1
|
Kalani L, Kim BH, de Chavez AR, Roemer A, Mikhailov A, Merritt JK, Good KV, Chow RL, Delaney KR, Hendzel MJ, Zhou Z, Neul JL, Vincent JB, Ausió J. Testing the PEST hypothesis using relevant Rett mutations in MeCP2 E1 and E2 isoforms. Hum Mol Genet 2024; 33:1833-1845. [PMID: 39137370 PMCID: PMC11540922 DOI: 10.1093/hmg/ddae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Mutations in methyl-CpG binding protein 2 (MeCP2), such as the T158M, P152R, R294X, and R306C mutations, are responsible for most Rett syndrome (RTT) cases. These mutations often result in altered protein expression that appears to correlate with changes in the nuclear size; however, the molecular details of these observations are poorly understood. Using a C2C12 cellular system expressing human MeCP2-E1 isoform as well as mouse models expressing these mutations, we show that T158M and P152R result in a decrease in MeCP2 protein, whereas R306C has a milder variation, and R294X resulted in an overall 2.5 to 3 fold increase. We also explored the potential involvement of the MeCP2 PEST domains in the proteasome-mediated regulation of MeCP2. Finally, we used the R294X mutant to gain further insight into the controversial competition between MeCP2 and histone H1 in the chromatin context. Interestingly, in R294X, MeCP2 E1 and E2 isoforms were differently affected, where the E1 isoform contributes to much of the overall protein increase observed, while E2 decreases by half. The modes of MeCP2 regulation, thus, appear to be differently regulated in the two isoforms.
Collapse
Affiliation(s)
- Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Alberto Ruiz de Chavez
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Anastasia Roemer
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Ave, Edmonton, AB T6G 2H7, Canada
| | - Anna Mikhailov
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Jonathan K Merritt
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, 1211 Medical Center Dr, Nashville, TN 37232, United States
| | - Katrina V Good
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
| | - Robert L Chow
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Michael J Hendzel
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Ave, Edmonton, AB T6G 2H7, Canada
| | - Zhaolan Zhou
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, 1211 Medical Center Dr, Nashville, TN 37232, United States
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, 27 King College Cir, Toronto, ON M5T 1R8, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
2
|
Chua GNL, Watters JW, Olinares PDB, Begum M, Vostal LE, Luo JA, Chait BT, Liu S. Differential dynamics specify MeCP2 function at nucleosomes and methylated DNA. Nat Struct Mol Biol 2024:10.1038/s41594-024-01373-9. [PMID: 39164525 DOI: 10.1038/s41594-024-01373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/16/2024] [Indexed: 08/22/2024]
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is an essential chromatin-binding protein whose mutations cause Rett syndrome (RTT), a severe neurological disorder that primarily affects young females. The canonical view of MeCP2 as a DNA methylation-dependent transcriptional repressor has proven insufficient to describe its dynamic interaction with chromatin and multifaceted roles in genome organization and gene expression. Here we used single-molecule correlative force and fluorescence microscopy to directly visualize the dynamics of wild-type and RTT-causing mutant MeCP2 on DNA. We discovered that MeCP2 exhibits distinct one-dimensional diffusion kinetics when bound to unmethylated versus CpG methylated DNA, enabling methylation-specific activities such as co-repressor recruitment. We further found that, on chromatinized DNA, MeCP2 preferentially localizes to nucleosomes and stabilizes them from mechanical perturbation. Our results reveal the multimodal behavior of MeCP2 on chromatin that underlies its DNA methylation- and nucleosome-dependent functions and provide a biophysical framework for dissecting the molecular pathology of RTT mutations.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Masuda Begum
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Lauren E Vostal
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Joshua A Luo
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
3
|
Ortega-Alarcon D, Claveria-Gimeno R, Vega S, Kalani L, Jorge-Torres OC, Esteller M, Ausio J, Abian O, Velazquez-Campoy A. Extending MeCP2 interactome: canonical nucleosomal histones interact with MeCP2. Nucleic Acids Res 2024; 52:3636-3653. [PMID: 38321951 DOI: 10.1093/nar/gkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
MeCP2 is a general regulator of transcription involved in the repression/activation of genes depending on the local epigenetic context. It acts as a chromatin regulator and binds with exquisite specificity to gene promoters. The set of epigenetic marks recognized by MeCP2 has been already established (mainly, cytosine modifications in CpG and CpA), as well as many of the constituents of its interactome. We unveil a new set of interactions for MeCP2 with the four canonical nucleosomal histones. MeCP2 interacts with high affinity with H2A, H2B, H3 and H4. In addition, Rett syndrome associated mutations in MeCP2 and histone epigenetic marks modulate these interactions. Given the abundance and the structural/functional relevance of histones and their involvement in epigenetic regulation, this new set of interactions and its modulating elements provide a new addition to the 'alphabet' for this epigenetic reader.
Collapse
Affiliation(s)
- David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Olga C Jorge-Torres
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08907 l'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Schmidt A, Zhang H, Schmitt S, Rausch C, Popp O, Chen J, Cmarko D, Butter F, Dittmar G, Lermyte F, Cardoso MC. The Proteomic Composition and Organization of Constitutive Heterochromatin in Mouse Tissues. Cells 2024; 13:139. [PMID: 38247831 PMCID: PMC10814525 DOI: 10.3390/cells13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo.
