1
|
Lefebvre MJM, Degrugillier F, Arnathau C, Fontecha GA, Noya O, Houzé S, Severini C, Pradines B, Berry A, Trape JF, Sáenz FE, Prugnolle F, Fontaine MC, Rougeron V. Genomic exploration of the journey of Plasmodium vivax in Latin America. PLoS Pathog 2025; 21:e1012811. [PMID: 39804931 PMCID: PMC11761655 DOI: 10.1371/journal.ppat.1012811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/24/2025] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium vivax is the predominant malaria parasite in Latin America. Its colonization history in the region is rich and complex, and is still highly debated, especially about its origin(s). Our study employed cutting-edge population genomic techniques to analyze whole genome variation from 620 P. vivax isolates, including 107 newly sequenced samples from West Africa, Middle East, and Latin America. This sampling represents nearly all potential source populations worldwide currently available. Analyses of the genetic structure, diversity, ancestry, coalescent-based inferences, including demographic scenario testing using Approximate Bayesian Computation, have revealed a more complex evolutionary history than previously envisioned. Indeed, our analyses suggest that the current American P. vivax populations predominantly stemmed from a now-extinct European lineage, with the potential contribution also from unsampled populations, most likely of West African origin. We also found evidence that P. vivax arrived in Latin America in multiple waves, initially during early European contact and later through post-colonial human migration waves in the late 19th-century. This study provides a fresh perspective on P. vivax's intricate evolutionary journey and brings insights into the possible contribution of West African P. vivax populations to the colonization history of Latin America.
Collapse
Affiliation(s)
| | | | | | - Gustavo A. Fontecha
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Oscar Noya
- Infectious Diseases Section, "Dr. Felix Pifano" Tropical Medicine Institute, Central University of Venezuela, Caracas, Venezuela
- Centro Para Estudios Sobre Malaria, "Dr. Arnoldo Gabaldón" High Studies Institute, Caracas, Venezuela
| | - Sandrine Houzé
- Université de Paris, MERIT, IRD, Paris, France
- AP-HP, Centre National de Référence sur le paludisme, hôpital Bichat-Claude-Bernard, Paris, France
| | - Carlo Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Bruno Pradines
- Unité parasitologie et entomologie, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
- Aix Marseille Univ, SSA, AP-HM, RITMES, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Centre national de référence du paludisme, Marseille, France
| | - Antoine Berry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, CNRS UMR5051, INSERM UMR 1291, UPS, Toulouse, France
- Département de Parasitologie et Mycologie, CHU Toulouse, Toulouse, France
| | | | - Fabian E. Sáenz
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Franck Prugnolle
- REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa
- Sustainability Research Unit, George Campus, Nelson Mandela University, George, South Africa
| | - Michael C. Fontaine
- MiVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Virginie Rougeron
- REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa
- Sustainability Research Unit, George Campus, Nelson Mandela University, George, South Africa
| |
Collapse
|
2
|
Schwabl P, Camponovo F, Clementson C, Early AM, Laws M, Forero-Peña DA, Noya O, Grillet ME, Vanhove M, Anthony F, James K, Singh N, Cox H, Niles-Robin R, Buckee CO, Neafsey DE. Contrasting genomic epidemiology between sympatric Plasmodium falciparum and Plasmodium vivax populations. Nat Commun 2024; 15:8450. [PMID: 39349478 PMCID: PMC11442626 DOI: 10.1038/s41467-024-52545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024] Open
Abstract
The malaria parasites Plasmodium falciparum and Plasmodium vivax differ in key biological processes and associated clinical effects, but consequences on population-level transmission dynamics are difficult to predict. This co-endemic malaria study from Guyana details important epidemiological contrasts between the species by coupling population genomics (1396 spatiotemporally matched parasite genomes, primarily from 2020-21) with sociodemographic analysis (nationwide patient census from 2019). We describe how P. falciparum forms large, interrelated subpopulations that sporadically expand but generally exhibit restrained dispersal, whereby spatial distance and patient travel statistics predict parasite identity-by-descent (IBD). Case bias towards working-age adults is also strongly pronounced. P. vivax exhibits 46% higher average nucleotide diversity (π) and 6.5x lower average IBD. It occupies a wider geographic range, without evidence for outbreak-like expansions, only microgeographic patterns of isolation-by-distance, and weaker case bias towards adults. Possible latency-relapse effects also manifest in various analyses. For example, 11.0% of patients diagnosed with P. vivax in Greater Georgetown report no recent travel to endemic zones, and P. vivax clones recur in 11 of 46 patients incidentally sampled twice during the study. Polyclonality rate is also 2.1x higher than in P. falciparum, does not trend positively with estimated incidence, and correlates uniquely to selected demographics. We discuss possible underlying mechanisms and implications for malaria control.
Collapse
Affiliation(s)
- Philipp Schwabl
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Flavia Camponovo
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Margaret Laws
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David A Forero-Peña
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolívar, Venezuela
| | - Oscar Noya
- Institute of Tropical Medicine, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
- Center for Malaria Research, Institute of Higher Studies 'Dr. Arnoldo Gabaldón', Ministry of Popular Power for Health, Caracas, Venezuela
| | - María Eugenia Grillet
- Institute of Zoology and Tropical Ecology, Central University of Venezuela, Caracas, Venezuela
| | - Mathieu Vanhove
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Frank Anthony
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Kashana James
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Narine Singh
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Horace Cox
- National Malaria Program, Ministry of Health, Georgetown, Guyana
- Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
| | - Reza Niles-Robin
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Pilling OA, Sundararaman SA, Brisson D, Beiting DP. Turning the needle into the haystack: Culture-independent amplification of complex microbial genomes directly from their native environment. PLoS Pathog 2024; 20:e1012418. [PMID: 39264872 PMCID: PMC11392400 DOI: 10.1371/journal.ppat.1012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionized microbiology, but many microbes exist at low abundance in their natural environment and/or are difficult, if not impossible, to culture in the laboratory. This makes it challenging to use HTS to study the genomes of many important microbes and pathogens. In this review, we discuss the development and application of selective whole genome amplification (SWGA) to allow whole or partial genomes to be sequenced for low abundance microbes directly from complex biological samples. We highlight ways in which genomic data generated by SWGA have been used to elucidate the population dynamics of important human pathogens and monitor development of antimicrobial resistance and the emergence of potential outbreaks. We also describe the limitations of this method and propose some potential innovations that could be used to improve the quality of SWGA and lower the barriers to using this method across a wider range of infectious pathogens.
Collapse
Affiliation(s)
- Olivia A Pilling
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sesh A Sundararaman
- Department of Pediatrics, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dustin Brisson
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Pennsylvania, United States of America
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Muneer A, Adapa SR, Silbert S, Scanlan K, Vore H, Cannons A, Morrison AM, Stanek D, Blackmore C, Adams JH, Kim K, Jiang RH, Cui L. Autochthonous Plasmodium vivax Infections, Florida, USA, 2023. Emerg Infect Dis 2024; 30:1214-1217. [PMID: 38662728 PMCID: PMC11138989 DOI: 10.3201/eid3006.240336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
During May-July 2023, a cluster of 7 patients at local hospitals in Florida, USA, received a diagnosis of Plasmodium vivax malaria. Whole-genome sequencing of the organism from 4 patients and phylogenetic analysis with worldwide representative P. vivax genomes indicated probable single parasite introduction from Central/South America.
Collapse
Affiliation(s)
| | | | - Suzane Silbert
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA (A. Muneer, K. Kim, L. Cui)
- University of South Florida School of Public Health, Tampa (S.R. Adapa, J.H. Adams, K. Kim, R.H.Y. Jiang)
- Tampa General Hospital, Tampa (S. Silbert, K. Kim)
- Sarasota Memorial Hospital, Sarasota, Florida, USA (K. Scanlan, H. Vore)
- Florida Department of Health Bureau of Public Health Laboratories, Tampa (A. Cannons)
- Florida Department of Health, Tallahassee, Florida, USA (A.M. Morrison, D. Stanek, C. Blackmore)
| | - Kelly Scanlan
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA (A. Muneer, K. Kim, L. Cui)
- University of South Florida School of Public Health, Tampa (S.R. Adapa, J.H. Adams, K. Kim, R.H.Y. Jiang)
- Tampa General Hospital, Tampa (S. Silbert, K. Kim)
- Sarasota Memorial Hospital, Sarasota, Florida, USA (K. Scanlan, H. Vore)
- Florida Department of Health Bureau of Public Health Laboratories, Tampa (A. Cannons)
- Florida Department of Health, Tallahassee, Florida, USA (A.M. Morrison, D. Stanek, C. Blackmore)
| | - Harold Vore
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA (A. Muneer, K. Kim, L. Cui)
- University of South Florida School of Public Health, Tampa (S.R. Adapa, J.H. Adams, K. Kim, R.H.Y. Jiang)
- Tampa General Hospital, Tampa (S. Silbert, K. Kim)
- Sarasota Memorial Hospital, Sarasota, Florida, USA (K. Scanlan, H. Vore)
- Florida Department of Health Bureau of Public Health Laboratories, Tampa (A. Cannons)
- Florida Department of Health, Tallahassee, Florida, USA (A.M. Morrison, D. Stanek, C. Blackmore)
| | - Andrew Cannons
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA (A. Muneer, K. Kim, L. Cui)
- University of South Florida School of Public Health, Tampa (S.R. Adapa, J.H. Adams, K. Kim, R.H.Y. Jiang)
- Tampa General Hospital, Tampa (S. Silbert, K. Kim)
- Sarasota Memorial Hospital, Sarasota, Florida, USA (K. Scanlan, H. Vore)
- Florida Department of Health Bureau of Public Health Laboratories, Tampa (A. Cannons)
- Florida Department of Health, Tallahassee, Florida, USA (A.M. Morrison, D. Stanek, C. Blackmore)
| | - Andrea M. Morrison
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA (A. Muneer, K. Kim, L. Cui)
- University of South Florida School of Public Health, Tampa (S.R. Adapa, J.H. Adams, K. Kim, R.H.Y. Jiang)
- Tampa General Hospital, Tampa (S. Silbert, K. Kim)
- Sarasota Memorial Hospital, Sarasota, Florida, USA (K. Scanlan, H. Vore)
- Florida Department of Health Bureau of Public Health Laboratories, Tampa (A. Cannons)
- Florida Department of Health, Tallahassee, Florida, USA (A.M. Morrison, D. Stanek, C. Blackmore)
| | - Danielle Stanek
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA (A. Muneer, K. Kim, L. Cui)
- University of South Florida School of Public Health, Tampa (S.R. Adapa, J.H. Adams, K. Kim, R.H.Y. Jiang)
- Tampa General Hospital, Tampa (S. Silbert, K. Kim)
- Sarasota Memorial Hospital, Sarasota, Florida, USA (K. Scanlan, H. Vore)
- Florida Department of Health Bureau of Public Health Laboratories, Tampa (A. Cannons)
- Florida Department of Health, Tallahassee, Florida, USA (A.M. Morrison, D. Stanek, C. Blackmore)
| | - Carina Blackmore
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA (A. Muneer, K. Kim, L. Cui)
- University of South Florida School of Public Health, Tampa (S.R. Adapa, J.H. Adams, K. Kim, R.H.Y. Jiang)
- Tampa General Hospital, Tampa (S. Silbert, K. Kim)
- Sarasota Memorial Hospital, Sarasota, Florida, USA (K. Scanlan, H. Vore)
- Florida Department of Health Bureau of Public Health Laboratories, Tampa (A. Cannons)
- Florida Department of Health, Tallahassee, Florida, USA (A.M. Morrison, D. Stanek, C. Blackmore)
| | - John H. Adams
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA (A. Muneer, K. Kim, L. Cui)
- University of South Florida School of Public Health, Tampa (S.R. Adapa, J.H. Adams, K. Kim, R.H.Y. Jiang)
- Tampa General Hospital, Tampa (S. Silbert, K. Kim)
- Sarasota Memorial Hospital, Sarasota, Florida, USA (K. Scanlan, H. Vore)
- Florida Department of Health Bureau of Public Health Laboratories, Tampa (A. Cannons)
- Florida Department of Health, Tallahassee, Florida, USA (A.M. Morrison, D. Stanek, C. Blackmore)
| | | | | | | |
Collapse
|
5
|
Peng Y, Williams MM, Xiaoli L, Simon A, Fueston H, Tondella ML, Weigand MR. Strengthening Bordetella pertussis genomic surveillance by direct sequencing of residual positive specimens. J Clin Microbiol 2024; 62:e0165323. [PMID: 38445858 PMCID: PMC11005353 DOI: 10.1128/jcm.01653-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Whole-genome sequencing (WGS) of microbial pathogens recovered from patients with infectious disease facilitates high-resolution strain characterization and molecular epidemiology. However, increasing reliance on culture-independent methods to diagnose infectious diseases has resulted in few isolates available for WGS. Here, we report a novel culture-independent approach to genome characterization of Bordetella pertussis, the causative agent of pertussis and a paradigm for insufficient genomic surveillance due to limited culture of clinical isolates. Sequencing libraries constructed directly from residual pertussis-positive diagnostic nasopharyngeal specimens were hybridized with biotinylated RNA "baits" targeting B. pertussis fragments within complex mixtures that contained high concentrations of host and microbial background DNA. Recovery of B. pertussis genome sequence data was evaluated with mock and pooled negative clinical specimens spiked with reducing concentrations of either purified DNA or inactivated cells. Targeted enrichment increased the yield of B. pertussis sequencing reads up to 90% while simultaneously decreasing host reads to less than 10%. Filtered sequencing reads provided sufficient genome coverage to perform characterization via whole-genome single nucleotide polymorphisms and whole-genome multilocus sequencing typing. Moreover, these data were concordant with sequenced isolates recovered from the same specimens such that phylogenetic reconstructions from either consistently clustered the same putatively linked cases. The optimized protocol is suitable for nasopharyngeal specimens with diagnostic IS481 Ct < 35 and >10 ng DNA. Routine implementation of these methods could strengthen surveillance and study of pertussis resurgence by capturing additional cases with genomic characterization.
