1
|
Cheng X, Yang J, Wang Z, Zhou K, An X, Xu ZZ, Lu H. Modulating intestinal viruses: A potential avenue for improving metabolic diseases with unresolved challenges. Life Sci 2025; 361:123309. [PMID: 39674267 DOI: 10.1016/j.lfs.2024.123309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The gut microbiome affects the occurrence and development of metabolic diseases, with a significant amount of research focused on intestinal bacteria. As an important part of the gut microbiome, gut viruses were studied recently, particularly through fecal virome transplantation (FVT), revealing manipulating the gut virus could reverse overweight and glucose intolerance in mice. And human cohort studies found gut virome changed significantly in patients with metabolic disease. By summarizing those studies, we compared the research and analytical methods, as well as the similarities and differences in their results, and analyzed the reasons for these discrepancies. FVT provided potential value to improve metabolic diseases, but the mechanisms involved and the effect of FVT on humans should be investigated further. The potential methods of regulating intestinal virome composition and the possible mechanisms of intestinal virome changes affecting metabolic diseases were also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Jie Yang
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Zhijie Wang
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Kefan Zhou
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Xuejiao An
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Hui Lu
- Jiangxi Agricultural University, College of Bioscience and Bioengineering, Nanchang, PR China.
| |
Collapse
|
2
|
Nishijima S, Stankevic E, Aasmets O, Schmidt TSB, Nagata N, Keller MI, Ferretti P, Juel HB, Fullam A, Robbani SM, Schudoma C, Hansen JK, Holm LA, Israelsen M, Schierwagen R, Torp N, Telzerow A, Hercog R, Kandels S, Hazenbrink DHM, Arumugam M, Bendtsen F, Brøns C, Fonvig CE, Holm JC, Nielsen T, Pedersen JS, Thiele MS, Trebicka J, Org E, Krag A, Hansen T, Kuhn M, Bork P. Fecal microbial load is a major determinant of gut microbiome variation and a confounder for disease associations. Cell 2025; 188:222-236.e15. [PMID: 39541968 DOI: 10.1016/j.cell.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2024] [Revised: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
The microbiota in individual habitats differ in both relative composition and absolute abundance. While sequencing approaches determine the relative abundances of taxa and genes, they do not provide information on their absolute abundances. Here, we developed a machine-learning approach to predict fecal microbial loads (microbial cells per gram) solely from relative abundance data. Applying our prediction model to a large-scale metagenomic dataset (n = 34,539), we demonstrated that microbial load is the major determinant of gut microbiome variation and is associated with numerous host factors, including age, diet, and medication. We further found that for several diseases, changes in microbial load, rather than the disease condition itself, more strongly explained alterations in patients' gut microbiome. Adjusting for this effect substantially reduced the statistical significance of the majority of disease-associated species. Our analysis reveals that the fecal microbial load is a major confounder in microbiome studies, highlighting its importance for understanding microbiome variation in health and disease.
Collapse
Affiliation(s)
- Suguru Nishijima
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Evelina Stankevic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Aasmets
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thomas S B Schmidt
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Naoyoshi Nagata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Marisa Isabell Keller
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pamela Ferretti
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anthony Fullam
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Christian Schudoma
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johanne Kragh Hansen
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Mads Israelsen
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Robert Schierwagen
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Nikolaj Torp
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Anja Telzerow
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rajna Hercog
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stefanie Kandels
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Diënty H M Hazenbrink
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Charlotte Brøns
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Cilius Esmann Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; The Children's Obesity Clinic, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Medical department, University Hospital Zeeland, Køge, Denmark
| | - Julie Steen Pedersen
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Maja Sofie Thiele
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany; European Foundation for the Study of Chronic Liver Failure, EFCLIF, Barcelona, Spain
| | - Elin Org
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Aleksander Krag
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kuhn
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Peer Bork
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Zhang P, Guo R, Ma S, Jiang H, Yan Q, Li S, Wang K, Deng J, Zhang Y, Zhang Y, Wang G, Chen L, Li L, Guo X, Zhao G, Yang L, Wang Y, Kang J, Sha S, Fan S, Cheng L, Meng J, Yu H, Chen F, He D, Wang J, Liu S, Shi H. A metagenome-wide study of the gut virome in chronic kidney disease. Theranostics 2025; 15:1642-1661. [PMID: 39897560 PMCID: PMC11780533 DOI: 10.7150/thno.101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2024] [Accepted: 11/29/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Chronic kidney disease (CKD) is a progressively debilitating condition leading to kidney dysfunction and severe complications. While dysbiosis of the gut bacteriome has been linked to CKD, the alteration in the gut viral community and its role in CKD remain poorly understood. Methods: Here, we characterize the gut virome in CKD using metagenome-wide analyses of faecal samples from 425 patients and 290 healthy individuals. Results: CKD is associated with a remarkable shift in the gut viral profile that occurs regardless of host properties, disease stage, and underlying diseases. We identify 4,649 differentially abundant viral operational taxonomic units (vOTUs) and reveal that some CKD-enriched viruses are closely related to gut bacterial taxa such as Bacteroides, [Ruminococcus], Erysipelatoclostridium, and Enterocloster spp. In contrast, CKD-depleted viruses include more crAss-like viruses and often target Faecalibacterium, Ruminococcus, and Prevotella species. Functional annotation of the vOTUs reveals numerous viral functional signatures associated with CKD, notably a marked reduction in nicotinamide adenine dinucleotide (NAD+) synthesis capacity within the CKD-associated virome. Furthermore, most CKD viral signatures are reproducible in the gut viromes of diabetic kidney disease and several other common diseases, highlighting the considerable universality of disease-associated viromes. Conclusions: This research provides comprehensive resources and novel insights into the CKD-associated gut virome, offering valuable guidance for future mechanistic and therapeutic investigations.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Ruochun Guo
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- Puensum Genetech Institute, Wuhan 430076, China
| | - Shiyang Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Hongli Jiang
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Qiulong Yan
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan 430076, China
| | - Kairuo Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Jiang Deng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Yanli Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan 430076, China
| | - Guangyang Wang
- Department of Nephrology, Dalian Municipal Central Hospital affiliated with Dalian University of Technology, Dalian Key Laboratory of Intelligent Blood Purification, Dalian 116033, China
| | - Lei Chen
- Department of Critical Care Nephrology and Blood Purification, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Lu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Xiaoyan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Gang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Longbao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Yan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Jian Kang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shanshan Sha
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shao Fan
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Lin Cheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jinxin Meng
- Puensum Genetech Institute, Wuhan 430076, China
| | - Hailong Yu
- Puensum Genetech Institute, Wuhan 430076, China
| | - Fenrong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Danni He
- Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| | - Shuxin Liu
- Department of Nephrology, Dalian Municipal Central Hospital affiliated with Dalian University of Technology, Dalian Key Laboratory of Intelligent Blood Purification, Dalian 116033, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University; Shaanxi Key Laboratory of Gastrointestinal Motility Disorders; Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases; Digestive Disease Quality Control Center of Shaanxi Province, Xi'an 710004, China
| |
Collapse
|
4
|
Peng Y, Zhu J, Wang S, Liu Y, Liu X, DeLeon O, Zhu W, Xu Z, Zhang X, Zhao S, Liang S, Li H, Ho B, Ching JYL, Cheung CP, Leung TF, Tam WH, Leung TY, Chang EB, Chan FKL, Zhang L, Ng SC, Tun HM. A metagenome-assembled genome inventory for children reveals early-life gut bacteriome and virome dynamics. Cell Host Microbe 2024; 32:2212-2230.e8. [PMID: 39591974 DOI: 10.1016/j.chom.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Existing microbiota databases are biased toward adult samples, hampering accurate profiling of the infant gut microbiome. Here, we generated a metagenome-assembled genome inventory for children (MAGIC) from a large collection of bulk and viral-like particle-enriched metagenomes from 0 to 7 years of age, encompassing 3,299 prokaryotic and 139,624 viral species-level genomes, 8.5% and 63.9% of which are unique to MAGIC. MAGIC improves early-life microbiome profiling, with the greatest improvement in read mapping observed in Africans. We then identified 54 candidate keystone species, including several Bifidobacterium spp. and four phages, forming guilds that fluctuated in abundance with time. Their abundances were reduced in preterm infants and were associated with childhood allergies. By analyzing the B. longum pangenome, we found evidence of phage-mediated evolution and quorum sensing-related ecological adaptation. Together, the MAGIC database recovers genomes that enable characterization of the dynamics of early-life microbiomes, identification of candidate keystone species, and strain-level study of target species.
Collapse
Affiliation(s)
- Ye Peng
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jie Zhu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xin Liu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Orlando DeLeon
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, The University of Chicago, Chicago, IL 60637, USA
| | - Wenyi Zhu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xi Zhang
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Shilin Zhao
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Suisha Liang
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
| | - Hang Li
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
| | - Brian Ho
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
| | - Jessica Yuet-Ling Ching
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ting Fan Leung
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, The University of Chicago, Chicago, IL 60637, USA
| | - Francis Ka Leung Chan
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| | - Siew Chien Ng
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| | - Hein Min Tun
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
5
|
Nechalová L, Bielik V, Hric I, Babicová M, Baranovičová E, Grendár M, Koška J, Penesová A. Gut microbiota and metabolic responses to a 12-week caloric restriction combined with strength and HIIT training in patients with obesity: a randomized trial. BMC Sports Sci Med Rehabil 2024; 16:239. [PMID: 39639405 PMCID: PMC11619444 DOI: 10.1186/s13102-024-01029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Nowadays, obesity has become a major health issue. In addition to negatively affecting body composition and metabolic health, recent evidence shows unfavorable shifts in gut microbiota in individuals with obesity. However, the effects of weight loss on gut microbes and metabolites remain controversial. Therefore, the purpose of this study was to investigate the effects of a 12-week program on gut microbiota and metabolic health in patients with obesity. METHODS We conducted a controlled trial in 23 male and female patients with obesity. Twelve participants completed a 12-week program of caloric restriction combined with strength and HIIT training (INT, pre-BMI 37.33 ± 6.57 kg/m2), and eleven participants were designated as non-intervention controls (pre-BMI 38.65 ± 8.07 kg/m2). Metagenomic sequencing of the V3-V4 region of the 16S rDNA gene from fecal samples allowed for gut microbiota classification. Nuclear magnetic resonance spectroscopy characterized selected serum and fecal metabolite concentrations. RESULTS Within INT, we observed a significant improvement in body composition; a significant decrease in liver enzymes (AST, ALT, and GMT); a significant increase in the relative abundance of the commensal bacteria (e.g., Akkermansia muciniphila, Parabacteroides merdae, and Phocaeicola vulgatus); and a significant decrease in the relative abundance of SCFA-producing bacteria (e.g., the genera Butyrivibrio, Coprococcus, and Blautia). In addition, significant correlations were found between gut microbes, body composition, metabolic health biomarkers, and SCFAs. Notably, the Random Forest Machine Learning analysis identified predictors (Butyrivibrio fibrisolvens, Blautia caecimuris, Coprococcus comes, and waist circumference) with a moderate ability to discriminate between INT subjects pre- and post-intervention. CONCLUSIONS Our results indicate that a 12-week caloric restriction combined with strength and HIIT training positively influences body composition, metabolic health biomarkers, gut microbiota, and microbial metabolites, demonstrating significant correlations among these variables. We observed a significant increase in the relative abundance of bacteria linked to obesity, e.g., Akkermansia muciniphila. Additionally, our study contributes to the ongoing debate about the role of SCFAs in obesity, as we observed a significant decrease in SCFA producers after a 12-week program. TRIAL REGISTRATION The trial was registered on [05/12/2014] with ClinicalTrials.gov (No: NCT02325804).
