of BT1871, encoding a predicted RFO-degrading melibiase, compared to the wild-type strain. Mutation of BT1871 confirmed that the enzyme it encodes is essential for growth on melibiose and promotes growth on the RFOs raffinose and stachyose. Our data reveal that RbpB is required for optimal expression of BT1871 and other polysaccharide-related genes, suggesting that we have identified an important new family of global regulatory proteins in the Bacteroidetes. IMPORTANCE The human colon houses hundreds of bacterial species, including many belonging to the genus Bacteroides, that aid in breaking down our food to keep us healthy. Bacteroides have many genes responsible for breaking down different dietary carbohydrates, and complex regulatory mechanisms ensure that specific genes are only expressed when the right carbohydrates are available. In this study, we discovered that Bacteroides use a family of RNA-binding proteins as global regulators to coordinate expression of carbohydrate utilization genes. The ability to turn different carbohydrate utilization genes on and off in response to changing nutrient conditions is critical for Bacteroides to live successfully in the gut, and thus the new regulators we have identified may be important for life in the host.
Collapse
Affiliation(s)
- Amanda N. D. Adams
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Muhammad S. Azam
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zachary A. Costliow
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xiangqian Ma
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Patrick H. Degnan
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
27
|
Pudlo NA, Martens EC. Small RNAs Go Global in Human Gut Bacteroides. J Bacteriol 2021; 203:e0038321. [PMID: 34370557 PMCID: PMC8508101 DOI: 10.1128/jb.00383-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The last two decades have seen numerous studies connecting physiological behaviors in Bacteroides-including polysaccharide degradation and capsule production-with elements of global regulation, but a complete model is still elusive. A new study by Adams et al. in this issue of the Journal of Bacteriology reveals another layer of regulation by describing a novel family of RNA-binding proteins in Bacteroides thetaiotaomicron that modify expression of genes involved in carbohydrate utilization and capsule expression, among others (A. N. D. Adams, M. S. Azam, Z. A. Costliow, X. Ma, et al., J Bacteriol 203:e00217-21, 2021, https://doi.org/10.1128/JB.00217-21).
Collapse
Affiliation(s)
- Nicholas A. Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Gardner JG, Schreier HJ. Unifying themes and distinct features of carbon and nitrogen assimilation by polysaccharide-degrading bacteria: a summary of four model systems. Appl Microbiol Biotechnol 2021; 105:8109-8127. [PMID: 34611726 DOI: 10.1007/s00253-021-11614-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
Our current understanding of enzymatic polysaccharide degradation has come from a huge number of in vitro studies with purified enzymes. While this vast body of work has been invaluable in identifying and characterizing novel mechanisms of action and engineering desirable traits into these enzymes, a comprehensive picture of how these enzymes work as part of a native in vivo system is less clear. Recently, several model bacteria have emerged with genetic systems that allow for a more nuanced study of carbohydrate active enzymes (CAZymes) and how their activity affects bacterial carbon metabolism. With these bacterial model systems, it is now possible to not only study a single nutrient system in isolation (i.e., carbohydrate degradation and carbon metabolism), but also how multiple systems are integrated. Given that most environmental polysaccharides are carbon rich but nitrogen poor (e.g., lignocellulose), the interplay between carbon and nitrogen metabolism in polysaccharide-degrading bacteria can now be studied in a physiologically relevant manner. Therefore, in this review, we have summarized what has been experimentally determined for CAZyme regulation, production, and export in relation to nitrogen metabolism for two Gram-positive (Caldicellulosiruptor bescii and Clostridium thermocellum) and two Gram-negative (Bacteroides thetaiotaomicron and Cellvibrio japonicus) polysaccharide-degrading bacteria. By comparing and contrasting these four bacteria, we have highlighted the shared and unique features of each, with a focus on in vivo studies, in regard to carbon and nitrogen assimilation. We conclude with what we believe are two important questions that can act as guideposts for future work to better understand the integration of carbon and nitrogen metabolism in polysaccharide-degrading bacteria. KEY POINTS: • Regardless of CAZyme deployment system, the generation of a local pool of oligosaccharides is a common strategy among Gram-negative and Gram-positive polysaccharide degraders as a means to maximally recoup the energy expenditure of CAZyme production and export. • Due to the nitrogen deficiency of insoluble polysaccharide-containing substrates, Gram-negative and Gram-positive polysaccharide degraders have a diverse set of strategies for supplementation and assimilation. • Future work needs to precisely characterize the energetic expenditures of CAZyme deployment and bolster our understanding of how carbon and nitrogen metabolism are integrated in both Gram-negative and Gram-positive polysaccharide-degrading bacteria, as both of these will significantly influence a given bacterium's suitability for biotechnology applications.