Collapse
Affiliation(s)
- Yanhui Peng
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M. Williams
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Ashley Simon
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Heather Fueston
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria L. Tondella
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael R. Weigand
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Taitt CR, Leski TA, Compton JR, Chen A, Berk KL, Dorsey RW, Sozhamannan S, Dutt DL, Vora GJ. Impact of template denaturation prior to whole genome amplification on gene detection in high GC-content species, Burkholderia mallei and B. pseudomallei. BMC Res Notes 2024; 17:70. [PMID: 38475810 DOI: 10.1186/s13104-024-06717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
OBJECTIVE In this study, we sought to determine the types and prevalence of antimicrobial resistance determinants (ARDs) in Burkholderia spp. strains using the Antimicrobial Resistance Determinant Microarray (ARDM). RESULTS Whole genome amplicons from 22 B. mallei (BM) and 37 B. pseudomallei (BP) isolates were tested for > 500 ARDs using ARDM v.3.1. ARDM detected the following Burkholderia spp.-derived genes, aac(6), blaBP/MBL-3, blaABPS, penA-BP, and qacE, in both BM and BP while blaBP/MBL-1, macB, blaOXA-42/43 and penA-BC were observed in BP only. The method of denaturing template for whole genome amplification greatly affected the numbers and types of genes detected by the ARDM. BlaTEM was detected in nearly a third of BM and BP amplicons derived from thermally, but not chemically denatured templates. BlaTEM results were confirmed by PCR, with 81% concordance between methods. Sequences from 414-nt PCR amplicons (13 preparations) were 100% identical to the Klebsiella pneumoniae reference gene. Although blaTEM sequences have been observed in B. glumae, B. cepacia, and other undefined Burkholderia strains, this is the first report of such sequences in BM/BP/B. thailandensis (BT) clade. These results highlight the importance of sample preparation in achieving adequate genome coverage in methods requiring untargeted amplification before analysis.
Collapse
Affiliation(s)
- Chris R Taitt
- Nova Research Inc., Alexandria, VA, 22308, USA
- Center for Biomolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Tomasz A Leski
- Center for Biomolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Jaimee R Compton
- Center for Biomolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Amy Chen
- Karle's Fellow, US Naval Research Laboratory, Washington, DC, USA
| | - Kimberly L Berk
- US Army Combat Capabilities Development Command-Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| | - Robert W Dorsey
- US Army Combat Capabilities Development Command-Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| | - Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Frederick, MD, USA
- Joint Research and Development, Inc., Stafford, VA, USA
| | - Dianne L Dutt
- Defense Threat Reduction Agency, Joint Science and Technology Office, Ft. Belvoir, VA, USA
| | - Gary J Vora
- Center for Biomolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA.
| |
Collapse
|
7
|
Ruybal-Pesántez S, McCann K, Vibin J, Siegel S, Auburn S, Barry AE. Molecular markers for malaria genetic epidemiology: progress and pitfalls. Trends Parasitol 2024; 40:147-163. [PMID: 38129280 DOI: 10.1016/j.pt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kirsty McCann
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jessy Vibin
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
8
|
De Meulenaere K, Cuypers WL, Gauglitz JM, Guetens P, Rosanas-Urgell A, Laukens K, Cuypers B. Selective whole-genome sequencing of Plasmodium parasites directly from blood samples by nanopore adaptive sampling. mBio 2024; 15:e0196723. [PMID: 38054750 PMCID: PMC10790762 DOI: 10.1128/mbio.01967-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Malaria is caused by parasites of the genus Plasmodium, and reached a global disease burden of 247 million cases in 2021. To study drug resistance mutations and parasite population dynamics, whole-genome sequencing of patient blood samples is commonly performed. However, the predominance of human DNA in these samples imposes the need for time-consuming laboratory procedures to enrich Plasmodium DNA. We used the Oxford Nanopore Technologies' adaptive sampling feature to circumvent this problem and enrich Plasmodium reads directly during the sequencing run. We demonstrate that adaptive nanopore sequencing efficiently enriches Plasmodium reads, which simplifies and shortens the timeline from blood collection to parasite sequencing. In addition, we show that the obtained data can be used for monitoring genetic markers, or to generate nearly complete genomes. Finally, owing to its inherent mobility, this technology can be easily applied on-site in endemic areas where patients would benefit the most from genomic surveillance.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Computer Science, Adrem Data Lab, University of Antwerp, Wilrijk, Belgium
- Department of Biomedical Sciences, Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Wim L. Cuypers
- Department of Computer Science, Adrem Data Lab, University of Antwerp, Wilrijk, Belgium
| | - Julia M. Gauglitz
- Department of Computer Science, Adrem Data Lab, University of Antwerp, Wilrijk, Belgium
| | - Pieter Guetens
- Department of Biomedical Sciences, Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kris Laukens
- Department of Computer Science, Adrem Data Lab, University of Antwerp, Wilrijk, Belgium
- Excellence centre for Microbial Systems Technology, University of Antwerp, Wilrijk, Belgium
| | - Bart Cuypers
- Department of Computer Science, Adrem Data Lab, University of Antwerp, Wilrijk, Belgium
- Excellence centre for Microbial Systems Technology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Phelan JE, Turkiewicz A, Manko E, Thorpe J, Vanheer LN, van de Vegte-Bolmer M, Ngoc NTH, Binh NTH, Thieu NQ, Gitaka J, Nolder D, Beshir KB, Dombrowski JG, Di Santi SM, Bousema T, Sutherland CJ, Campino S, Clark TG. Rapid profiling of Plasmodium parasites from genome sequences to assist malaria control. Genome Med 2023; 15:96. [PMID: 37950308 PMCID: PMC10636944 DOI: 10.1186/s13073-023-01247-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Malaria continues to be a major threat to global public health. Whole genome sequencing (WGS) of the underlying Plasmodium parasites has provided insights into the genomic epidemiology of malaria. Genome sequencing is rapidly gaining traction as a diagnostic and surveillance tool for clinical settings, where the profiling of co-infections, identification of imported malaria parasites, and detection of drug resistance are crucial for infection control and disease elimination. To support this informatically, we have developed the Malaria-Profiler tool, which rapidly (within minutes) predicts Plasmodium species, geographical source, and resistance to antimalarial drugs directly from WGS data. RESULTS The online and command line versions of Malaria-Profiler detect ~ 250 markers from genome sequences covering Plasmodium speciation, likely geographical source, and resistance to chloroquine, sulfadoxine-pyrimethamine (SP), and other anti-malarial drugs for P. falciparum, but also providing mutations for orthologous resistance genes in other species. The predictive performance of the mutation library was assessed using 9321 clinical isolates with WGS and geographical data, with most being single-species infections (P. falciparum 7152/7462, P. vivax 1502/1661, P. knowlesi 143/151, P. malariae 18/18, P. ovale ssp. 5/5), but co-infections were identified (456/9321; 4.8%). The accuracy of the predicted geographical profiles was high to both continental (96.1%) and regional levels (94.6%). For P. falciparum, markers were identified for resistance to chloroquine (49.2%; regional range: 24.5% to 100%), sulfadoxine (83.3%; 35.4- 90.5%), pyrimethamine (85.4%; 80.0-100%) and combined SP (77.4%). Markers associated with the partial resistance of artemisinin were found in WGS from isolates sourced from Southeast Asia (30.6%). CONCLUSIONS Malaria-Profiler is a user-friendly tool that can rapidly and accurately predict the geographical regional source and anti-malarial drug resistance profiles across large numbers of samples with WGS data. The software is flexible with modifiable bioinformatic pipelines. For example, it is possible to select the sequencing platform, display specific variants, and customise the format of outputs. With the increasing application of next-generation sequencing platforms on Plasmodium DNA, Malaria-Profiler has the potential to be integrated into point-of-care and surveillance settings, thereby assisting malaria control. Malaria-Profiler is available online (bioinformatics.lshtm.ac.uk/malaria-profiler) and as standalone software ( https://github.com/jodyphelan/malaria-profiler ).