Collapse
Affiliation(s)
- Libuša Nechalová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia.
| | - Ivan Hric
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| | - Miriam Babicová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, 036 01, Slovakia
| | - Marián Grendár
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, 036 01, Slovakia
| | - Juraj Koška
- Phoenix VA Health Care System, Phoenix, AZ, USA
| | - Adela Penesová
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, 814 69, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, Bratislava, 845 05, Slovakia
| |
Collapse
|
6
|
Li Y, Yan Y, Wu H, Men Y, Yang Y, Fu H, Dunn D, Wang X, Gao G, Zhang P, Dong G, Hao L, Jia J, Li B, Guo S. The role of gut microbiota in a generalist, golden snub-nosed monkey, adaptation to geographical diet change. Anim Microbiome 2024; 6:63. [PMID: 39501342 PMCID: PMC11536711 DOI: 10.1186/s42523-024-00349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Changes in diet causing ecological stress pose a significant challenge to animal survival. In response, the gut microbiota, a crucial part of the host's digestive system, exhibits patterns of change reflective of alterations in the host's food component. The impact of temporal dietary shifts on gut microbiota has been elucidated through multidimensional modeling of both food component and macronutrient intake. However, the broad distribution of wild generalist and the intricate complexity of their food component hinder our capacity to ascertain the degree to which their gut microbiota assist in adapting to spatial dietary variations. We examined variation in patterns of the gut microbial community according to changes in diet and in a colobine monkey with a regional variable diet, the golden snub-nosed monkey (Rhinopithecus roxellana). Specifically, we analyse the interactions between variation in food component, macronutrient intake and the gut microbial community. We compared monkeys from four populations by quantifying food component and macronutrient intake, and by sequencing 16S rRNA and the microbial macro-genomes from the faecal samples of 44 individuals. We found significant differences in the diets and gut microbial compositions, in nutrient space and macronutrient intake among some populations. Variations in gut microbiota composition across distinct populations mirror the disparities in macronutrient intake, with a notable emphasis on carbohydrate. Geographical differences in the diet among of golden snub-nosed monkey populations will result in macronutrient intake variation, with corresponding differences in macronutrient intake driving regional differences in the compositions and abundances of gut microbiota. Importantly, the gut microbiota associated with core digestive functions does not vary, with the non-core gut microbiota fluctuating in response to variation in macronutrient intake. This characteristic may enable species heavily reliant on gut microbiota for digestion to adapt to diet changes. Our results further the understanding of the roles gut microbiota play in the formation of host dietary niches.
Collapse
Affiliation(s)
- Yuhang Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yujie Yan
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Haojie Wu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yiyi Men
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Hengguang Fu
- Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, China
| | - Derek Dunn
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaowei Wang
- Shaanxi Key Laboratory for Animal Conservation, Institute of Zoology, Shaanxi Academy of Sciences, Xi'an, Shaanxi, China
| | - Genggeng Gao
- Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Xi'an, Shaanxi, China
| | - Peng Zhang
- Chimelong Group Co., Guangzhou, Canton, China
| | - Guixin Dong
- Chimelong Group Co., Guangzhou, Canton, China
| | - Liyuan Hao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jia Jia
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
Yersin S, Vonaesch P. Small intestinal microbiota: from taxonomic composition to metabolism. Trends Microbiol 2024; 32:970-983. [PMID: 38503579 DOI: 10.1016/j.tim.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
The small intestinal microbiota (SIM) is essential for gastrointestinal health, influencing digestion, immune modulation, and nutrient metabolism. Unlike the colonic microbiota, the SIM has been poorly characterized due to sampling challenges and ethical considerations. Current evidence suggests that the SIM consists of five core genera and additional segment-specific taxa. These bacteria closely interact with the human host, regulating nutrient absorption and metabolism. Recent work suggests the presence of two forms of small intestinal bacterial overgrowth, one dominated by oral bacteria (SIOBO) and a second dominated by coliform bacteria. Less invasive sampling techniques, omics approaches, and mechanistic studies will allow a more comprehensive understanding of the SIM, paving the way for interventions engineering the SIM towards better health.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Kim DW, Nguyen QA, Chanmuang S, Lee SB, Kim BM, Lee HJ, Jang GJ, Kim HJ. Effects of Kimchi Intake on the Gut Microbiota and Metabolite Profiles of High-Fat-Induced Obese Rats. Nutrients 2024; 16:3095. [PMID: 39339693 PMCID: PMC11435375 DOI: 10.3390/nu16183095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
With rising global obesity rates, the demand for effective dietary strategies for obesity management has intensified. This study evaluated the potential of kimchi with various probiotics and bioactive compounds as a dietary intervention for high-fat diet (HFD)-induced obesity in rats. Through a comprehensive analysis incorporating global and targeted metabolomics, gut microbiota profiling, and biochemical markers, we investigated the effects of the 12-week kimchi intake on HFD-induced obesity. Kimchi intake modestly mitigated HFD-induced weight gain and remarkably altered gut microbiota composition, steroid hormones, bile acids, and metabolic profiles, but did not reduce adipose tissue accumulation. It also caused significant shifts in metabolomic pathways, including steroid hormone metabolism, and we found substantial interactions between dietary interventions and gut microbiota composition. Although more research is required to fully understand the anti-obesity effects of kimchi, our findings support the beneficial role of kimchi in managing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Quynh-An Nguyen
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
| | - Saoraya Chanmuang
- Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Republic of Korea;
| | - Sang-Bong Lee
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Bo-Min Kim
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
| | - Hyeon-Jeong Lee
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
- Doping Control Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Gwang-Ju Jang
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
- Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Republic of Korea;
| |
Collapse
|
10
|
Yin XF, Ye T, Chen HL, Liu J, Mu XF, Li H, Wang J, Hu YJ, Cao H, Kang WQ. The microbiome compositional and functional differences between rectal mucosa and feces. Microbiol Spectr 2024; 12:e0354923. [PMID: 38916335 PMCID: PMC11302734 DOI: 10.1128/spectrum.03549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, most studies on the gut microbiome have primarily focused on feces samples, leaving the microbial communities in the intestinal mucosa relatively unexplored. To address this gap, our study employed shotgun metagenomics to analyze the microbial compositions in normal rectal mucosa and matched feces from 20 patients with colonic polyps. Our findings revealed a pronounced distinction of the microbial communities between these two sample sets. Compared with feces, the mucosal microbiome contains fewer genera, with Burkholderia being the most discriminating genus between feces and mucosa, highlighting its significant influence on the mucosa. Furthermore, based on the microbial classification and KEGG Orthology (KO) annotation results, we explored the association between rectal mucosal microbiota and factors such as age, gender, BMI, and polyp risk level. Notably, we identified novel biomarkers for these phenotypes, such as Clostridium ramosum and Enterobacter cloacae in age. The mucosal microbiota showed an enrichment of KO pathways related to sugar transport and short chain fatty acid metabolism. Our comprehensive approach not only bridges the knowledge gap regarding the microbial community in the rectal mucosa but also underscores the complexity and specificity of microbial interactions within the human gut, particularly in the Chinese population. IMPORTANCE This study presents a system-level map of the differences between feces and rectal mucosal microbial communities in samples with colorectal cancer risk. It reveals the unique microecological characteristics of rectal mucosa and its potential influence on health. Additionally, it provides novel insights into the role of the gut microbiome in the pathogenesis of colorectal cancer and paves the way for the development of new prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiao-Fei Yin
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Taoyu Ye
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Han-Lin Chen
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junyan Liu
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Xue-Feng Mu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hao Li
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Jun Wang
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yuan-Jia Hu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hongzhi Cao
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- Department of Digital Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Wen-Quan Kang
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
11
|
Haange SB, Riesbeck S, Aldehoff AS, Engelmann B, Jensen Pedersen K, Castaneda-Monsalve V, Rolle-Kampczyk U, von Bergen M, Jehmlich N. Chemical mixture effects on the simplified human intestinal microbiota: Assessing xenobiotics at environmentally realistic concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134683. [PMID: 38820745 DOI: 10.1016/j.jhazmat.2024.134683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
The microbial community present in our intestines is pivotal for converting indigestible substances into vital nutrients and signaling molecules such as short-chain fatty acids (SCFAs). These compounds have considerable influence over our immune system and the development of diverse human diseases. However, ingested environmental contaminants, known as xenobiotics, can upset the delicate balance of the microbial gut community and enzymatic processes, consequently affecting the host organism. In our study, we employed an in vitro bioreactor model system based on the simplified human microbiome model (SIHUMIx) to investigate the direct effects of specific xenobiotics, such as perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) or bisphenol S (BPS) and bisphenol F (BPF), either individually or in combination, on the microbiota. We observed increased SCFA production, particularly acetate and butyrate, with PFAS exposure. Metaproteomics revealed pathway alterations across treatments, including changes in vitamin synthesis and fatty acid metabolism with BPX. This study underscores the necessity of assessing the combined effects of xenobiotics to better safeguard public health. It emphasizes the significance of considering adverse effects on the microbiome in the risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Sven-Bastiaan Haange
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Sarah Riesbeck
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Alix Sarah Aldehoff
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Beatrice Engelmann
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Kristian Jensen Pedersen
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Victor Castaneda-Monsalve
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany; Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Toxicology, Leipzig, Germany.