Collapse
Affiliation(s)
- Annika Schmidt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Stephanie Schmitt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Gunnar Dittmar
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| |
Collapse
|
5
|
Siqueira E, Kim BH, Reser L, Chow R, Delaney K, Esteller M, Ross MM, Shabanowitz J, Hunt DF, Guil S, Ausió J. Analysis of the interplay between MeCP2 and histone H1 during in vitro differentiation of human ReNCell neural progenitor cells. Epigenetics 2023; 18:2276425. [PMID: 37976174 PMCID: PMC10769555 DOI: 10.1080/15592294.2023.2276425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
An immortalized neural cell line derived from the human ventral mesencephalon, called ReNCell, and its MeCP2 knock out were used. With it, we characterized the chromatin compositional transitions undergone during differentiation, with special emphasis on linker histones. While the WT cells displayed the development of dendrites and axons the KO cells did not, despite undergoing differentiation as monitored by NeuN. ReNCell expressed minimal amounts of histone H1.0 and their linker histone complement consisted mainly of histone H1.2, H1.4 and H1.5. The overall level of histone H1 exhibited a trend to increase during the differentiation of MeCP2 KO cells. The phosphorylation levels of histone H1 proteins decreased dramatically during ReNCell's cell differentiation independently of the presence of MeCP2. Immunofluorescence analysis showed that MeCP2 exhibits an extensive co-localization with linker histones. Interestingly, the average size of the nucleus decreased during differentiation but in the MeCP2 KO cells, the smaller size of the nuclei at the start of differentiation increased by almost 40% after differentiation by 8 days (8 DIV). In summary, our data provide a compelling perspective on the dynamic changes of H1 histones during neural differentiation, coupled with the intricate interplay between H1 variants and MeCP2.Abbreviations: ACN, acetonitrile; A230, absorbance at 230 nm; bFGF, basic fibroblast growth factor; CM, chicken erythrocyte histone marker; CNS, central nervous system; CRISPR, clustered regulated interspaced short palindromic repeatsDAPI, 4,'6-diaminidino-2-phenylindole; DIV, days in vitro (days after differentiation is induced); DMEM, Dulbecco's modified Eagle medium; EGF, epidermal growth factor; ESC, embryonic stem cell; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFAP, glial fibrillary acidic proteinHPLC, high-performance liquid chromatography; IF, immunofluorescence; iPSCs, induced pluripotent stem cells; MAP2, microtubule-associated protein 2; MBD, methyl-binding domain; MeCP2, methyl-CpG binding protein 2; MS, mass spectrometry; NCP, nucleosome core particle; NeuN, neuron nuclear antigen; NPC, neural progenitor cellPAGE, polyacrylamide gel electrophoresis; PBS, phosphate buffered saline; PFA, paraformaldehyde; PTM, posttranslational modification; RP-HPLC, reversed phase HPLC; ReNCells, ReNCells VM; RPLP0, ribosomal protein lateral stalk subunit P0; RT-qPCR, reverse transcription quantitative polymerase-chain reaction; RTT, Rett Syndrome; SDS, sodium dodecyl sulphate; TAD, topologically associating domain; Triple KO, triple knockout.
Collapse
Affiliation(s)
- Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- National Council for Scientific and Technological Development (CNPq), Brasilia, Federal District, Brazil
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Larry Reser
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Robert Chow
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Kerry Delaney
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Mark M. Ross
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- GermansTrias i Pujol Health Science Research Institute, Badalona, Barcelona, Catalonia, Spain
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
6
|
Rastegar M, Davie JR. MeCP2 is the protector of epigenome integrity, membrane-less nuclear architecture, and stability of chromatin assembly. Epigenomics 2023; 15:1027-1031. [PMID: 37937403 DOI: 10.2217/epi-2023-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Tweetable abstract MeCP2 is an epigenetic factor with global impact in epigenome integrity, membrane-less nuclear architecture, and chromatin stability. Our Editorial covers recent advances on these important topics.
Collapse
Affiliation(s)
- Mojgan Rastegar
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, R3E 0J9, Canada
| | - James R Davie
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, MB, R3E 0J9, Canada
| |
Collapse
|
7
|
Oluigbo DC. Rett Syndrome: A Tale of Altered Genetics, Synaptic Plasticity, and Neurodevelopmental Dynamics. Cureus 2023; 15:e41555. [PMID: 37554594 PMCID: PMC10405636 DOI: 10.7759/cureus.41555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that is a leading cause of severe cognitive and physical impairment. RTT typically occurs in females, although rare cases of males with the disease exist. Its genetic cause, symptoms, and clinical progression timeline have also become well-documented since its initial discovery. However, a relatively late diagnosis and lack of an available cure signify that our understanding of the disease is incomplete. Innovative research methods and tools are thereby helping to fill gaps in our knowledge of RTT. Specifically, mouse models of RTT, video analysis, and retrospective parental analysis are well-established tools that provide valuable insights into RTT. Moreover, current and anticipated treatment options are improving the quality of life of the RTT patient population. Collectively, these developments are creating optimistic future perspectives for RTT.
Collapse
Affiliation(s)
- David C Oluigbo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
8
|
Chua GNL, Watters JW, Olinares PDB, Luo JA, Chait BT, Liu S. Differential dynamics specify MeCP2 function at methylated DNA and nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543478. [PMID: 37333354 PMCID: PMC10274721 DOI: 10.1101/2023.06.02.543478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is an essential chromatin-binding protein whose mutations cause Rett syndrome (RTT), a leading cause of monogenic intellectual disabilities in females. Despite its significant biomedical relevance, the mechanism by which MeCP2 navigates the chromatin epigenetic landscape to regulate chromatin structure and gene expression remains unclear. Here, we used correlative single-molecule fluorescence and force microscopy to directly visualize the distribution and dynamics of MeCP2 on a variety of DNA and chromatin substrates. We found that MeCP2 exhibits differential diffusion dynamics when bound to unmethylated and methylated bare DNA. Moreover, we discovered that MeCP2 preferentially binds nucleosomes within the context of chromatinized DNA and stabilizes them from mechanical perturbation. The distinct behaviors of MeCP2 at bare DNA and nucleosomes also specify its ability to recruit TBLR1, a core component of the NCoR1/2 co-repressor complex. We further examined several RTT mutations and found that they disrupt different aspects of the MeCP2-chromatin interaction, rationalizing the heterogeneous nature of the disease. Our work reveals the biophysical basis for MeCP2's methylation-dependent activities and suggests a nucleosome-centric model for its genomic distribution and gene repressive functions. These insights provide a framework for delineating the multifaceted functions of MeCP2 and aid in our understanding of the molecular mechanisms of RTT.