Collapse
Affiliation(s)
- Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
| | - Anna Turkiewicz
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Joseph Thorpe
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Leen N Vanheer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Marga van de Vegte-Bolmer
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, The Netherlands
| | - Nguyen Thi Hong Ngoc
- Molecular Biology Department, Parasitology and Entomology, Vietnam National Institute of Malariology, Hanoi, Vietnam
| | - Nguyen Thi Huong Binh
- Molecular Biology Department, Parasitology and Entomology, Vietnam National Institute of Malariology, Hanoi, Vietnam
| | - Nguyen Quang Thieu
- Molecular Biology Department, Parasitology and Entomology, Vietnam National Institute of Malariology, Hanoi, Vietnam
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Gen. Kago Rd, Thika, Kenya
| | - Debbie Nolder
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- UK Health Security Agency Malaria Reference Laboratory, LSHTM, London, WC1E 7HT, UK
| | - Khalid B Beshir
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Jamille G Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, Univ. of São Paulo, São Paulo, Brazil
| | - Silvia Maria Di Santi
- School of Medicine, Instituto de Medicina Tropical, University of São Paulo, São Paulo, Brazil
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, The Netherlands
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- UK Health Security Agency Malaria Reference Laboratory, LSHTM, London, WC1E 7HT, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
- Faculty of Epidemiology and Population Health, LSHTM, London, WC1E 7HT, UK.
| |
Collapse
|
10
|
Coonahan E, Gage H, Chen D, Noormahomed EV, Buene TP, Mendes de Sousa I, Akrami K, Chambal L, Schooley RT, Winzeler EA, Cowell AN. Whole-genome surveillance identifies markers of Plasmodium falciparum drug resistance and novel genomic regions under selection in Mozambique. mBio 2023; 14:e0176823. [PMID: 37750720 PMCID: PMC10653802 DOI: 10.1128/mbio.01768-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Malaria is a devastating disease caused by Plasmodium parasites. The evolution of parasite drug resistance continues to hamper progress toward malaria elimination, and despite extensive efforts to control malaria, it remains a leading cause of death in Mozambique and other countries in the region. The development of successful vaccines and identification of molecular markers to track drug efficacy are essential for managing the disease burden. We present an analysis of the parasite genome in Mozambique, a country with one of the highest malaria burdens globally and limited available genomic data, revealing current selection pressure. We contribute additional evidence to limited prior studies supporting the effectiveness of SWGA in producing reliable genomic data from complex clinical samples. Our results provide the identity of genomic loci that may be associated with current antimalarial drug use, including artemisinin and lumefantrine, and reveal selection pressure predicted to compromise the efficacy of current vaccine candidates.
Collapse
Affiliation(s)
- Erin Coonahan
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Hunter Gage
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Daisy Chen
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Emilia Virginia Noormahomed
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Titos Paulo Buene
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Irina Mendes de Sousa
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Biological Sciences Department, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Kevan Akrami
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucia Chambal
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Department of Internal Medicine, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Maputo Central Hospital, Maputo, Mozambique
| | - Robert T. Schooley
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Annie N. Cowell
- School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Haldar K, Alam MS, Koepfli C, Lobo NF, Phru CS, Islam MN, Faiz A, Khan WA, Haque R. Bangladesh in the era of malaria elimination. Trends Parasitol 2023; 39:760-773. [PMID: 37500334 DOI: 10.1016/j.pt.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Bangladesh has dramatically reduced malaria by 93% from 2008 to 2020. The strategy has been district-wise, phased elimination; however, the last districts targeted for elimination include remote, forested regions which present several challenges for prevention, detection, and treatment of malaria. These districts border Myanmar which harbors Plasmodium falciparum malaria parasites resistant to artemisinins, key drugs used in artemisinin-based combination therapies (ACTs) that have been vital for control programs. Challenges in monitoring emergence of artemisinin resistance (AR), tracking parasite reservoirs, changes in vector behavior and responses to insecticides, as well as other environmental and host factors (including the migration of Forcibly Displaced Myanmar Nationals; FDMNs) may pose added hazards in the final phase of eliminating malaria in Bangladesh.
Collapse
Affiliation(s)
- Kasturi Haldar
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA; Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, IN, USA; Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, IN, USA.
| | - Mohammed Shafiul Alam
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| | - Cristian Koepfli
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA; Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, IN, USA
| | - Neil F Lobo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA; Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, IN, USA
| | - Ching Shwe Phru
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| | | | - Abul Faiz
- Dev Care Foundation, Dhaka, Bangladesh
| | - Wasif Ali Khan
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| | - Rashidul Haque
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| |
Collapse
|
12
|
Enabulele EE, Le Clec'h W, Roberts EK, Thompson CW, McDonough MM, Ferguson AW, Bradley RD, Anderson TJC, Platt RN. Prospecting for Zoonotic Pathogens by Using Targeted DNA Enrichment. Emerg Infect Dis 2023; 29:1566-1579. [PMID: 37486179 PMCID: PMC10370864 DOI: 10.3201/eid2908.221818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
More than 60 zoonoses are linked to small mammals, including some of the most devastating pathogens in human history. Millions of museum-archived tissues are available to understand natural history of those pathogens. Our goal was to maximize the value of museum collections for pathogen-based research by using targeted sequence capture. We generated a probe panel that includes 39,916 80-bp RNA probes targeting 32 pathogen groups, including bacteria, helminths, fungi, and protozoans. Laboratory-generated, mock-control samples showed that we are capable of enriching targeted loci from pathogen DNA 2,882‒6,746-fold. We identified bacterial species in museum-archived samples, including Bartonella, a known human zoonosis. These results showed that probe-based enrichment of pathogens is a highly customizable and efficient method for identifying pathogens from museum-archived tissues.
Collapse
|
13
|
Dwivedi-Yu JA, Oppler ZJ, Mitchell MW, Song YS, Brisson D. A fast machine-learning-guided primer design pipeline for selective whole genome amplification. PLoS Comput Biol 2023; 19:e1010137. [PMID: 37068103 PMCID: PMC10138271 DOI: 10.1371/journal.pcbi.1010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/27/2023] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
Addressing many of the major outstanding questions in the fields of microbial evolution and pathogenesis will require analyses of populations of microbial genomes. Although population genomic studies provide the analytical resolution to investigate evolutionary and mechanistic processes at fine spatial and temporal scales-precisely the scales at which these processes occur-microbial population genomic research is currently hindered by the practicalities of obtaining sufficient quantities of the relatively pure microbial genomic DNA necessary for next-generation sequencing. Here we present swga2.0, an optimized and parallelized pipeline to design selective whole genome amplification (SWGA) primer sets. Unlike previous methods, swga2.0 incorporates active and machine learning methods to evaluate the amplification efficacy of individual primers and primer sets. Additionally, swga2.0 optimizes primer set search and evaluation strategies, including parallelization at each stage of the pipeline, to dramatically decrease program runtime. Here we describe the swga2.0 pipeline, including the empirical data used to identify primer and primer set characteristics, that improve amplification performance. Additionally, we evaluate the novel swga2.0 pipeline by designing primer sets that successfully amplify Prevotella melaninogenica, an important component of the lung microbiome in cystic fibrosis patients, from samples dominated by human DNA.
Collapse
Affiliation(s)
- Jane A. Dwivedi-Yu
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Facebook AI Research, 1 Rathbone Square, London, England
| | - Zachary J. Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew W. Mitchell
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Coriell Institute for Medical Research, Camden, New Jersey, United States of America
| | - Yun S. Song
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Department of Statistics, University of California, Berkeley, Berkeley, California, United States of America
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Pilling OA, Reis-Cunha JL, Grace CA, Berry ASF, Mitchell MW, Yu JA, Malekshahi CR, Krespan E, Go CK, Lombana C, Song YS, Amorim CF, Lago AS, Carvalho LP, Carvalho EM, Brisson D, Scott P, Jeffares DC, Beiting DP. Selective whole-genome amplification reveals population genetics of Leishmania braziliensis directly from patient skin biopsies. PLoS Pathog 2023; 19:e1011230. [PMID: 36940219 PMCID: PMC10063166 DOI: 10.1371/journal.ppat.1011230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/30/2023] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
In Brazil, Leishmania braziliensis is the main causative agent of the neglected tropical disease, cutaneous leishmaniasis (CL). CL presents on a spectrum of disease severity with a high rate of treatment failure. Yet the parasite factors that contribute to disease presentation and treatment outcome are not well understood, in part because successfully isolating and culturing parasites from patient lesions remains a major technical challenge. Here we describe the development of selective whole genome amplification (SWGA) for Leishmania and show that this method enables culture-independent analysis of parasite genomes obtained directly from primary patient skin samples, allowing us to circumvent artifacts associated with adaptation to culture. We show that SWGA can be applied to multiple Leishmania species residing in different host species, suggesting that this method is broadly useful in both experimental infection models and clinical studies. SWGA carried out directly on skin biopsies collected from patients in Corte de Pedra, Bahia, Brazil, showed extensive genomic diversity. Finally, as a proof-of-concept, we demonstrated that SWGA data can be integrated with published whole genome data from cultured parasite isolates to identify variants unique to specific geographic regions in Brazil where treatment failure rates are known to be high. SWGA provides a relatively simple method to generate Leishmania genomes directly from patient samples, unlocking the potential to link parasite genetics with host clinical phenotypes.
Collapse
Affiliation(s)
- Olivia A. Pilling
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - João L. Reis-Cunha
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Cooper A. Grace
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alexander S. F. Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew W. Mitchell
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jane A. Yu
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
| | - Clara R. Malekshahi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elise Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christina K. Go
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cláudia Lombana
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yun S. Song
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Department of Statistics, University of California, Berkeley, Berkeley, California, United States of America
| | - Camila F. Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexsandro S. Lago
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Lucas P. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Edgar M. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Dustin Brisson
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel C. Jeffares
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Culleton R, Pain A, Snounou G. Plasmodium malariae: the persisting mysteries of a persistent parasite. Trends Parasitol 2023; 39:113-125. [PMID: 36517330 DOI: 10.1016/j.pt.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Plasmodium malariae is a 'neglected malaria parasite' in as much as the amount of research conducted on it pales into insignificance when compared to that pertaining to Plasmodium falciparum and Plasmodium vivax, its more notorious and pathogenic cousins. There has, however, been an increase in interest in this parasite over the past decade. Principally, this is because of the increasing use of sensitive molecular detection techniques that have revealed a wider than previously recorded prevalence in some regions (particularly in Africa), and high numbers of chronic, asymptomatic infections.
Collapse
Affiliation(s)
- Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Centre, Ehime University, Matsuyama, Japan; Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Programme, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Kingdom of Saudi Arabia
| | - Georges Snounou
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France.
| |
Collapse
|
16
|
Ibrahim A, Manko E, Dombrowski JG, Campos M, Benavente ED, Nolder D, Sutherland CJ, Nosten F, Fernandez D, Vélez-Tobón G, Castaño AT, Aguiar ACC, Pereira DB, da Silva Santos S, Suarez-Mutis M, Di Santi SM, Regina de Souza Baptista A, Dantas Machado RL, Marinho CR, Clark TG, Campino S. Population-based genomic study of Plasmodium vivax malaria in seven Brazilian states and across South America. LANCET REGIONAL HEALTH. AMERICAS 2023; 18:100420. [PMID: 36844008 PMCID: PMC9950661 DOI: 10.1016/j.lana.2022.100420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 01/03/2023]
Abstract
Background Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546-1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003-8 and 471605/2011-5); CRFM is funded by FAPESP (Grant no. 2020/06747-4) and CNPq (Grant no. 302917/2019-5 and 408636/2018-1); JGD is funded by FAPESP fellowships (2016/13465-0 and 2019/12068-5) and CNPq (Grant no. 409216/2018-6).
