1
|
Ersoy SC, Rose WE, Proctor RA. Bicarbonate Within: A Hidden Modulator of Antibiotic Susceptibility. Antibiotics (Basel) 2025; 14:96. [PMID: 39858381 PMCID: PMC11760860 DOI: 10.3390/antibiotics14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Since its standardization, clinical antimicrobial susceptibility testing (AST) has relied upon a standard medium, Mueller-Hinton Broth/Agar (MHB/A), to determine antibiotic resistance. However, this microbiologic medium bears little resemblance to the host milieu, calling into question the physiological relevance of resistance phenotypes it reveals. Recent studies investigating antimicrobial susceptibility in mammalian cell culture media, a more host-mimicking environment, demonstrate that exposure to host factors significantly alters susceptibility profiles. One such factor is bicarbonate, an abundant ion in the mammalian bloodstream/tissues. Importantly, bicarbonate sensitizes methicillin-resistant Staphylococcus aureus (MRSA) to early-generation β-lactams used for the treatment of methicillin-susceptible S. aureus (MSSA). This "NaHCO3-responsive" phenotype is widespread among US MRSA USA300/CC8 bloodstream and skin and soft tissue infection isolates. Translationally, β-lactam therapy has proven effective against NaHCO3-responsive MRSA in both ex vivo simulated endocarditis vegetation (SEV) and in vivo rabbit infective endocarditis (IE) models. Mechanistically, bicarbonate appears to influence mecA expression and PBP2a production/localization, as well as key elements for PBP2a functionality, including the PBP2a chaperone PrsA, components of functional membrane microdomains (FMMs), and wall teichoic acid (WTA) synthesis. The NaHCO3-responsive phenotype highlights the critical role of host factors in shaping antibiotic susceptibility, emphasizing the need to incorporate more physiological conditions into AST protocols.
Collapse
Affiliation(s)
- Selvi C. Ersoy
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Richard A. Proctor
- Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
2
|
Ersoy SC, Madrigal SL, Chen L, Mediavilla J, Kreiswirth B, Flores EA, Miller LG, Xiong YQ, Harrison EM, Blane B, Peacock SJ, Patel R, Chambers HF, Bayer AS, Proctor RA. Phenotypic and genotypic correlates of the sodium bicarbonate-responsive phenotype among methicillin-resistant Staphylococcus aureus isolates from skin and soft-tissue infections. Clin Microbiol Infect 2024:S1198-743X(24)00565-2. [PMID: 39626860 DOI: 10.1016/j.cmi.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES The objective of this study is to assess the frequency of the novel sodium bicarbonate (NaHCO3)-responsive phenotype, wherein clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates are rendered susceptible to standard-of-care β-lactams in the presence of NaHCO3, in a collection of 103 clinical U.S. MRSA skin and soft-tissue infection (SSTI) isolates and 22 clinical European SSTI isolates. This study determined the correlation between specific phenotypic and genotypic metrics and the NaHCO3-responsive phenotype among U.S. SSTI isolates. METHODS Antimicrobial susceptibility testing was performed to determine susceptibility phenotypes. Targeted and whole-genome sequencing with a genome-wide sequence analysis were conducted to identify specific and novel genotypes of interest that may be associated with the NaHCO3-responsive phenotype. Gene expression analysis and targeted gene deletion were performed to assess the role of a specific novel genetic locus in the NaHCO3-responsive phenotype. RESULTS The NaHCO3-responsive phenotype was identified in 78/103 U.S. isolates and 4/22 UK isolates to cefazolin (CFZ), and in 17/103 U.S. isolates and 1/22 UK isolates to oxacillin. In U.S. isolates, a significant association was identified between NaHCO3-responsiveness to CFZ and: (a) susceptibility to amoxicillin-clavulanate; (b) a specific mecA genotype; (c) clonal complex type 8; and (d) spa type t008. Genome-wide sequence analysis identified single nucleotide polymorphisms (SNPs) in an AraC family regulator (SAUSA300_RS00540) to be exclusively found in NaHCO3-non-responsive SSTI strains. In vitro HCO3 exposures of NaHCO3-responsive strains, but not -non-responsive strains, caused >2-fold upregulated expression of this gene. Deletion of this gene rendered NaHCO3-responsive strain MRSA 11/11 no longer NaHCO3-responsive to CFZ; we have termed this gene the staphylococcal AraC bicarbonate-response regulator. DISCUSSION NaHCO3-responsiveness is highly associated with clonal complex type 8/spa type t008, a commonly circulating genetic background in North America. The AraC bicarbonate-response regulator, staphylococcal AraC bicarbonate-response regulator, appears to be associated with the mechanism of NaHCO3-responsiveness, but more work is needed to verify.
Collapse
Affiliation(s)
- Selvi C Ersoy
- The Lundquist Institute for Biomedical Innovations, Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
| | - Sabrina L Madrigal
- California State University-Los Angeles, Department of Biological Sciences, Los Angeles, CA, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Jose Mediavilla
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Barry Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Evelyn A Flores
- The Lundquist Institute for Biomedical Innovations, Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Loren G Miller
- The Lundquist Institute for Biomedical Innovations, Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Yan Q Xiong
- The Lundquist Institute for Biomedical Innovations, Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Ewan M Harrison
- Wellcome Sanger Institute, Hinxton, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sharon J Peacock
- Wellcome Sanger Institute, Hinxton, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom; London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robin Patel
- Department of Microbiology, Mayo Clinic, Rochester, MN, USA
| | - Henry F Chambers
- School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Arnold S Bayer
- The Lundquist Institute for Biomedical Innovations, Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Richard A Proctor
- Departments of Medicine and Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
3
|
Fletcher JR, Hansen LA, Martinez R, Freeman CD, Thorns N, Villareal AR, Penningroth MR, Vogt GA, Tyler M, Hines KM, Hunter RC. Commensal-derived short-chain fatty acids disrupt lipid membrane homeostasis in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607382. [PMID: 39185181 PMCID: PMC11343118 DOI: 10.1101/2024.08.12.607382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The role of commensal anaerobic bacteria in chronic respiratory infections is unclear, yet they can exist in abundances comparable to canonical pathogens in vivo. Their contributions to the metabolic landscape of the host environment may influence pathogen behavior by competing for nutrients and creating inhospitable conditions via toxic metabolites. Here, we reveal a mechanism by which the anaerobe-derived short chain fatty acids (SCFAs) propionate and butyrate negatively affect Staphylococcus aureus physiology by disrupting branched chain fatty acid (BCFA) metabolism. In turn, BCFA impairment results in impaired growth, diminished expression of the agr quorum sensing system, as well as increased sensitivity to membrane-targeting antimicrobials. Altered BCFA metabolism also reduces S. aureus fitness in competition with Pseudomonas aeruginosa, suggesting that airway microbiome composition and the metabolites they produce and exchange directly impact pathogen succession over time. The pleiotropic effects of these SCFAs on S. aureus fitness and their ubiquity as metabolites in animals also suggests that they may be effective as sensitizers to traditional antimicrobial agents when used in combination.
Collapse
Affiliation(s)
- Joshua R. Fletcher
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27695
| | - Lisa A. Hansen
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| | - Richard Martinez
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | | | - Niall Thorns
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| | - Alex R. Villareal
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | | | - Grace A. Vogt
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Matthew Tyler
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN, 55455
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, 30602
| | - Ryan C. Hunter
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203
| |
Collapse
|
4
|
Lyons N, Wu W, Jin Y, Lamont IL, Pletzer D. Using host-mimicking conditions and a murine cutaneous abscess model to identify synergistic antibiotic combinations effective against Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1352339. [PMID: 38808066 PMCID: PMC11130353 DOI: 10.3389/fcimb.2024.1352339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of β-lactam and β-lactam/β-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.
Collapse
Affiliation(s)
- Nikita Lyons
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Weihui Wu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Iain L. Lamont
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Adekoya AE, Kargbo HA, Ibberson CB. Defining microbial community functions in chronic human infection with metatranscriptomics. mSystems 2023; 8:e0059323. [PMID: 37823640 PMCID: PMC10734476 DOI: 10.1128/msystems.00593-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The microbial diversity in polymicrobial infections (PMIs) allows for community members to establish interactions with one another, which can result in enhanced disease outcomes such as increased antibiotic tolerance and chronicity. Chronic PMIs result in large burdens on health systems, as they affect a significant proportion of the population and are expensive and difficult to treat. However, investigations into physiology of microbial communities in actual human infection sites are lacking. Here, we highlight that the predominant functions in chronic PMIs differ, and anaerobes, often described as bystanders, may be significant in the progression of chronic infections. Determining the community structure and functions in PMIs is a critical step toward understanding the molecular mechanisms that increase the virulence potential of the microbial community in these environments.