Collapse
Affiliation(s)
- Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA.
| | - Harold J Schreier
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA.,Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
29
|
Liu Z, Zhang Y, Ai C, Wen C, Dong X, Sun X, Cao C, Zhang X, Zhu B, Song S. Gut microbiota response to sulfated sea cucumber polysaccharides in a differential manner using an in vitro fermentation model. Food Res Int 2021; 148:110562. [PMID: 34507721 DOI: 10.1016/j.foodres.2021.110562] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Sea cucumber Stichopus japonicus has been consumed as high-valued seafood in Asian, and its sulfated polysaccharide (SCSPsj) has been inferred to benefit the host health via modulating gut microbiota composition. The present study compared the responses of gut microbiota communities from different donors to SCSPsj, and the key bacteria were identified by 16S rRNA gene sequencing analysis and in vitro fermentation with specific bacteria. Gut microbiota communities from 6 donors (A ~ F) utilized the polysaccharides to different degrees in vitro fermentation. Further comparison of Samples A and C demonstrated that Sample C with the relatively strong SCSPsj utilization capability possessed more Parabacteroides while Sample A contained more Bacteroides. Further in vitro fermentation of SCSPsj with 10 Parabacteroides and Bacteroides species suggests that Parabacteroides distasonis, enriched in Sample C, plays a critical role in the utilization of the polysaccharides. Moreover, short chain fatty acids and the metabolite profiles of Samples A and C were also compared, and the results showed that more beneficial metabolites were accumulated by the microbiota community consuming more sulfated sea cucumber polysaccharides. Our findings revealed that certain key members of gut microbiota, such as Parabacteroides distasonis, are critical for SCSPsj utilization in gut so as to influence the benefits of the polysaccharide supplement for host. Thus, to obtain better functional outcome for sulfated sea cucumber polysaccharides and sea cucumber, more attention needs to be paid to the effects of inter-individual differences in microbiota community structure.
Collapse
Affiliation(s)
- Zhengqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yujiao Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiuping Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaona Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Cui Cao
- Shanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xueqian Zhang
- Shanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
30
|
Pollet RM, Martin LM, Koropatkin NM. TonB-dependent transporters in the Bacteroidetes: Unique domain structures and potential functions. Mol Microbiol 2021; 115:490-501. [PMID: 33448497 DOI: 10.1111/mmi.14683] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022]
Abstract
The human gut microbiota endows the host with a wealth of metabolic functions central to health, one of which is the degradation and fermentation of complex carbohydrates. The Bacteroidetes are one of the dominant bacterial phyla of this community and possess an expanded capacity for glycan utilization. This is mediated via the coordinated expression of discrete polysaccharide utilization loci (PUL) that invariantly encode a TonB-dependent transporter (SusC) that works with a glycan-capturing lipoprotein (SusD). More broadly within Gram-negative bacteria, TonB-dependent transporters (TBDTs) are deployed for the uptake of not only sugars, but also more often for essential nutrients such as iron and vitamins. Here, we provide a comprehensive look at the repertoire of TBDTs found in the model gut symbiont Bacteroides thetaiotaomicron and the range of predicted functional domains associated with these transporters and SusD proteins for the uptake of both glycans and other nutrients. This atlas of the B. thetaiotaomicron TBDTs reveals that there are at least three distinct subtypes of these transporters encoded within its genome that are presumably regulated in different ways to tune nutrient uptake.
Collapse
Affiliation(s)
| | - Lauryn M Martin
- Department of Biology, Alcorn State University, Alcorn, MS, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Briggs JA, Grondin JM, Brumer H. Communal living: glycan utilization by the human gut microbiota. Environ Microbiol 2020; 23:15-35. [PMID: 33185970 DOI: 10.1111/1462-2920.15317] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Our lower gastrointestinal tract plays host to a vast consortium of microbes, known as the human gut microbiota (HGM). The HGM thrives on a complex and diverse range of glycan structures from both dietary and host sources, the breakdown of which requires the concerted action of cohorts of carbohydrate-active enzymes (CAZymes), carbohydrate-binding proteins, and transporters. The glycan utilization profile of individual taxa, whether 'specialist' or 'generalist', is dictated by the number and functional diversity of these glycan utilization systems. Furthermore, taxa in the HGM may either compete or cooperate in glycan deconstruction, thereby creating a complex ecological web spanning diverse nutrient niches. As a result, our diet plays a central role in shaping the composition of the HGM. This review presents an overview of our current understanding of glycan utilization by the HGM on three levels: (i) molecular mechanisms of individual glycan deconstruction and uptake by key bacteria, (ii) glycan-mediated microbial interactions, and (iii) community-scale effects of dietary changes. Despite significant recent advancements, there remains much to be discovered regarding complex glycan metabolism in the HGM and its potential to affect positive health outcomes.
Collapse
Affiliation(s)
- Jonathon A Briggs
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Julie M Grondin
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
32
|
Glowacki RWP, Martens EC. If you eat it, or secrete it, they will grow: the expanding list of nutrients utilized by human gut bacteria. J Bacteriol 2020; 203:JB.00481-20. [PMID: 33168637 PMCID: PMC8092160 DOI: 10.1128/jb.00481-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to persist, successful bacterial inhabitants of the human gut need to adapt to changing nutrient conditions, which are influenced by host diet and a variety of other factors. For members of the Bacteroidetes and several other phyla, this has resulted in diversification of a variety of enzyme-based systems that equip them to sense and utilize carbohydrate-based nutrients from host, diet, and bacterial origin. In this review, we focus first on human gut Bacteroides and describe recent findings regarding polysaccharide utilization loci (PULs) and the mechanisms of the multi-protein systems they encode, including their regulation and the expanding diversity of substrates that they target. Next, we highlight previously understudied substrates such as monosaccharides, nucleosides, and Maillard reaction products that can also affect the gut microbiota by feeding symbionts that possess specific systems for their metabolism. Since some pathogens preferentially utilize these nutrients, they may represent nutrient niches competed for by commensals and pathogens. Finally, we address recent work to describe nutrient acquisition mechanisms in other important gut species such as those belonging to the Gram-positive anaerobic phyla Actinobacteria and Firmicutes, as well as the Proteobacteria Because gut bacteria contribute to many aspects of health and disease, we showcase advances in the field of synthetic biology, which seeks to engineer novel, diet-controlled nutrient utilization pathways within gut symbionts to create rationally designed live therapeutics.