Collapse
Affiliation(s)
- Amy Ibrahim
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Emilia Manko
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Jamille G. Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Mónica Campos
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Debbie Nolder
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Colin J. Sutherland
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak,
Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of
Clinical Medicine Research Building, University of Oxford Old Road Campus,
Oxford, UK
| | - Diana Fernandez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | - Gabriel Vélez-Tobón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | | | | | | | - Simone da Silva Santos
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | - Martha Suarez-Mutis
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | | | - Andrea Regina de Souza Baptista
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Ricardo Luiz Dantas Machado
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Claudio R.F. Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Taane G. Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Faculty of Epidemiology & Population Health, London School of Hygiene
& Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| |
Collapse
|
17
|
Development and Optimization of a Selective Whole-Genome Amplification To Study Plasmodium ovale Spp. Microbiol Spectr 2022; 10:e0072622. [PMID: 36098524 PMCID: PMC9602584 DOI: 10.1128/spectrum.00726-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Since 2010, the human-infecting malaria parasite Plasmodium ovale spp. has been divided into two genetically distinct species, P. ovale wallikeri and P. ovale curtisi. In recent years, application of whole-genome sequencing (WGS) to P. ovale spp. allowed to get a better understanding of its evolutionary history and discover some specific genetic patterns. Nevertheless, WGS data from P. ovale spp. are still scarce due to several drawbacks, including a high level of human DNA contamination in blood samples, infections with commonly low parasite density, and the lack of robust in vitro culture. Here, we developed two selective whole-genome amplification (sWGA) protocols that were tested on six P. ovale wallikeri and five P. ovale curtisi mono-infection clinical samples. Blood leukodepletion by a cellulose-based filtration was used as the gold standard for intraspecies comparative genomics with sWGA. We also demonstrated the importance of genomic DNA preincubation with the endonuclease McrBC to optimize P. ovale spp. sWGA. We obtained high-quality WGS data with more than 80% of the genome covered by ≥5 reads for each sample and identified more than 5,000 unique single-nucleotide polymorphisms (SNPs) per species. We also identified some amino acid changes in pocdhfr and powdhfr for which similar mutations in P. falciparum and P. vivax are associated with pyrimethamine or cycloguanil resistance. In conclusion, we developed two sWGA protocols for P. ovale spp. WGS that will help to design much-needed large-scale P. ovale spp. population studies. IMPORTANCE Plasmodium ovale spp. has the ability to cause relapse, defined as recurring asexual parasitemia originating from liver-dormant forms. Whole-genome sequencing (WGS) data are of importance to identify putative molecular markers associated with relapse or other virulence mechanisms. Due to low parasitemia encountered in P. ovale spp. infections and no in vitro culture available, WGS of P. ovale spp. is challenging. Blood leukodepletion by filtration has been used, but no technique exists yet to increase the quantity of parasite DNA over human DNA when starting from genomic DNA extracted from whole blood. Here, we demonstrated that selective whole-genome amplification (sWGA) is an easy-to-use protocol to obtain high-quality WGS data for both P. ovale spp. species from unprocessed blood samples. The new method will facilitate P. ovale spp. population genomic studies.
Collapse
|
18
|
Kattenberg JH, Nguyen HV, Nguyen HL, Sauve E, Nguyen NTH, Chopo-Pizarro A, Trimarsanto H, Monsieurs P, Guetens P, Nguyen XX, Esbroeck MV, Auburn S, Nguyen BTH, Rosanas-Urgell A. Novel highly-multiplexed AmpliSeq targeted assay for Plasmodium vivax genetic surveillance use cases at multiple geographical scales. Front Cell Infect Microbiol 2022; 12:953187. [PMID: 36034708 PMCID: PMC9403277 DOI: 10.3389/fcimb.2022.953187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of Plasmodium vivax. Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). P. vivax parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the pvmdr1 and pvcrt genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.
Collapse
Affiliation(s)
| | - Hong Van Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Hieu Luong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Erin Sauve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ngoc Thi Hong Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Ana Chopo-Pizarro
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hidayat Trimarsanto
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Pieter Monsieurs
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xa Xuan Nguyen
- Department of Epidemiology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Marjan Van Esbroeck
- Clinical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Binh Thi Huong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
19
|
Zhuang YJ, Mangwiro Y, Wake M, Saffery R, Greaves RF. Multi-omics analysis from archival neonatal dried blood spots: limitations and opportunities. Clin Chem Lab Med 2022; 60:1318-1341. [PMID: 35670573 DOI: 10.1515/cclm-2022-0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Newborn screening (NBS) programs operate in many countries, processing millions of dried bloodspot (DBS) samples annually. In addition to early identification of various adverse health outcomes, these samples have considerable potential as a resource for population-based research that could address key questions related to child health. The feasibility of archival DBS samples for emerging targeted and untargeted multi-omics analysis has not been previously explored in the literature. This review aims to critically evaluate the latest advances to identify opportunities and challenges of applying omics analyses to NBS cards in a research setting. Medline, Embase and PubMed databases were searched to identify studies utilizing DBS for genomic, proteomic and metabolomic assays. A total of 800 records were identified after removing duplicates, of which 23 records were included in this review. These papers consisted of one combined genomic/metabolomic, four genomic, three epigenomic, four proteomic and 11 metabolomic studies. Together they demonstrate that the increasing sensitivity of multi-omic analytical techniques makes the broad use of NBS samples achievable for large cohort studies. Maintaining the pre-analytical integrity of the DBS sample through storage at temperatures below -20 °C will enable this important resource to be fully realized in a research capacity.
Collapse
Affiliation(s)
- Yuan-Jessica Zhuang
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Yeukai Mangwiro
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Melissa Wake
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Richard Saffery
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Ronda F Greaves
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Selective Whole-Genome Amplification as a Tool to Enrich Specimens with Low Treponema pallidum Genomic DNA Copies for Whole-Genome Sequencing. mSphere 2022; 7:e0000922. [PMID: 35491834 PMCID: PMC9241506 DOI: 10.1128/msphere.00009-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Syphilis is a sexually transmitted, disseminated acute and chronic infection caused by the bacterial pathogen
Treponema pallidum
subspecies
pallidum
. Primary syphilis typically presents as single or multiple mucocutaneous lesions and, if left untreated, can progress through multiple stages with various clinical manifestations.
Collapse
|
21
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
22
|
Tenfold difference in DNA recovery rate: systematic comparison of whole blood vs. dried blood spot sample collection for malaria molecular surveillance. Malar J 2022; 21:88. [PMID: 35292038 PMCID: PMC8922754 DOI: 10.1186/s12936-022-04122-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Molecular and genomic surveillance is becoming increasingly used to track malaria control and elimination efforts. Blood samples can be collected as whole blood and stored at - 20 °C until DNA extraction, or as dried blood spots (DBS), circumventing the need for a cold chain. Despite the wide use of either method, systematic comparisons of how the method of blood sample preservation affects the limit of detection (LOD) of molecular diagnosis and the proportion of DNA recovered for downstream applications are lacking. METHODS Extractions based on spin columns, magnetic beads, Tween-Chelex, and direct PCR without prior extraction were compared for whole blood and dried blood spots (DBS) using dilution series of Plasmodium falciparum culture samples. Extracted DNA was quantified by qPCR and droplet digital PCR (ddPCR). RESULTS DNA recovery was 5- to 10-fold higher for whole blood compared to DBS, resulting in a 2- to 3-fold lower LOD for both extraction methods compared to DBS. For whole blood, a magnetic bead-based method resulted in a DNA recovery rate of 88-98% when extracting from whole blood compared to 17-33% for a spin-column based method. For extractions from DBS, the magnetic bead-based method resulted in 8-20% DNA recovery, while the spin-column based method resulted in only 2% DNA recovery. The Tween-Chelex method was superior to other methods with 15-21% DNA recovery, and even more sensitive than extractions from whole blood samples. The direct PCR method was found to have the lowest LOD overall for both, whole blood and DBS. CONCLUSIONS Pronounced differences in LOD and DNA yield need to be considered when comparing prevalence estimates based on molecular methods and when selecting sampling protocols for other molecular surveillance applications.
Collapse
|
23
|
Barry AE. Complex infections in vivax malaria: the more you look, the more you find. Trends Parasitol 2021; 37:1022-1023. [PMID: 34756507 DOI: 10.1016/j.pt.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022]
Abstract
The human malaria parasite Plasmodium vivax commonly causes complex multiclonal infections. Recently, Dia et al. have developed innovative methods for single-cell sequencing (SCS) of P. vivax infections by adapting an approach used previously for Plasmodium falciparum. Their studies provide fascinating new insights into P. vivax intrahost diversity and evolution.
Collapse
Affiliation(s)
- Alyssa E Barry
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia; Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
24
|
Abstract
Almost 20 years have passed since the first reference genome assemblies were published for Plasmodium falciparum, the deadliest malaria parasite, and Anopheles gambiae, the most important mosquito vector of malaria in sub-Saharan Africa. Reference genomes now exist for all human malaria parasites and nearly half of the ~40 important vectors around the world. As a foundation for genetic diversity studies, these reference genomes have helped advance our understanding of basic disease biology and drug and insecticide resistance, and have informed vaccine development efforts. Population genomic data are increasingly being used to guide our understanding of malaria epidemiology, for example by assessing connectivity between populations and the efficacy of parasite and vector interventions. The potential value of these applications to malaria control strategies, together with the increasing diversity of genomic data types and contexts in which data are being generated, raise both opportunities and challenges in the field. This Review discusses advances in malaria genomics and explores how population genomic data could be harnessed to further support global disease control efforts.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA.
| | - Aimee R Taylor
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bronwyn L MacInnis
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
25
|
High Proportion of Genome-Wide Homology and Increased Pretreatment pvcrt Levels in Plasmodium vivax Late Recurrences: a Chloroquine Therapeutic Efficacy Study. Antimicrob Agents Chemother 2021; 65:e0009521. [PMID: 34031050 DOI: 10.1128/aac.00095-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroquine (CQ) is the first-line treatment for Plasmodium vivax malaria in most countries where malaria is endemic. Monitoring P. vivax CQ resistance (CQR) is critical but remains challenged by the difficulty to distinguish real treatment failure from reinfection or liver relapse. The therapeutic efficacy of CQ against uncomplicated P. vivax malaria was evaluated in Gia Lai Province, Vietnam. Sixty-seven patients were enrolled and followed for 42 days using microscopy and quantitative PCR. Adequate clinical and parasitological response (ACPR) was 100% (66/66) on day 28 but 75.4% (49/65) on day 42. Eighteen recurrences (27.7%) were detected, with a median time to recurrence of 42 days (interquartile range [IQR], 35 to 42) and blood CQ concentration of <100 ng/ml. Primary infections leading to recurrence occurred in younger individuals (median age for ACPR = 25 years [IQR, 20 to 28]; recurrences = 18 [16 to 21]; P = 0.002) had a longer parasite clearance time (PCT for ACPR = 47.5 h [IQR, 36.2 to 59.8 h]; recurrences = 54.2 [48.4 to 62.0]; P = 0.035) and higher pvcrt gene expression (median relative expression ratio for ACPR = 0.09 [IQR, 0.05 to 0.22]; recurrences = 0.20 [0.15 to 0.56]; P = 0.002), but showed no differences in ex vivo CQ sensitivity. Parasite genotyping by microsatellites, single nucleotide polymorphism (SNP) barcoding, and whole-genome sequencing (WGS) identified a majority of homologous recurrences, with 80% (8/10) showing >98% identity by descent to paired day 0 samples. This study shows that CQ remained largely efficacious to treat P. vivax in Gia Lai; i.e., recurrences occurred late (>day 28) and in the presence of low blood CQ concentrations. However, the combination of both WGS and gene expression analysis (pvcrt) data with clinical data (PCT) allowed us to identify potential emergence of low-grade CQR, which should be closely monitored. (This study has been registered at ClinicalTrials.gov under identifier NCT02610686.).
Collapse
|
26
|
Buyon LE, Elsworth B, Duraisingh MT. The molecular basis of antimalarial drug resistance in Plasmodium vivax. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:23-37. [PMID: 33957488 PMCID: PMC8113647 DOI: 10.1016/j.ijpddr.2021.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Plasmodium vivax is the most geographically widespread cause of human malaria and is responsible for the majority of cases outside of the African continent. While great progress has been made towards eliminating human malaria, drug resistant parasite strains pose a threat towards continued progress. Resistance has arisen to multiple antimalarials in P. vivax, including to chloroquine, which is currently the first line therapy for P. vivax in most regions. Despite its importance, an understanding of the molecular mechanisms of drug resistance in this species remains elusive, in large part due to the complex biology of P. vivax and the lack of in vitro culture. In this review, we will cover the extent and challenges of measuring clinical and in vitro drug resistance in P. vivax. We will consider the roles of candidate drug resistance genes. We will highlight the development of molecular approaches for studying P. vivax biology that provide the opportunity to validate the role of putative drug resistance mutations as well as identify novel mechanisms of drug resistance in this understudied parasite. Validated molecular determinants and markers of drug resistance are essential for the rapid and cost-effective monitoring of drug resistance in P. vivax, and will be useful for optimizing drug regimens and for informing drug policy in control and elimination settings. Drug resistance is emerging in Plasmodium vivax, an important cause of malaria. The complex biology of P. vivax and the limited range of research tools make it difficult to identify drug resistance. The molecular mechanisms of drug resistance in P. vivax remain elusive. This review highlights the extent of drug resistance, the putative mechanisms of resistance and new technologies for the study of P. vivax drug resistance.