Collapse
Affiliation(s)
- Aanuoluwa E. Adekoya
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Hoody A. Kargbo
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Carolyn B. Ibberson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
6
|
Coenye T. Biofilm antimicrobial susceptibility testing: where are we and where could we be going? Clin Microbiol Rev 2023; 36:e0002423. [PMID: 37812003 PMCID: PMC10732061 DOI: 10.1128/cmr.00024-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Our knowledge about the fundamental aspects of biofilm biology, including the mechanisms behind the reduced antimicrobial susceptibility of biofilms, has increased drastically over the last decades. However, this knowledge has so far not been translated into major changes in clinical practice. While the biofilm concept is increasingly on the radar of clinical microbiologists, physicians, and healthcare professionals in general, the standardized tools to study biofilms in the clinical microbiology laboratory are still lacking; one area in which this is particularly obvious is that of antimicrobial susceptibility testing (AST). It is generally accepted that the biofilm lifestyle has a tremendous impact on antibiotic susceptibility, yet AST is typically still carried out with planktonic cells. On top of that, the microenvironment at the site of infection is an important driver for microbial physiology and hence susceptibility; but this is poorly reflected in current AST methods. The goal of this review is to provide an overview of the state of the art concerning biofilm AST and highlight the knowledge gaps in this area. Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the steps needed to get past these bottlenecks, will be discussed.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Ding X, Robbe-Masselot C, Fu X, Léonard R, Marsac B, Dauriat CJG, Lepissier A, Rytter H, Ramond E, Dupuis M, Euphrasie D, Dubail I, Schimmich C, Qin X, Parraga J, Leite-de-Moraes M, Ferroni A, Chassaing B, Sermet-Gaudelus I, Charbit A, Coureuil M, Jamet A. Airway environment drives the selection of quorum sensing mutants and promote Staphylococcus aureus chronic lifestyle. Nat Commun 2023; 14:8135. [PMID: 38065959 PMCID: PMC10709412 DOI: 10.1038/s41467-023-43863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Staphylococcus aureus is a predominant cause of chronic lung infections. While the airway environment is rich in highly sialylated mucins, the interaction of S. aureus with sialic acid is poorly characterized. Using S. aureus USA300 as well as clinical isolates, we demonstrate that quorum-sensing dysfunction, a hallmark of S. aureus adaptation, correlates with a greater ability to consume free sialic acid, providing a growth advantage in an air-liquid interface model and in vivo. Furthermore, RNA-seq experiment reveals that free sialic acid triggers transcriptional reprogramming promoting S. aureus chronic lifestyle. To support the clinical relevance of our results, we show the co-occurrence of S. aureus, sialidase-producing microbiota and free sialic acid in the airway of patients with cystic fibrosis. Our findings suggest a dual role for sialic acid in S. aureus airway infection, triggering virulence reprogramming and driving S. aureus adaptive strategies through the selection of quorum-sensing dysfunctional strains.
Collapse
Affiliation(s)
- Xiongqi Ding
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Catherine Robbe-Masselot
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Xiali Fu
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Renaud Léonard
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Benjamin Marsac
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Charlene J G Dauriat
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Team «Mucosal Microbiota in Chronic Inflammatory Diseases», F75014, Paris, France
| | - Agathe Lepissier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Héloïse Rytter
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Elodie Ramond
- Genoscope, UMR8030, Laboratory of Systems & Synthetic Biology (LISSB), Xenome team, F91057, Evry, France
| | - Marion Dupuis
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Daniel Euphrasie
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Iharilalao Dubail
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Cécile Schimmich
- Anses, Laboratory of Animal Health in Normandy, Physiopathology and epidemiology of equine diseases (PhEED), RD 675, F14430, Goustranville, France
| | - Xiaoquan Qin
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F75005, Paris, France
| | - Jessica Parraga
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Agnes Ferroni
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France
| | - Benoit Chassaing
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Team «Mucosal Microbiota in Chronic Inflammatory Diseases», F75014, Paris, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Alain Charbit
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Mathieu Coureuil
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France.
| | - Anne Jamet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France.
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France.
| |
Collapse
|
8
|
Li M, Li D, Li F, Liu W, Wang S, Wu G, Wu G, Tan G, Zheng Z, Li L, Pan Z, Liu Y. Hemolysin from Aeromonas hydrophila enhances the host's serum enzyme activity and regulates transcriptional responses in the spleen of Cyprinus rubrofuscus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115375. [PMID: 37591129 DOI: 10.1016/j.ecoenv.2023.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/04/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Aeromonas hydrophila is a conditional pathogen impacting public hygiene and safety. Hemolysin is a virulence factor of Aeromonas hydrophila that causes erythrocyte hemolysis, yet its transcriptional response to Cyprinus rubrofuscus remains unknown. Our investigation confirmed the hemolysis of hemolysin from A. hydrophila. Serum enzyme activity was evaluated weekly after C. rubrofuscus were immunized with hemolysin Ahh1. The results showed that the hemolysin enhances the serum superoxide dismutase (SOD), lysozyme (LZM), and catalase (CAT) activity, which reached a maximum on day 14. To elucidate the molecular interaction between hemolysin from A. hydrophila and the host, we performed transcriptome sequencing on the spleen of C. rubrofuscus 14 days post hemolysin infection. The total number of clean reads was 41.37 Gb, resulting in 79,832 unigenes with an N50 length of 1863 bp. There were 1982 significantly differentially expressed genes (DEGs), including 1083 upregulated genes and 899 downregulated genes. Transcript levels of the genes, such as LA6BL, CD2, and NLRC5, were significantly downregulated, while those of IL11, IL1R2, and IL8 were dramatically upregulated. The DEGs were mainly enriched in the immune disease, viral protein interaction with cytokine and cytokine receptor, and toll-like receptor pathways, suggesting that hemolysin stimulation can activate the transcriptional responses. RT-qPCR experiments results of seven genes, IL-8, STAT2, CTSK, PRF1, CXCL9, TLR5, and SACS, showed that their expression was highly concordant with RNA-seq data. We clarified for the first time the key genes and signaling pathways response to hemolysin from A. hydrophila, which offers strategies for treating and preventing diseases.
Collapse
Affiliation(s)
- Mei Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China; College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Dan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Fenglan Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Wenli Liu
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Shuang Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gongqing Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guofeng Wu
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Guiliang Tan
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Ziyi Zheng
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Lin Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Ziqiang Pan
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| |
Collapse
|
9
|
Lichtenberg M, Coenye T, Parsek MR, Bjarnsholt T, Jakobsen TH. What's in a name? Characteristics of clinical biofilms. FEMS Microbiol Rev 2023; 47:fuad050. [PMID: 37656883 PMCID: PMC10503651 DOI: 10.1093/femsre/fuad050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
In vitro biofilms are communities of microbes with unique features compared to individual cells. Biofilms are commonly characterized by physical traits like size, adhesion, and a matrix made of extracellular substances. They display distinct phenotypic features, such as metabolic activity and antibiotic tolerance. However, the relative importance of these traits depends on the environment and bacterial species. Various mechanisms enable biofilm-associated bacteria to withstand antibiotics, including physical barriers, physiological adaptations, and changes in gene expression. Gene expression profiles in biofilms differ from individual cells but, there is little consensus among studies and so far, a 'biofilm signature transcriptome' has not been recognized. Additionally, the spatial and temporal variability within biofilms varies greatly depending on the system or environment. Despite all these variable conditions, which produce very diverse structures, they are all noted as biofilms. We discuss that clinical biofilms may differ from those grown in laboratories and found in the environment and discuss whether the characteristics that are commonly used to define and characterize biofilms have been shown in infectious biofilms. We emphasize that there is a need for a comprehensive understanding of the specific traits that are used to define bacteria in infections as clinical biofilms.