| |
Collapse
|
12
|
Zhang W, Liu XH, Zhou JT, Cheng C, Xu J, Yu J, Li X. Apolipoprotein A-IV restrains fat accumulation in skeletal and myocardial muscles by inhibiting lipogenesis and activating PI3K-AKT signalling. Arch Physiol Biochem 2024; 130:491-501. [PMID: 36594510 DOI: 10.1080/13813455.2022.2163261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/26/2022] [Accepted: 12/10/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND One of the pathological characteristics of obesity is fat accumulation of skeletal muscles (SKM) and the myocardium, involving mechanisms of insulin resistance and abnormal lipid metabolism. Apolipoprotein A-IV (ApoA-IV) is an essential gene in both glucose and lipid metabolisms. MATERIALS AND METHODS Using high-fat diet (HFD) induced obese apoA-IV-knockout mice and subsequent introduction of exogenous recombinant-ApoA-IV protein and adeno-associated virus (AAV)-transformed apoA-IV, we examined lipid metabolism indicators of SKM and the myocardium, which include triglyceride (TG) content, RT-PCR for lipogenic indicators and western blotting for AKT phosphorylation. Similarly, we used high-glucose-fed or palmitate (Pal)-induced C2C12 cells co-cultured with ApoA-IV protein to evaluate glucose uptake, the phosphoinositide 3-kinase (PI3K)-AKT pathway, and lipid metabolisms. RESULTS In stable obese animal models, we find ApoA-IV-knockout mice show elevated TG content, enhanced expression of lipogenic enzymes and diminished phosphorylated AKT in SKM and the myocardium, but both stable hepatic expression of AAV-apoA-IV and brief ApoA-IV protein administration suppress lipogenesis and promote AKT phosphorylation. In a myoblast cell line C2C12, ApoA-IV protein suppresses Pal-induced lipid accumulation and lipogenesis but enhances AKT activation and glucose uptake, and the effect is abolished by a PI3K inhibitor. CONCLUSION We find that ApoA-IV reduces fat accumulation by suppressing lipogenesis and improves glucose uptake in SKM and the myocardium by regulating the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Wenqian Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Xiao-Huan Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Jin-Ting Zhou
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Cheng Cheng
- Bio-evidence Sciences Academy (BSA), Xi'an Jiaotong University, Western China Science & Technology Innovation Harbour, Xi'an, China
| | - Jing Xu
- Division of Endocrinology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jun Yu
- OneHealth Technology Company, Xi'an, China
| | - Xiaoming Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Martínez-Álvaro M, Zubiri-Gaitán A, Hernández P, Casto-Rebollo C, Ibáñez-Escriche N, Santacreu MA, Artacho A, Pérez-Brocal V, Blasco A. Correlated Responses to Selection for Intramuscular Fat on the Gut Microbiome in Rabbits. Animals (Basel) 2024; 14:2078. [PMID: 39061540 PMCID: PMC11273372 DOI: 10.3390/ani14142078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Intramuscular fat (IMF) content is important for meat production and human health, where the host genetics and its microbiome greatly contribute to its variation. The aim of this study is to describe the consequences of the genetic modification of IMF by selecting the taxonomic composition of the microbiome, using rabbits from the 10th generation of a divergent selection experiment for IMF (high (H) and low (L) lines differ by 3.8 standard deviations). The selection altered the composition of the gut microbiota. Correlated responses were better distinguished at the genus level (51 genera) than at the phylum level (10 phyla). The H-line was enriched in Hungateiclostridium, Limosilactobacillus, Legionella, Lysinibacillus, Phorphyromonas, Methanosphaera, Desulfovibrio, and Akkermansia, while the L-line was enriched in Escherichia, Methanobrevibacter, Fonticella, Candidatus Amulumruptor, Methanobrevibacter, Exiguobacterium, Flintibacter, and Coprococcus, among other genera with smaller line differences. A microbial biomarker generated from the abundance of four of these genera classified the lines with 78% accuracy in a logit regression. Our results demonstrate different gut microbiome compositions in hosts with divergent IMF genotypes. Furthermore, we provide a microbial biomarker to be used as an indicator of hosts genetically predisposed to accumulate muscle lipids, which opens up the opportunity for research to develop probiotics or microbiome-based breeding strategies targeting IMF.
Collapse
Affiliation(s)
- Marina Martínez-Álvaro
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Agostina Zubiri-Gaitán
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pilar Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Noelia Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Maria Antonia Santacreu
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Alejandro Artacho
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46022 Valencia, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), 46022 Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
14
|
Moreira Gobis MDL, Goulart de Souza-Silva T, de Almeida Paula HA. The impact of a western diet on gut microbiota and circadian rhythm: A comprehensive systematic review of in vivo preclinical evidence. Life Sci 2024; 349:122741. [PMID: 38788974 DOI: 10.1016/j.lfs.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
AIMS Here, we present a systematic review that compiles in vivo experimental data regarding the effect of the WD on the gut microbiota and its impact on the circadian rhythm. Additionally, we reviewed studies evaluating the combined effects of WD and circadian cycle disruption on gut microbiota and circadian cycle markers. MATERIALS AND METHODS The original studies indexed in PubMed/Medline, Scopus, and Web of Science databases were screened according to the PRISMA strategy. KEY FINDINGS Preclinical studies revealed that WD triggers circadian rhythmicity disruption, reduces the alpha-diversity of the microbiota and favors the growth of bacterial groups that are detrimental to intestinal homeostasis, such as Clostridaceae, Enterococcus, Parasutterella and Proteobacteria. When the WD is combined with circadian clock disruption, gut dysbiosis become more pronounced. Reduced cycling of Per3, Rev-erb and CLOCK in the intestine, which are related to dysregulation of lipid metabolism and potential metabolic disease, was observed. SIGNIFICANCE In conclusion, current evidence supports the potential of WD to trigger microbiota dysregulation, disrupt the biological clock, and increase susceptibility to metabolic disorders and potentially chronic diseases.
Collapse
Affiliation(s)
| | - Thaiany Goulart de Souza-Silva
- Institute of Biological Science, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
15
|
Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr 2024; 64:7291-7310. [PMID: 36861222 DOI: 10.1080/10408398.2023.2183935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/03/2023]
Abstract
Serotonin (5-HT) produced by enterochromaffin (EC) cells in the digestive tract is crucial for maintaining gut function and homeostasis. Nutritional and non-nutritional stimuli in the gut lumen can modulate the ability of EC cells to produce 5-HT in a temporal- and spatial-specific manner that toning gut physiology and immune response. Of particular interest, the interactions between dietary factors and the gut microbiota exert distinct impacts on gut 5-HT homeostasis and signaling in metabolism and the gut immune response. However, the underlying mechanisms need to be unraveled. This review aims to summarize and discuss the importance of gut 5-HT homeostasis and its regulation in maintaining gut metabolism and immune function in health and disease with special emphasis on different types of nutrients, dietary supplements, processing, and gut microbiota. Cutting-edge discoveries in this area will provide the basis for the development of new nutritional and pharmaceutical strategies for the prevention and treatment of serotonin homeostasis-related gut and systematic disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
16
|
Yang K, Zhang X, Gui W, Zhen Q, Ban Y, Chen Y, Ma L, Pan S, Yan Y, Ding M. Alteration of Plasma Indoles in Polycystic Ovary Syndrome. Reprod Sci 2024; 31:764-772. [PMID: 37828362 DOI: 10.1007/s43032-023-01377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies in reproductive-aged women. The occurrence of PCOS was reported to be associated with the alteration of gut microbiota. Microbiota-derived indoles may possibly play a key role in glycemic control. The purpose of this work is to reveal the alteration of plasma indoles in PCOS patients and to investigate the correlation between indoles levels and glucose metabolism. Sixty-five patients with PCOS and twenty-eight age-matched women were enrolled in this work. The concentrations of plasma indoles, including indoxyl sulfate (IS), indole-3-acetic acid (IAA), indole-3-propionate (IPA), indole (IND), and 3-methylindole (3-MI), were measured by HPLC with the fluorescence detection. The plasma levels of IS, IAA, and IND were significantly elevated in patients with PCOS compared to those in the control group (p < 0.05). Furthermore, the plasma levels of IS, IAA, and IND were positively correlated with fasting glucose, fasting insulin, and the homeostatic model of insulin resistance index (HOMA-IR) (p < 0.05). Besides, the 3-MI level in the plasma was positively correlated with the fasting glucose level, whereas plasma levels of IS, IAA, IND, and 3-MI were negatively correlated with glucagon-like peptide 1 (p < 0.05). Moreover, IS and IND were considered to be risk factors for PCOS after age, BMI, T, LH, and HOMA-IR adjustment. The area under the receiver-operating characteristic curve of the combined index of five indoles was 0.867 for PCOS diagnosis. Additionally, plasma indoles altered in PCOS, which was closely associated with the glucose metabolism.
Collapse
Affiliation(s)
- Ke Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoqing Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenwu Gui
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianna Zhen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanna Ban
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ma
- Laboratory of Lipid &Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengnan Pan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yutong Yan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Min Ding
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
18
|
Wei J, Luo J, Yang F, Dai W, Pan X, Luo M. Identification of commensal gut bacterial strains with lipogenic effects contributing to NAFLD in children. iScience 2024; 27:108861. [PMID: 38313052 PMCID: PMC10835367 DOI: 10.1016/j.isci.2024.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Gut microbiota is known to have a significant impact on nonalcoholic fatty liver disease (NAFLD), particularly in children with obesity. However, the specific functions of microbiota at the strain level in this population have not been fully elucidated. In this study, we successfully isolated and identified several commensal gut bacterial strains that were dominant in children with obesity and NAFLD. Among these, four novel isolates were found to have significant lipogenic effects in vitro. These strains exhibited a potential link to hepatocyte steatosis by regulating the expression of genes involved in lipid metabolism and inflammation. Moreover, a larger cohort analysis confirmed that these identified bacterial strains were enriched in the NAFLD group. The integrated analysis of these strains effectively distinguished NASH from NAFL. These four strains might serve as potential biomarkers in children with NAFLD. These findings provided new insights into the exploration of therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, Hunan, China
| | - Wen Dai
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Xiongfeng Pan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Miyang Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
19
|
Jennings SAV, Clavel T. Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition. Annu Rev Anim Biosci 2024; 12:283-300. [PMID: 37963399 DOI: 10.1146/annurev-animal-021022-025552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2023]
Abstract
Microbes and animals have a symbiotic relationship that greatly influences nutrient uptake and animal health. This relationship can be studied using selections of microbes termed synthetic communities, or SynComs. SynComs are used in many different animal hosts, including agricultural animals, to investigate microbial interactions with nutrients and how these affect animal health. The most common host focuses for SynComs are currently mouse and human, from basic mechanistic research through to translational disease models and live biotherapeutic products (LBPs) as treatments. We discuss SynComs used in basic research models and findings that relate to human and animal health and nutrition. Translational use cases of SynComs are discussed, followed by LBPs, especially within the context of agriculture. SynComs still face challenges, such as standardization for reproducibility and contamination risks. However, the future of SynComs is hopeful, especially in the areas of genome-guided SynCom design and custom SynCom-based treatments.
Collapse
Affiliation(s)
- Susan A V Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany;
| |
Collapse
|
20
|
Lee J, Park JS. The gut microbiome predicts response to UDCA/CDCA treatment in gallstone patients: comparison of responders and non-responders. Sci Rep 2024; 14:2534. [PMID: 38291113 PMCID: PMC10828362 DOI: 10.1038/s41598-024-53173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
The treatment of gallbladder (GB) stones depends on condition severity. Ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) are commonly used to treat GB stones, but the factors affecting response rates have not been fully identified. Therefore, we investigated the relationship between response to UDCA/CDCA treatment and changes in the gut microbiomes of patients with GB stones with the intention of identifying gut microbiomes that predict susceptibility to UDCA/CDCA treatment and treatment response. In this preliminary, prospective study, 13 patients with GB stones were treated with UDCA/CDCA for 6 months. Patients were classified into responder and non-responder groups based on treatment outcomes. Gut microbiomes were analyzed by 16S rDNA sequencing. Taxonomic compositions and abundances of bacterial communities were analyzed before and after UDCA/CDCA treatment. Alpha and beta diversities were used to assess similarities between organismal compositions. In addition, PICRUSt2 analysis was conducted to identify gut microbial functional pathways. Thirteen patients completed the treatment; 8 (62%) were assigned to the responder group and the remainder to the non-responder group. Low abundances of the Erysipelotrichi lineage were significantly associated with favorable response to UDCA/CDCA treatment, whereas high abundances of Firmicutes phylum indicated no or poor response. Our results suggest that a low abundance of the Erysipelotrichi lineage is significantly associated with a favorable response to UDCA/CDCA and that a high abundance of Firmicutes phylum is indicative of no or poor response. These findings suggest that some gut microbiomes are susceptible to UDCA/CDCA treatment and could be used to predict treatment response in patients with GB stones.