Collapse
Affiliation(s)
- Lucas E Buyon
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
27
|
de Oliveira TC, Rodrigues PT, Early AM, Duarte AMRC, Buery JC, Bueno MG, Catão-Dias JL, Cerutti C, Rona LDP, Neafsey DE, Ferreira MU. Plasmodium simium: population genomics reveals the origin of a reverse zoonosis. J Infect Dis 2021; 224:1950-1961. [PMID: 33870436 DOI: 10.1093/infdis/jiab214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/14/2021] [Indexed: 11/12/2022] Open
Abstract
The population history of Plasmodium simium, which causes malaria in sylvatic Neotropical monkeys and humans along the Atlantic Coast of Brazil, remains disputed. Genetically diverse P. vivax populations from various sources, including the lineages that founded the species P. simium, are thought to have arrived in the Americas in separate migratory waves. However, here we find a minimal genome-level differentiation between P. simium and present-day New World P. vivax isolates, consistent with their common geographic origin and subsequent divergence on this continent. The meagre genetic diversity in P. simium samples from humans and monkeys implies a recent transfer from humans to non-human primates - a unique example of malaria as a reverse zoonosis of public health significance. Likely genomic signatures of P. simium adaptation to new hosts include the deletion of >40% of a key erythrocyte invasion ligand, PvRBP2a, which may have favored more efficient simian host cell infection.
Collapse
Affiliation(s)
- Thaís C de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila T Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ana Maria R C Duarte
- Laboratory of Biochemistry and Molecular Biology, Superintendency for the Control of Endemics (SUCEN), State Secretary of Health, São Paulo, Brazil.,Laboratory of Protozoology, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Julyana C Buery
- Department of Social Medicine, Center for Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Marina G Bueno
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - José L Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Crispim Cerutti
- Department of Social Medicine, Center for Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Luísa D P Rona
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.,National Council for Scientific and Technological Development, National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Daron J, Boissière A, Boundenga L, Ngoubangoye B, Houze S, Arnathau C, Sidobre C, Trape JF, Durand P, Renaud F, Fontaine MC, Prugnolle F, Rougeron V. Population genomic evidence of Plasmodium vivax Southeast Asian origin. SCIENCE ADVANCES 2021; 7:7/18/eabc3713. [PMID: 33910900 PMCID: PMC8081369 DOI: 10.1126/sciadv.abc3713] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/10/2021] [Indexed: 05/15/2023]
Abstract
Plasmodium vivax is the most common and widespread human malaria parasite. It was recently proposed that P. vivax originates from sub-Saharan Africa based on the circulation of its closest genetic relatives (P. vivax-like) among African great apes. However, the limited number of genetic markers and samples investigated questions the robustness of this hypothesis. Here, we extensively characterized the genomic variations of 447 human P. vivax strains and 19 ape P. vivax-like strains collected worldwide. Phylogenetic relationships between human and ape Plasmodium strains revealed that P. vivax is a sister clade of P. vivax-like, not included within the radiation of P. vivax-like By investigating various aspects of P. vivax genetic variation, we identified several notable geographical patterns in summary statistics in function of the increasing geographic distance from Southeast Asia, suggesting that P. vivax may have derived from a single area in Asia through serial founder effects.
Collapse
Affiliation(s)
- Josquin Daron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France.
| | - Anne Boissière
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Larson Boundenga
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Sandrine Houze
- Service de Parasitologie-mycologie CNR du Paludisme, AP-HP Hôpital Bichat, 46 rue H. Huchard, 75877 Paris Cedex 18, France
| | - Celine Arnathau
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Christine Sidobre
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
| | - Jean-François Trape
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
| | - Patrick Durand
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - François Renaud
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Michael C Fontaine
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, Netherlands
| | - Franck Prugnolle
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), 34394 Montpellier, France.
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
| |
Collapse
|
29
|
Teyssier NB, Chen A, Duarte EM, Sit R, Greenhouse B, Tessema SK. Optimization of whole-genome sequencing of Plasmodium falciparum from low-density dried blood spot samples. Malar J 2021; 20:116. [PMID: 33637093 PMCID: PMC7912882 DOI: 10.1186/s12936-021-03630-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
Background Whole-genome sequencing (WGS) is becoming increasingly useful to study the biology, epidemiology, and ecology of malaria parasites. Despite ease of sampling, DNA extracted from dried blood spots (DBS) has a high ratio of human DNA compared to parasite DNA, which poses a challenge for downstream genetic analyses. The effects of multiple methods for DNA extraction, digestion of methylated DNA, and amplification were evaluated on the quality and fidelity of WGS data recovered from DBS. Methods Low parasite density mock DBS samples were created, extracted either with Tween-Chelex or QIAamp, treated with or without McrBC, and amplified with one of three different amplification techniques (two sWGA primer sets and one rWGA). Extraction conditions were evaluated on performance of sequencing depth, percentiles of coverage, and expected SNP concordance. Results At 100 parasites/μL, Chelex-Tween-McrBC samples had higher coverage (5 × depth = 93% genome) than QIAamp extracted samples (5 × depth = 76% genome). The two evaluated sWGA primer sets showed minor differences in overall genome coverage and SNP concordance, with a newly proposed combination of 20 primers showing a modest improvement in coverage over those previously published. Conclusions Overall, Tween-Chelex extracted samples that were treated with McrBC digestion and are amplified using 6A10AD sWGA conditions had minimal dropout rate, higher percentages of coverage at higher depth, and more accurate SNP concordance than QiaAMP extracted samples. These findings extend the results of previously reported methods, making whole genome sequencing accessible to a larger number of low density samples that are commonly encountered in cross-sectional surveys.
Collapse
Affiliation(s)
- Noam B Teyssier
- Department of Medicine, EPPIcenter, University of California, San Francisco, CA, USA
| | - Anna Chen
- Department of Medicine, EPPIcenter, University of California, San Francisco, CA, USA
| | - Elias M Duarte
- Department of Medicine, EPPIcenter, University of California, San Francisco, CA, USA
| | - Rene Sit
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, EPPIcenter, University of California, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Sofonias K Tessema
- Department of Medicine, EPPIcenter, University of California, San Francisco, CA, USA.
| |
Collapse
|
30
|
Oriero EC, Amenga-Etego L, Ishengoma DS, Amambua-Ngwa A. Plasmodium malariae, current knowledge and future research opportunities on a neglected malaria parasite species. Crit Rev Microbiol 2021; 47:44-56. [PMID: 33507842 DOI: 10.1080/1040841x.2020.1838440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmodium malariae is often reported as a benign malaria parasite. There are limited data on its biology and disease burden in sub-Saharan Africa (sSA) possibly due to the unavailability of specific and affordable tools for routine diagnosis and large epidemiology studies. In addition, P. malariae occurs at low parasite densities and in co-infections with other species, predominately P. falciparum. The paucity of data on P. malariae infections limits the capacity to accurately determine its contribution to malaria and the effect of control interventions against P. falciparum on its prevalence. Here, we summarise the current knowledge on P. malariae epidemiology in sSA - overall prevalence ranging from 0-32%, as detected by different diagnostic methods; seroprevalence ranging from 0-56% in three countries (Mozambique, Benin and Zimbabwe), and explore the future application of next-generation sequencing technologies as a tool for enriching P. malariae genomic epidemiology. This will provide insights into important adaptive mechanisms of this neglected non-falciparum species, including antimalarial drug resistance, local and regional parasite transmission patterns and genomic signatures of selection. Improved diagnosis and genomic surveillance of non-falciparum malaria parasites in Africa would be helpful in evaluating progress towards elimination of all human Plasmodium species.
Collapse
Affiliation(s)
- Eniyou C Oriero
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| | - Lucas Amenga-Etego
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Deus S Ishengoma
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| |
Collapse
|
31
|
Schwabl P, Maiguashca Sánchez J, Costales JA, Ocaña-Mayorga S, Segovia M, Carrasco HJ, Hernández C, Ramírez JD, Lewis MD, Grijalva MJ, Llewellyn MS. Culture-free genome-wide locus sequence typing (GLST) provides new perspectives on Trypanosoma cruzi dispersal and infection complexity. PLoS Genet 2020; 16:e1009170. [PMID: 33326438 PMCID: PMC7743988 DOI: 10.1371/journal.pgen.1009170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obligate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor settings where infectious diseases prevail. This study proposes a simple, cost-effective 'genome-wide locus sequence typing' (GLST) tool based on massive parallel amplification of information hotspots throughout the target pathogen genome. The multiplexed polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and subsequent agarose gel-based clean-up and barcoding completes library preparation at under 4 USD per sample. Our study generates a flexible GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-target GLST panel to direct, culture-free metagenomic extracts from triatomine vectors containing a minimum of 3.69 pg/μl T. cruzi DNA and further elaborate on method performance by sequencing GLST libraries from T. cruzi reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites infecting sympatric vectors and detect correlations between genetic and geographic distances at regional (< 150 km) as well as continental scales. The markers also clearly separate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections within TcI. We discuss the advantages, limitations and prospects of our method across a spectrum of epidemiological research.
Collapse
Affiliation(s)
- Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jalil Maiguashca Sánchez
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Maikell Segovia
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Hernán J. Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Michael D. Lewis
- London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Infectious and Tropical Disease Institute, Biomedical Sciences Department, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America
| | - Martin S. Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
32
|
Buyon LE, Santamaria AM, Early AM, Quijada M, Barahona I, Lasso J, Avila M, Volkman SK, Marti M, Neafsey DE, Obaldia III N. Population genomics of Plasmodium vivax in Panama to assess the risk of case importation on malaria elimination. PLoS Negl Trop Dis 2020; 14:e0008962. [PMID: 33315861 PMCID: PMC7769613 DOI: 10.1371/journal.pntd.0008962] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/28/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Malaria incidence in Panama has plateaued in recent years in spite of elimination efforts, with almost all cases caused by Plasmodium vivax. Notwithstanding, overall malaria prevalence remains low (fewer than 1 case per 1000 persons). We used selective whole genome amplification to sequence 59 P. vivax samples from Panama. The P. vivax samples were collected from two periods (2007-2009 and 2017-2019) to study the population structure and transmission dynamics of the parasite. Imported cases resulting from increased levels of human migration could threaten malaria elimination prospects, and four of the samples evaluated came from individuals with travel history. We explored patterns of recent common ancestry among the samples and observed that a highly genetically related lineage (termed CL1) was dominant among the samples (47 out of 59 samples with good sequencing coverage), spanning the entire period of the collection (2007-2019) and all regions of the country. We also found a second, smaller clonal lineage (termed CL2) of four parasites collected between 2017 and 2019. To explore the regional context of Panamanian P. vivax we conducted principal components analysis and constructed a neighbor-joining tree using these samples and samples collected worldwide from a previous study. Three of the four samples with travel history clustered with samples collected from their suspected country of origin (consistent with importation), while one appears to have been a result of local transmission. The small number of Panamanian P. vivax samples not belonging to either CL1 or CL2 clustered with samples collected from Colombia, suggesting they represent the genetically similar ancestral P. vivax population in Panama or were recently imported from Colombia. The low diversity we observe in Panama indicates that this parasite population has been previously subject to a severe bottleneck and may be eligible for elimination. Additionally, while we confirmed that P. vivax is imported to Panama from diverse geographic locations, the lack of impact from imported cases on the overall parasite population genomic profile suggests that onward transmission from such cases is limited and that imported cases may not presently pose a major barrier to elimination.