Collapse
Affiliation(s)
- Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Matthew R Parsek
- Department of Microbiology, University of Washington School of Medicine, 1705 NE Pacific St., WA 98195 Seattle, United States
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Ole Maaløes vej 26, 2100 Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Hachem AA, Filkins LM, Kidane YH, Raj P, Tareen NG, Arana CA, Muthukrishnan G, Copley LA. Staphylococcus aureus isolates from children with clinically differentiated osteomyelitis exhibit distinct transcriptomic signatures. PLoS One 2023; 18:e0288758. [PMID: 37561761 PMCID: PMC10414669 DOI: 10.1371/journal.pone.0288758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
There is substantial genomic heterogeneity among Staphylococcus aureus isolates of children with acute hematogenous osteomyelitis (AHO) but transcriptional behavior of clinically differentiated strains has not been previously described. This study evaluates transcriptional activity of S. aureus isolates of children with AHO that may regulate metabolism, biosynthesis, or virulence during bacterial growth and pathogenesis. In vitro growth kinetics were compared between three S. aureus clinical isolates from children with AHO who had mild, moderate, and severe illness. Total RNA sequencing was performed for each isolate at six separate time points throughout the logarithmic phase of growth. The NASA RNA-Sequencing Consensus Pipeline was used to identify differentially expressed genes allowing for 54 comparisons between the three isolates during growth. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways were used to evaluate transcriptional variation in metabolism, biosynthesis pathways and virulence potential of the isolates. The S. aureus isolates demonstrated differing growth kinetics under standardized conditions with the mild isolate having higher optical densities with earlier and higher peak rates of growth than that of the other isolates (p<0.001). Enrichment pathway analysis established distinct transcriptional signatures according to both sampling time and clinical severity. Moderate and severe isolates demonstrated pathways of bacterial invasion, S. aureus infection, quorum sensing and two component systems. In comparison, the mild strain favored biosynthesis and metabolism. These findings suggest that transcriptional regulation during the growth of S. aureus may impact the pathogenetic mechanisms involved in the progression of severity of illness in childhood osteomyelitis. The clinical isolates studied demonstrated a tradeoff between growth and virulence. Further investigation is needed to evaluate these transcriptional pathways in an animal model or during active clinical infections of children with AHO.
Collapse
Affiliation(s)
- Ahmad A. Hachem
- Department of Pediatrics, University of Florida College of Medicine –Jacksonville, Jacksonville, FL, United States of America
| | - Laura M. Filkins
- Department of Microbiology, University of Texas Southwestern, Children’s Health System of Texas, Dallas, TX, United States of America
| | - Yared H. Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, United States of America
| | - Prithvi Raj
- Microbiome Research Laboratory, University of Texas Southwestern, Dallas, TX, United States of America
| | - Naureen G. Tareen
- Department of Pediatric Orthopaedic Surgery, Children’s Health System of Texas, Dallas, TX, United States of America
| | - Carlos A. Arana
- Genomics Core, University of Texas Southwestern, Dallas, TX, United States of America
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Lawson A. Copley
- Department of Pediatric Orthopaedic Surgery, Children’s Health System of Texas, Dallas, TX, United States of America
- Department of Pediatric Orthopaedic Surgery, University of Texas Southwestern, Dallas, TX, United States of America
| |
Collapse
|
11
|
Euba B, Gil-Campillo C, Asensio-López J, López-López N, Sen-Kilic E, Díez-Martínez R, Burgui S, Barbier M, Garmendia J. In Vivo Genome-Wide Gene Expression Profiling Reveals That Haemophilus influenzae Purine Synthesis Pathway Benefits Its Infectivity within the Airways. Microbiol Spectr 2023; 11:e0082323. [PMID: 37195232 PMCID: PMC10269889 DOI: 10.1128/spectrum.00823-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Haemophilus influenzae is a human-adapted bacterial pathogen that causes airway infections. Bacterial and host elements associated with the fitness of H. influenzae within the host lung are not well understood. Here, we exploited the strength of in vivo-omic analyses to study host-microbe interactions during infection. We used in vivo transcriptome sequencing (RNA-seq) for genome-wide profiling of both host and bacterial gene expression during mouse lung infection. Profiling of murine lung gene expression upon infection showed upregulation of lung inflammatory response and ribosomal organization genes, and downregulation of cell adhesion and cytoskeleton genes. Transcriptomic analysis of bacteria recovered from bronchoalveolar lavage fluid samples from infected mice showed a significant metabolic rewiring during infection, which was highly different from that obtained upon bacterial in vitro growth in an artificial sputum medium suitable for H. influenzae. In vivo RNA-seq revealed upregulation of bacterial de novo purine biosynthesis, genes involved in non-aromatic amino acid biosynthesis, and part of the natural competence machinery. In contrast, the expression of genes involved in fatty acid and cell wall synthesis and lipooligosaccharide decoration was downregulated. Correlations between upregulated gene expression and mutant attenuation in vivo were established, as observed upon purH gene inactivation leading to purine auxotrophy. Likewise, the purine analogs 6-thioguanine and 6-mercaptopurine reduced H. influenzae viability in a dose-dependent manner. These data expand our understanding of H. influenzae requirements during infection. In particular, H. influenzae exploits purine nucleotide synthesis as a fitness determinant, raising the possibility of purine synthesis as an anti-H. influenzae target. IMPORTANCE In vivo-omic strategies offer great opportunities for increased understanding of host-pathogen interplay and for identification of therapeutic targets. Here, using transcriptome sequencing, we profiled host and pathogen gene expression during H. influenzae infection within the murine airways. Lung pro-inflammatory gene expression reprogramming was observed. Moreover, we uncovered bacterial metabolic requirements during infection. In particular, we identified purine synthesis as a key player, highlighting that H. influenzae may face restrictions in purine nucleotide availability within the host airways. Therefore, blocking this biosynthetic process may have therapeutic potential, as supported by the observed inhibitory effect of 6-thioguanine and 6-mercaptopurine on H. influenzae growth. Together, we present key outcomes and challenges for implementing in vivo-omics in bacterial airway pathogenesis. Our findings provide metabolic insights into H. influenzae infection biology, raising the possibility of purine synthesis as an anti-H. influenzae target and of purine analog repurposing as an antimicrobial strategy against this pathogen.
Collapse
Affiliation(s)
- Begoña Euba
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Javier Asensio-López
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Nahikari López-López
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Emel Sen-Kilic
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | - Saioa Burgui
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Mariette Barbier
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Junkal Garmendia
- Instituto de Agrobiotecnología (IDAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Conexión Nanomedicina-CSIC, Madrid, Spain
| |
Collapse
|
12
|
Impact of Growth Rate on the Protein-mRNA Ratio in Pseudomonas aeruginosa. mBio 2023; 14:e0306722. [PMID: 36475772 PMCID: PMC9973009 DOI: 10.1128/mbio.03067-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our understanding of how bacterial pathogens colonize and persist during human infection has been hampered by the limited characterization of bacterial physiology during infection and a research bias toward in vitro, fast-growing bacteria. Recent research has begun to address these gaps in knowledge by directly quantifying bacterial mRNA levels during human infection, with the goal of assessing microbial community function at the infection site. However, mRNA levels are not always predictive of protein levels, which are the primary functional units of a cell. Here, we used carefully controlled chemostat experiments to examine the relationship between mRNA and protein levels across four growth rates in the bacterial pathogen Pseudomonas aeruginosa. We found a genome-wide positive correlation between mRNA and protein abundances across all growth rates, with genes required for P. aeruginosa viability having stronger correlations than nonessential genes. We developed a statistical method to identify genes whose mRNA abundances poorly predict protein abundances and calculated an RNA-to-protein (RTP) conversion factor to improve mRNA predictions of protein levels. The application of the RTP conversion factor to publicly available transcriptome data sets was highly robust, enabling the more accurate prediction of P. aeruginosa protein levels across strains and growth conditions. Finally, the RTP conversion factor was applied to P. aeruginosa human cystic fibrosis (CF) infection transcriptomes to provide greater insights into the functionality of this bacterium in the CF lung. This study addresses a critical problem in infection microbiology by providing a framework for enhancing the functional interpretation of bacterial human infection transcriptome data. IMPORTANCE Our understanding of bacterial physiology during human infection is limited by the difficulty in assessing bacterial function at the infection site. Recent studies have begun to address this question by quantifying bacterial mRNA levels in human-derived samples using transcriptomics. One challenge for these studies is the poor predictivity of mRNA for protein levels for some genes. Here, we addressed this challenge by measuring the transcriptomes and proteomes of P. aeruginosa grown at four growth rates. Our results revealed that the growth rate does not impact the genome-wide correlation of mRNA and protein levels. We used statistical methods to identify the genes for which mRNA and protein were poorly correlated and developed an RNA-to-protein (RTP) conversion factor that improved the predictivity of protein levels across strains and growth conditions. Our results provide new insights into mRNA-protein correlations and tools to enhance our understanding of bacterial physiology from transcriptome data.