Collapse
Affiliation(s)
- Jungnam Lee
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, South Korea
| | - Jin-Seok Park
- Department of Internal Medicine, Digestive Disease Center, Shihwa Medical Center, 381, Gunjacheon-ro, Siheung-si, Gyeonggi-do, South Korea.
| |
Collapse
|
21
|
Wang X, Meng M, Sun J, Gao W, Lin C, Yu C. Klebsiella aerogenes exacerbates colon tumorigenesis in the AOM/DSS-induced C57BL/6J mouse. Biochem Biophys Res Commun 2024; 694:149410. [PMID: 38134478 DOI: 10.1016/j.bbrc.2023.149410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Klebsiella aerogenes (K. aerogenes, KA) is a gram-negative opportunistic pathogen from the Klebsiella species and the Enterobacteriaceae family. However, the impact of K. aerogenes on colorectal cancer (CRC) remains uncertain. A colitis-associated tumorigenesis animal model was established by administering azoxymethane (AOM) and dextran sulfate sodium (DSS) to C57BL/6J mice. The concentration of K. aerogenes gavage in mice was 109 cfu. The study measured the following parameters: tumor formation (number and size), intestinal permeability (MUC2, ZO-1, and Occludin), colonic inflammation (TNF-α, IL-1β, IL-6, and IL-10), proliferation and the fluctuation of the intestinal flora. Under the AOM/DSS-treated setting, K. aerogenes colonization worsened colitis by exacerbating intestinal inflammatory reaction and destroying the mucosal barrier. The intervention markedly augmented the quantity and dimensions of neoplasm in the AOM/DSS mice, stimulated cellular growth, and impeded cellular programmed cell death. In addition, K. aerogenes exacerbated the imbalance of the intestinal microbiota by elevating the abundance of Pseudomonas, Erysipelatoclostridium, Turicibacter, Rikenella, and Muribaculum and leading to a reduction in the abundance of Odoribacter, Alloprevotella, Roseburia, and Lachnospiraceae_NK4A136_group. The presence of K. aerogenes in AOM/DSS-treated mice promoted tumorigenesis, worsened intestinal inflammation, disrupted the intestinal barrier, and caused disturbance to the gut microbiota.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, China
| | - Minjie Meng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, China
| | - Jing Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, China
| | - Wenjie Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 210011, Nanjing, China
| | - Chaoyu Lin
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, 210031, Nanjing, China
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, 211100, Nanjing, China.
| |
Collapse
|
22
|
Lerma-Aguilera AM, Pérez-Burillo S, Navajas-Porras B, León ED, Ruíz-Pérez S, Pastoriza S, Jiménez-Hernández N, Cämmerer BM, Rufián-Henares JÁ, Gosalbes MJ, Francino MP. Effects of different foods and cooking methods on the gut microbiota: an in vitro approach. Front Microbiol 2024; 14:1334623. [PMID: 38260868 PMCID: PMC10800916 DOI: 10.3389/fmicb.2023.1334623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
To support personalized diets targeting the gut microbiota, we employed an in vitro digestion-fermentation model and 16S rRNA gene sequencing to analyze the microbiota growing on representative foods of the Mediterranean and Western diets, as well as the influence of cooking methods. Plant- and animal-derived foods had significantly different impacts on the abundances of bacterial taxa. Animal and vegetable fats, fish and dairy products led to increases in many taxa, mainly within the Lachnospiraceae. In particular, fats favored increases in the beneficial bacteria Faecalibacterium, Blautia, and Roseburia. However, butter, as well as gouda cheese and fish, also resulted in the increase of Lachnoclostridium, associated to several diseases. Frying and boiling produced the most distinct effects on the microbiota, with members of the Lachnospiraceae and Ruminococcaceae responding the most to the cooking method employed. Nevertheless, cooking effects were highly individualized and food-dependent, challenging the investigation of their role in personalized diets.
Collapse
Affiliation(s)
- Alberto M. Lerma-Aguilera
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
| | - E. Daniel León
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
| | - Sonia Ruíz-Pérez
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Nuria Jiménez-Hernández
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Bettina-Maria Cämmerer
- Department of Food Chemistry and Analytics, Technische Universität Berlin, Berlin, Germany
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Centro de Investigación Biomédica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - M. Pilar Francino
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Su H, Jiang X, Liu H, Bai H, Bai X, Xu Y, Du Z. Comparison of Intestinal Microbiota of Blue Fox before and after Weaning. Animals (Basel) 2024; 14:210. [PMID: 38254379 PMCID: PMC10812593 DOI: 10.3390/ani14020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Intestinal flora plays an important role in maintaining the internal stability and health of the intestine. Currently, intestinal microbes are considered an important "organ" but are mostly ignored by people. This study evaluated the flora structure of each intestinal segment of blue foxes pre-weaning and explored the differences between the fecal flora and intestinal flora structure of each segment after weaning. Samples of intestinal contents from three blue foxes at 45 days of age (before weaning) and intestinal contents and feces samples from at 80 days (after weaning) were collected for 16s rRNA flora analysis. The species and distribution characteristics of microorganisms in different intestinal segments of blue foxes before and after weaning were different. Except for the rectum, the dominant flora of each intestinal segment of blue fox changed significantly after experiencing weaning, and the fecal flora structure of young fox at the weaning stage did not represent the whole intestinal flora structure but was highly similar to that of the colon and rectum. To sum up, the intestinal flora of blue foxes changed systematically before and after weaning. When performing non-invasive experiments, the microflora structure of the colon and rectum of blue foxes can be predicted by collecting fecal samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Xu
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, China; (H.S.); (X.J.); (H.L.); (H.B.); (X.B.)
| | - Zhiheng Du
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, China; (H.S.); (X.J.); (H.L.); (H.B.); (X.B.)
| |
Collapse
|
24
|
Zhang B, Zhang X, Luo Z, Ren J, Yu X, Zhao H, Wang Y, Zhang W, Tian W, Wei X, Ding Q, Yang H, Jin Z, Tong X, Wang J, Zhao L. Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus. J Genet Genomics 2024; 51:75-86. [PMID: 37652264 DOI: 10.1016/j.jgg.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Gut microbiota and circulating metabolite dysbiosis predate important pathological changes in glucose metabolic disorders; however, comprehensive studies on impaired glucose tolerance (IGT), a diabetes mellitus (DM) precursor, are lacking. Here, we perform metagenomic sequencing and metabolomics on 47 pairs of individuals with IGT and newly diagnosed DM and 46 controls with normal glucose tolerance (NGT); patients with IGT are followed up after 4 years for progression to DM. Analysis of baseline data reveals significant differences in gut microbiota and serum metabolites among the IGT, DM, and NGT groups. In addition, 13 types of gut microbiota and 17 types of circulating metabolites showed significant differences at baseline before IGT progressed to DM, including higher levels of Eggerthella unclassified, Coprobacillus unclassified, Clostridium ramosum, L-valine, L-norleucine, and L-isoleucine, and lower levels of Eubacterium eligens, Bacteroides faecis, Lachnospiraceae bacterium 3_1_46FAA, Alistipes senegalensis, Megaspaera elsdenii, Clostridium perfringens, α-linolenic acid, 10E,12Z-octadecadienoic acid, and dodecanoic acid. A random forest model based on differential intestinal microbiota and circulating metabolites can predict the progression from IGT to DM (AUC = 0.87). These results suggest that microbiome and metabolome dysbiosis occur in individuals with IGT and have important predictive values and potential for intervention in preventing IGT from progressing to DM.
Collapse
Affiliation(s)
- Boxun Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuan Zhang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, Inner Mongolia 014030, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Luo
- Infinitus (China) Company Ltd, Guangzhou, Guangdong 510405, China
| | - Jixiang Ren
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Xiaotong Yu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haiyan Zhao
- Xinjiekou Community Health Service Center in Xicheng District, Beijing 100035, China
| | - Yitian Wang
- Department of Spleen and Stomach, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
| | - Wenhui Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Tian
- Xinjiekou Community Health Service Center in Xicheng District, Beijing 100035, China
| | - Xiuxiu Wei
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Qiyou Ding
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100105, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
25
|
Song S, Shon J, Yang WR, Kang HB, Kim KH, Park JY, Lee S, Baik SY, Lee KR, Park YJ. Short-Term Effects of Weight-Loss Meal Replacement Programs with Various Macronutrient Distributions on Gut Microbiome and Metabolic Parameters: A Pilot Study. Nutrients 2023; 15:4744. [PMID: 38004139 PMCID: PMC10675061 DOI: 10.3390/nu15224744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
It has emerged the gut microbiome is crucially linked to metabolic health and obesity. Macronutrient distribution has been discussed as a key parameter in weight-loss programs, but little is known about its impact on the gut microbiome. We investigated the effects of weight-loss meal replacement programs with different macronutrient ratios on the gut microbiota and metabolic parameters in subjects with overweight and obesity. Three low-calorie meal replacement programs with different ratios of carbohydrates, proteins, and lipids were designed: a balanced diet (Group B, 60:15:30), a high-lipid-low-carbohydrate diet (Group F, 35:20:55), and a protein-enriched diet (Group P, 40:25:35). Sixty overweight or obese participants were provided with the meals twice daily for 3 weeks. In all groups, diet intervention resulted in reduced body weight and BMI. The relative abundance of Bacteroidetes and Firmicutes phyla decreased and increased, respectively, which increased the Firmicutes/Bacteroidetes (F/B) ratio in all subjects, particularly in Groups B and P. Alpha- and beta-diversity were augmented at the phylum level in Group P. In conclusion, short-term interventions with weight-loss meal replacement programs increased butyrate-producing bacteria and the F/B ratio. Moreover, the protein-enriched diet significantly increased alpha- and beta-diversity compared to the balanced diet and the high-lipid-low-carbohydrate diet.