Collapse
Affiliation(s)
- Robert W. P. Glowacki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Dudek M, Dieudonné A, Jouanneau D, Rochat T, Michel G, Sarels B, Thomas F. Regulation of alginate catabolism involves a GntR family repressor in the marine flavobacterium Zobellia galactanivorans DsijT. Nucleic Acids Res 2020; 48:7786-7800. [PMID: 32585009 PMCID: PMC7641319 DOI: 10.1093/nar/gkaa533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Marine flavobacteria possess dedicated Polysaccharide Utilization Loci (PULs) enabling efficient degradation of a variety of algal polysaccharides. The expression of these PULs is tightly controlled by the presence of the substrate, yet details on the regulatory mechanisms are still lacking. The marine flavobacterium Zobellia galactanivorans DsijT digests many algal polysaccharides, including alginate from brown algae. Its complex Alginate Utilization System (AUS) comprises a PUL and several other loci. Here, we showed that the expression of the AUS is strongly and rapidly (<30 min) induced upon addition of alginate, leading to biphasic substrate utilization. Polymeric alginate is first degraded into smaller oligosaccharides that accumulate in the extracellular medium before being assimilated. We found that AusR, a GntR family protein encoded within the PUL, regulates alginate catabolism by repressing the transcription of most AUS genes. Based on our genetic, genomic, transcriptomic and biochemical results, we propose the first model of regulation for a PUL in marine bacteria. AusR binds to promoters of AUS genes via single, double or triple copies of operator. Upon addition of alginate, secreted enzymes expressed at a basal level catalyze the initial breakdown of the polymer. Metabolic intermediates produced during degradation act as effectors of AusR and inhibit the formation of AusR/DNA complexes, thus lifting transcriptional repression.
Collapse
Affiliation(s)
- Magda Dudek
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Anissa Dieudonné
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Diane Jouanneau
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Tatiana Rochat
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Gurvan Michel
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Benoit Sarels
- Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions, Université de Paris, 75252 Paris, France
| | - François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| |
Collapse
|
34
|
Ye M, Yu J, Shi X, Zhu J, Gao X, Liu W. Polysaccharides catabolism by the human gut bacterium - Bacteroides thetaiotaomicron: advances and perspectives. Crit Rev Food Sci Nutr 2020; 61:3569-3588. [PMID: 32779480 DOI: 10.1080/10408398.2020.1803198] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the degradation processes of polysaccharides by human gut microbiota are receiving considerable attention due to the discoveries of the powerful function of gut microbiota. Gut microbiota has developed a sensitive, accurate, and complex system for sensing, capturing, and degrading different polysaccharides. Among the gut microbiota, Bacteroides thetaiotaomicron, a representative species of Bacteroides, is considered as the best degrader of polysaccharides and a potential probiotic in pharmaceutical and food industries. Here, we summarize the degradation system of B. thetaiotaomicron and the degradation pathways of different polysaccharides by B. thetaiotaomicron. We also describe a technical route for investigating a specific polysaccharide degradation pathway by human gut bacteria. In addition, we also provide the future perspectives in the development of novel polysaccharides or oligosaccharides drugs, precision microbiology medicine, and personalized nutrition.
Collapse
Affiliation(s)
- Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xuexia Shi
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| | - Jingyi Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.,Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| |
Collapse
|
35
|
A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron. Nat Commun 2020; 11:3557. [PMID: 32678091 PMCID: PMC7366714 DOI: 10.1038/s41467-020-17348-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria of the genus Bacteroides are common members of the human intestinal microbiota and important degraders of polysaccharides in the gut. Among them, the species Bacteroides thetaiotaomicron has emerged as the model organism for functional microbiota research. Here, we use differential RNA sequencing (dRNA-seq) to generate a single-nucleotide resolution transcriptome map of B. thetaiotaomicron grown under defined laboratory conditions. An online browser, called ‘Theta-Base’ (www.helmholtz-hiri.de/en/datasets/bacteroides), is launched to interrogate the obtained gene expression data and annotations of ~4500 transcription start sites, untranslated regions, operon structures, and 269 noncoding RNA elements. Among the latter is GibS, a conserved, 145 nt-long small RNA that is highly expressed in the presence of N-acetyl-D-glucosamine as sole carbon source. We use computational predictions and experimental data to determine the secondary structure of GibS and identify its target genes. Our results indicate that sensing of N-acetyl-D-glucosamine induces GibS expression, which in turn modifies the transcript levels of metabolic enzymes. Bacteroides thetaiotaomicron is a human gut microbe and an emergent model organism. Here, Ryan et al. generate single-nucleotide resolution RNA-seq data for this bacterium and map transcription start sites and noncoding RNAs, one of which modulates expression of metabolic enzymes.