Collapse
|
13
|
Carfrae LA, Brown ED. Nutrient stress is a target for new antibiotics. Trends Microbiol 2023; 31:571-585. [PMID: 36709096 DOI: 10.1016/j.tim.2023.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Novel approaches are required to address the looming threat of pan-resistant Gram-negative pathogens and forestall the rise of untreatable infections. Unconventional targets that are uniquely important during infection and tractable to high-throughput drug discovery methods hold high potential for innovation in antibiotic discovery programs. In this context, inhibitors of bacterial nutrient stress are particularly exciting candidates for future antibiotic development. Amino acid, nucleotide, and vitamin biosynthesis pathways are critical for bacterial growth in nutrient-limiting conditions in the laboratory and the host. Although historically dismissed as dispensable for pathogens, a wealth of transposon mutagenesis and single-mutant studies have emerged which demonstrate that several such pathways are critical for infection. Indeed, high-throughput screens of diverse synthetic compounds and natural products have uncovered inhibitors of nutrient biosynthesis. Herein, we review bacterial nutrient biosynthesis and its role during host infection. Further, we explore screening platforms developed to search for inhibitors of these targets and highlight successes among these. Finally, we feature important and sometimes surprising connections between bacterial nutrient biosynthesis, antibiotic activity, and antibiotic resistance.
Collapse
Affiliation(s)
- Lindsey A Carfrae
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Present address: Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.
| |
Collapse
|
14
|
Lichtenberg M, Kvich L, Larsen SLB, Jakobsen TH, Bjarnsholt T. Inoculum Concentration Influences Pseudomonas aeruginosa Phenotype and Biofilm Architecture. Microbiol Spectr 2022; 10:e0313122. [PMID: 36354337 PMCID: PMC9769529 DOI: 10.1128/spectrum.03131-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
In infections, bacterial cells are often found as relatively small multicellular aggregates characterized by a heterogeneous distribution of phenotype, genotype, and growth rates depending on their surrounding microenvironment. Many laboratory models fail to mimic these characteristics, and experiments are often initiated from planktonic bacteria given optimal conditions for rapid growth without concerns about the microenvironmental characteristics during biofilm maturation. Therefore, we investigated how the initial bacterial concentration (henceforth termed the inoculum) influences the microenvironment during initial growth and how this affects the sizes and distribution of developed aggregates in an embedded biofilm model-the alginate bead biofilm model. Following 24 h of incubation, the viable biomass was independent of starting inoculum but with a radically different microenvironment which led to differences in metabolic activity depending on the inoculum. The inoculum also affected the number of cells surviving treatment with the antibiotic tobramycin, where the highest inoculum showed higher survival rates than the lowest inoculum. The change in antibiotic tolerance was correlated with cell-specific RNA content and O2 consumption rates, suggesting a direct role of metabolic activity. Thus, the starting number of bacteria results in different phenotypic trajectories governed by different microenvironmental characteristics, and we demonstrate some of the possible implications of such physiological gradients on the outcome of in vitro experiments. IMPORTANCE Biofilm aggregates grown in the alginate bead biofilm model bear resemblance to features of in vivo biofilms. Here, we show that changing the initial concentration of bacteria in the biofilm model leads to widely different behavior of the bacteria following an incubation period. This difference is influenced by the local conditions experienced by the bacteria during growth, which impact their response to antibiotic treatment. Our study provides a framework for manipulating aggregate sizes in in vitro biofilm models. It underlines the importance of how experiments are initiated, which can profoundly impact the outcomes and interpretation of microbiological experiments.
Collapse
Affiliation(s)
- Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lasse Kvich
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sara Louise Borregaard Larsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
Precise spatial structure impacts antimicrobial susceptibility of S. aureus in polymicrobial wound infections. Proc Natl Acad Sci U S A 2022; 119:e2212340119. [PMID: 36520668 PMCID: PMC9907066 DOI: 10.1073/pnas.2212340119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A hallmark of microbial ecology is that interactions between members of a community shape community function. This includes microbial communities in human infections, such as chronic wounds, where interactions can result in more severe diseases. Staphylococcus aureus is the most common organism isolated from human chronic wound infections and has been shown to have both cooperative and competitive interactions with Pseudomonas aeruginosa. Still, despite considerable study, most interactions between these microbes have been characterized using in vitro well-mixed systems, which do not recapitulate the infection environment. Here, we characterized interactions between S. aureus and P. aeruginosa in chronic murine wounds, focusing on the role that both macro- and micro-scale spatial structures play in disease. We discovered that S. aureus and P. aeruginosa coexist at high cell densities in murine wounds. High-resolution imaging revealed that these microbes establish a patchy distribution, only occupying 5 to 25% of the wound volume. Using a quantitative framework, we identified a precise spatial structure at both the macro (mm)- and micro (µm)-scales, which was largely mediated by P. aeruginosa production of the antimicrobial 2-heptyl-4-hydroxyquinoline N-oxide, while the antimicrobial pyocyanin had no impact. Finally, we discovered that this precise spatial structure enhances S. aureus tolerance to aminoglycoside antibiotics but not vancomycin. Our results provide mechanistic insights into the biogeography of S. aureus and P. aeruginosa coinfected wounds and implicate spatial structure as a key determinant of antimicrobial tolerance in wound infections.
Collapse
|
16
|
Donegan RK. The role of host heme in bacterial infection. Biol Chem 2022; 403:1017-1029. [PMID: 36228088 DOI: 10.1515/hsz-2022-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
Heme is an indispensable cofactor for almost all aerobic life, including the human host and many bacterial pathogens. During infection, heme and hemoproteins are the largest source of bioavailable iron, and pathogens have evolved various heme acquisition pathways to satisfy their need for iron and heme. Many of these pathways are regulated transcriptionally by intracellular iron levels, however, host heme availability and intracellular heme levels have also been found to regulate heme uptake in some species. Knowledge of these pathways has helped to uncover not only how these bacteria incorporate host heme into their metabolism but also provided insight into the importance of host heme as a nutrient source during infection. Within this review is covered multiple aspects of the role of heme at the host pathogen interface, including the various routes of heme biosynthesis, how heme is sequestered by the host, and how heme is scavenged by bacterial pathogens. Also discussed is how heme and hemoproteins alter the behavior of the host immune system and bacterial pathogens. Finally, some unanswered questions about the regulation of heme uptake and how host heme is integrated into bacterial metabolism are highlighted.
Collapse
Affiliation(s)
- Rebecca K Donegan
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| |
Collapse
|
17
|
Manna AC, Leo S, Girel S, González-Ruiz V, Rudaz S, Francois P, Cheung AL. Teg58, a small regulatory RNA, is involved in regulating arginine biosynthesis and biofilm formation in Staphylococcus aureus. Sci Rep 2022; 12:14963. [PMID: 36056144 PMCID: PMC9440087 DOI: 10.1038/s41598-022-18815-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Staphylococcus aureus adapts to different environments by sensing and responding to diverse environmental cues. The responses are coordinately regulated by regulatory proteins, and small regulatory RNAs at the transcriptional and translational levels. Here, we characterized teg58, a SarA repressed sRNA, using ChIP-Seq and RNA-Seq analysis of a sarA mutant. Phenotypic and genetic analyses indicated that inactivation of teg58 led to reduced biofilm formation in a process that is independent of SarA, agr, PIA, and PSMs. RNA-Seq analysis of teg58 mutant revealed up-regulation of arginine biosynthesis genes (i.e., argGH) as well as the ability of the mutant to grow in a chemical defined medium (CDM) lacking L-arginine. Exogenous L-arginine or endogenous induction of argGH led to decreased biofilm formation in parental strains. Further analysis in vitro and in vivo demonstrated that the specific interaction between teg58 and the argGH occurred at the post-transcriptional level to repress arginine synthesis. Biochemical and genetic analyses of various arginine catabolic pathway genes demonstrated that the catabolic pathway did not play a significant role in reduced biofilm formation in the teg58 mutant. Overall, results suggest that teg58 is a regulatory sRNA that plays an important role in modulating arginine biosynthesis and biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Adhar C Manna
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
| | - Stefano Leo
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Sergey Girel
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Patrice Francois
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University Medical Center, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Ambrose L Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| |
Collapse
|
18
|
Baishya J, Everett JA, Chazin WJ, Rumbaugh KP, Wakeman CA. The Innate Immune Protein Calprotectin Interacts With and Encases Biofilm Communities of Pseudomonas aeruginosa and Staphylococcus aureus. Front Cell Infect Microbiol 2022; 12:898796. [PMID: 35909964 PMCID: PMC9325956 DOI: 10.3389/fcimb.2022.898796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Calprotectin is a transition metal chelating protein of the innate immune response known to exert nutritional immunity upon microbial infection. It is abundantly released during inflammation and is therefore found at sites occupied by pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The metal limitation induced by this protein has previously been shown to mediate P. aeruginosa and S. aureus co-culture. In addition to the transition metal sequestration role of calprotectin, it has also been shown to have metal-independent antimicrobial activity via direct cell contact. Therefore, we sought to assess the impact of this protein on the biofilm architecture of P. aeruginosa and S. aureus in monomicrobial and polymicrobial culture. The experiments described in this report reveal novel aspects of calprotectin's interaction with biofilm communities of P. aeruginosa and S. aureus discovered using scanning electron microscopy and confocal laser scanning microscopy. Our results indicate that calprotectin can interact with microbial cells by stimulating encapsulation in mesh-like structures. This physical interaction leads to compositional changes in the biofilm extracellular polymeric substance (EPS) in both P. aeruginosa and S. aureus.