Collapse
Affiliation(s)
- Seungmin Song
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinyoung Shon
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Woo-ri Yang
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Han-Bit Kang
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Keun-Ha Kim
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Ju-Yeon Park
- Hyundai Greenfood Greating Laboratory, Yongin-si 16827, Republic of Korea
| | - Sanghoo Lee
- SCL Healthcare Inc., Yongin-si 16954, Republic of Korea
| | - Sae Yun Baik
- Hanaro Medical Foundation, Seoul 03159, Republic of Korea
| | - Kyoung-Ryul Lee
- SCL Healthcare Inc., Yongin-si 16954, Republic of Korea
- Hanaro Medical Foundation, Seoul 03159, Republic of Korea
| | - Yoon Jung Park
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
26
|
Chu Z, Hu Z, Luo Y, Zhou Y, Yang F, Luo F. Targeting gut-liver axis by dietary lignans ameliorate obesity: evidences and mechanisms. Crit Rev Food Sci Nutr 2023; 65:243-264. [PMID: 37870876 DOI: 10.1080/10408398.2023.2272269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2023]
Abstract
An imbalance between energy consumption and energy expenditure causes obesity. It is characterized by increased adipose accumulation and accompanied by chronic low-grade inflammation. Many studies have suggested that the gut microbiota of the host mediates the relationship between high-fat diet consumption and the development of obesity. Diet and nutrition of the body are heavily influenced by gut microbiota. The alterations in the microbiota in the gut may have effects on the homeostasis of the host's energy levels, systemic inflammation, lipid metabolism, and insulin sensitivity. The liver is an important organ for fat metabolism and gut-liver axis play important role in the fat metabolism. Gut-liver axis is a bidirectional relationship between the gut and its microbiota and the liver. As essential plant components, lignans have been shown to have different biological functions. Accumulating evidences have suggested that lignans may have lipid-lowering properties. Lignans can regulate the level of the gut microbiota and their metabolites in the host, thereby affecting signaling pathways related to fat synthesis and metabolism. These signaling pathways can make a difference in inhibiting fat accumulation, accelerating energy metabolism, affecting appetite, and inhibiting chronic inflammation. It will provide the groundwork for future studies on the lipid-lowering impact of lignans and the creation of functional meals based on those findings.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| |
Collapse
|
27
|
Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord 2023; 24:839-870. [PMID: 37119391 PMCID: PMC10148591 DOI: 10.1007/s11154-023-09798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 03/10/2023] [Indexed: 05/01/2023]
Abstract
Obesity has reached epidemic proportion worldwide and in all ages. Available evidence points to a multifactorial pathogenesis involving gene predisposition and environmental factors. Gut microbiota plays a critical role as a major interface between external factors, i.e., diet, lifestyle, toxic chemicals, and internal mechanisms regulating energy and metabolic homeostasis, fat production and storage. A shift in microbiota composition is linked with overweight and obesity, with pathogenic mechanisms involving bacterial products and metabolites (mainly endocannabinoid-related mediators, short-chain fatty acids, bile acids, catabolites of tryptophan, lipopolysaccharides) and subsequent alterations in gut barrier, altered metabolic homeostasis, insulin resistance and chronic, low-grade inflammation. Although animal studies point to the links between an "obesogenic" microbiota and the development of different obesity phenotypes, the translational value of these results in humans is still limited by the heterogeneity among studies, the high variation of gut microbiota over time and the lack of robust longitudinal studies adequately considering inter-individual confounders. Nevertheless, available evidence underscores the existence of several genera predisposing to obesity or, conversely, to lean and metabolically health phenotype (e.g., Akkermansia muciniphila, species from genera Faecalibacterium, Alistipes, Roseburia). Further longitudinal studies using metagenomics, transcriptomics, proteomics, and metabolomics with exact characterization of confounders are needed in this field. Results must confirm that distinct genera and specific microbial-derived metabolites represent effective and precision interventions against overweight and obesity in the long-term.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
28
|
Mao X, Chen H, Peng X, Zhao X, Yu Z, Xu D. Dysbiosis of vaginal and cervical microbiome is associated with uterine fibroids. Front Cell Infect Microbiol 2023; 13:1196823. [PMID: 37743857 PMCID: PMC10513091 DOI: 10.3389/fcimb.2023.1196823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Dysbiosis of the female reproductive tract is closely associated with gynecologic diseases. Here, we aim to explore the association between dysbiosis in the genital tract and uterine fibroids (UFs) to further provide new insights into UF etiology. We present an observational study to profile vaginal and cervical microbiome from 29 women with UFs and 38 healthy women, and 125 samples were obtained and sequenced. By comparing the microbial profiles between different parts of the reproductive tract, there is no significant difference in microbial diversity between healthy subjects and UF patients. However, alpha diversity of UF patients was negatively correlated with the number of fibroids. Increased Firmicutes were observed in both the cervical and vaginal microbiome of UF patients at the phylum level. In differential analysis of relative abundance, some genera were shown to be significantly enriched (e.g., Erysipelatoclostridium, Mucispirillum, and Finegoldia) and depleted (e.g., Erysipelotrichaceae UCG-003 and Sporolactobacillus) in UF patients. Furthermore, the microbial co-occurrence networks of UF patients showed lower connectivity and complexity, suggesting reduced interactions and stability of the cervical and vaginal microbiota in UF patients. In summary, our findings revealed the perturbation of microbiome in the presence of UFs and a distinct pattern of characteristic vaginal and cervical microbiome involved in UFs, offering new options to further improve prevention and management strategies.
Collapse
Affiliation(s)
- Xuetao Mao
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xuan Peng
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xingping Zhao
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Dabao Xu
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Kilburn-Kappeler LR, Doerksen T, Lu A, Palinski RM, Lu N, Aldrich CG. Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs. Vet Sci 2023; 10:553. [PMID: 37756074 PMCID: PMC10536651 DOI: 10.3390/vetsci10090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Corn-fermented protein (CFP), a co-product from the ethanol industry, is produced using post-fermentation technology to split the protein and yeast from fiber prior to drying. The objective of this study was to determine the effect of CFP compared to traditional ingredients on the fecal microbiota of dogs. The four experimental diets included a control with no yeast and diets containing either 3.5% brewer's dried yeast, 2.5% brewer's dried yeast plus 17.5% distiller's dried grains with solubles, or 17.5% CFP. The experimental diets were fed to adult dogs (n = 12) in a 4 × 4 replicated Latin square design. Fresh fecal samples (n = 48) were analyzed by 16S metagenomic sequencing. Raw sequences were processed through mothur. Community diversity was evaluated in R. Relative abundance data were analyzed within the 50 most abundant operational taxonomic units using a mixed model of SAS. Alpha and beta diversity were similar for all treatments. Predominant phyla among all samples were Firmicutes (73%), Bacteroidetes (15%), Fusobacteria (8%), and Actinobacteria (4%). There were no quantifiable (p > 0.05) shifts in the predominant phyla among the treatments. However, nine genera resulted in differences in relative abundance among the treatments. These data indicate that compared to traditional ingredients, CFP did not alter the overall diversity of the fecal microbiota of healthy adult dogs over 14 days.
Collapse
Affiliation(s)
| | - Tyler Doerksen
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
| | - Andrea Lu
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
| | - Rachel M. Palinski
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA;
| | - Charles G. Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
30
|
Cuciureanu M, Caratașu CC, Gabrielian L, Frăsinariu OE, Checheriță LE, Trandafir LM, Stanciu GD, Szilagyi A, Pogonea I, Bordeianu G, Soroceanu RP, Andrițoiu CV, Anghel MM, Munteanu D, Cernescu IT, Tamba BI. 360-Degree Perspectives on Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1119. [PMID: 37374323 PMCID: PMC10304508 DOI: 10.3390/medicina59061119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Alarming statistics show that the number of people affected by excessive weight has surpassed 2 billion, representing approximately 30% of the world's population. The aim of this review is to provide a comprehensive overview of one of the most serious public health problems, considering that obesity requires an integrative approach that takes into account its complex etiology, including genetic, environmental, and lifestyle factors. Only an understanding of the connections between the many contributors to obesity and the synergy between treatment interventions can ensure satisfactory outcomes in reducing obesity. Mechanisms such as oxidative stress, chronic inflammation, and dysbiosis play a crucial role in the pathogenesis of obesity and its associated complications. Compounding factors such as the deleterious effects of stress, the novel challenge posed by the obesogenic digital (food) environment, and the stigma associated with obesity should not be overlooked. Preclinical research in animal models has been instrumental in elucidating these mechanisms, and translation into clinical practice has provided promising therapeutic options, including epigenetic approaches, pharmacotherapy, and bariatric surgery. However, more studies are necessary to discover new compounds that target key metabolic pathways, innovative ways to deliver the drugs, the optimal combinations of lifestyle interventions with allopathic treatments, and, last but not least, emerging biological markers for effective monitoring. With each passing day, the obesity crisis tightens its grip, threatening not only individual lives but also burdening healthcare systems and societies at large. It is high time we took action as we confront the urgent imperative to address this escalating global health challenge head-on.
Collapse
Affiliation(s)
- Magdalena Cuciureanu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Cătălin-Cezar Caratașu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Levon Gabrielian
- Department of Anatomy and Pathology, The University of Adelaide, Adelaide 5000, Australia;
| | - Otilia Elena Frăsinariu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Laura Elisabeta Checheriță
- 2nd Dental Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Ina Pogonea
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Gabriela Bordeianu
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Radu Petru Soroceanu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Specialization of Nutrition and Dietetics, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Maria Mihalache Anghel
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Diana Munteanu
- Institute of Mother and Child, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2062 Chisinau, Moldova;
| | - Irina Teodora Cernescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Bogdan Ionel Tamba
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| |
Collapse
|
31
|
Carrizales-Sánchez AK, Tamez-Rivera O, García-Gamboa R, García-Cayuela T, Rodríguez-Gutiérrez NA, Elizondo-Montemayor L, García-Rivas G, Pacheco A, Hernández-Brenes C, Senés-Guerrero C. Gut microbial composition and functionality of school-age Mexican population with metabolic syndrome and type-2 diabetes mellitus using shotgun metagenomic sequencing. Front Pediatr 2023; 11:1193832. [PMID: 37342535 PMCID: PMC10277889 DOI: 10.3389/fped.2023.1193832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Gut metagenome in pediatric subjects with metabolic syndrome (MetS) and type-2 diabetes mellitus (T2DM) has been poorly studied, despite an alarming worldwide increase in the prevalence and incidence of obesity and MetS within this population. The objective of this study was to characterize the gut microbiome taxonomic composition of Mexican pediatric subjects with MetS and T2DM using shotgun metagenomics and analyze the potential relationship with metabolic changes and proinflammatory effects. Paired-end reads of fecal DNA samples were obtained through the Illumina HiSeq X Platform. Statistical analyses and correlational studies were conducted using gut microbiome data and metadata from all individuals. Gut microbial dysbiosis was observed in MetS and T2DM children compared to healthy subjects, which was characterized by an increase in facultative anaerobes (i.e., enteric and lactic acid bacteria) and a decrease in strict anaerobes (i.e., Erysipelatoclostridium, Shaalia, and Actinomyces genera). This may cause a loss of gut hypoxic environment, increased gut microbial nitrogen metabolism, and higher production of pathogen-associated molecular patterns. These metabolic changes may trigger the activation of proinflammatory activity and impair the host's intermediate metabolism, leading to a possible progression of the characteristic risk factors of MetS and T2DM, such as insulin resistance, dyslipidemia, and an increased abdominal circumference. Furthermore, specific viruses (Jiaodavirus genus and Inoviridae family) showed positive correlations with proinflammatory cytokines involved in these metabolic diseases. This study provides novel evidence for the characterization of MetS and T2DM pediatric subjects in which the whole gut microbial composition has been characterized. Additionally, it describes specific gut microorganisms with functional changes that may influence the onset of relevant health risk factors.