Collapse
Affiliation(s)
- Gabriella N. L. Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - John W. Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Paul Dominic B. Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Joshua A. Luo
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Porter RS, Iwase S. Modulation of chromatin architecture influences the neuronal nucleus through activity-regulated gene expression. Biochem Soc Trans 2023; 51:703-713. [PMID: 36929379 PMCID: PMC10959270 DOI: 10.1042/bst20220889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
The disruption of chromatin-regulating genes is associated with many neurocognitive syndromes. While most of these genes are ubiquitously expressed across various cell-types, many chromatin regulators act upon activity regulated genes (ARGs) that play central roles in synaptic development and plasticity. Recent literature suggests a link between ARG expression disruption in neurons with the human phenotypes observed in various neurocognitive syndromes. Advances in chromatin biology have demonstrated how chromatin structure, from nucleosome occupancy to higher-order structures such as topologically associated domains, impacts the kinetics of transcription. This review discusses the dynamics of these various levels of chromatin structure and their influence on the expression of ARGs.
Collapse
Affiliation(s)
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Zhang X, Cattoglio C, Zoltek M, Vetralla C, Mozumdar D, Schepartz A. Dose-Dependent Nuclear Delivery and Transcriptional Repression with a Cell-Penetrant MeCP2. ACS CENTRAL SCIENCE 2023; 9:277-288. [PMID: 36844491 PMCID: PMC9951310 DOI: 10.1021/acscentsci.2c01226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 06/13/2023]
Abstract
The vast majority of biologic-based therapeutics operate within serum, on the cell surface, or within endocytic vesicles, in large part because proteins and nucleic acids fail to efficiently cross cell or endosomal membranes. The impact of biologic-based therapeutics would expand exponentially if proteins and nucleic acids could reliably evade endosomal degradation, escape endosomal vesicles, and remain functional. Using the cell-permeant mini-protein ZF5.3, here we report the efficient nuclear delivery of functional Methyl-CpG-binding-protein 2 (MeCP2), a transcriptional regulator whose mutation causes Rett syndrome (RTT). We report that ZF-tMeCP2, a conjugate of ZF5.3 and MeCP2(Δaa13-71, 313-484), binds DNA in a methylation-dependent manner in vitro, and reaches the nucleus of model cell lines intact to achieve an average concentration of 700 nM. When delivered to live cells, ZF-tMeCP2 engages the NCoR/SMRT corepressor complex, selectively represses transcription from methylated promoters, and colocalizes with heterochromatin in mouse primary cortical neurons. We also report that efficient nuclear delivery of ZF-tMeCP2 relies on an endosomal escape portal provided by HOPS-dependent endosomal fusion. The Tat conjugate of MeCP2 (Tat-tMeCP2), evaluated for comparison, is degraded within the nucleus, is not selective for methylated promoters, and trafficks in a HOPS-independent manner. These results support the feasibility of a HOPS-dependent portal for delivering functional macromolecules to the cell interior using the cell-penetrant mini-protein ZF5.3. Such a strategy could broaden the impact of multiple families of biologic-based therapeutics.
Collapse
Affiliation(s)
- Xizi Zhang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Claudia Cattoglio
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
| | - Madeline Zoltek
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
| | - Carlo Vetralla
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
| | - Deepto Mozumdar
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alanna Schepartz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Chan Zuckerberg
Biohub, San Francisco, California 94158, United States
| |
Collapse
|
11
|
Kleene R, Loers G, Schachner M. The KDET Motif in the Intracellular Domain of the Cell Adhesion Molecule L1 Interacts with Several Nuclear, Cytoplasmic, and Mitochondrial Proteins Essential for Neuronal Functions. Int J Mol Sci 2023; 24:932. [PMID: 36674445 PMCID: PMC9866381 DOI: 10.3390/ijms24020932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa L1 fragment (L1-55) that interacts with methyl CpG binding protein 2 (MeCP2) and heterochromatin protein 1 (HP1) via the KDET motif. We now show that L1-55 also interacts with histone H1.4 (HistH1e) via this motif. Moreover, we show that this motif binds to NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), splicing factor proline/glutamine-rich (SFPQ), the non-POU domain containing octamer-binding protein (NonO), paraspeckle component 1 (PSPC1), WD-repeat protein 5 (WDR5), heat shock cognate protein 71 kDa (Hsc70), and synaptotagmin 1 (SYT1). Furthermore, applications of HistH1e, NDUFV2, SFPQ, NonO, PSPC1, WDR5, Hsc70, or SYT1 siRNAs or a cell-penetrating KDET-carrying peptide decrease L1-dependent neurite outgrowth and the survival of cultured neurons. These findings indicate that L1's KDET motif binds to an unexpectedly large number of molecules that are essential for nervous system-related functions, such as neurite outgrowth and neuronal survival. In summary, L1 interacts with cytoplasmic, nuclear and mitochondrial proteins to regulate development and, in adults, the formation, maintenance, and flexibility of neural functions.
Collapse
Affiliation(s)
- Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Tremblay MW, Green MV, Goldstein BM, Aldridge AI, Rosenfeld JA, Streff H, Tan WD, Craigen W, Bekheirnia N, Al Tala S, West AE, Jiang YH. Mutations of the histone linker H1-4 in neurodevelopmental disorders and functional characterization of neurons expressing C-terminus frameshift mutant H1.4. Hum Mol Genet 2022; 31:1430-1442. [PMID: 34788807 PMCID: PMC9271223 DOI: 10.1093/hmg/ddab321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/29/2022] Open
Abstract
Rahman syndrome (RMNS) is a rare genetic disorder characterized by mild to severe intellectual disability, hypotonia, anxiety, autism spectrum disorder, vision problems, bone abnormalities and dysmorphic facies. RMNS is caused by de novo heterozygous mutations in the histone linker gene H1-4; however, mechanisms underlying impaired neurodevelopment in RMNS are not understood. All reported mutations associated with RMNS in H1-4 are small insertions or deletions that create a shared frameshift, resulting in a H1.4 protein that is both truncated and possessing an abnormal C-terminus frameshifted tail (H1.4 CFT). To expand understanding of mutations and phenotypes associated with mutant H1-4, we identified new variants at both the C- and N-terminus of H1.4. The clinical features of mutations identified at the C-terminus are consistent with other reports and strengthen the support of pathogenicity of H1.4 CFT. To understand how H1.4 CFT may disrupt brain function, we exogenously expressed wild-type or H1.4 CFT protein in rat hippocampal neurons and assessed neuronal structure and function. Genome-wide transcriptome analysis revealed ~ 400 genes altered in the presence of H1.4 CFT. Neuronal genes downregulated by H1.4 CFT were enriched for functional categories involved in synaptic communication and neuropeptide signaling. Neurons expressing H1.4 CFT also showed reduced neuronal activity on multielectrode arrays. These data are the first to characterize the transcriptional and functional consequence of H1.4 CFT in neurons. Our data provide insight into causes of neurodevelopmental impairments associated with frameshift mutations in the C-terminus of H1.4 and highlight the need for future studies on the function of histone H1.4 in neurons.