Collapse
Affiliation(s)
- Jiwasmika Baishya
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Jake A. Everett
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Texas Tech University Health Sciences Center Surgery Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
19
|
Menard G, Silard C, Suriray M, Rouillon A, Augagneur Y. Thirty Years of sRNA-Mediated Regulation in Staphylococcus aureus: From Initial Discoveries to In Vivo Biological Implications. Int J Mol Sci 2022; 23:ijms23137346. [PMID: 35806357 PMCID: PMC9266662 DOI: 10.3390/ijms23137346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus is a widespread livestock and human pathogen that colonizes diverse microenvironments within its host. Its adaptation to the environmental conditions encountered within humans relies on coordinated gene expression. This requires a sophisticated regulatory network, among which regulatory RNAs (usually called sRNAs) have emerged as key players over the last 30 years. In S. aureus, sRNAs regulate target genes at the post-transcriptional level through base–pair interactions. The functional characterization of a subset revealed that they participate in all biological processes, including virulence, metabolic adaptation, and antibiotic resistance. In this review, we report 30 years of S. aureus sRNA studies, from their discovery to the in-depth characterizations of some of them. We also discuss their actual in vivo contribution, which is still lagging behind, and their place within the complex regulatory network. These shall be key aspects to consider in order to clearly uncover their in vivo biological functions.
Collapse
Affiliation(s)
- Guillaume Menard
- CHU Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), SB2H (Service de Bactériologie Hygiène-Hospitalière), University Rennes, UMR_S 1230, F-35000 Rennes, France; (G.M.); (M.S.)
| | - Chloé Silard
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
| | - Marie Suriray
- CHU Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), SB2H (Service de Bactériologie Hygiène-Hospitalière), University Rennes, UMR_S 1230, F-35000 Rennes, France; (G.M.); (M.S.)
| | - Astrid Rouillon
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
| | - Yoann Augagneur
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
- Correspondence: ; Tel.: +33-223234631
| |
Collapse
|
20
|
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022; 11:cells11071243. [PMID: 35406809 PMCID: PMC8998122 DOI: 10.3390/cells11071243] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding for the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, expressed on the apical surface of epithelial cells. CFTR absence/dysfunction results in ion imbalance and airway surface dehydration that severely compromise the CF airway microenvironment, increasing infection susceptibility. Recently, novel therapies aimed at correcting the basic CFTR defect have become available, leading to substantial clinical improvement of CF patients. The restoration or increase of CFTR function affects the airway microenvironment, improving local defence mechanisms. CFTR modulator drugs might therefore affect the development of chronic airway infections and/or improve the status of existing infections in CF. Thus far, however, the full extent of these effects of CFTR-modulators, especially in the long-term remains still unknown. This review aims to provide an overview of current evidence on the potential impact of CFTR modulators on airway infections in CF. Their role in affecting CF microbiology, the susceptibility to infections as well as the potential efficacy of their use in preventing/decreasing the development of chronic lung infections and the recurrent acute exacerbations in CF will be critically analysed.
Collapse
Affiliation(s)
- Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy;
| | - Barbara Messore
- Adult Cystic Fibrosis Centre, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Nicola Ivan Loré
- WHO Collaborating Centre and TB Supranational Reference Laboratory, Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Irene Esposito
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Elisabetta Bignamini
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|
21
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
22
|
Ménard G, Rouillon A, Cattoir V, Donnio PY. Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Front Cell Infect Microbiol 2022; 11:782733. [PMID: 35004350 PMCID: PMC8727906 DOI: 10.3389/fcimb.2021.782733] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing interest for Galleria mellonella larvae as an infection model is evidenced by the number of papers reporting its use, which increases exponentially since the early 2010s. This popularity was initially linked to limitation of conventional animal models due to financial, technical and ethical aspects. In comparison, alternative models (e.g. models using Caenorhabditis elegans, Drosophila melanogaster or G. mellonella) were cheap, simple to use and not limited by ethical regulation. Since then, similar results have been established with G. mellonella model comparatively to vertebrates, and it is more and more often used as a robust model per se, not only as an alternative to the murine model. This review attempts to summarize the current knowledge supporting the development of this model, both on immunological and microbiological aspects. For that, we focus on investigation of virulence and new therapies for the most important pathogenic bacteria. We also discuss points out directions for standardization, as well as recent advances and new perspectives for monitoring host-pathogen interactions.
Collapse
Affiliation(s)
- Guillaume Ménard
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Astrid Rouillon
- Univ Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, France
| | - Vincent Cattoir
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Pierre-Yves Donnio
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| |
Collapse
|
23
|
A quantitative framework reveals traditional laboratory growth is a highly accurate model of human oral infection. Proc Natl Acad Sci U S A 2022; 119:2116637119. [PMID: 34992142 PMCID: PMC8764681 DOI: 10.1073/pnas.2116637119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
Bacterial behavior and virulence during human infection is difficult to study and largely unknown, as our vast knowledge of infection microbiology is primarily derived from studies using in vitro and animal models. Here, we characterize the physiology of Porphyromonas gingivalis, a periodontal pathogen, in its native environment using 93 published metatranscriptomic datasets from periodontally healthy and diseased individuals. P. gingivalis transcripts were more abundant in samples from periodontally diseased patients but only above 0.1% relative abundance in one-third of diseased samples. During human infection, P. gingivalis highly expressed genes encoding virulence factors such as fimbriae and gingipains (proteases) and genes involved in growth and metabolism, indicating that P. gingivalis is actively growing during disease. A quantitative framework for assessing the accuracy of model systems showed that 96% of P. gingivalis genes were expressed similarly in periodontitis and in vitro midlogarithmic growth, while significantly fewer genes were expressed similarly in periodontitis and in vitro stationary phase cultures (72%) or in a murine abscess infection model (85%). This high conservation in gene expression between periodontitis and logarithmic laboratory growth is driven by overall low variance in P. gingivalis gene expression, relative to other pathogens including Pseudomonas aeruginosa and Staphylococcus aureus Together, this study presents strong evidence for the use of simple test tube growth as the gold standard model for studying P. gingivalis biology, providing biological relevance for the thousands of laboratory experiments performed with logarithmic phase P. gingivalis Furthermore, this work highlights the need to quantitatively assess the accuracy of model systems.
Collapse
|
24
|
Abstract
Drugs called CFTR modulators improve the physiologic defect underlying cystic fibrosis (CF) and alleviate many disease manifestations. However, studies to date indicate that chronic lung infections that are responsible for most disease-related mortality generally persist. Here, we investigated whether combining the CFTR modulator ivacaftor with an intensive 3.5-month antibiotic course could clear chronic Pseudomonas aeruginosa or Staphylococcus aureus lung infections in subjects with R117H-CFTR, who are highly ivacaftor-responsive. Ivacaftor alone improved CFTR activity, and lung function and inflammation within 48 h, and reduced P. aeruginosa and S. aureus pathogen density by ∼10-fold within a week. Antibiotics produced an additional ∼10-fold reduction in pathogen density, but this reduction was transient in subjects who remained infected. Only 1/5 P. aeruginosa-infected and 1/7 S. aureus-infected subjects became persistently culture-negative after the combined treatment. Subjects appearing to clear infection did not have particularly favorable baseline lung function or inflammation, pathogen density or antibiotic susceptibility, or bronchiectasis scores on CT scans, but they did have remarkably low sweat chloride values before and after ivacaftor. All persistently P. aeruginosa-positive subjects remained infected by their pretreatment strain, whereas subjects persistently S. aureus-positive frequently lost and gained strains. This work suggests chronic CF infections may resist eradication despite marked and rapid modulator-induced improvements in lung infection and inflammation parameters and aggressive antibiotic treatment.
Collapse
|
25
|
Hu Y, Niu Y, Ye X, Zhu C, Tong T, Zhou Y, Zhou X, Cheng L, Ren B. Staphylococcus aureus Synergized with Candida albicans to Increase the Pathogenesis and Drug Resistance in Cutaneous Abscess and Peritonitis Murine Models. Pathogens 2021; 10:pathogens10081036. [PMID: 34451500 PMCID: PMC8398722 DOI: 10.3390/pathogens10081036] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
The mixed species of Staphylococcus aureus and Candida albicans can cause infections on skin, mucosa or bloodstream; however, mechanisms of their cross-kingdom interactions related to pathogenesis and drug resistance are still not clear. Here an increase of S. aureus proliferation and biofilm formation was observed in S. aureus and C. albicans dual-species culture, and the synergistic pathogenic effect was then confirmed in both local (cutaneous abscess) and systemic infection (peritonitis) murine models. According to the transcriptome analysis of the dual-species culture, virulence factors of S. aureus were significantly upregulated. Surprisingly, the beta-lactams and vancomycin-resistant genes in S. aureus as well as azole-resistant genes in C. albicans were also significantly increased. The synergistic effects on drug resistance to both antibacterial and antifungal agents were further proved both in vitro and in cutaneous abscess and peritonitis murine models treated by methicillin, vancomycin and fluconazole. The synergistic interactions between S. aureus and C. albicans on pathogenesis and drug resistance highlight the importance of targeting the microbial interactions in polyspecies-associated infections.