Collapse
Affiliation(s)
- Lucas E. Buyon
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | | | - Angela M. Early
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Mario Quijada
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | | | | | | | - Sarah K. Volkman
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
- The Broad Institute, Cambridge, Massachusetts, United States of America
- Simmons University, College of Natural, Behavioral and Health Sciences, Boston, Massachusetts, United States of America
| | | | - Daniel E. Neafsey
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Nicanor Obaldia III
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
- University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
33
|
Itsko M, Retchless AC, Joseph SJ, Norris Turner A, Bazan JA, Sadji AY, Ouédraogo-Traoré R, Wang X. Full Molecular Typing of Neisseria meningitidis Directly from Clinical Specimens for Outbreak Investigation. J Clin Microbiol 2020; 58:e01780-20. [PMID: 32938738 PMCID: PMC7685892 DOI: 10.1128/jcm.01780-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/12/2020] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis worldwide and an occasional cause of meningococcal urethritis. When isolates are unavailable for surveillance or outbreak investigations, molecular characterization of pathogens needs to be performed directly from clinical specimens, such as cerebrospinal fluid (CSF), blood, or urine. However, genome sequencing of specimens is challenging because of low bacterial and high human DNA abundances. We developed selective whole-genome amplification (SWGA), an isothermal multiple-displacement amplification-based method, to efficiently enrich, sequence, and de novo assemble N. meningitidis DNA from clinical specimens with low bacterial loads. SWGA was validated with 12 CSF specimens from invasive meningococcal disease cases and 12 urine specimens from meningococcal urethritis cases. SWGA increased the mean proportion of N. meningitidis reads by 2 to 3 orders of magnitude, enabling identification of at least 90% of the 1,605 N. meningitidis core genome loci for 50% of the specimens. The validated method was used to investigate two meningitis outbreaks recently reported in Togo and Burkina Faso. Twenty-seven specimens with low bacterial loads were processed by SWGA before sequencing, and 12 of 27 were successfully assembled to obtain the full molecular typing and vaccine antigen profile of the N. meningitidis pathogen, thus enabling thorough characterization of outbreaks. This method is particularly important for enhancing molecular surveillance in regions with low culture rates. SWGA produces enough reads for phylogenetic and allelic analysis at a low cost. More importantly, the procedure can be extended to enrich other important human bacterial pathogens.
Collapse
Affiliation(s)
| | - Adam C Retchless
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Abigail Norris Turner
- Division of Infectious Diseases, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jose A Bazan
- Division of Infectious Diseases, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Sexual Health Clinic, Columbus Public Health, Columbus, Ohio, USA
| | - Adodo Yao Sadji
- Ministère de la Santé et de la Protection Sociale du Togo, Lomé, Togo
| | | | - Xin Wang
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Brown AC, Guler JL. From Circulation to Cultivation: Plasmodium In Vivo versus In Vitro. Trends Parasitol 2020; 36:914-926. [DOI: 10.1016/j.pt.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
|
35
|
Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, Quang HH, Anggraeni ND, Laihad F, Liu Y, Sumiwi ME, Trimarsanto H, Coutrier F, Fadila N, Ghanchi N, Johora FT, Puspitasari AM, Tavul L, Trianty L, Utami RAS, Wang D, Wangchuck K, Price RN, Auburn S. Implementing parasite genotyping into national surveillance frameworks: feedback from control programmes and researchers in the Asia-Pacific region. Malar J 2020; 19:271. [PMID: 32718342 PMCID: PMC7385952 DOI: 10.1186/s12936-020-03330-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.
Collapse
Affiliation(s)
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alyssa Barry
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sasha Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Nguyen Thuy-Nhien
- Centre for Tropical Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Vietnam
| | | | | | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | | | | | - Farah Coutrier
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nadia Fadila
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Najia Ghanchi
- Pathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, Bangladesh
| | | | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Kesang Wangchuck
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Ric N Price
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Selective whole genome amplification of Plasmodium malariae DNA from clinical samples reveals insights into population structure. Sci Rep 2020; 10:10832. [PMID: 32616738 PMCID: PMC7331648 DOI: 10.1038/s41598-020-67568-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/05/2020] [Indexed: 02/03/2023] Open
Abstract
The genomic diversity of Plasmodium malariae malaria parasites is understudied, partly because infected individuals tend to present with low parasite densities, leading to difficulties in obtaining sufficient parasite DNA for genome analysis. Selective whole genome amplification (SWGA) increases the relative levels of pathogen DNA in a clinical sample, but has not been adapted for P. malariae parasites. Here we design customized SWGA primers which successfully amplify P. malariae DNA extracted directly from unprocessed clinical blood samples obtained from patients with P. malariae-mono-infections from six countries, and further test the efficacy of SWGA on mixed infections with other Plasmodium spp. SWGA enables the successful whole genome sequencing of samples with low parasite density (i.e. one sample with a parasitaemia of 0.0064% resulted in 44% of the genome covered by ≥ 5 reads), leading to an average 14-fold increase in genome coverage when compared to unamplified samples. We identify a total of 868,476 genome-wide SNPs, of which 194,709 are unique across 18 high-quality isolates. After exclusion of the hypervariable subtelomeric regions, a high-quality core subset of 29,899 unique SNPs is defined. Population genetic analysis suggests that P. malariae parasites display clear geographical separation by continent. Further, SWGA successfully amplifies genetic regions of interest such as orthologs of P. falciparum drug resistance-associated loci (Pfdhfr, Pfdhps, Pfcrt, Pfk13 and Pfmdr1), and several non-synonymous SNPs were detected in these genes. In conclusion, we have established a robust SWGA approach that can assist whole genome sequencing of P. malariae, and thereby facilitate the implementation of much-needed large-scale multi-population genomic studies of this neglected malaria parasite. As demonstrated in other Plasmodia, such genetic diversity studies can provide insights into the biology underlying the disease and inform malaria surveillance and control measures.
Collapse
|
37
|
Shah Z, Adams M, Moser KA, Shrestha B, Stucke EM, Laufer MK, Serre D, Silva JC, Takala-Harrison S. Optimization of parasite DNA enrichment approaches to generate whole genome sequencing data for Plasmodium falciparum from low parasitaemia samples. Malar J 2020; 19:135. [PMID: 32228559 PMCID: PMC7106660 DOI: 10.1186/s12936-020-03195-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/20/2020] [Indexed: 12/30/2022] Open
Abstract
Background Owing to the large amount of host DNA in clinical samples, generation of high-quality Plasmodium falciparum whole genome sequencing (WGS) data requires enrichment for parasite DNA. Enrichment is often achieved by leukocyte depletion of infected blood prior to storage. However, leukocyte depletion is difficult in low-resource settings and limits analysis to prospectively-collected samples. As a result, approaches such as selective whole genome amplification (sWGA) are being used to enrich for parasite DNA. However, sWGA has had limited success in generating reliable sequencing data from low parasitaemia samples. In this study, enzymatic digestion with MspJI prior to sWGA and whole genome sequencing was evaluated to determine whether this approach improved genome coverage compared to sWGA alone. The potential of sWGA to cause amplification bias in polyclonal infections was also examined. Methods DNA extracted from laboratory-created dried blood spots was treated with a modification-dependent restriction endonuclease, MspJI, and filtered via vacuum filtration. Samples were then selectively amplified using a previously reported sWGA protocol and subjected to WGS. Genome coverage statistics were compared between the optimized sWGA approach and the previously reported sWGA approach performed in parallel. Differential amplification by sWGA was assessed by comparing WGS data generated from lab-created mixtures of parasite isolates, from the same geographical region, generated with or without sWGA. Results MspJI digestion did not enrich for parasite DNA. Samples that underwent vacuum filtration (without MspJI digestion) prior to sWGA had the highest parasite DNA concentration and displayed greater genome coverage compared to MspJI + sWGA and sWGA alone, particularly for low parasitaemia samples. The optimized sWGA (filtration + sWGA) approach was successfully used to generate WGS data from 218 non-leukocyte depleted field samples from Malawi. Sequences from lab-created mixtures of parasites did not show evidence of differential amplification of parasite strains compared to directly sequenced samples. Conclusion This optimized sWGA approach is a reliable method to obtain WGS data from non-leukocyte depleted, low parasitaemia samples. The absence of amplification bias in data generated from mixtures of isolates from the same geographic region suggests that this approach can be appropriately used for molecular epidemiological studies.
Collapse
Affiliation(s)
- Zalak Shah
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kara A Moser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Biraj Shrestha
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Miriam K Laufer
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
van Dorp L, Gelabert P, Rieux A, de Manuel M, de-Dios T, Gopalakrishnan S, Carøe C, Sandoval-Velasco M, Fregel R, Olalde I, Escosa R, Aranda C, Huijben S, Mueller I, Marquès-Bonet T, Balloux F, Gilbert MTP, Lalueza-Fox C. Plasmodium vivax Malaria Viewed through the Lens of an Eradicated European Strain. Mol Biol Evol 2020; 37:773-785. [PMID: 31697387 PMCID: PMC7038659 DOI: 10.1093/molbev/msz264] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The protozoan Plasmodium vivax is responsible for 42% of all cases of malaria outside Africa. The parasite is currently largely restricted to tropical and subtropical latitudes in Asia, Oceania, and the Americas. Though, it was historically present in most of Europe before being finally eradicated during the second half of the 20th century. The lack of genomic information on the extinct European lineage has prevented a clear understanding of historical population structuring and past migrations of P. vivax. We used medical microscope slides prepared in 1944 from malaria-affected patients from the Ebro Delta in Spain, one of the last footholds of malaria in Europe, to generate a genome of a European P. vivax strain. Population genetics and phylogenetic analyses placed this strain basal to a cluster including samples from the Americas. This genome allowed us to calibrate a genomic mutation rate for P. vivax, and to estimate the mean age of the last common ancestor between European and American strains to the 15th century. This date points to an introduction of the parasite during the European colonization of the Americas. In addition, we found that some known variants for resistance to antimalarial drugs, including Chloroquine and Sulfadoxine, were already present in this European strain, predating their use. Our results shed light on the evolution of an important human pathogen and illustrate the value of antique medical collections as a resource for retrieving genomic information on pathogens from the past.
Collapse
Affiliation(s)
- Lucy van Dorp
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Pere Gelabert
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Adrien Rieux
- CIRAD, UMR PVBMT, St. Pierre de la Réunion, France
| | - Marc de Manuel
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Toni de-Dios
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rosa Fregel
- Department of Genetics, Stanford University, Stanford, CA
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Spain
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Raül Escosa
- Consorci de Polítiques Ambientals de les Terres de l'Ebre (COPATE), Deltebre, Spain
| | - Carles Aranda
- Servei de Control de Mosquits, Consell Comarcal del Baix Llobregat, Sant Feliu de Llobregat, Spain
| | - Silvie Huijben
- School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ivo Mueller
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Population Health and Immunity Division, Walter & Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - François Balloux
- UCL Genetics Institute, University College London, London, United Kingdom
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|
39
|
Domagalska MA, Dujardin JC. Next-Generation Molecular Surveillance of TriTryp Diseases. Trends Parasitol 2020; 36:356-367. [PMID: 32191850 DOI: 10.1016/j.pt.2020.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Elimination programs targeting TriTryp diseases (Leishmaniasis, Chagas' disease, human African trypanosomiasis) significantly reduced the number of cases. Continued surveillance is crucial to sustain this progress, but parasite molecular surveillance by genotyping is currently lacking. We explain here which epidemiological questions of public health and clinical relevance could be answered by means of molecular surveillance. Whole-genome sequencing (WGS) for molecular surveillance will be an important added value, where we advocate that preference should be given to direct sequencing of the parasite's genome in host tissues instead of analysis of cultivated isolates. The main challenges here, and recent technological advances, are discussed. We conclude with a series of recommendations for implementing whole-genome sequencing for molecular surveillance.