Collapse
Affiliation(s)
- Martine W Tremblay
- University Program in Genetics and Genomics, Duke University, Durham NC 27710, USA
- Department of Neurobiology, Duke University, Durham NC 27710, USA
| | - Matthew V Green
- Department of Neurobiology, Duke University, Durham NC 27710, USA
| | | | - Andrew I Aldridge
- University Program in Genetics and Genomics, Duke University, Durham NC 27710, USA
- Department of Neurobiology, Duke University, Durham NC 27710, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Baylor Genetics Laboratories, Baylor College of Medicine, Houston TX 77030, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Wendy D Tan
- Department of Neurobiology, Duke University, Durham NC 27710, USA
| | - William Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Nasim Bekheirnia
- Department of Pediatrics, Renal section, Baylor College of Medicine, Houston TX 77030, USA
| | - Saeed Al Tala
- Department of Pediatrics, Armed Forces Hospital SR, Khamis Mushayt 61961, Saudi Arabia
| | - Anne E West
- University Program in Genetics and Genomics, Duke University, Durham NC 27710, USA
- Department of Neurobiology, Duke University, Durham NC 27710, USA
| | - Yong-hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven CT 06520, USA
- Neuroscience, Yale University School of Medicine, New Haven CT 06520, USA
- Pediatrics, Yale University School of Medicine, New Haven CT 06520, USA
| |
Collapse
|
14
|
MeCP2 and transcriptional control of eukaryotic gene expression. Eur J Cell Biol 2022; 101:151237. [DOI: 10.1016/j.ejcb.2022.151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
|
15
|
Loers G, Kleene R, Girbes Minguez M, Schachner M. The Cell Adhesion Molecule L1 Interacts with Methyl CpG Binding Protein 2 via Its Intracellular Domain. Int J Mol Sci 2022; 23:ijms23073554. [PMID: 35408913 PMCID: PMC8998178 DOI: 10.3390/ijms23073554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cell adhesion molecule L1 regulates multiple cell functions, and L1 deficiency is linked to several neural diseases. Recently, we have identified methyl CpG binding protein 2 (MeCP2) as a potential binding partner of the intracellular L1 domain. By ELISA we show here that L1's intracellular domain binds directly to MeCP2 via the sequence motif KDET. Proximity ligation assay with cultured cerebellar and cortical neurons suggests a close association between L1 and MeCP2 in nuclei of neurons. Immunoprecipitation using MeCP2 antibodies and nuclear mouse brain extracts indicates that MeCP2 interacts with an L1 fragment of ~55 kDa (L1-55). Proximity ligation assay indicates that metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1) and ɣ-secretase, are involved in the generation of L1-55. Reduction in MeCP2 expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons as well as the migration of L1-expressing HEK293 cells. Moreover, L1 siRNA, MeCP2 siRNA, or a cell-penetrating KDET-containing L1 peptide leads to reduced levels of myocyte enhancer factor 2C (Mef2c) mRNA and protein in cortical neurons, suggesting that the MeCP2/L1 interaction regulates Mef2c expression. Altogether, the present findings indicate that the interaction of the novel fragment L1-55 with MeCP2 affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-1780
| |
Collapse
|
16
|
Zhang H, Romero H, Schmidt A, Gagova K, Qin W, Bertulat B, Lehmkuhl A, Milden M, Eck M, Meckel T, Leonhardt H, Cardoso MC. MeCP2-induced heterochromatin organization is driven by oligomerization-based liquid–liquid phase separation and restricted by DNA methylation. Nucleus 2022; 13:1-34. [PMID: 35156529 PMCID: PMC8855868 DOI: 10.1080/19491034.2021.2024691] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hui Zhang
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Hector Romero
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Annika Schmidt
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Katalina Gagova
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Weihua Qin
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - Bianca Bertulat
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Anne Lehmkuhl
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Manuela Milden
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Malte Eck
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Tobias Meckel
- Department of Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
17
|
Abstract
In eukaryotic cells, protein and RNA factors involved in genome activities like transcription, RNA processing, DNA replication, and repair accumulate in self-organizing membraneless chromatin subcompartments. These structures contribute to efficiently conduct chromatin-mediated reactions and to establish specific cellular programs. However, the underlying mechanisms for their formation are only partly understood. Recent studies invoke liquid-liquid phase separation (LLPS) of proteins and RNAs in the establishment of chromatin activity patterns. At the same time, the folding of chromatin in the nucleus can drive genome partitioning into spatially distinct domains. Here, the interplay between chromatin organization, chromatin binding, and LLPS is discussed by comparing and contrasting three prototypical chromatin subcompartments: the nucleolus, clusters of active RNA polymerase II, and pericentric heterochromatin domains. It is discussed how the different ways of chromatin compartmentalization are linked to transcription regulation, the targeting of soluble factors to certain parts of the genome, and to disease-causing genetic aberrations.