Collapse
Affiliation(s)
- Yao Hu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
| | - Chengguang Zhu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
| | - Ting Tong
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
- Correspondence: (X.Z.); (L.C.); (B.R.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
- Correspondence: (X.Z.); (L.C.); (B.R.)
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (X.Y.); (C.Z.); (T.T.); (Y.Z.)
- Correspondence: (X.Z.); (L.C.); (B.R.)
| |
Collapse
|
26
|
Manzo G, Gianfanti F, Hind CK, Allison L, Clarke M, Hohenbichler J, Limantoro I, Martin B, Do Carmo Silva P, Ferguson PM, Hodgson-Casson AC, Fleck RA, Sutton JM, Phoenix DA, Mason AJ. Impacts of Metabolism and Organic Acids on Cell Wall Composition and Pseudomonas aeruginosa Susceptibility to Membrane Active Antimicrobials. ACS Infect Dis 2021; 7:2310-2323. [PMID: 34329558 DOI: 10.1021/acsinfecdis.1c00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reliable antimicrobial susceptibility testing is essential in informing both clinical antibiotic therapy decisions and the development of new antibiotics. Mammalian cell culture media have been proposed as an alternative to bacteriological media, potentially representing some critical aspects of the infection environment more accurately. Here, we use a combination of NMR metabolomics and electron microscopy to investigate the response of Escherichia coli and Pseudomonas aeruginosa to growth in differing rich media to determine whether and how this determines metabolic strategies, the composition of the cell wall, and consequently susceptibility to membrane active antimicrobials including colistin and tobramycin. The NMR metabolomic approach is first validated by characterizing the expected E. coli acid stress response to fermentation and the accompanying changes in the cell wall composition, when cultured in glucose rich mammalian cell culture media. Glucose is not a major carbon source for P. aeruginosa but is associated with a response to osmotic stress and a modest increase in colistin tolerance. Growth of P. aeruginosa in a range of bacteriological media is supported by consumption of formate, an important electron donor in anaerobic respiration. In mammalian cell culture media, however, the overall metabolic strategy of P. aeruginosa is instead dependent on consumption of glutamine and lactate. Formate doping of mammalian cell culture media does not alter the overall metabolic strategy but is associated with polyamine catabolism, remodelling of both inner and outer membranes, and a modest sensitization of P. aeruginosa PAO1 to colistin. Further, in a panel of P. aeruginosa isolates an increase between 2- and 3-fold in sensitivity to tobramycin is achieved through doping with other organic acids, notably propionate which also similarly enhances the activity of colistin. Organic acids are therefore capable of nonspecifically influencing the potency of membrane active antimicrobials.
Collapse
Affiliation(s)
- Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Federico Gianfanti
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Charlotte K. Hind
- Technology Development Group, National Infection Service, Public Health England, Salisbury SP4 0JG United Kingdom
| | - Leanne Allison
- Centre for Ultrastructural Imaging, Guy’s Campus, King’s College London, London SE1 1UL, United Kingdom
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Julia Hohenbichler
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Ilene Limantoro
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Bethany Martin
- Technology Development Group, National Infection Service, Public Health England, Salisbury SP4 0JG United Kingdom
| | - Phoebe Do Carmo Silva
- Technology Development Group, National Infection Service, Public Health England, Salisbury SP4 0JG United Kingdom
| | - Philip M. Ferguson
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Alice C. Hodgson-Casson
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Roland A. Fleck
- Centre for Ultrastructural Imaging, Guy’s Campus, King’s College London, London SE1 1UL, United Kingdom
| | - J. Mark Sutton
- Technology Development Group, National Infection Service, Public Health England, Salisbury SP4 0JG United Kingdom
| | - David A. Phoenix
- School of Applied Science, London South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom
| | - A. James Mason
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
27
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
28
|
Dunphy LJ, Grimes KL, Wase N, Kolling GL, Papin JA. Untargeted Metabolomics Reveals Species-Specific Metabolite Production and Shared Nutrient Consumption by Pseudomonas aeruginosa and Staphylococcus aureus. mSystems 2021; 6:e0048021. [PMID: 34156287 PMCID: PMC8269234 DOI: 10.1128/msystems.00480-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
While bacterial metabolism is known to impact antibiotic efficacy and virulence, the metabolic capacities of individual microbes in cystic fibrosis lung infections are difficult to disentangle from sputum samples. Here, we show that untargeted metabolomic profiling of supernatants of multiple strains of Pseudomonas aeruginosa and Staphylococcus aureus grown in monoculture in synthetic cystic fibrosis media (SCFM) reveals distinct species-specific metabolic signatures despite intraspecies metabolic variability. We identify a set of 15 metabolites that were significantly consumed by both P. aeruginosa and S. aureus, suggesting that nutrient competition has the potential to impact community dynamics even in the absence of other pathogen-pathogen interactions. Finally, metabolites that were uniquely produced by one species or the other were identified. Specifically, the virulence factor precursor anthranilic acid, as well as the quinoline 2,4-quinolinediol (DHQ), were robustly produced across all tested strains of P. aeruginosa. Through the direct comparison of the extracellular metabolism of P. aeruginosa and S. aureus in a physiologically relevant environment, this work provides insight toward the potential for metabolic interactions in vivo and supports the development of species-specific diagnostic markers of infection. IMPORTANCE Interactions between P. aeruginosa and S. aureus can impact pathogenicity and antimicrobial efficacy. In this study, we aim to better understand the potential for metabolic interactions between P. aeruginosa and S. aureus in an environment resembling the cystic fibrosis lung. We find that S. aureus and P. aeruginosa consume many of the same nutrients, suggesting that metabolic competition may play an important role in community dynamics during coinfection. We further identify metabolites uniquely produced by either organism with the potential to be developed into species-specific biomarkers of infection in the cystic fibrosis lung.
Collapse
Affiliation(s)
- Laura J. Dunphy
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Kassandra L. Grimes
- Department of Engineering Systems and Environment, University of Virginia, Charlottesville, Virginia, USA
| | - Nishikant Wase
- Biomolecular Analysis Facility, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
29
|
Fantone K, Tucker SL, Miller A, Yadav R, Bernardy EE, Fricker R, Stecenko AA, Goldberg JB, Rada B. Cystic Fibrosis Sputum Impairs the Ability of Neutrophils to Kill Staphylococcus aureus. Pathogens 2021; 10:pathogens10060703. [PMID: 34200034 PMCID: PMC8229215 DOI: 10.3390/pathogens10060703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) airway disease is characterized by chronic microbial infections and infiltration of inflammatory polymorphonuclear (PMN) granulocytes. Staphylococcus aureus (S. aureus) is a major lung pathogen in CF that persists despite the presence of PMNs and has been associated with CF lung function decline. While PMNs represent the main mechanism of the immune system to kill S. aureus, it remains largely unknown why PMNs fail to eliminate S. aureus in CF. The goal of this study was to observe how the CF airway environment affects S. aureus killing by PMNs. PMNs were isolated from the blood of healthy volunteers and CF patients. Clinical isolates of S. aureus were obtained from the airways of CF patients. The results show that PMNs from healthy volunteers were able to kill all CF isolates and laboratory strains of S. aureus tested in vitro. The extent of killing varied among strains. When PMNs were pretreated with supernatants of CF sputum, S. aureus killing was significantly inhibited suggesting that the CF airway environment compromises PMN antibacterial functions. CF blood PMNs were capable of killing S. aureus. Although bacterial killing was inhibited with CF sputum, PMN binding and phagocytosis of S. aureus was not diminished. The S. aureus-induced respiratory burst and neutrophil extracellular trap release from PMNs also remained uninhibited by CF sputum. In summary, our data demonstrate that the CF airway environment limits killing of S. aureus by PMNs and provides a new in vitro experimental model to study this phenomenon and its mechanism.
Collapse
Affiliation(s)
- Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Arthur Miller
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Eryn E. Bernardy
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.E.B.); (A.A.S.); (J.B.G.)
| | - Rachel Fricker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
| | - Arlene A. Stecenko
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.E.B.); (A.A.S.); (J.B.G.)
| | - Joanna B. Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.E.B.); (A.A.S.); (J.B.G.)