Collapse
Affiliation(s)
- Malgorzata Anna Domagalska
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium.
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
| |
Collapse
|
40
|
Domagalska MA, Imamura H, Sanders M, Van den Broeck F, Bhattarai NR, Vanaerschot M, Maes I, D’Haenens E, Rai K, Rijal S, Berriman M, Cotton JA, Dujardin JC. Genomes of Leishmania parasites directly sequenced from patients with visceral leishmaniasis in the Indian subcontinent. PLoS Negl Trop Dis 2019; 13:e0007900. [PMID: 31830038 PMCID: PMC6932831 DOI: 10.1371/journal.pntd.0007900] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/26/2019] [Accepted: 11/01/2019] [Indexed: 12/02/2022] Open
Abstract
Whole genome sequencing (WGS) is increasingly used for molecular diagnosis and epidemiology of infectious diseases. Current Leishmania genomic studies rely on DNA extracted from cultured parasites, which might introduce sampling and biological biases into the subsequent analyses. Up to now, direct analysis of Leishmania genome in clinical samples is hampered by high levels of human DNA and large variation in parasite load in clinical samples. Here, we present a method, based on target enrichment of Leishmania donovani DNA with Agilent SureSelect technology, that allows the analysis of Leishmania genomes directly in clinical samples. We validated our protocol with a set of artificially mixed samples, followed by the analysis of 63 clinical samples (bone marrow or spleen aspirates) from visceral leishmaniasis patients in Nepal. We were able to identify genotypes using a set of diagnostic SNPs in almost all of these samples (97%) and access comprehensive genome-wide information in most (83%). This allowed us to perform phylogenomic analysis, assess chromosome copy number and identify large copy number variants (CNVs). Pairwise comparisons between the parasite genomes in clinical samples and derived in vitro cultured promastigotes showed a lower aneuploidy in amastigotes as well as genomic differences, suggesting polyclonal infections in patients. Altogether our results underline the need for sequencing parasite genomes directly in the host samples Visceral leishmaniasis (VL) is caused by parasitic protozoa of the Leishmania donovani complex and is lethal in the absence of treatment. Whole Genome Sequencing (WGS) of L. donovani clinical isolates revealed hitherto cryptic population structure in the Indian Sub-Continent and provided insights into the epidemiology and potential mechanisms of drug resistance. However, several biases are likely introduced during the culture step. We report here the development of a method that allows determination of parasite genomes directly in clinical samples, and validate it on bone marrow and splenic aspirates of VL patients in Nepal. Our study sheds a new light on the biology of Leishmania in the human host: we found that intracellular parasites of the patients had very low levels of aneuploidy, in sharp contrast to the situation in cultivated isolates. Moreover, the observed differences in genomes between intracellular amastigotes of the patient and the derived cultured parasites suggests polyclonality of infections, with different clones dominating in clinical samples and in culture, likely due to fitness differences. We believe this method is most suitable for clinical studies and for molecular tracking in the context of elimination programs.
Collapse
Affiliation(s)
- Malgorzata A. Domagalska
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
- * E-mail: (MAD); (JAC); (JC-D)
| | - Hideo Imamura
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | | | | | | | - Manu Vanaerschot
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Ilse Maes
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Erika D’Haenens
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Keshav Rai
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, United Kingdom
- * E-mail: (MAD); (JAC); (JC-D)
| | - Jean-Claude Dujardin
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
- University of Antwerp, Department of Biomedical Sciences, Antwerp, Belgium
- * E-mail: (MAD); (JAC); (JC-D)
| |
Collapse
|
41
|
Cocking JH, Deberg M, Schupp J, Sahl J, Wiggins K, Porty A, Hornstra HM, Hepp C, Jardine C, Furstenau TN, Schulte-Hostedde A, Fofanov VY, Pearson T. Selective whole genome amplification and sequencing of Coxiella burnetii directly from environmental samples. Genomics 2019; 112:1872-1878. [PMID: 31678592 DOI: 10.1016/j.ygeno.2019.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Whole genome sequencing (WGS) is a widely available, inexpensive means of providing a wealth of information about an organism's diversity and evolution. However, WGS for many pathogenic bacteria remain limited because they are difficult, slow and/or dangerous to culture. To avoid culturing, metagenomic sequencing can be performed directly on samples, but the sequencing effort required to characterize low frequency organisms can be expensive. Recently developed methods for selective whole genome amplification (SWGA) can enrich target DNA to provide efficient sequencing. We amplified Coxiella burnetii (a bacterial select agent and human/livestock pathogen) from 3 three environmental samples that were overwhelmed with host DNA. The 68- to 147-fold enrichment of the bacterial sequences provided enough genome coverage for SNP analyses and phylogenetic placement. SWGA is a valuable tool for the study of difficult-to-culture organisms and has the potential to facilitate high-throughput population characterizations as well as targeted epidemiological or forensic investigations.
Collapse
Affiliation(s)
- Jill Hager Cocking
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America; School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America.
| | - Michael Deberg
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Jim Schupp
- Pathogen and Microbiome Division, TGen North, Flagstaff, AZ, United States of America.
| | - Jason Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America.
| | - Kristin Wiggins
- Pathogen and Microbiome Division, TGen North, Flagstaff, AZ, United States of America.
| | - Ariel Porty
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada.
| | - Heidie M Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America.
| | - Crystal Hepp
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America; School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America.
| | - Claire Jardine
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada.
| | - Tara N Furstenau
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America.
| | | | - Viacheslav Y Fofanov
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America; School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America.
| | - Talima Pearson
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States of America.
| |
Collapse
|
42
|
Sibley CH. A Solid Beginning to Understanding Plasmodium vivax in Africa. J Infect Dis 2019; 220:1716-1718. [PMID: 30668773 DOI: 10.1093/infdis/jiz019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/28/2024] Open
|
43
|
Li X, Kumar S, McDew-White M, Haile M, Cheeseman IH, Emrich S, Button-Simons K, Nosten F, Kappe SHI, Ferdig MT, Anderson TJC, Vaughan AM. Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle. PLoS Genet 2019; 15:e1008453. [PMID: 31609965 PMCID: PMC6821138 DOI: 10.1371/journal.pgen.1008453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Determining the genetic basis of fitness is central to understanding evolution and transmission of microbial pathogens. In human malaria parasites (Plasmodium falciparum), most experimental work on fitness has focused on asexual blood stage parasites, because this stage can be easily cultured, although the transmission of malaria requires both female Anopheles mosquitoes and vertebrate hosts. We explore a powerful approach to identify the genetic determinants of parasite fitness across both invertebrate and vertebrate life-cycle stages of P. falciparum. This combines experimental genetic crosses using humanized mice, with selective whole genome amplification and pooled sequencing to determine genome-wide allele frequencies and identify genomic regions under selection across multiple lifecycle stages. We applied this approach to genetic crosses between artemisinin resistant (ART-R, kelch13-C580Y) and ART-sensitive (ART-S, kelch13-WT) parasites, recently isolated from Southeast Asian patients. Two striking results emerge: we observed (i) a strong genome-wide skew (>80%) towards alleles from the ART-R parent in the mosquito stage, that dropped to ~50% in the blood stage as selfed ART-R parasites were selected against; and (ii) repeatable allele specific skews in blood stage parasites with particularly strong selection (selection coefficient (s) ≤ 0.18/asexual cycle) against alleles from the ART-R parent at loci on chromosome 12 containing MRP2 and chromosome 14 containing ARPS10. This approach robustly identifies selected loci and has strong potential for identifying parasite genes that interact with the mosquito vector or compensatory loci involved in drug resistance.
Collapse
Affiliation(s)
- Xue Li
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Marina McDew-White
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Meseret Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ian H. Cheeseman
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Scott Emrich
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Katie Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michael T. Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Tim J. C. Anderson
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- * E-mail: (TJCA); (AMV)
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail: (TJCA); (AMV)
| |
Collapse
|
44
|
Taitt CR, Leski TA, Colston SM, Bernal M, Canal E, Regeimbal J, Rios P, Vora GJ. A comparison of methods for DNA preparation prior to microarray analysis. Anal Biochem 2019; 585:113405. [PMID: 31445900 DOI: 10.1016/j.ab.2019.113405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/30/2023]
Abstract
Microarrays are a valuable tool for analysis of both bacterial and eukaryotic nucleic acids. As many of these applications use non-specific amplification to increase sample concentration prior to analysis, the methods used to fragment and label large amplicons are important to achieve the desired analytical selectivity and specificity. Here, we used eight sequenced ESKAPE pathogens to determine the effect of two methods of whole genome amplicon fragmentation and three methods of subsequent labeling on microarray performance; nick translation was also assessed. End labeling of both initial DNase I-treated and sonication-fragmented amplicons failed to provide detectable material for a significant number of sequence-confirmed genes. However, processing of amplicons by nick translation, or by sequential fragmentation and labeling by Universal Labeling System or Klenow fragment/random primer provided good sensitivity and selectivity, with marginally better results obtained by Klenow fragment labeling. Nick-translation provided 91-100% sensitivity and 100% specificity in the tested strains, requiring half as many manipulations and less than 4h to process samples for hybridization; full sample processing from whole genome amplification to final data analysis could be performed in less than 10h. The method of template denaturation before amplification did affect detection sensitivity/selectivity of nick-labeled amplicons, however.
Collapse
Affiliation(s)
- Chris R Taitt
- Center for BioMolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA.