Collapse
Affiliation(s)
- Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Collins BE, Neul JL. Rett Syndrome and MECP2 Duplication Syndrome: Disorders of MeCP2 Dosage. Neuropsychiatr Dis Treat 2022; 18:2813-2835. [PMID: 36471747 PMCID: PMC9719276 DOI: 10.2147/ndt.s371483] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused predominantly by loss-of-function mutations in the gene Methyl-CpG-binding protein 2 (MECP2), which encodes the MeCP2 protein. RTT is a MECP2-related disorder, along with MECP2 duplication syndrome (MDS), caused by gain-of-function duplications of MECP2. Nearly two decades of research have advanced our knowledge of MeCP2 function in health and disease. The following review will discuss MeCP2 protein function and its dysregulation in the MECP2-related disorders RTT and MDS. This will include a discussion of the genetic underpinnings of these disorders, specifically how sporadic X-chromosome mutations arise and manifest in specific populations. We will then review current diagnostic guidelines and clinical manifestations of RTT and MDS. Next, we will delve into MeCP2 biology, describing the dual landscapes of methylated DNA and its reader MeCP2 across the neuronal genome as well as the function of MeCP2 as a transcriptional modulator. Following this, we will outline common MECP2 mutations and genotype-phenotype correlations in both diseases, with particular focus on mutations associated with relatively mild disease in RTT. We will also summarize decades of disease modeling and resulting molecular, synaptic, and behavioral phenotypes associated with RTT and MDS. Finally, we list several therapeutics in the development pipeline for RTT and MDS and available evidence of their safety and efficacy.
Collapse
Affiliation(s)
- Bridget E Collins
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
19
|
Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:269-293. [DOI: 10.1007/978-3-031-11454-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Abstract
In eukaryotes, genomic DNA is packaged into chromatin in the nucleus. The accessibility of DNA is dependent on the chromatin structure and dynamics, which essentially control DNA-related processes, including transcription, DNA replication, and repair. All of the factors that affect the structure and dynamics of nucleosomes, the nucleosome-nucleosome interaction interfaces, and the binding of linker histones or other chromatin-binding proteins need to be considered to understand the organization and function of chromatin fibers. In this review, we provide a summary of recent progress on the structure of chromatin fibers in vitro and in the nucleus, highlight studies on the dynamic regulation of chromatin fibers, and discuss their related biological functions and abnormal organization in diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Wei Li
- National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; .,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Tillotson R, Cholewa-Waclaw J, Chhatbar K, Connelly JC, Kirschner SA, Webb S, Koerner MV, Selfridge J, Kelly DA, De Sousa D, Brown K, Lyst MJ, Kriaucionis S, Bird A. Neuronal non-CG methylation is an essential target for MeCP2 function. Mol Cell 2021; 81:1260-1275.e12. [PMID: 33561390 PMCID: PMC7980222 DOI: 10.1016/j.molcel.2021.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Justyna Cholewa-Waclaw
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kashyap Chhatbar
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - John C Connelly
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sophie A Kirschner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Martha V Koerner
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jim Selfridge
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - David A Kelly
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Dina De Sousa
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kyla Brown
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Matthew J Lyst
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
22
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
23
|
Napoletani G, Vigli D, Cosentino L, Grieco M, Talamo MC, Lacivita E, Leopoldo M, Laviola G, Fuso A, d'Erme M, De Filippis B. Stimulation of the Serotonin Receptor 7 Restores Brain Histone H3 Acetylation and MeCP2 Corepressor Protein Levels in a Female Mouse Model of Rett Syndrome. J Neuropathol Exp Neurol 2021; 80:265-273. [PMID: 33598674 DOI: 10.1093/jnen/nlaa158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene, characterized by severe behavioral and physiological impairments for which no cure is available. The stimulation of serotonin receptor 7 (5-HT7R) with its selective agonist LP-211 (0.25 mg/kg/day for 7 days) was proved to rescue neurobehavioral alterations in a mouse model of RTT. In the present study, we aimed at gaining insight into the mechanisms underpinning the efficacy of 5-HT7R pharmacological stimulation by investigating its epigenetic outcomes in the brain of RTT female mice bearing a truncating MeCP2 mutation. Treatment with LP-211 normalized the reduced histone H3 acetylation and HDAC3/NCoR levels, and increased HDAC1/Sin3a expression in RTT mouse cortex. Repeated 5-HT7R stimulation also appeared to strengthen the association between NCoR and MeCP2 in the same brain region. A different profile was found in RTT hippocampus, where LP-211 rescued H3 hyperacetylation and increased HDAC3 levels. Overall, the present data highlight a new scenario on the relationship between histone acetylation and serotoninergic pathways. 5-HT7R is confirmed as a pivotal therapeutic target for the recovery of neuronal function supporting the translational value of this promising pharmacological approach for RTT.
Collapse
Affiliation(s)
- Giorgia Napoletani
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Daniele Vigli
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy.,Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Maddalena Grieco
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Maria Cristina Talamo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Enza Lacivita
- Department of Pharmacy, University of Bari "Aldo Moro", Bari, Italy
| | | | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Maria d'Erme
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
24
|
Ortega-Alarcon D, Claveria-Gimeno R, Vega S, Jorge-Torres OC, Esteller M, Abian O, Velazquez-Campoy A. Influence of the disordered domain structure of MeCP2 on its structural stability and dsDNA interaction. Int J Biol Macromol 2021; 175:58-66. [PMID: 33548325 DOI: 10.1016/j.ijbiomac.2021.01.206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/17/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a transcriptional regulator and a chromatin-associated structural protein. MeCP2 deregulation results in two neurodevelopmental disorders: MeCP2 dysfunction is associated with Rett syndrome, while excess of activity is associated with MeCP2 duplication syndrome. MeCP2 is an intrinsically disordered protein (IDP) constituted by six structural domains with variable, small percentage of well-defined secondary structure. Two domains, methyl-CpG binding domain (MBD) and transcription repressor domain (TRD), are the elements responsible for dsDNA binding ability and recruitment of the gene transcription/silencing machinery, respectively. Previously we studied the influence of the completely disordered, MBD-flanking domains (N-terminal domain, NTD, and intervening domain, ID) on the structural and functional features of the MBD (Claveria-Gimeno, R. et al. Sci Rep. 2017, 7, 41,635). Here we report the biophysical study of the influence of the remaining domains (transcriptional repressor domain, TRD, and C-terminal domains, CTDα and CTDβ) on the structural stability of MBD and the dsDNA binding capabilities of MBD and ID. The influence of distant disordered domains on MBD properties makes it necessary to consider the NTD-MBD-ID variant as the minimal protein construct for studying dsDNA/chromatin binding properties, while the full-length protein should be considered for transcriptional regulation studies.