Collapse
|
36
|
Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by Fiber-Derived Glycans. Cell 2020; 179:59-73.e13. [PMID: 31539500 DOI: 10.1016/j.cell.2019.08.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Development of microbiota-directed foods (MDFs) that selectively increase the abundance of beneficial human gut microbes, and their expressed functions, requires knowledge of both the bioactive components of MDFs and the mechanisms underlying microbe-microbe interactions. Here, gnotobiotic mice were colonized with a defined consortium of human-gut-derived bacterial strains and fed different combinations of 34 food-grade fibers added to a representative low-fiber diet consumed in the United States. Bioactive carbohydrates in fiber preparations targeting particular Bacteroides species were identified using community-wide quantitative proteomic analyses of bacterial gene expression coupled with forward genetic screens. Deliberate manipulation of community membership combined with administration of retrievable artificial food particles, consisting of paramagnetic microscopic beads coated with dietary polysaccharides, disclosed the contributions of targeted species to fiber degradation. Our approach, including the use of bead-based biosensors, defines nutrient-harvesting strategies that underlie, as well as alleviate, competition between Bacteroides and control the selectivity of MDF components.
Collapse
|
37
|
Yuan N, Gong L, Tang K, He L, Hao W, Li X, Ma Q, Chen J. An Integrated Pharmacology-Based Analysis for Antidepressant Mechanism of Chinese Herbal Formula Xiao-Yao-San. Front Pharmacol 2020; 11:284. [PMID: 32256358 PMCID: PMC7094752 DOI: 10.3389/fphar.2020.00284] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
Clinical studies and basic science experiments have widely demonstrated the antidepressant and anxiolytic effects of the herbal formula Xiao-Yao-San (XYS). However, the system mechanism of these effects has not been fully characterized. The present study conducted a comprehensive network pharmacological analysis of XYS and sorted all pharmacologically active components (149) through the TCMSP webserver. Then, all potential molecular targets (449) were predicted, of which there were 99 genes clearly related to depression. To further investigate the mechanism of antidepressant effects of XYS, a compound-depression targets (C-DTs) network was constructed, and Gene Ontology (GO) functional and KEGG pathway enrichment analyses were performed for the 99 targets. Enrichment results revealed that XYS could regulate multiple aspects of depression through these targets, related to metabolism, neuroendocrine function, and neuroimmunity. Prediction and analysis of protein–protein interactions resulted in selection of three hub genes (AKT1, TP53, and VEGFA). In addition, a total of seven ingredients from XYS could act on these hub genes and they were identified through ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS), including paeoniflorin, quercetin, luteolin, acacetin, aloe-emodin, Glyasperin C, kaempferol. Hereafter, we investigated the effects of paeoniflorin and its predicted target, the results suggest that it can reverse the neurotoxicity produced by CORT and could be a neuroprotective effect by promoting the phosphorylation of Akt. Overall, our research revealed the complicated antidepressant mechanism of XYS, and also provided a rational strategy for revealing the complex composition and function of Chinese herbal formula.
Collapse
Affiliation(s)
- Naijun Yuan
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lian Gong
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Kairui Tang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Liangliang He
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenzhi Hao
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
38
|
Townsend GE, Han W, Schwalm ND, Hong X, Bencivenga-Barry NA, Goodman AL, Groisman EA. A Master Regulator of Bacteroides thetaiotaomicron Gut Colonization Controls Carbohydrate Utilization and an Alternative Protein Synthesis Factor. mBio 2020; 11:e03221-19. [PMID: 31992627 PMCID: PMC6989115 DOI: 10.1128/mbio.03221-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Microbial colonization of the mammalian gut is largely ascribed to the ability to utilize nutrients available in that environment. To understand how beneficial microbes establish a relationship with their hosts, it is crucial to determine what other abilities promote gut colonization. We now report that colonization of the murine gut by the beneficial microbe Bacteroides thetaiotaomicron requires activation of a putative translation factor by the major transcriptional regulator of gut colonization and carbohydrate utilization. To ascertain how this regulator-called BT4338-promotes gut colonization, we identified BT4338-regulated genes and BT4338-bound DNA sequences. Unexpectedly, the gene whose expression was most reduced upon BT4338 inactivation was fusA2, specifying a putative translation factor. We determined that fusA2 activation by BT4338 is conserved in another Bacteroides species and essential for gut colonization in B. thetaiotaomicron because a mutant lacking the BT4338 binding site in the fusA2 promoter exhibited a colonization defect similar to that of a mutant lacking the fusA2 gene. Furthermore, we demonstrated that BT4338 promotes gut colonization independently of its role in carbohydrate utilization because the fusA2 gene was dispensable for utilization of carbohydrates that depend on BT4338 Our findings suggest that microbial gut colonization requires the use of alternative protein synthesis factors.IMPORTANCE The bacteria occupying the mammalian gut have evolved unique strategies to thrive in their environment. Bacteroides organisms, which often comprise 25 to 50% of the human gut microbiota, derive nutrients from structurally diverse complex polysaccharides, commonly called dietary fibers. This ability requires an expansive genetic repertoire that is coordinately regulated to achieve expression of those genes dedicated to utilizing only those dietary fibers present in the environment. Here we identify the global regulon of a transcriptional regulator necessary for dietary fiber utilization and gut colonization. We demonstrate that this transcription factor regulates hundreds of genes putatively involved in dietary fiber utilization as well as a putative translation factor dispensable for growth on such nutrients but necessary for survival in the gut. These findings suggest that gut bacteria coordinate cellular metabolism with protein synthesis via specialized translation factors to promote survival in the mammalian gut.