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (K.F.); (S.L.T.); (A.M.); (R.Y.); (R.F.)
- Correspondence:
| |
Collapse
|
30
|
Ménard G, Rouillon A, Ghukasyan G, Emily M, Felden B, Donnio PY. Galleria mellonella Larvae as an Infection Model to Investigate sRNA-Mediated Pathogenesis in Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:631710. [PMID: 33954118 PMCID: PMC8089379 DOI: 10.3389/fcimb.2021.631710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
Small regulatory RNAs (sRNAs) are key players in bacterial regulatory networks. Monitoring their expression inside living colonized or infected organisms is essential for identifying sRNA functions, but few studies have looked at sRNA expression during host infection with bacterial pathogens. Insufficient in vivo studies monitoring sRNA expression attest to the difficulties in collecting such data, we therefore developed a non-mammalian infection model using larval Galleria mellonella to analyze the roles of Staphylococcus aureus sRNAs during larval infection and to quickly determine possible sRNA involvement in staphylococcal virulence before proceeding to more complicated animal testing. We began by using the model to test infected larvae for immunohistochemical evidence of infection as well as host inflammatory responses over time. To monitor sRNA expression during infection, total RNAs were extracted from the larvae and invading bacteria at different time points. The expression profiles of the tested sRNAs were distinct and they fluctuated over time, with expression of both sprD and sprC increased during infection and associated with mortality, while rnaIII expression remained barely detectable over time. A strong correlation was observed between sprD expression and the mortality. To confirm these results, we used sRNA-knockout mutants to investigate sRNA involvement in Staphylococcus aureus pathogenesis, finding that the decrease in death rates is delayed when either sprD or sprC was lacking. These results demonstrate the relevance of this G. mellonella model for investigating the role of sRNAs as transcriptional regulators involved in staphylococcal virulence. This insect model provides a fast and easy method for monitoring sRNA (and mRNA) participation in S. aureus pathogenesis, and can also be used for other human bacterial pathogens.
Collapse
Affiliation(s)
- Guillaume Ménard
- Univ Rennes, CHU Rennes, INSERM, BRM [Bacterial Regulatory RNAs and Medicine], SB2H (service de Bactériologie Hygiène-Hospitalière), UMR_S 1230, F-35000, Rennes, France
| | - Astrid Rouillon
- Univ Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, F-35000, Rennes, France
| | - Gevorg Ghukasyan
- Univ Rennes, CNRS, INSERM, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes), UMS 3480, US_S018, F-35000, Rennes, France
| | - Mathieu Emily
- Institut Agro, CNRS, Univ Rennes, IRMAR (Institut de recherche Mathématique de Rennes), UMR 6625, F-35000, Rennes, France
| | - Brice Felden
- Univ Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, F-35000, Rennes, France
| | - Pierre-Yves Donnio
- Univ Rennes, CHU Rennes, INSERM, BRM [Bacterial Regulatory RNAs and Medicine], SB2H (service de Bactériologie Hygiène-Hospitalière), UMR_S 1230, F-35000, Rennes, France
| |
Collapse
|
31
|
A Pseudomonas aeruginosa Antimicrobial Affects the Biogeography but Not Fitness of Staphylococcus aureus during Coculture. mBio 2021; 12:mBio.00047-21. [PMID: 33785630 PMCID: PMC8092195 DOI: 10.1128/mbio.00047-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many human infections result from the action of multispecies bacterial communities. Within these communities, bacteria have been proposed to directly interact via physical and chemical means, resulting in increased disease and antimicrobial tolerance. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common coinfecting bacteria in human infections, including the cystic fibrosis (CF) lung. There is emerging evidence that coinfection with these microbes enhances disease severity and antimicrobial tolerance through direct interactions. However, one of the challenges to studying microbial interactions relevant to human infection is the lack of experimental models with the versatility to investigate complex interaction dynamics while maintaining biological relevance. Here, we developed a model based on an in vitro medium that mimics human CF lung secretions (synthetic CF sputum medium [SCFM2]) and allows time-resolved assessment of fitness and community spatial structure at the micrometer scale. Our results reveal that P. aeruginosa and S. aureus coexist as spatially structured communities in SCFM2 under static growth conditions, with S. aureus enriched at a distance of 3.5 μm from P. aeruginosa. Multispecies aggregates were rare, and aggregate (biofilm) sizes resembled those in human CF sputum. Elimination of P. aeruginosa’s ability to produce the antistaphylococcal small molecule HQNO (2-heptyl-4-hydroxyquinoline N-oxide) had no effect on bacterial fitness but altered the spatial structure of the community by increasing the distance of S. aureus from P. aeruginosa to 7.6 μm. Lastly, we show that coculture with P. aeruginosa sensitizes S. aureus to killing by the antibiotic tobramycin compared to monoculture growth despite HQNO enhancing tolerance during coculture. Our findings reveal that SCFM2 is a powerful model for studying P. aeruginosa and S. aureus and that HQNO alters S. aureus biogeography and antibiotic susceptibility without affecting fitness.
Collapse
|
32
|
Paulson AR, O’Callaghan M, Zhang XX, Rainey PB, Hurst MRH. In vivo transcriptome analysis provides insights into host-dependent expression of virulence factors by Yersinia entomophaga MH96, during infection of Galleria mellonella. G3 (BETHESDA, MD.) 2021; 11:jkaa024. [PMID: 33561230 PMCID: PMC7849909 DOI: 10.1093/g3journal/jkaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.
Collapse
Affiliation(s)
- Amber R Paulson
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | | | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland 0745, New Zealand
- Laboratoire de Génétique de l’Evolution CBI, ESPCI Paris, Université PSL, CNRS, Paris 75005, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Mark R H Hurst
- Forage Science, AgResearch Ltd., Lincoln 8140, New Zealand
| |
Collapse
|
33
|
Ross BN, Whiteley M. Ignoring social distancing: advances in understanding multi-species bacterial interactions. Fac Rev 2020; 9:23. [PMID: 33659955 PMCID: PMC7886066 DOI: 10.12703/r/9-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Almost every ecosystem on this planet is teeming with microbial communities made of diverse bacterial species. At a reductionist view, many of these bacteria form pairwise interactions, but, as the field of view expands, the neighboring organisms and the abiotic environment can play a crucial role in shaping the interactions between species. Over the years, a strong foundation of knowledge has been built on isolated pairwise interactions between bacteria, but now the field is advancing toward understanding how cohabitating bacteria and natural surroundings affect these interactions. Use of bottom-up approaches, piecing communities together, and top-down approaches that deconstruct communities are providing insight on how different species interact. In this review, we highlight how studies are incorporating more complex communities, mimicking the natural environment, and recurring findings such as the importance of cooperation for stability in harsh environments and the impact of bacteria-induced environmental pH shifts. Additionally, we will discuss how omics are being used as a top-down approach to identify previously unknown interspecies bacterial interactions and the challenges of these types of studies for microbial ecology.
Collapse
Affiliation(s)
- Brittany N Ross
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Manzo G, Hind CK, Ferguson PM, Amison RT, Hodgson-Casson AC, Ciazynska KA, Weller BJ, Clarke M, Lam C, Man RCH, Shaughnessy BGO, Clifford M, Bui TT, Drake AF, Atkinson RA, Lam JKW, Pitchford SC, Page CP, Phoenix DA, Lorenz CD, Sutton JM, Mason AJ. A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy. Commun Biol 2020; 3:697. [PMID: 33247193 PMCID: PMC7699649 DOI: 10.1038/s42003-020-01420-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection. Increasing peptide-lipid intermolecular hydrogen bonding capabilities enhances conformational flexibility, associated with membrane translocation, but also membrane damage and potency, most notably against Gram-positive bacteria. This negates their ability to metabolically adapt to the AMP threat. An analogue comprising D-amino acids was well tolerated at an intravenous dose of 15 mg/kg and similarly effective as vancomycin in reducing EMRSA-15 lung CFU. This highlights the therapeutic potential of systemically delivered, bactericidal AMPs.
Collapse
Affiliation(s)
- Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Charlotte K Hind
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK
| | - Philip M Ferguson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Richard T Amison
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - Alice C Hodgson-Casson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Katarzyna A Ciazynska
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Bethany J Weller
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Carolyn Lam
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Rico C H Man
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Blaze G O' Shaughnessy
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - Melanie Clifford
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK
| | - Tam T Bui
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Alex F Drake
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - R Andrew Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Simon C Pitchford
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - Clive P Page
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - David A Phoenix
- School of Applied Science, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | | | - J Mark Sutton
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK.