Collapse
Affiliation(s)
| | - Oscar Tamez-Rivera
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Ricardo García-Gamboa
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Jalisco, Mexico
- Tecnologico de Monterrey, Escuela de Medicina, Colonia Nuevo México, Zapopan, Jalisco, México
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Jalisco, Mexico
| | - Nora A Rodríguez-Gutiérrez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
- Hospital Regional Materno Infantil de Alta Especialidad, Guadalupe, Nuevo Leon, Mexico
| | | | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon, Mexico
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| | | |
Collapse
|
32
|
Mbaye B, Wasfy RM, Alou MT, Borentain P, Andrieu C, Caputo A, Raoult D, Gerolami R, Million M. Limosilactobacillus fermentum, Lactococcus lactis and Thomasclavelia ramosa are enriched and Methanobrevibacter smithii is depleted in patients with non-alcoholic steatohepatitis. Microb Pathog 2023; 180:106160. [PMID: 37217120 DOI: 10.1016/j.micpath.2023.106160] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Non-alcoholic fatty liver (NAFLD), and its complicated form, non-alcoholic steatohepatitis (NASH), have been associated with gut dysbiosis with specific signatures. Endogenous ethanol production by Klebsiella pneumoniae or yeasts has been identified as a potential physio-pathological mechanism. A species-specific association between Lactobacillus and obesity and metabolic diseases has been reported. In this study, the microbial composition of ten cases of NASH and ten controls was determined using v3v4 16S amplicon sequencing as well as quantitative PCR (qPCR). Using different statistical approaches, we found an association of Lactobacillus and Lactoccocus with NASH, and an association of Methanobrevibacter, Faecalibacterium and Romboutsia with controls. At the species level, Limosilactobacillus fermentum and Lactococcus lactis, two species producing ethanol, and Thomasclavelia ramosa, a species already associated with dysbiosis, were associated with NASH. Using qPCR, we observed a decreased frequency of Methanobrevibacter smithii and confirmed the high prevalence of L. fermentum in NASH samples (5/10), while all control samples were negative (p = 0.02). In contrast, Ligilactobacillus ruminis was associated with controls. This supports the critical importance of taxonomic resolution at the species level, notably with the recent taxonomic reclassification of the Lactobacillus genus. Our results point towards the potential instrumental role of ethanol-producing gut microbes in NASH patients, notably lactic acid bacteria, opening new avenues for prevention and treatment.
Collapse
Affiliation(s)
- Babacar Mbaye
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Reham Magdy Wasfy
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | - Maryam Tidjani Alou
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France
| | | | - Claudia Andrieu
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Aurelia Caputo
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Rene Gerolami
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Marseille, France; Unité hépatologie, Hôpital de la Timone, Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, Marseille, France; Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche pour le Développement, Aix-Marseille Université, Marseille, France; Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
33
|
Sun R, Chen H, Yao S, Yu Z, Lai C, Huang J. Ecological and dynamic analysis of gut microbiota in the early stage of azomethane-dextran sodium sulfate model in mice. Front Cell Infect Microbiol 2023; 13:1178714. [PMID: 37153156 PMCID: PMC10157258 DOI: 10.3389/fcimb.2023.1178714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The success rate of azomethane-dextran sodium sulfate (AOM-DSS) model in mice has been a long-standing problem. Treatment of AOM and the first round DSS induces acute colitis and is of great significance for the success of AOM-DSS model. In this study, we focused on the role of gut microbiota in the early stage of AOM-DSS model. Few mice with obvious weight loss and high disease-activity score survived from double strike of AOM and the first round DSS. Different ecological dynamics of gut microbiota were observed in AOM-DSS treated mice. Pseudescherichia, Turicibacter, and Clostridium_XVIII were of significance in the model, uncontrolled proliferation of which accompanied with rapid deterioration and death of mice. Akkermansia and Ruthenibacterium were significantly enriched in the alive AOM-DSS treated mice. Decrease of Ligilactobacillus, Lactobacillus, and Limosilactobacillus were observed in AOM-DSS model, but significant drop of these genera could be lethal. Millionella was the only hub genus of gut microbiota network in dead mice, which indicated dysbiosis of the intestinal flora and fragility of microbial network. Our results will provide a better understanding for the role of gut microbiota in the early stage of AOM-DSS model and help improve the success rate of model construction.
Collapse
Affiliation(s)
- Ruizheng Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Siqi Yao
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen Lai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital Central South University, Changsha, Hunan, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Dai A, Hoffman K, Xu AA, Gurwara S, White DL, Kanwal F, Jang A, El-Serag HB, Petrosino JF, Jiao L. The Association between Caffeine Intake and the Colonic Mucosa-Associated Gut Microbiota in Humans-A Preliminary Investigation. Nutrients 2023; 15:1747. [PMID: 37049587 PMCID: PMC10096519 DOI: 10.3390/nu15071747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
We examined the association between caffeine and coffee intake and the community composition and structure of colonic microbiota. A total of 34 polyp-free adults donated 97 colonic biopsies. Microbial DNA was sequenced for the 16S rRNA gene V4 region. The amplicon sequence variant was assigned using DADA2 and SILVA. Food consumption was ascertained using a food frequency questionnaire. We compared the relative abundance of taxonomies by low (<82.9 mg) vs. high (≥82.9 mg) caffeine intake and by never or <2 cups vs. 2 cups vs. ≥3 cups coffee intake. False discovery rate-adjusted p values (q values) <0.05 indicated statistical significance. Multivariable negative binomial regression models were used to estimate the incidence rate ratio and its 95% confidence interval of having a non-zero count of certain bacteria by intake level. Higher caffeine and coffee intake was related to higher alpha diversity (Shannon index p < 0.001), higher relative abundance of Faecalibacterium and Alistipes, and lower relative abundance of Erysipelatoclostridium (q values < 0.05). After adjustment of vitamin B2 in multivariate analysis, the significant inverse association between Erysipelatoclostridium count and caffeine intake remained statistically significant. Our preliminary study could not evaluate other prebiotics in coffee.
Collapse
Affiliation(s)
- Annie Dai
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristi Hoffman
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anthony A. Xu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shawn Gurwara
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna L. White
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77021, USA
| | - Fasiha Kanwal
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77021, USA
- Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Albert Jang
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hashem B. El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX 77021, USA
- Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Joseph F. Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
35
|
van Leeuwen PT, Brul S, Zhang J, Wortel MT. Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications. FEMS Microbiol Rev 2023; 47:fuad012. [PMID: 36931888 PMCID: PMC10062696 DOI: 10.1093/femsre/fuad012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The human gut harbors native microbial communities, forming a highly complex ecosystem. Synthetic microbial communities (SynComs) of the human gut are an assembly of microorganisms isolated from human mucosa or fecal samples. In recent decades, the ever-expanding culturing capacity and affordable sequencing, together with advanced computational modeling, started a ''golden age'' for harnessing the beneficial potential of SynComs to fight gastrointestinal disorders, such as infections and chronic inflammatory bowel diseases. As simplified and completely defined microbiota, SynComs offer a promising reductionist approach to understanding the multispecies and multikingdom interactions in the microbe-host-immune axis. However, there are still many challenges to overcome before we can precisely construct SynComs of designed function and efficacy that allow the translation of scientific findings to patients' treatments. Here, we discussed the strategies used to design, assemble, and test a SynCom, and address the significant challenges, which are of microbiological, engineering, and translational nature, that stand in the way of using SynComs as live bacterial therapeutics.
Collapse
Affiliation(s)
- Pim T van Leeuwen
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jianbo Zhang
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike T Wortel
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
36
|
Black Rice Anthocyanidins Regulates Gut Microbiota and Alleviates Related Symptoms through PI3K/AKT Pathway in Type 2 Diabetic Rats. J Food Biochem 2023. [DOI: 10.1155/2023/5876706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/23/2023]
Abstract
Black rice anthocyanins (BRAs) have extremely high nutritional value and health care effects. This study investigated the intervention effect of BRAs on type 2 diabetes mellitus (T2DM) and the regulation effect on intestinal microbiota imbalance in T2DM rats. This study established successfully a T2DM model in a high-fat and high-glucose diet combined with streptozotocin (STZ). BRAs intervention reduced significantly the fasting blood glucose level of T2DM rats, improved the glucose tolerance of rats, reduced the blood lipid level and inflammation state, and repaired liver, oxidative stress, and other injuries. In addition, BRAs’s intervention enhanced the expression of phosphoinositol 3-kinase (PI3K)/protein kinase B (AKT), activated the expression of adenosine 5’-monophosphate-activated protein kinase(AMPK), and the downstream acetyl-CoA carboxylase (ACC) and carnitine palmitoyl transferase (CPT1) in the liver. 16S rRNA sequencing showed that BRAs significantly decreased the abundances of Bifidobacterium and Clostridiaceae_Clostridium, and promoted the abundances of Akkermansia and Lactobacillus. Accelerate the recovery of gut microbiota diversity. BRAs play an antidiabetic role by regulating the PI3K/AKT signaling pathway and intestinal microbiota in T2MD rats.
Collapse
|
37
|
Kim H, Seo J, Park T, Seo K, Cho HW, Chun JL, Kim KH. Obese dogs exhibit different fecal microbiome and specific microbial networks compared with normal weight dogs. Sci Rep 2023; 13:723. [PMID: 36639715 PMCID: PMC9839755 DOI: 10.1038/s41598-023-27846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Canine obesity is a major health concern that predisposes dogs to various disorders. The fecal microbiome has been attracting attention because of their impact on energy efficiency and metabolic disorders of host. However, little is known about specific microbial interactions, and how these may be affected by obesity in dogs. The objective of this study was to investigate the differences in fecal microbiome and specific microbial networks between obese and normal dogs. A total of 20 beagle dogs (males = 12, body weight [BW]: 10.5 ± 1.08 kg; females = 8, BW: 11.3 ± 1.71 kg; all 2-year-old) were fed to meet the maintenance energy requirements for 18 weeks. Then, 12 beagle dogs were selected based on body condition score (BCS) and divided into two groups: high BCS group (HBCS; BCS range: 7-9, males = 4, females = 2) and normal BCS group (NBCS; BCS range: 4-6, males = 4, females = 2). In the final week of the experiment, fecal samples were collected directly from the rectum, before breakfast, for analyzing the fecal microbiome using 16S rRNA gene amplicon sequencing. The HBCS group had a significantly higher final BW than the NBCS group (P < 0.01). The relative abundances of Faecalibacterium, Phascolarctobacterium, Megamonas, Bacteroides, Mucispirillum, and an unclassified genus within Ruminococcaceae were significantly higher in the HBCS group than those in the NBCS group (P < 0.05). Furthermore, some Kyoto Encyclopedia of Genes and Genomes (KEGG) modules related to amino acid biosynthesis and B vitamins biosynthesis were enriched in the HBCS group (P < 0.10), whereas those related to carbohydrate metabolism were enriched in the NBCS group (P < 0.10). Microbial network analysis revealed distinct co-occurrence and mutually exclusive interactions between the HBCS and NBCS groups. In conclusion, several genera related to short-chain fatty acid production were enriched in the HBCS group. The enriched KEGG modules in the HBCS group enhanced energy efficiency through cross-feeding between auxotrophs and prototrophs. However, further studies are needed to investigate how specific networks can be interpreted in the context of fermentation characteristics in the lower gut and obesity in dogs.
Collapse
Affiliation(s)
- Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-Do, 17546, Republic of Korea
| | - Kangmin Seo
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Hyun-Woo Cho
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea.
| |
Collapse
|
38
|
Silamiķele L, Saksis R, Silamiķelis I, Kotoviča PP, Brīvība M, Kalniņa I, Kalniņa Z, Fridmanis D, Kloviņš J. Spatial variation of the gut microbiome in response to long-term metformin treatment in high-fat diet-induced type 2 diabetes mouse model of both sexes. Gut Microbes 2023; 15:2188663. [PMID: 36927522 PMCID: PMC10026874 DOI: 10.1080/19490976.2023.2188663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 03/18/2023] Open
Abstract
Antidiabetic drug metformin alters the gut microbiome composition in the context of type 2 diabetes and other diseases; however, its effects have been mainly studied using fecal samples, which offer limited information about the intestinal site-specific effects of this drug. Our study aimed to characterize the spatial variation of the gut microbiome in response to metformin treatment by using a high-fat diet-induced type 2 diabetes mouse model of both sexes. Four intestinal parts, each at the luminal and mucosal layer level, were analyzed in this study by performing 16S rRNA sequencing covering six variable regions (V1-V6) of the gene and thus allowing to obtain in-depth information about the microbiome composition. We identified significant differences in gut microbiome diversity in each of the intestinal parts regarding the alpha and beta diversities. Metformin treatment altered the abundance of different genera in all studied intestinal sites, with the most pronounced effect in the small intestine, where Lactococcus increased remarkably. The abundance of Lactobacillus was substantially lower in male mice compared to female mice in all locations, in addition to an enrichment of opportunistic pathogens. Diet type and intestinal layer had significant effects on microbiome composition at each of the sites studied. We observed a different effect of metformin treatment on the analyzed subsets, indicating the multiple dimensions of metformin's effect on the gut microbiome.