Collapse
Affiliation(s)
- David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Rafael Claveria-Gimeno
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Olga C Jorge-Torres
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08907, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain; Fundación ARAID, Gobierno de Aragón, 50018 Zaragoza, Spain.
| |
Collapse
|
25
|
Vincent JB, Ausió J. MeCP2: latest insights fundamentally change our understanding of its interactions with chromatin and its functional attributes. Bioessays 2021; 43:e2000281. [PMID: 33416207 DOI: 10.1002/bies.202000281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Methyl CpG binding protein 2 (MeCP2) was initially isolated as an exclusive reader of DNA methylated at CpG. This recognition site, was subsequently extended to other DNA methylated residues and it has been the persisting dogma that binding to methylated DNA constitutes its physiologically relevant role. As we review here, two very recent papers fundamentally change our understanding of the interactions of this protein with chromatin, as well as its functional attributes. In the first one, the protein has been shown to bind to tri-methylated histone H3 (H3K27me3), providing a hint for what might turn out to be the first described chromodomain-containing protein reader in the animal kingdom, and unequivocally demonstrates the ability of MeCP2 to bind to nonmethylated CpG regions of the genome. The second paper reports how the protein dynamically participates in the formation of constitutive heterochromatin condensates. Histone H3K27me3 is a critical component of this form of chromatin.
Collapse
Affiliation(s)
- John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
26
|
Qin J, Zhang M, Guan Y, Li C, Ma X, Rankl C, Tang J. Investigation of the interaction between MeCP2 methyl-CpG binding domain and methylated DNA by single molecule force spectroscopy. Anal Chim Acta 2020; 1124:52-59. [PMID: 32534675 DOI: 10.1016/j.aca.2020.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
MeCP2 is an essential transcriptional repressor that mediates transcriptional inhibition by binding to methylated DNA. The binding specificity of MeCP2 protein to methylated DNA was considered to depend on its methyl-CpG binding domain (MBD). In this study, we used atomic force microscope based single-molecular force spectroscopy to investigate the interaction of MeCP2 MBD and methylated DNA. The specific interaction forces of the MeCP2 MBD-methylated DNA complexes were measured for the first time. The dynamics was also investigated by measuring the unbinding force of the complex at different loading rates. In addition, the distribution of unbinding forces and binding probabilities of MeCP2 MBD and different DNA were studied at the same loading rate. It was found that MeCP2 MBD had weak interaction with hemi-methylated and unmethylated DNA compared to methylated DNA. This work revealed the binding characteristics of MeCP2 MBD and methylated DNA at the single-molecule level. It provides a new idea for exploring the molecular mechanism of MeCP2 in regulating methylation signals.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Chen Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Xingxing Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Christian Rankl
- RECENDT Research Center for Non Destructive Testing GmbH, Science Park 2/2.OG, Altenberger Straße 69, 4040 Linz, Austria
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
27
|
Girbes Minguez M, Wolters-Eisfeld G, Lutz D, Buck F, Schachner M, Kleene R. The cell adhesion molecule L1 interacts with nuclear proteins via its intracellular domain. FASEB J 2020; 34:9869-9883. [PMID: 32533745 DOI: 10.1096/fj.201902242r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the cell adhesion molecule L1 (L1) in brain tissue and in cultured cerebellar neurons results in the generation and nuclear import of a 30 kDa fragment comprising most of L1's C-terminal, intracellular domain. In search of molecules that interact with this domain, we performed affinity chromatography with the recombinant intracellular L1 domain and a nuclear extract from mouse brains, and identified potential nuclear L1 binding partners involved in transcriptional regulation, RNA processing and transport, DNA repair, chromatin remodeling, and nucleocytoplasmic transport. By co-immunoprecipitation and enzyme-linked immunosorbent assay using recombinant proteins, we verified the direct interaction between L1 and the nuclear binding partners non-POU domain containing octamer-binding protein and splicing factor proline/glutamine-rich. The proximity ligation assay confirmed this close interaction in cultures of cerebellar granule cells. Our findings suggest that L1 fragments regulate multiple nuclear functions in the nervous system. We discuss possible physiological and pathological roles of these interactions in regulation of chromatin structure, gene expression, RNA processing, and DNA repair.
Collapse
Affiliation(s)
- Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Zentrum für Diagnostik, Institut für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Lee W, Kim J, Yun JM, Ohn T, Gong Q. MeCP2 regulates gene expression through recognition of H3K27me3. Nat Commun 2020; 11:3140. [PMID: 32561780 PMCID: PMC7305159 DOI: 10.1038/s41467-020-16907-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
MeCP2 plays a multifaceted role in gene expression regulation and chromatin organization. Interaction between MeCP2 and methylated DNA in the regulation of gene expression is well established. However, the widespread distribution of MeCP2 suggests it has additional interactions with chromatin. Here we demonstrate, by both biochemical and genomic analyses, that MeCP2 directly interacts with nucleosomes and its genomic distribution correlates with that of H3K27me3. In particular, the methyl-CpG-binding domain of MeCP2 shows preferential interactions with H3K27me3. We further observe that the impact of MeCP2 on transcriptional changes correlates with histone post-translational modification patterns. Our findings indicate that MeCP2 interacts with genomic loci via binding to DNA as well as histones, and that interaction between MeCP2 and histone proteins plays a key role in gene expression regulation.