Collapse
Affiliation(s)
- Guy E Townsend
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
- Department of Biochemistry and Molecular Biology, Penn State Health Milton S. Hershey Medical Center, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Weiwei Han
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Nathan D Schwalm
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Xinyu Hong
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Natasha A Bencivenga-Barry
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
39
|
Singh RP. Glycan utilisation system in Bacteroides and Bifidobacteria and their roles in gut stability and health. Appl Microbiol Biotechnol 2019; 103:7287-7315. [PMID: 31332487 DOI: 10.1007/s00253-019-10012-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Gut residential hundred trillion microbial cells are indispensable for maintaining gut homeostasis and impact on host physiology, development and immune systems. Many of them have displayed excellence in utilising dietary- and host-derived complex glycans and are producing useful postbiotics including short-chain fatty acids to primarily fuel different organs of the host. Therefore, employing individual microbiota is nowadays becoming a propitious target in biomedical for improving gut dysbiosis conditions of the host. Among other gut microbial communities, Bacteroides and Bifidobacteria are coevolved to utilise diverse ranges of diet- and host-derived glycans through harmonising distinct glycan utilisation systems. These gut symbionts frequently share digested oligosaccharides, carbohydrate-active enzymes and fermentable intermediate molecules for sustaining gut microbial symbiosis and improving fitness of own or other communities. Genomics approaches have provided unprecedented insights into these functions, but their precise mechanisms of action have poorly known. Sympathetic glycan-utilising strategy of each gut commensal will provide overview of mechanistic dynamic nature of the gut environment and will then assist in applying aptly personalised nutritional therapy. Thus, the review critically summarises cutting edge understanding of major plant- and host-derived glycan-utilising systems of Bacteroides and Bifidobacteria. Their evolutionary adaptation to gut environment and roles of postbiotics in human health are also highlighted.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS, Nagar, Punjab, 140306, India.
| |
Collapse
|
40
|
McKeen S, Young W, Fraser K, Roy NC, McNabb WC. Glycan Utilisation and Function in the Microbiome of Weaning Infants. Microorganisms 2019; 7:microorganisms7070190. [PMID: 31277402 PMCID: PMC6681113 DOI: 10.3390/microorganisms7070190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Glycans are present exogenously in the diet, expressed and secreted endogenously by host cells, and produced by microbes. All of these processes result in them being available to the gut microbiome, firmly placing glycans at the interface of diet–microbe–host interactions. The most dramatic shift in dietary sources of glycans occurs during the transition from the milk-based neonatal diet to the diverse omnivorous adult diet, and this has profound effects on the composition of the gut microbiome, gene expression by microbes and host cells, mucin composition, and immune development from innate towards adaptive responses. Understanding the glycan-mediated interactions occurring during this transitional window may inform dietary recommendations to support gut and immune development during a vulnerable age. This review aims to summarise the current state of knowledge on dietary glycan mediated changes that may occur in the infant gut microbiome and immune system during weaning.
Collapse
Affiliation(s)
- Starin McKeen
- Food Nutrition & Health, AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston north 4442, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Wayne Young
- Food Nutrition & Health, AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston north 4442, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Karl Fraser
- Food Nutrition & Health, AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston north 4442, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health, AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston north 4442, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand.
| |
Collapse
|
41
|
Wu TR, Lin CS, Chang CJ, Lin TL, Martel J, Ko YF, Ojcius DM, Lu CC, Young JD, Lai HC. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut 2019; 68:248-262. [PMID: 30007918 DOI: 10.1136/gutjnl-2017-315458] [Citation(s) in RCA: 512] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The medicinal fungus Ophiocordyceps sinensis and its anamorph Hirsutella sinensis have a long history of use in traditional Chinese medicine for their immunomodulatory properties. Alterations of the gut microbiota have been described in obesity and type 2 diabetes. We examined the possibility that H. sinensis mycelium (HSM) and isolated fractions containing polysaccharides may prevent diet-induced obesity and type 2 diabetes by modulating the composition of the gut microbiota. DESIGN High-fat diet (HFD)-fed mice were treated with HSM or fractions containing polysaccharides of different molecular weights. The effects of HSM and polysaccharides on the gut microbiota were assessed by horizontal faecal microbiota transplantation (FMT), antibiotic treatment and 16S rDNA-based microbiota analysis. RESULTS Fraction H1 containing high-molecular weight polysaccharides (>300 kDa) considerably reduced body weight gain (∼50% reduction) and metabolic disorders in HFD-fed mice. These effects were associated with increased expression of thermogenesis protein markers in adipose tissues, enhanced gut integrity, reduced intestinal and systemic inflammation and improved insulin sensitivity and lipid metabolism. Gut microbiota analysis revealed that H1 polysaccharides selectively promoted the growth of Parabacteroides goldsteinii, a commensal bacterium whose level was reduced in HFD-fed mice. FMT combined with antibiotic treatment showed that neomycin-sensitive gut bacteria negatively correlated with obesity traits and were required for H1's anti-obesogenic effects. Notably, oral treatment of HFD-fed mice with live P. goldsteinii reduced obesity and was associated with increased adipose tissue thermogenesis, enhanced intestinal integrity and reduced levels of inflammation and insulin resistance. CONCLUSIONS HSM polysaccharides and the gut bacterium P. goldsteinii represent novel prebiotics and probiotics that may be used to treat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Tsung-Ru Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Gueishan, Taiwan