Collapse
Affiliation(s)
- Laila Silamiķele
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Rihards Saksis
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ivars Silamiķelis
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Monta Brīvība
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ineta Kalniņa
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Zane Kalniņa
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dāvids Fridmanis
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Jānis Kloviņš
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
39
|
Jung JH, Kim G, Byun MS, Lee JH, Yi D, Park H, Lee DY. Gut microbiome alterations in preclinical Alzheimer's disease. PLoS One 2022; 17:e0278276. [PMID: 36445883 PMCID: PMC9707757 DOI: 10.1371/journal.pone.0278276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Although some human studies have reported gut microbiome changes in individuals with Alzheimer's disease (AD) dementia or mild cognitive impairment (MCI), gut microbiome alterations in preclinical AD, i.e., cerebral amyloidosis without cognitive impairment, is largely unknown. OBJECTIVE We aimed to identify gut microbial alterations associated with preclinical AD by comparing cognitively normal (CN) older adults with cerebral Aβ deposition (Aβ+ CN) and those without cerebral Aβ deposition (Aβ- CN). METHODS Seventy-eight CN older participants (18 Aβ+ CN and 60 Aβ- CN) were included, and all participants underwent clinical assessment and Pittsburg compound B-positron emission tomography. The V3-V4 region of the 16S rRNA gene of genomic DNA extracted from feces was amplified and sequenced to establish the microbial community. RESULTS Generalized linear model analysis revealed that the genera Megamonas (B = 3.399, q<0.001), Serratia (B = 3.044, q = 0.005), Leptotrichia (B = 5.862, q = 0.024) and Clostridium (family Clostridiaceae) (B = 0.788, q = 0.034) were more abundant in the Aβ+ CN group than the Aβ- CN group. In contrast, genera CF231 (B = -3.237, q< 0.001), Victivallis (B = -3.447, q = 0.004) Enterococcus (B = -2.044, q = 0.042), Mitsuokella (B = -2.119, q = 0.042) and Clostridium (family Erysipelotrichaceae) (B = -2.222, q = 0.043) were decreased in Aβ+ CN compared to Aβ- CN. Notably, the classification model including the differently abundant genera could effectively distinguish Aβ+ CN from Aβ- CN (AUC = 0.823). CONCLUSION Our findings suggest that specific alterations of gut bacterial taxa are related to preclinical AD, which means these changes may precede cognitive decline. Therefore, examining changes in the microbiome may be helpful in preclinical AD screening.
Collapse
Affiliation(s)
- Joon Hyung Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Genome and Company, Seongnam, Republic of Korea
- * E-mail: (DYL); (HP)
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
- * E-mail: (DYL); (HP)
| | | |
Collapse
|
40
|
Fermented Black Tea and Its Relationship with Gut Microbiota and Obesity: A Mini Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Fermentation is one of the world’s oldest techniques for food preservation, nutrient enhancement, and alcohol manufacturing. During fermentation, carbohydrates such as glucose and starch are converted into other molecules, such as alcohol and acid, anaerobically through enzymatic action while generating energy for the microorganism or cells involved. Black tea is among the most popular fermented beverages; it is made from the dried tea leaves of the evergreen shrub plant known as Camellia sinensis. The adequate consumption of black tea is beneficial to health as it contains high levels of flavanols, also known as catechins, which act as effective antioxidants and are responsible for protecting the body against the development of illnesses, such as inflammation, diabetes, hypertension, cancer, and obesity. The prevalence of obesity is a severe public health concern associated with the incidence of various serious diseases and is now increasing, including in Malaysia. Advances in ‘omic’ research have allowed researchers to identify the pivotal role of the gut microbiota in the development of obesity. This review explores fermented black tea and its correlation with the regulation of the gut microbiota and obesity.
Collapse
|
41
|
Mitchelson KAJ, Tran TTT, Dillon ET, Vlckova K, Harrison SM, Ntemiri A, Cunningham K, Gibson I, Finucane FM, O'Connor EM, Roche HM, O'Toole PW. Yeast β-Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota. Mol Nutr Food Res 2022; 66:e2100819. [PMID: 36038526 PMCID: PMC9787509 DOI: 10.1002/mnfr.202100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2021] [Indexed: 12/30/2022]
Abstract
SCOPE Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β-glucans are potential modulators of the innate immune-metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β-glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high-fat dietary challenge. METHODS AND RESULTS Male C57BL/6J mice are pre-inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high-fat diet (HFD) with/without yeast β-glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β-glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health-related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD-induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β-glucan supplementation. CONCLUSIONS Hepatic metabolism is adversely affected by OBD microbiome colonization with high-fat feeding, but partially resolved by yeast β-glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy.
Collapse
Affiliation(s)
- Kathleen A. J. Mitchelson
- Nutrigenomics Research Group and Institute of Food and HealthUniversity College DublinDublinDublin 4Republic of Ireland
| | - Tam T. T. Tran
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
- Present address:
Vietnam Academy of Science and TechnologyUniversity of Science and Technology of HanoiHanoiVietnam
| | - Eugene T. Dillon
- Mass Spectrometry ResourceConway Institute of Biomolecular & Biomedical ResearchUniversity College DublinDublinDublin 4Republic of Ireland
| | - Klara Vlckova
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
| | - Sabine M. Harrison
- UCD School of Agriculture & Food ScienceUniversity College DublinDublinDublin 4Republic of Ireland
| | - Alexandra Ntemiri
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
| | - Katie Cunningham
- Bariatric Medicine ServiceCentre for Diabetes, Endocrinology and MetabolismGalway University HospitalsGalwayH91 YR71Republic of Ireland
- Heart and Stroke CentreCroiThe West of Ireland Cardiac FoundationMoyola Lane, NewcastleGalwayGalwayH91 FF68Republic of Ireland
| | - Irene Gibson
- Heart and Stroke CentreCroiThe West of Ireland Cardiac FoundationMoyola Lane, NewcastleGalwayGalwayH91 FF68Republic of Ireland
| | - Francis M. Finucane
- Bariatric Medicine ServiceCentre for Diabetes, Endocrinology and MetabolismGalway University HospitalsGalwayH91 YR71Republic of Ireland
- HRB Clinical Research FacilityNational University of IrelandGalwayH91 TK33Republic of Ireland
| | - Eibhlís M. O'Connor
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- Department of Biological SciencesSchool of Natural SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
- Health Research InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group and Institute of Food and HealthUniversity College DublinDublinDublin 4Republic of Ireland
- Diabetes Complications Research CentreUniversity College DublinDublinDublin 4Republic of Ireland
- The Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastBT9 5DLUK
| | - Paul W. O'Toole
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
| |
Collapse
|
42
|
Díaz-Rodríguez K, Pacheco-Aranibar J, Manrique-Sam C, Ita-Balta Y, del Carpio-Toia AM, López-Casaperalta P, Chocano-Rosas T, Fernandez-F F, Villanueva-Salas J, Bernabe-Ortiz JC. Intestinal Microbiota in Children with Anemia in Southern Peru through Next-Generation Sequencing Technology. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1615. [PMID: 36360343 PMCID: PMC9688611 DOI: 10.3390/children9111615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 08/30/2023]
Abstract
Knowledge of the sequencing of the 16S rRNA gene constitutes a true revolution in understanding the composition of the intestinal microbiota and its implication in health states. This study details microbial composition through next-generation sequencing (NGS) technology in children with anemia. Anemia is the most frequent hematological disorder that affects human beings. In Peru, it is one of the conditions that presents the most significant concern due to the adverse effects that cause it, such as delayed growth and psychomotor development, in addition to a deficiency in cognitive development.
Collapse
Affiliation(s)
- Karla Díaz-Rodríguez
- Post-Graduate School, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Jani Pacheco-Aranibar
- Post-Graduate School, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Deparment of Biology, Universidad Nacional de San Agustín, Santa Catalina Nro. 117, Arequipa 04001, Peru
- Department of Molecular Biology, Instituto de Biotecnología del ADN Uchumayo, Arequipa 04401, Peru
| | - Cecilia Manrique-Sam
- Post-Graduate School, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Yuma Ita-Balta
- Post-Graduate School, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Agueda Muñoz del Carpio-Toia
- Post-Graduate School, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Patricia López-Casaperalta
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Teresa Chocano-Rosas
- Post-Graduate School, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Fernando Fernandez-F
- Post-Graduate School, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Jose Villanueva-Salas
- Post-Graduate School, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Julio Cesar Bernabe-Ortiz
- Post-Graduate School, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Deparment of Biology, Universidad Nacional de San Agustín, Santa Catalina Nro. 117, Arequipa 04001, Peru
- Department of Molecular Biology, Instituto de Biotecnología del ADN Uchumayo, Arequipa 04401, Peru
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| |
Collapse
|
43
|
Li X, Wu J, Kang Y, Chen D, Chen G, Zeng X, Wang J. Yeast mannoproteins are expected to be a novel potential functional food for attenuation of obesity and modulation of gut microbiota. Front Nutr 2022; 9:1019344. [PMID: 36313084 PMCID: PMC9614242 DOI: 10.3389/fnut.2022.1019344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The yeast mannoproteins (MPs), a major component of yeast cell walls with large exploration potentiality, have been attracting increasing attention due to their beneficial effects. However, the information about the anti-obesogenic activity of MPs is still limited. Thus, the effects of MPs on the high-fat diet (HFD)-induced obesity and dysbiosis of gut microbiota were investigated in this work. The results showed that MPs could significantly attenuate the HFD-induced higher body weight, fat accumulation, liver steatosis, and damage. Simultaneously, the inflammation in HFD-induced mice was also ameliorated by MPs. The pyrosequencing analysis showed that intervention by MPs could lead to an obvious change in the structure of gut microbiota. Furthermore, the prevention of obesity by MPs is highly linked to the promotion of Parabacteroides distasonis (increased from 0.39 ± 0.12% to 2.10 ± 0.20%) and inhibition of Lactobacillus (decreased from 19.99 ± 3.94% to 2.68 ± 0.77%). Moreover, the increased level of acetate (increased from 3.28 ± 0.22 mmol/g to 7.84 ± 0.96 mmol/g) and activation of G protein-coupled receptors (GPRs) by MPs may also contribute to the prevention of obesity. Thus, our preliminary findings revealed that MPs from yeast could be explored as potential prebiotics to modulate the gut microbiota and prevent HFD-induced obesity.