Collapse
Affiliation(s)
- Wooje Lee
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, South Korea
| | - Jeeho Kim
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, South Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju, 61186, South Korea
| | - Takbum Ohn
- Department of Cellular & Molecular Medicine, College of Medicine, Chosun University, Gwangju, 61452, South Korea.
| | - Qizhi Gong
- Department of Cell Biology and Human Anatomy, University of California at Davis, School of Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
29
|
Frasca A, Spiombi E, Palmieri M, Albizzati E, Valente MM, Bergo A, Leva B, Kilstrup‐Nielsen C, Bianchi F, Di Carlo V, Di Cunto F, Landsberger N. MECP2 mutations affect ciliogenesis: a novel perspective for Rett syndrome and related disorders. EMBO Mol Med 2020; 12:e10270. [PMID: 32383329 PMCID: PMC7278541 DOI: 10.15252/emmm.201910270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in MECP2 cause several neurological disorders of which Rett syndrome (RTT) represents the best-defined condition. Although mainly working as a transcriptional repressor, MeCP2 is a multifunctional protein revealing several activities, the involvement of which in RTT remains obscure. Besides being mainly localized in the nucleus, MeCP2 associates with the centrosome, an organelle from which primary cilia originate. Primary cilia function as "sensory antennae" protruding from most cells, and a link between primary cilia and mental illness has recently been reported. We herein demonstrate that MeCP2 deficiency affects ciliogenesis in cultured cells, including neurons and RTT fibroblasts, and in the mouse brain. Consequently, the cilium-related Sonic Hedgehog pathway, which is essential for brain development and functioning, is impaired. Microtubule instability participates in these phenotypes that can be rescued by HDAC6 inhibition together with the recovery of RTT-related neuronal defects. Our data indicate defects of primary cilium as a novel pathogenic mechanism that by contributing to the clinical features of RTT might impact on proper cerebellum/brain development and functioning, thus providing a novel therapeutic target.
Collapse
Affiliation(s)
- Angelisa Frasca
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Eleonora Spiombi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Michela Palmieri
- Neuroscience DivisionIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Elena Albizzati
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Maria Maddalena Valente
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Anna Bergo
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Barbara Leva
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | - Charlotte Kilstrup‐Nielsen
- Department of Biotechnology and Life SciencesCentre of NeuroscienceUniversity of InsubriaBusto ArsizioItaly
| | | | - Valerio Di Carlo
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri OttolenghiOrbassanoItaly
- Department of NeuroscienceUniversity of TorinoTorinoItaly
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
- Neuroscience DivisionIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
30
|
MeCP2 and Chromatin Compartmentalization. Cells 2020; 9:cells9040878. [PMID: 32260176 PMCID: PMC7226738 DOI: 10.3390/cells9040878] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multifunctional epigenetic reader playing a role in transcriptional regulation and chromatin structure, which was linked to Rett syndrome in humans. Here, we focus on its isoforms and functional domains, interactions, modifications and mutations found in Rett patients. Finally, we address how these properties regulate and mediate the ability of MeCP2 to orchestrate chromatin compartmentalization and higher order genome architecture.
Collapse
|
31
|
Rett syndrome-causing mutations compromise MeCP2-mediated liquid-liquid phase separation of chromatin. Cell Res 2020; 30:393-407. [PMID: 32111972 DOI: 10.1038/s41422-020-0288-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 01/09/2023] Open
Abstract
Rett syndrome (RTT), a severe postnatal neurodevelopmental disorder, is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). MeCP2 is a chromatin organizer regulating gene expression. RTT-causing mutations have been shown to affect this function. However, the mechanism by which MeCP2 organizes chromatin is unclear. In this study, we found that MeCP2 can induce compaction and liquid-liquid phase separation of nucleosomal arrays in vitro, and DNA methylation further enhances formation of chromatin condensates by MeCP2. Interestingly, RTT-causing mutations compromise MeCP2-mediated chromatin phase separation, while benign variants have little effect on this process. Moreover, MeCP2 competes with linker histone H1 to form mutually exclusive chromatin condensates in vitro and distinct heterochromatin foci in vivo. RTT-causing mutations reduce or even abolish the ability of MeCP2 to compete with histone H1 and to form chromatin condensates. Together, our results identify a novel mechanism by which phase separation underlies MeCP2-mediated heterochromatin formation and reveal the potential link between this process and the pathology of RTT.
Collapse
|
32
|
Piccolo FM, Liu Z, Dong P, Hsu CL, Stoyanova EI, Rao A, Tjian R, Heintz N. MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions. eLife 2019; 8:51449. [PMID: 31868585 PMCID: PMC6957317 DOI: 10.7554/elife.51449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/22/2019] [Indexed: 01/08/2023] Open
Abstract
Methyl-CpG-binding-Protein 2 (MeCP2) is an abundant nuclear protein highly enriched in neurons. Here we report live-cell single-molecule imaging studies of the kinetic features of mouse MeCP2 at high spatial-temporal resolution. MeCP2 displays dynamic features that are distinct from both highly mobile transcription factors and immobile histones. Stable binding of MeCP2 in living neurons requires its methyl-binding domain and is sensitive to DNA modification levels. Diffusion of unbound MeCP2 is strongly constrained by weak, transient interactions mediated primarily by its AT-hook domains, and varies with the level of chromatin compaction and cell type. These findings extend previous studies of the role of the MeCP2 MBD in high affinity DNA binding to living neurons, and identify a new role for its AT-hooks domains as critical determinants of its kinetic behavior. They suggest that limited nuclear diffusion of MeCP2 in live neurons contributes to its local impact on chromatin structure and gene expression.
Collapse
Affiliation(s)
- Francesco M Piccolo
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Elitsa I Stoyanova
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Anjana Rao
- La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Howard Hughes Medical Institute, Berkeley, United States
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
33
|
Liu W, Irudayaraj J. Understanding the dynamics and structure of epigenetic states with single-molecule fluorescence microscopy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
MeCP2-E1 isoform is a dynamically expressed, weakly DNA-bound protein with different protein and DNA interactions compared to MeCP2-E2. Epigenetics Chromatin 2019; 12:63. [PMID: 31601272 PMCID: PMC6786283 DOI: 10.1186/s13072-019-0298-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/22/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND MeCP2-a chromatin-binding protein associated with Rett syndrome-has two main isoforms, MeCP2-E1 and MeCP2-E2, differing in a few N-terminal amino acid residues. Previous studies have shown brain region-specific expression of these isoforms which, in addition to their different cellular localization and differential expression during brain development, suggest that they may also have non-overlapping molecular mechanisms. However, differential functions of MeCP2-E1 and E2 remain largely unexplored. RESULTS Here, we show that the N-terminal domains (NTD) of MeCP2-E1 and E2 modulate the ability of the methyl-binding domain (MBD) to interact with DNA as well as influencing the turn-over rates, binding dynamics, response to neuronal depolarization, and circadian oscillations of the two isoforms. Our proteomics data indicate that both isoforms exhibit unique interacting protein partners. Moreover, genome-wide analysis using ChIP-seq provide evidence for a shared as well as a specific regulation of different sets of genes. CONCLUSIONS Our study supports the idea that Rett syndrome might arise from simultaneous impairment of cellular processes involving non-overlapping functions of MECP2 isoforms. For instance, MeCP2-E1 mutations might impact stimuli-dependent chromatin regulation, while MeCP2-E2 mutations could result in aberrant ribosomal expression. Overall, our findings provide insight into the functional complexity of MeCP2 by dissecting differential aspects of its two isoforms.