| | - Chuan-Sheng Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taiwan.,Microbiota Research Center, Chang Gung University, Gueishan, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Gueishan, Taiwan
| | - Chih-Jung Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taiwan.,Microbiota Research Center, Chang Gung University, Gueishan, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Gueishan, Taiwan
| | - Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taiwan
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taiwan.,Chang Gung Biotechnology Corporation, Taipei, Taiwan.,Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taiwan.,Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, California, USA
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Xinzhuang, Taiwan
| | - John D Young
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taiwan.,Chang Gung Biotechnology Corporation, Taipei, Taiwan.,Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, Taiwan.,Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, USA
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taiwan.,Microbiota Research Center, Chang Gung University, Gueishan, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Gueishan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Gueishan, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Gueishan, Taiwan.,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Gueishan, Taiwan
| |
Collapse
|
42
|
Ndeh D, Gilbert HJ. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 2018; 42:146-164. [PMID: 29325042 DOI: 10.1093/femsre/fuy002] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/06/2018] [Indexed: 12/21/2022] Open
Abstract
The human gut microbiota (HGM) makes an important contribution to health and disease. It is a complex microbial community of trillions of microbes with a majority of its members represented within two phyla, the Bacteroidetes and Firmicutes, although it also contains species of Actinobacteria and Proteobacteria. Reflecting its importance, the HGM is sometimes referred to as an 'organ' as it performs functions analogous to systemic tissues within the human host. The major nutrients available to the HGM are host and dietary complex carbohydrates. To utilise these nutrient sources, the HGM has developed elaborate, variable and sophisticated systems for the sensing, capture and utilisation of these glycans. Understanding nutrient acquisition by the HGM can thus provide mechanistic insights into the dynamics of this ecosystem, and how it impacts human health. Dietary nutrient sources include a wide variety of simple and complex plant and animal-derived glycans most of which are not degraded by enzymes in the digestive tract of the host. Here we review how various adaptive mechanisms that operate across the major phyla of the HGM contribute to glycan utilisation, focusing on the most complex carbohydrates presented to this ecosystem.
Collapse
Affiliation(s)
- Didier Ndeh
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
43
|
Surface Exposure and Packing of Lipoproteins into Outer Membrane Vesicles Are Coupled Processes in Bacteroides. mSphere 2018; 3:3/6/e00559-18. [PMID: 30404931 PMCID: PMC6222051 DOI: 10.1128/msphere.00559-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Species from the Bacteroides genus are predominant members of the human gut microbiota. OMVs in Bacteroides have been shown to be important for the homeostasis of complex host-commensal relationships, mainly involving immune tolerance and protection from disease. OMVs carry many enzymatic activities involved in the cleavage of complex polysaccharides and have been proposed as public goods that can provide growth to other bacterial species by release of polysaccharide breakdown products into the gut lumen. This work shows that the presence of a negatively charged rich amino acid motif (LES) is required for efficient packing of the surface-exposed alpha-amylase SusG into OMVs. Our findings strongly suggest that surface exposure is coupled to packing of Bacteroides lipoproteins into OMVs. This is the first step in the generation of tailor-made probiotic interventions that can exploit LES-related sequences to generate Bacteroides strains displaying proteins of interest in OMVs. Outer membrane vesicles (OMVs) are spherical structures derived from the outer membranes (OMs) of Gram-negative bacteria. Bacteroides spp. are prominent components of the human gut microbiota, and OMVs produced by these species are proposed to play key roles in gut homeostasis. OMV biogenesis in Bacteroides is a poorly understood process. Here, we revisited the protein composition of Bacteroides thetaiotaomicron OMVs by mass spectrometry. We confirmed that OMVs produced by this organism contain large quantities of glycosidases and proteases, with most of them being lipoproteins. We found that most of these OMV-enriched lipoproteins are encoded by polysaccharide utilization loci (PULs), such as the sus operon. We examined the subcellular locations of the components of the Sus system and found a split localization; the alpha-amylase SusG is highly enriched in OMVs, while the oligosaccharide importer SusC remains mostly in the OM. We found that all OMV-enriched lipoproteins possess a lipoprotein export sequence (LES), and we show that this signal mediates translocation of SusG from the periplasmic face of the OM toward the extracellular milieu. Mutations in the LES motif caused defects in surface exposure and recruitment of SusG into OMVs. These experiments link, for the first time, surface exposure to recruitment of proteins into OMVs. We also show that surface-exposed SusG in OMVs is active and rescues the growth of bacterial cells incapable of growing on starch as the only carbon source. Our results support the role of OMVs as “public goods” that can be utilized by other organisms with different metabolic capabilities. IMPORTANCE Species from the Bacteroides genus are predominant members of the human gut microbiota. OMVs in Bacteroides have been shown to be important for the homeostasis of complex host-commensal relationships, mainly involving immune tolerance and protection from disease. OMVs carry many enzymatic activities involved in the cleavage of complex polysaccharides and have been proposed as public goods that can provide growth to other bacterial species by release of polysaccharide breakdown products into the gut lumen. This work shows that the presence of a negatively charged rich amino acid motif (LES) is required for efficient packing of the surface-exposed alpha-amylase SusG into OMVs. Our findings strongly suggest that surface exposure is coupled to packing of Bacteroides lipoproteins into OMVs. This is the first step in the generation of tailor-made probiotic interventions that can exploit LES-related sequences to generate Bacteroides strains displaying proteins of interest in OMVs.