| | - Tomasz A Leski
- Center for BioMolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA
| | - Sophie M Colston
- National Research Council Research Associateship Program, Washington, DC, 20001, USA
| | | | | | | | | | - Gary J Vora
- Center for BioMolecular Science & Engineering, US Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
45
|
Benavente ED, Gomes AR, De Silva JR, Grigg M, Walker H, Barber BE, William T, Yeo TW, de Sessions PF, Ramaprasad A, Ibrahim A, Charleston J, Hibberd ML, Pain A, Moon RW, Auburn S, Ling LY, Anstey NM, Clark TG, Campino S. Whole genome sequencing of amplified Plasmodium knowlesi DNA from unprocessed blood reveals genetic exchange events between Malaysian Peninsular and Borneo subpopulations. Sci Rep 2019; 9:9873. [PMID: 31285495 PMCID: PMC6614422 DOI: 10.1038/s41598-019-46398-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
The zoonotic Plasmodium knowlesi parasite is the most common cause of human malaria in Malaysia. Genetic analysis has shown that the parasites are divided into three subpopulations according to their geographic origin (Peninsular or Borneo) and, in Borneo, their macaque host (Macaca fascicularis or M. nemestrina). Whilst evidence suggests that genetic exchange events have occurred between the two Borneo subpopulations, the picture is unclear in less studied Peninsular strains. One difficulty is that P. knowlesi infected individuals tend to present with low parasitaemia leading to samples with insufficient DNA for whole genome sequencing. Here, using a parasite selective whole genome amplification approach on unprocessed blood samples, we were able to analyse recent genomes sourced from both Peninsular Malaysia and Borneo. The analysis provides evidence that recombination events are present in the Peninsular Malaysia parasite subpopulation, which have acquired fragments of the M. nemestrina associated subpopulation genotype, including the DBPβ and NBPXa erythrocyte invasion genes. The NBPXb invasion gene has also been exchanged within the macaque host-associated subpopulations of Malaysian Borneo. Our work provides strong evidence that exchange events are far more ubiquitous than expected and should be taken into consideration when studying the highly complex P. knowlesi population structure.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ana Rita Gomes
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Matthew Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Harriet Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300, Kota Kinabalu, Sabah, Malaysia.,Clinical Research Centre, Queen Elizabeth Hospital, 88300, Kota Kinabalu, Sabah, Malaysia.,Jesselton Medical Centre, 88300, Kota Kinabalu, Sabah, Malaysia
| | - Tsin Wen Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Abhinay Ramaprasad
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Amy Ibrahim
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James Charleston
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Genomics Institute, Biopolis, Singapore
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Robert W Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom. .,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
46
|
Porter BW, Venkatappa TK. Uncloaking an ancient adversary: Can pathogen biomarker elicitors play a role in confirming extrapulmonary TB and latent TB infection? Tuberculosis (Edinb) 2018; 113:30-37. [PMID: 30514511 DOI: 10.1016/j.tube.2018.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/07/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
Latent tuberculosis infection (LTBI) is diagnosed immunologically using the Mantoux tuberculin skin test (TST) or interferon-gamma release assays (IGRAs). While widely used, immunodiagnostics can produce false negative or false positive results. Pathogen biomarkers provide an alternative, but direct detection in LTBI and extrapulmonary TB cases is challenging. Mycobacterium tuberculosis grows slowly, has limited hematogenous movement, is protected by a lipid rich cell wall, and produces low levels of secreted factors. Here we discuss the potential of elicitors by first considering pathogen markers that may be released following the administration of isoniazid. Isoniazid targets the cell wall of mycobacteria found in extracellular compartments and within monocytes, macrophages, dendritic cells, and lymphatic endothelial cells. Isoniazid's dual-purpose potential as an antibiotic and elicitor is supported by knowledge of latent infection dynamics, time-kill kinetics, and new detection techniques. Within hours, the bactericidal action of isoniazid likely enriches plasma with M. tuberculosis DNA, RNA, proteins/peptides, and lipids. Undoubtedly a portion of these biomarkers are eliminated as some bacilli undergo phagocytosis and lysosomal destruction. However, advances in immunoprecipitation and nucleic acid amplification, combined with the use of larger blood volumes during assay development, may overcome these losses. Other anticipated challenges include determining optimal sample collection times and designing diagnostic workflows that minimize processing-associated marker loss and degradation. Conventional, commercial, and emerging technologies that address these variables are discussed. If realized, isoniazid associated markers could provide proof of concept for novel elicitor-based diagnostic approaches capable of confirming LTBI and empirically treated extrapulmonary TB.
Collapse
Affiliation(s)
- Brad W Porter
- Independent Researcher; P.O. Box 56224, Atlanta, GA 30343, USA.
| | | |
Collapse
|
47
|
Wesolowski A, Taylor AR, Chang HH, Verity R, Tessema S, Bailey JA, Alex Perkins T, Neafsey DE, Greenhouse B, Buckee CO. Mapping malaria by combining parasite genomic and epidemiologic data. BMC Med 2018; 16:190. [PMID: 30333020 PMCID: PMC6193293 DOI: 10.1186/s12916-018-1181-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recent global progress in scaling up malaria control interventions has revived the goal of complete elimination in many countries. Decreasing transmission intensity generally leads to increasingly patchy spatial patterns of malaria transmission in elimination settings, with control programs having to accurately identify remaining foci in order to efficiently target interventions. FINDINGS The role of connectivity between different pockets of local transmission is of increasing importance as programs near elimination since humans are able to transfer parasites beyond the limits of mosquito dispersal, thus re-introducing parasites to previously malaria-free regions. Here, we discuss recent advances in the quantification of spatial epidemiology of malaria, particularly Plasmodium falciparum, in the context of transmission reduction interventions. Further, we highlight the challenges and promising directions for the development of integrated mapping, modeling, and genomic approaches that leverage disparate datasets to measure both connectivity and transmission. CONCLUSION A more comprehensive understanding of the spatial transmission of malaria can be gained using a combination of parasite genetics and epidemiological modeling and mapping. However, additional molecular and quantitative methods are necessary to answer these public health-related questions.
Collapse
Affiliation(s)
- Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Aimee R Taylor
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
| | - Hsiao-Han Chang
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Robert Verity
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | - Sofonias Tessema
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA.,Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Caroline O Buckee
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA. .,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
48
|
Flaherty BR, Talundzic E, Barratt J, Kines KJ, Olsen C, Lane M, Sheth M, Bradbury RS. Restriction enzyme digestion of host DNA enhances universal detection of parasitic pathogens in blood via targeted amplicon deep sequencing. MICROBIOME 2018; 6:164. [PMID: 30223888 PMCID: PMC6142370 DOI: 10.1186/s40168-018-0540-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Targeted amplicon deep sequencing (TADS) of the 16S rRNA gene is commonly used to explore and characterize bacterial microbiomes. Meanwhile, attempts to apply TADS to the detection and characterization of entire parasitic communities have been hampered since conserved regions of many conserved parasite genes, such as the 18S rRNA gene, are also conserved in their eukaryotic hosts. As a result, targeted amplification of 18S rRNA from clinical samples using universal primers frequently results in competitive priming and preferential amplification of host DNA. Here, we describe a novel method that employs a single pair of universal primers to capture all blood-borne parasites while reducing host 18S rRNA template and enhancing the amplification of parasite 18S rRNA for TADS. This was achieved using restriction enzymes to digest the 18S rRNA gene at cut sites present only in the host sequence prior to PCR amplification. RESULTS This method was validated against 16 species of blood-borne helminths and protozoa. Enzyme digestion prior to PCR enrichment and Illumina amplicon deep sequencing led to a substantial reduction in human reads and a corresponding 5- to 10-fold increase in parasite reads relative to undigested samples. This method allowed for discrimination of all common parasitic agents found in human blood, even in cases of multi-parasite infection, and markedly reduced the limit of detection in digested versus undigested samples. CONCLUSIONS The results herein provide a novel methodology for the reduction of host DNA prior to TADS and establish the validity of a next-generation sequencing-based platform for universal parasite detection.
Collapse
Affiliation(s)
- Briana R Flaherty
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
- Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN, 37830, USA
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Joel Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
- Oak Ridge Institute for Science and Education, 100 ORAU Way, Oak Ridge, TN, 37830, USA
| | - Kristine J Kines
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Christian Olsen
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA, 94025, USA
| | - Meredith Lane
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
- IHRC, Inc., 2 Ravinia Drive, Atlanta, GA, 30346, USA
| | - Mili Sheth
- Biotechnology Core Facility, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Richard S Bradbury
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
49
|
Loy DE, Plenderleith LJ, Sundararaman SA, Liu W, Gruszczyk J, Chen YJ, Trimboli S, Learn GH, MacLean OA, Morgan ALK, Li Y, Avitto AN, Giles J, Calvignac-Spencer S, Sachse A, Leendertz FH, Speede S, Ayouba A, Peeters M, Rayner JC, Tham WH, Sharp PM, Hahn BH. Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites. Proc Natl Acad Sci U S A 2018; 115:E8450-E8459. [PMID: 30127015 PMCID: PMC6130405 DOI: 10.1073/pnas.1810053115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Wild-living African apes are endemically infected with parasites that are closely related to human Plasmodium vivax, a leading cause of malaria outside Africa. This finding suggests that the origin of P. vivax was in Africa, even though the parasite is now rare in humans there. To elucidate the emergence of human P. vivax and its relationship to the ape parasites, we analyzed genome sequence data of P. vivax strains infecting six chimpanzees and one gorilla from Cameroon, Gabon, and Côte d'Ivoire. We found that ape and human parasites share nearly identical core genomes, differing by only 2% of coding sequences. However, compared with the ape parasites, human strains of P. vivax exhibit about 10-fold less diversity and have a relative excess of nonsynonymous nucleotide polymorphisms, with site-frequency spectra suggesting they are subject to greatly relaxed purifying selection. These data suggest that human P. vivax has undergone an extreme bottleneck, followed by rapid population expansion. Investigating potential host-specificity determinants, we found that ape P. vivax parasites encode intact orthologs of three reticulocyte-binding protein genes (rbp2d, rbp2e, and rbp3), which are pseudogenes in all human P. vivax strains. However, binding studies of recombinant RBP2e and RBP3 proteins to human, chimpanzee, and gorilla erythrocytes revealed no evidence of host-specific barriers to red blood cell invasion. These data suggest that, from an ancient stock of P. vivax parasites capable of infecting both humans and apes, a severely bottlenecked lineage emerged out of Africa and underwent rapid population growth as it spread globally.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sesh A Sundararaman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jakub Gruszczyk
- Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia
| | - Yi-Jun Chen
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Stephanie Trimboli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Oscar A MacLean
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Alex L K Morgan
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa N Avitto
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jasmin Giles
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | - Sheri Speede
- Sanaga-Yong Chimpanzee Rescue Center, International Development Association-Africa, Portland, OR 97208
| | - Ahidjo Ayouba
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton Cambridgeshire CB10 1SA, United Kingdom
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
50
|
Cowell AN, Valdivia HO, Bishop DK, Winzeler EA. Exploration of Plasmodium vivax transmission dynamics and recurrent infections in the Peruvian Amazon using whole genome sequencing. Genome Med 2018; 10:52. [PMID: 29973248 PMCID: PMC6032790 DOI: 10.1186/s13073-018-0563-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plasmodium vivax poses a significant challenge to malaria elimination due to its ability to cause relapsed infections from reactivation of dormant liver parasites called hypnozoites. We analyzed 69 P. vivax whole genome sequences obtained from subjects residing in three different villages along the Peruvian Amazon. This included 23 paired P. vivax samples from subjects who experienced recurrent P. vivax parasitemia following observed treatment with chloroquine and primaquine. METHODS Genomic DNA was extracted from whole blood samples collected from subjects. P. vivax DNA was enriched using selective whole genome amplification and whole genome sequencing. We used single nucleotide polymorphisms (SNPs) from the core P. vivax genome to determine characteristics of the parasite population using discriminant analysis of principal components, maximum likelihood estimation of individual ancestries, and phylogenetic analysis. We estimated the relatedness of the paired samples by calculating the number of segregating sites and using a hidden Markov model approach to estimate identity by descent. RESULTS We present a comprehensive dataset of population genetics of Plasmodium vivax in the Peruvian Amazonian. We define the parasite population structure in this region and demonstrate a novel method for distinguishing homologous relapses from reinfections or heterologous relapses with improved accuracy. The parasite population in this area was quite diverse with an estimated five subpopulations and evidence of a highly heterogeneous ancestry of some of the isolates, similar to previous analyses of P. vivax in this region. Pairwise comparison of recurrent infections determined that there were 12 homologous relapses and 3 likely heterologous relapses with highly related parasites. To the best of our knowledge, this is the first large-scale study to evaluate recurrent P. vivax infections using whole genome sequencing. CONCLUSIONS Whole genome sequencing is a high-resolution tool that can identify P. vivax homologous relapses with increased sensitivity, while also providing data about drug resistance and parasite population genetics. This information is important for evaluating the efficacy of known and novel antirelapse medications in endemic areas and thus advancing the campaign to eliminate malaria.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| | - Hugo O Valdivia
- U.S. Naval Medical Research No. 6, Venezuela Ave, Block 36, Bellavista, Callao, Peru
| | - Danett K Bishop
- U.S. Naval Medical Research No. 6, Venezuela Ave, Block 36, Bellavista, Callao, Peru
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|