Collapse
Affiliation(s)
- Xiang Li
- School of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng, China
| | - Junsong Wu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yijun Kang
- School of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,*Correspondence: Guijie Chen,
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China,Xiaoxiong Zeng,
| | - Jialian Wang
- School of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng, China
| |
Collapse
|
44
|
Smith AM, Welch BA, Harris KK, Garrett MR, Grayson BE. Nutrient composition influences the gut microbiota in chronic thoracic spinal cord-injured rats. Physiol Genomics 2022; 54:402-415. [PMID: 36036458 PMCID: PMC9576181 DOI: 10.1152/physiolgenomics.00037.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic spinal cord injury (SCI) results in an increased predisposition to various metabolic problems that can be exacerbated by consuming a diet rich in calories and saturated fat. In addition, gastrointestinal symptoms have been reported after SCI, including intestinal dysbiosis of the gut microbiome. The effects of both diet and SCI on the gut microbiome of adult male Long Evans rats euthanized 16 wk after injury were investigated. The rats were either thoracic spinal contused or received sham procedures. After 12 wk of either a low-fat or high-fat diet, cecal contents were analyzed, revealing significant microbial changes to every taxonomic level below the kingdom level. Shannon α diversity analyses demonstrated a significant difference in diversity between the groups based on the surgical condition of the rats. SCI produced a unique signature of changes in commensal bacteria that were significantly different than Sham. Specific changes in commensal bacteria as a result of diet manipulation had high fidelity with reports in the literature, such as Clostridia, Thiohalorhabdales, and Pseudomonadales. In addition, novel changes in commensal bacteria were identified that are unique dietary influences on SCI. Linear regression analysis on body fat and lean mass showed that a consequence of chronic SCI produces uncoupled associations between some commensal bacteria and body composition. In conclusion, despite tightly controlling the protein content and varying the carbohydrate and fat contents, Sham and SCI rats respond uniquely to diet. These data provide potential direction for therapeutic modulation of the microbiome to improve health and wellness following SCI.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bradley A Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kwamie K Harris
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
45
|
Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe 2022; 30:1630-1645.e25. [DOI: 10.1016/j.chom.2022.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 12/26/2022]
|
46
|
Chen G, Peng Y, Huang Y, Xie M, Dai Z, Cai H, Dong W, Xu W, Xie Z, Chen D, Fan X, Zhou W, Kan X, Yang T, Chen C, Sun Y, Zeng X, Liu Z. Fluoride induced leaky gut and bloom of Erysipelatoclostridium ramosum mediate the exacerbation of obesity in high-fat-diet fed mice. J Adv Res 2022:S2090-1232(22)00239-9. [PMID: 36341987 PMCID: PMC10403698 DOI: 10.1016/j.jare.2022.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2022] [Revised: 09/18/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Fluoride is widely presented in drinking water and foods. A strong relation between fluoride exposure and obesity has been reported. However, the potential mechanisms on fluoride-induced obesity remain unexplored. Objectives and methods The effects of fluoride on the obesity were investigated using mice model. Furthermore, the role of gut homeostasis in exacerbation of the obesity induced by fluoride was evaluated. Results The results showed that fluoride alone did not induce obesity in normal diet (ND) fed mice, whereas, it could trigger exacerbation of obesity in high-fat diet (HFD) fed mice. Fluoride impaired intestinal barrier and activated Toll-like receptor 4 (TLR4) signaling to induce obesity, which was further verified in TLR4-/- mice. Furthermore, fluoride could deteriorate the gut microbiota in HFD mice. The fecal microbiota transplantation from fluoride-induced mice was sufficient to induce obesity, while the exacerbation of obesity by fluoride was blocked upon gut microbiota depletion. The fluoride-induced bloom of Erysipelatoclostridium ramosum was responsible for exacerbation of obesity. In addition, a potential strategy for prevention of fluoride-induced obesity was proposed by intervention with polysaccharides from Fuzhuan brick tea. Conclusion Overall, these results provide the first evidence of a comprehensive cross-talk mechanism between fluoride and obesity in HFD fed mice, which is mediated by gut microbiota and intestinal barrier. E. ramosum was identified as a crucial mediator of fluoride induced obesity, which could be explored as potential target for prevention and treatment of obesity with exciting translational value.
Collapse
|
47
|
Squizani S, Jantsch J, Rodrigues FDS, Braga MF, Eller S, de Oliveira TF, Silveira AK, Moreira JCF, Giovenardi M, Porawski M, Guedes RP. Zinc Supplementation Partially Decreases the Harmful Effects of a Cafeteria Diet in Rats but Does Not Prevent Intestinal Dysbiosis. Nutrients 2022; 14:3921. [PMID: 36235574 PMCID: PMC9571896 DOI: 10.3390/nu14193921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Zinc (Zn) plays an important role in metabolic homeostasis and may modulate neurological impairment related to obesity. The present study aimed to evaluate the effect of Zn supplementation on the intestinal microbiota, fatty acid profile, and neurofunctional parameters in obese male Wistar rats. Rats were fed a cafeteria diet (CAF), composed of ultra-processed and highly caloric and palatable foods, for 20 weeks to induce obesity. From week 16, Zn supplementation was started (10 mg/kg/day). At the end of the experiment, we evaluated the colon morphology, composition of gut microbiota, intestinal fatty acids, integrity of the intestinal barrier and blood-brain barrier (BBB), and neuroplasticity markers in the cerebral cortex and hippocampus. Obese rats showed dysbiosis, morphological changes, short-chain fatty acid (SCFA) reduction, and increased saturated fatty acids in the colon. BBB may also be compromised in CAF-fed animals, as claudin-5 expression is reduced in the cerebral cortex. In addition, synaptophysin was decreased in the hippocampus, which may affect synaptic function. Our findings showed that Zn could not protect obese animals from intestinal dysbiosis. However, an increase in acetate levels was observed, which suggests a partial beneficial effect of Zn. Thus, Zn supplementation may not be sufficient to protect from obesity-related dysfunctions.
Collapse
Affiliation(s)
- Samia Squizani
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Fernanda da Silva Rodrigues
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Matheus Filipe Braga
- Acadêmico do Curso de Biomedicina, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Sarah Eller
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Tiago Franco de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Alexandre Kleber Silveira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Marcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Marilene Porawski
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
- Programa de Pós-Graduação em Medicina: Hepatologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| |
Collapse
|
48
|
Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle. PLoS Biol 2022; 20:e3001743. [PMID: 36126044 PMCID: PMC9488797 DOI: 10.1371/journal.pbio.3001743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2021] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium.
Collapse
|
49
|
Liu Y, Zeng Y, Liu Y, Wang X, Chen Y, Lepp D, Tsao R, Sadakiyo T, Zhang H, Mine Y. Regulatory Effect of Isomaltodextrin on a High-Fat Diet Mouse Model with LPS-Induced Low-Grade Chronic Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11258-11273. [PMID: 36041062 DOI: 10.1021/acs.jafc.2c03391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
This study aimed to identify the effects of isomaltodextrin (IMD) on sustaining the gut integrity and microbiota composition in a high-fat diet (HFD) with a lipopolysaccharide (LPS)-induced low-grade inflammation mouse model. The homeostasis of the immune response is important to reduce the risk of developing metabolic syndromes. The results of this study showed that pre-treatment of IMD at 5% (w/v) suppressed the concentration of endotoxin and pro-inflammatory mediators TNF-α, MCP-1, and IL-6 while increasing the adiponectin level in the plasma. Subsequently, IMD supplementation maintained the structural integrity and intestinal permeability by upregulating the tight junction protein expressions, leading to reducing D-mannitol concentration in the blood. In addition, dysbiosis was observed in mice induced by HFD plus LPS, suggesting that unhealthy dietary factors elicit metabolic endotoxemia and associated dysbiosis to impair the barrier function. However, IMD supplementation was shown to restore the microbial diversity, promote the growth of Bacteroides-Prevotella, and upregulate the related d-glucarate and d-galactarate degradation pathways, together demonstrating the benefits of IMD as a prebiotic able to promote energy homeostasis. Our results also showed that the blood lipid profile and glucose level in the low-grade inflammation mouse model were modulated by IMD. Moreover, IMD supplementation effectively prevented the metabolic disorder and modulated immune responses in inflamed white adipose tissues by inhibiting the macrophage infiltration and restoring the adiponectin, PPAR-γ, and IRS-1 expression. These findings provide strong evidence for IMD to be a potential prebiotic that acts to sustain a healthy gut microbiota composition and barrier function. By protecting against an unhealthy diet-impaired metabolic balance and maintaining immune homeostasis, IMD may affect the development of metabolic disorders.
Collapse
Affiliation(s)
- Yijun Liu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yuhan Zeng
- Department of Food Science, University of Guelph, Guelph Ontario N1G2W1, Canada
| | - Yixin Liu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Wang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yuhuan Chen
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dion Lepp
- Guelph Food Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph Ontario N1G 5C9, Canada
| | - Rong Tsao
- Guelph Food Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph Ontario N1G 5C9, Canada
| | - Tsuyoshi Sadakiyo
- Food System Solutions Division, Hayashibara CO., LTD., 525-3 Kuwano, Naka-ku, Okayama 702-8002, Japan
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph Ontario N1G2W1, Canada
| |
Collapse
|
50
|
Ding L, Ren S, Song Y, Zang C, Liu Y, Guo H, Yang W, Guan H, Liu J. Modulation of gut microbiota and fecal metabolites by corn silk among high-fat diet-induced hypercholesterolemia mice. Front Nutr 2022; 9:935612. [PMID: 35978956 PMCID: PMC9376456 DOI: 10.3389/fnut.2022.935612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Corn silk (CS) is known to reduce cholesterol levels, but its underlying mechanisms remain elusive concerning the gut microbiota and metabolites. The aim of our work was to explore how altered gut microbiota composition and metabolite profile are influenced by CS intervention in mice using integrated 16S ribosomal RNA (rRNA) sequencing and an untargeted metabolomics methodology. The C57BL/6J mice were fed a normal control diet, a high-fat diet (HFD), and HFD supplemented with the aqueous extract of CS (80 mg/mL) for 8 weeks. HFD-induced chronic inflammation damage is alleviated by CS extract intervention and also resulted in a reduction in body weight, daily energy intake as well as serum and hepatic total cholesterol (TC) levels. In addition, CS extract altered gut microbial composition and regulated specific genera viz. Allobaculum, Turicibacter, Romboutsia, Streptococcus, Sporobacter, Christensenella, ClostridiumXVIII, and Rikenella. Using Spearman’s correlation analysis, we determined that Turicibacter and Rikenella were negatively correlated with hypercholesterolemia-related parameters. Fecal metabolomics analysis revealed that CS extract influences multiple metabolic pathways like histidine metabolism-related metabolites (urocanic acid, methylimidazole acetaldehyde, and methiodimethylimidazoleacetic acid), sphingolipid metabolism-related metabolites (sphinganine, 3-dehydrosphinganine, sphingosine), and some bile acids biosynthesis-related metabolites including chenodeoxycholic acid (CDCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), and glycoursodeoxycholic acid (GUDCA). As a whole, the present study indicates that the modifications in the gut microbiota and subsequent host bile acid metabolism may be a potential mechanism for the antihypercholesterolemic effects of CS extract.
Collapse
Affiliation(s)
- Lin Ding
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Shan Ren
- College of Basic Medical, Qiqihar Medical University, Qiqihar, China
| | - Yaoxin Song
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Chuangang Zang
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Yuchao Liu
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Hao Guo
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Wenqing Yang
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Hong Guan
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China.,Qiqihar Academy of Medical Sciences, Qiqihar, China
| |
Collapse
|