Collapse
|
44
|
Navigating the Gut Buffet: Control of Polysaccharide Utilization in Bacteroides spp. Trends Microbiol 2017; 25:1005-1015. [DOI: 10.1016/j.tim.2017.06.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 12/26/2022]
|
45
|
Frank SA. Receptor uptake arrays for vitamin B 12, siderophores, and glycans shape bacterial communities. Ecol Evol 2017; 7:10175-10195. [PMID: 29238546 PMCID: PMC5723603 DOI: 10.1002/ece3.3544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/20/2017] [Accepted: 09/28/2017] [Indexed: 01/15/2023] Open
Abstract
Molecular variants of vitamin B12, siderophores, and glycans occur. To take up variant forms, bacteria may express an array of receptors. The gut microbe Bacteroides thetaiotaomicron has three different receptors to take up variants of vitamin B12 and 88 receptors to take up various glycans. The design of receptor arrays reflects key processes that shape cellular evolution. Competition may focus each species on a subset of the available nutrient diversity. Some gut bacteria can take up only a narrow range of carbohydrates, whereas species such as B. thetaiotaomicron can digest many different complex glycans. Comparison of different nutrients, habitats, and genomes provides opportunity to test hypotheses about the breadth of receptor arrays. Another important process concerns fluctuations in nutrient availability. Such fluctuations enhance the value of cellular sensors, which gain information about environmental availability and adjust receptor deployment. Bacteria often adjust receptor expression in response to fluctuations of particular carbohydrate food sources. Some species may adjust expression of uptake receptors for specific siderophores. How do cells use sensor information to control the response to fluctuations? This question about regulatory wiring relates to problems that arise in control theory and artificial intelligence. Control theory clarifies how to analyze environmental fluctuations in relation to the design of sensors and response systems. Recent advances in deep learning studies of artificial intelligence focus on the architecture of regulatory wiring and the ways in which complex control networks represent and classify environmental states. I emphasize the similar design problems that arise in cellular evolution, control theory, and artificial intelligence. I connect those broad conceptual aspects to many testable hypotheses for bacterial uptake of vitamin B12, siderophores, and glycans.
Collapse
Affiliation(s)
- Steven A. Frank
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
46
|
Tuncil YE, Xiao Y, Porter NT, Reuhs BL, Martens EC, Hamaker BR. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence. mBio 2017; 8:e01068-17. [PMID: 29018117 PMCID: PMC5635687 DOI: 10.1128/mbio.01068-17] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
When presented with nutrient mixtures, several human gut Bacteroides species exhibit hierarchical utilization of glycans through a phenomenon that resembles catabolite repression. However, it is unclear how closely these observed physiological changes, often measured by altered transcription of glycan utilization genes, mirror actual glycan depletion. To understand the glycan prioritization strategies of two closely related human gut symbionts, Bacteroides ovatus and Bacteroides thetaiotaomicron, we performed a series of time course assays in which both species were individually grown in a medium with six different glycans that both species can degrade. Disappearance of the substrates and transcription of the corresponding polysaccharide utilization loci (PULs) were measured. Each species utilized some glycans before others, but with different priorities per species, providing insight into species-specific hierarchical preferences. In general, the presence of highly prioritized glycans repressed transcription of genes involved in utilizing lower-priority nutrients. However, transcriptional sensitivity to some glycans varied relative to the residual concentration in the medium, with some PULs that target high-priority substrates remaining highly expressed even after their target glycan had been mostly depleted. Coculturing of these organisms in the same mixture showed that the hierarchical orders generally remained the same, promoting stable coexistence. Polymer length was found to be a contributing factor for glycan utilization, thereby affecting its place in the hierarchy. Our findings not only elucidate how B. ovatus and B. thetaiotaomicron strategically access glycans to maintain coexistence but also support the prioritization of carbohydrate utilization based on carbohydrate structure, advancing our understanding of the relationships between diet and the gut microbiome.IMPORTANCE The microorganisms that reside in the human colon fulfill their energy requirements mainly from diet- and host-derived complex carbohydrates. Members of this ecosystem possess poorly understood strategies to prioritize and compete for these nutrients. Based on direct carbohydrate measurements and corresponding transcriptional analyses, our findings showed that individual bacterial species exhibit different preferences for the same set of glycans and that this prioritization is maintained in a competitive environment, which may promote stable coexistence. Such understanding of gut bacterial glycan utilization will be essential to eliciting predictable changes in the gut microbiota to improve health through the diet.