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
35
|
Buch PJ, Chai Y, Goluch ED. Bacterial chatter in chronic wound infections. Wound Repair Regen 2020; 29:106-116. [PMID: 33047459 DOI: 10.1111/wrr.12867] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/07/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
One of the hallmark characteristics of chronic diabetic wounds is the presence of biofilm-forming bacteria. Bacteria encapsulated in a biofilm may coexist as a polymicrobial community and communicate with each other through a phenomenon termed quorum sensing (QS). Here, we describe the QS circuits of bacterial species commonly found in chronic diabetic wounds. QS relies on diffusion of signaling molecules and the local concentration changes of these molecules that bacteria experience in wounds. These biochemical signaling pathways play a role not only in biofilm formation and virulence but also in wound healing. They are, therefore, key to understanding the distinctive nature of these infections. While several in vivo and in vitro models exist to study QS in wounds, there has been limited progress in understanding the interplay between QS molecules and host factors that contribute to wound healing. Lastly, we examine the potential of targeting QS for both diagnosis and therapeutic intervention purposes.
Collapse
Affiliation(s)
- Pranali J Buch
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Edgar D Goluch
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Abstract
Bacteria are highly interactive and possess an extraordinary repertoire of intercellular communication and social behaviors, including quorum sensing (QS). QS has been studied in detail at the molecular level, so mechanistic details are well understood in many species and are often involved in virulence. The use of different animal host models has demonstrated QS-dependent control of virulence determinants and virulence in several human pathogenic bacteria. QS also controls virulence in several plant pathogenic species. Despite the role QS plays in virulence during animal and plant laboratory-engineered infections, QS mutants are frequently isolated from natural infections, demonstrating that the function of QS during infection and its role in pathogenesis remain poorly understood and are fruitful areas for future research. We discuss the role of QS during infection in various organisms and highlight approaches to better understand QS during human infection. This is an important consideration in an era of growing antimicrobial resistance, when we are looking for new ways to target bacterial infections.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alexander D Klementiev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia 30329, USA
| | - Stephen P Diggle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
37
|
Kvich L, Burmølle M, Bjarnsholt T, Lichtenberg M. Do Mixed-Species Biofilms Dominate in Chronic Infections?-Need for in situ Visualization of Bacterial Organization. Front Cell Infect Microbiol 2020; 10:396. [PMID: 32850494 PMCID: PMC7419433 DOI: 10.3389/fcimb.2020.00396] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic infections present a serious economic burden to health-care systems. The severity and prevalence of chronic infections are continuously increasing due to an aging population and an elevated number of lifestyle related diseases such as diabetes. Treatment of chronic infections has proven difficult, mainly due to the presence of biofilms that render bacteria more tolerant toward antimicrobials and the host immune response. Chronic infections have been described to harbor several different bacterial species and it has been hypothesized that microscale interactions and mixed-species consortia are present as described for most natural occurring biofilms i.e., aquatic systems and industrial settings, but also for some commensal human biofilms i.e., the mouth microbiota. However, the presence of mixed-species biofilms in chronic infections is most often an assumption based on culture-based methods and/or by means of molecular approaches, such as PCR and sequencing performed from homogenized bulk tissue samples. These methods disregard the spatial organization of the bacterial community and thus valuable information on biofilm aggregate composition, spatial organization, and possible interactions between different species is lost. Hitherto, only few studies have made visual in situ presentations of mixed-species biofilms in chronic infections, which is pivotal for the description of bacterial composition, spatial distribution, and interspecies interaction on the microscale. In order for bacteria to interact (synergism, commensalism, mutualism, competition, etc.) they need to be in close proximity to each other on the scale where they can affect e.g., solute concentrations. We argue that visual proof of mixed species biofilms in chronic infections is scarce compared to what is seen in e.g., environmental biofilms and call for a debate on the importance of mixed-species biofilm in chronic infections.
Collapse
Affiliation(s)
- Lasse Kvich
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mads Lichtenberg
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Reading between the Lines: Utilizing RNA-Seq Data for Global Analysis of sRNAs in Staphylococcus aureus. mSphere 2020; 5:5/4/e00439-20. [PMID: 32727859 PMCID: PMC7392542 DOI: 10.1128/msphere.00439-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulatory small RNAs (sRNAs) are known to play important roles in the Gram-positive bacterial pathogen Staphylococcus aureus; however, their existence is often overlooked, primarily because sRNA genes are absent from genome annotation files. Consequently, transcriptome sequencing (RNA-Seq)-based experimental approaches, performed using standard genome annotation files as a reference, have likely overlooked data for sRNAs. Previously, we created an updated S. aureus genome annotation file, which included annotations for 303 known sRNAs in USA300. Here, we utilized this updated reference file to reexamine publicly available RNA-Seq data sets in an attempt to recover lost information on sRNA expression, stability, and potential to encode peptides. First, we used transcriptomic data from 22 studies to identify how the expression of 303 sRNAs changed under 64 different experimental conditions. Next, we used RNA-Seq data from an RNA stability assay to identify highly stable/unstable sRNAs. We went on to reanalyze a ribosome profiling (Ribo-seq) data set to identify sRNAs that have the potential to encode peptides and to experimentally confirm the presence of three of these peptides in the USA300 background. Interestingly, one of these sRNAs/peptides, encoded at the tsr37 locus, influences the ability of S. aureus cells to autoaggregate. Finally, we reexamined two recently published in vivo RNA-Seq data sets, from the cystic fibrosis (CF) lung and a murine vaginal colonization study, and identified 29 sRNAs that may play a role in vivo Collectively, these results can help inform future studies of these important regulatory elements in S. aureus and highlight the need for ongoing curating and updating of genome annotation files.IMPORTANCE Regulatory small RNAs (sRNAs) are a class of RNA molecules that are produced in bacterial cells but that typically do not encode proteins. Instead, they perform a variety of critical functions within the cell as RNA. Most bacterial genomes do not include annotations for sRNA genes, and any type of analysis that is performed using a bacterial genome as a reference will therefore overlook data for sRNAs. In this study, we reexamined hundreds of previously generated S. aureus RNA-Seq data sets and reanalyzed them to generate data for sRNAs. To do so, we utilized an updated S. aureus genome annotation file, previously generated by our group, which contains annotations for 303 sRNAs. The data generated (which were previously discarded) shed new light on sRNAs in S. aureus, most of which are unstudied, and highlight certain sRNAs that are likely to play important roles in the cell.
Collapse
|
39
|
Laucirica DR, Garratt LW, Kicic A. Progress in Model Systems of Cystic Fibrosis Mucosal Inflammation to Understand Aberrant Neutrophil Activity. Front Immunol 2020; 11:595. [PMID: 32318073 PMCID: PMC7154161 DOI: 10.3389/fimmu.2020.00595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
In response to recurrent infection in cystic fibrosis (CF), powerful innate immune signals trigger polymorphonuclear neutrophil recruitment into the airway lumen. Exaggerated neutrophil proteolytic activity results in sustained inflammation and scarring of the airways. Consequently, neutrophils and their secretions are reliable clinical biomarkers of lung disease progression. As neutrophils are required to clear infection and yet a direct cause of airway damage, modulating adverse neutrophil activity while preserving their pathogen fighting function remains a key area of CF research. The factors that drive their pathological behavior are still under investigation, especially in early disease when aberrant neutrophil behavior first becomes evident. Here we examine the latest findings of neutrophils in pediatric CF lung disease and proposed mechanisms of their pathogenicity. Highlighted in this review are current and emerging experimental methods for assessing CF mucosal immunity and human neutrophil function in the laboratory.
Collapse
Affiliation(s)
- Daniel R Laucirica
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
40
|
Ibberson CB, Whiteley M. The social life of microbes in chronic infection. Curr Opin Microbiol 2020; 53:44-50. [PMID: 32145635 DOI: 10.1016/j.mib.2020.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/24/2020] [Accepted: 02/02/2020] [Indexed: 01/21/2023]
Abstract
Chronic infections place a significant burden on healthcare systems, requiring over $25 billion in treatment annually in the United States alone [1,2]. Notably, the majority of chronic infections, which include cystic fibrosis (CF), chronic wounds, otitis media, periodontitis, urinary tract infections, and osteomyelitis, are considered polymicrobial and are often recalcitrant to antibiotic treatment [1-9]. Although we know that diverse communities of microbes comprise these infections, how microbes interact and the impacts of these interactions on human disease are less understood. Here, we discuss recent advances in our understanding of how bacteria communicate in chronic infection, with a focus on Staphylococcus aureus and Pseudomonas aeruginosa, and we highlight outstanding questions and controversies in the field.
Collapse
Affiliation(s)
- Carolyn B Ibberson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30332, United States; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30332, United States; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|