Collapse
Affiliation(s)
- Yunus E Tuncil
- Whistler Center for Carbohydrate Research, Food Science Department, Purdue University, West Lafayette, Indiana, USA
| | - Yao Xiao
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nathan T Porter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bradley L Reuhs
- Whistler Center for Carbohydrate Research, Food Science Department, Purdue University, West Lafayette, Indiana, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Food Science Department, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
47
|
Abstract
The human intestine harbors a dense microbial ecosystem (microbiota) that is different between individuals, dynamic over time, and critical for aspects of health and disease. Dietary polysaccharides directly shape the microbiota because of a gap in human digestive physiology, which is equipped to assimilate only proteins, lipids, simple sugars, and starch, leaving nonstarch polysaccharides as major nutrients reaching the microbiota. A mutualistic role of gut microbes is to digest dietary complex carbohydrates, liberating host-absorbable energy via fermentation products. Emerging data indicate that polysaccharides play extensive roles in host-gut microbiota symbiosis beyond dietary polysaccharide digestion, including microbial interactions with endogenous host glycans and the importance of microbial polysaccharides. In this review, we consider multiple mechanisms through which polysaccharides mediate aspects of host-microbe symbiosis in the gut, including some affecting health. As host and microbial metabolic pathways are intimately connected with diet, we highlight the potential to manipulate this system for health.
Collapse
Affiliation(s)
- Nathan T Porter
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| |
Collapse
|
48
|
Abstract
The complex carbohydrates of terrestrial and marine biomass represent a rich nutrient source for free-living and mutualistic microbes alike. The enzymatic saccharification of these diverse substrates is of critical importance for fueling a variety of complex microbial communities, including marine, soil, ruminant, and monogastric microbiota. Consequently, highly specific carbohydrate-active enzymes, recognition proteins, and transporters are enriched in the genomes of certain species and are of critical importance in competitive environments. In Bacteroidetes bacteria, these systems are organized as polysaccharide utilization loci (PULs), which are strictly regulated, colocalized gene clusters that encode enzyme and protein ensembles required for the saccharification of complex carbohydrates. This review provides historical perspectives and summarizes key findings in the study of these systems, highlighting a critical shift from sequence-based PUL discovery to systems-based analyses combining reverse genetics, biochemistry, enzymology, and structural biology to precisely illuminate the molecular mechanisms underpinning PUL function. The ecological implications of dynamic PUL deployment by key species in the human gastrointestinal tract are explored, as well as the wider distribution of these systems in other gut, terrestrial, and marine environments.
Collapse
|
49
|
An insider's perspective: Bacteroides as a window into the microbiome. Nat Microbiol 2017; 2:17026. [PMID: 28440278 DOI: 10.1038/nmicrobiol.2017.26] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Over the last decade, our appreciation for the contribution of resident gut microorganisms-the gut microbiota-to human health has surged. However, progress is limited by the sheer diversity and complexity of these microbial communities. Compounding the challenge, the majority of our commensal microorganisms are not close relatives of Escherichia coli or other model organisms and have eluded culturing and manipulation in the laboratory. In this Review, we discuss how over a century of study of the readily cultured, genetically tractable human gut Bacteroides has revealed important insights into the biochemistry, genomics and ecology that make a gut bacterium a gut bacterium. While genome and metagenome sequences are being produced at breakneck speed, the Bacteroides provide a significant 'jump-start' on uncovering the guiding principles that govern microbiota-host and inter-bacterial associations in the gut that will probably extend to many other members of this ecosystem.
Collapse
|
50
|
Schwalm ND, Townsend GE, Groisman EA. Prioritization of polysaccharide utilization and control of regulator activation in Bacteroides thetaiotaomicron. Mol Microbiol 2017; 104:32-45. [PMID: 28009067 DOI: 10.1111/mmi.13609] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2016] [Indexed: 12/30/2022]
Abstract
Bacteroides thetaiotaomicron is a human gut symbiotic bacterium that utilizes a myriad of host dietary and mucosal polysaccharides. The proteins responsible for the uptake and breakdown of many of these polysaccharides are transcriptionally regulated by hybrid two-component systems (HTCSs). These systems consist of a single polypeptide harboring the domains of sensor kinases and response regulators, and thus, are thought to autophosphorylate in response to specific signals. We now report that the HTCS BT0366 is phosphorylated in vivo when B. thetaiotaomicron experiences the BT0366 inducer arabinan but not when grown in the presence of glucose. BT0366 phosphorylation and transcription of BT0366-activated genes requires the conserved predicted sites of phosphorylation in BT0366. When chondroitin sulfate is added to arabinan-containing cultures, BT0366 phosphorylation and transcription of BT0366-activated genes are inhibited and the bacterium exhibits diauxic growth. Whereas 20 additional combinations of polysaccharides also give rise to diauxic growth, other combinations result in synergistic or unaltered growth relative to bacteria experiencing a single polysaccharide. The different strategies employed by B. thetaiotaomicron when faced with multiple polysaccharides may aid its competitiveness in the mammalian gut.
Collapse
Affiliation(s)
- Nathan D Schwalm
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.,Yale Microbial Sciences Institute, West Haven, CT, USA
| | - Guy E Townsend
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.,Yale Microbial Sciences Institute, West Haven, CT, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.,Yale Microbial Sciences Institute, West Haven, CT, USA
| |
Collapse
|