Collapse
|
35
|
Gulmez Karaca K, Brito DV, Oliveira AM. MeCP2: A Critical Regulator of Chromatin in Neurodevelopment and Adult Brain Function. Int J Mol Sci 2019; 20:ijms20184577. [PMID: 31527487 PMCID: PMC6769791 DOI: 10.3390/ijms20184577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) was first identified as a nuclear protein with a transcriptional repressor role that recognizes DNA methylation marks. MeCP2 has a well-established function in neurodevelopment, as evidenced by the severe neurological impairments characteristic of the Rett syndrome (RTT) pathology and the MeCP2 duplication syndrome (MDS), caused by loss or gain of MeCP2 function, respectively. Research aimed at the underlying pathophysiological mechanisms of RTT and MDS has significantly advanced our understanding of MeCP2 functions in the nervous system. It has revealed, however, that MeCP2 has more varied and complex roles than previously thought. Here we review recent insights into the functions of MeCP2 in neurodevelopment and the less explored requirement for MeCP2 in adult brain function. We focus on the emerging view that MeCP2 is a global chromatin organizer. Finally, we discuss how the individual functions of MeCP2 in neurodevelopment and adulthood are linked to its role as a chromatin regulator.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands
| | - David V.C. Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
| | - Ana M.M. Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; (K.G.K.)
- Correspondence: ; Tel.: +49-(0)6221-5416510
| |
Collapse
|
36
|
Keidar L, Gerlitz G, Kshirsagar A, Tsoory M, Olender T, Wang X, Yang Y, Chen YS, Yang YG, Voineagu I, Reiner O. Interplay of LIS1 and MeCP2: Interactions and Implications With the Neurodevelopmental Disorders Lissencephaly and Rett Syndrome. Front Cell Neurosci 2019; 13:370. [PMID: 31474834 PMCID: PMC6703185 DOI: 10.3389/fncel.2019.00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
LIS1 is the main causative gene for lissencephaly, while MeCP2 is the main causative gene for Rett syndrome, both of which are neurodevelopmental diseases. Here we report nuclear functions for LIS1 and identify previously unrecognized physical and genetic interactions between the products of these two genes in the cell nucleus, that has implications on MeCP2 organization, neuronal gene expression and mouse behavior. Reduced LIS1 levels affect the association of MeCP2 with chromatin. Transcriptome analysis of primary cortical neurons derived from wild type, Lis1±, MeCP2−/y, or double mutants mice revealed a large overlap in the differentially expressed (DE) genes between the various mutants. Overall, our findings provide insights on molecular mechanisms involved in the neurodevelopmental disorders lissencephaly and Rett syndrome caused by dysfunction of LIS1 and MeCP2, respectively.
Collapse
Affiliation(s)
- Liraz Keidar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gabi Gerlitz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Xing Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Sheng Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yun-Gui Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
37
|
Zhao Y, Le L, Song YQ, Qi LX, Fu H, Bai X, Li SG, Nan XS, Hu KP. Positive effects of low dose IMPX977 on Rett syndrome related MeCP2 targeted-genes. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
38
|
Mezquita-Pla J. Gordon H. Dixon's trace in my personal career and the quantic jump experienced in regulatory information. Syst Biol Reprod Med 2018; 64:448-468. [PMID: 30136864 DOI: 10.1080/19396368.2018.1503752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Even before Rosalin Franklin had discovered the DNA double helix, in her impressive X-ray diffraction image pattern, Erwin Schröedinger, described, in his excellent book, What is Life, how the finding of aperiodic crystals in biological systems surprised him (an aperiodic crystal, which, in my opinion is the material carrier of life). In the 21st century and still far from being able to define life, we are attending to a quick acceleration of knowledge on regulatory information. With the discovery of new codes and punctuation marks, we will greatly increase our understanding in front of an impressive avalanche of genomic sequences. Trifonov et al. defined a genetic code as a widespread DNA sequence pattern that carries a message with an impact on biology. These patterns are largely captured in transcribed messages that give meaning and identity to the particular cells. In this review, I will go through my personal career in and after my years of work in the laboratory of Gordon H. Dixon, extending toward the impressive acquisition of new knowledge on regulatory information and genetic codes provided by remarkable scientists in the field. Abbreviations: CA II: carbonic anhydridase II (chicken); Car2: carbonic anhydridase 2 (mouse); CpG islands: short (>0.5 kb) stretches of DNA with a G+C content ≥55%; DNMT1: DNA methyltransferases 1; DNMT3b: DNA methyltransferases 3B; DSB: double-strand DNA breaks; ERT: endogenous retrotransposon; ERV: endogenous retroviruses; ES cells: embryonic stem cells; GAPDH: glyceraldehide phosphate dehydrogenase; H1: histone H1; HATs: histone acetyltransferases; HDACs: histone deacetylases; H3K4me3: histone 3 trimethylated at lys 4; H3K79me2: histone 3 dimethylated at lys 79; HMG: high mobility group proteins; HMT: histone methyltransferase; HP1: heterochromatin protein 1; HR: homologous recombination; HSE: heat-shock element; ICRs: imprinted control regions; IRF: interferon regulatory factor; LDH-A/-B: lactate dehydrogenase A/B; LTR: long terminal repeats; MeCP2: methyl CpG binding protein 2; OCT4: octamer-binding transcription factor 4; PAF1: RNA Polymerase II associated factor 1; piRNA: PIWI-interacting RNA; poly(A) tails: poly-adenine tails; PRC2: polycomb repressive complex 2; PTMs: post-translational modifications; SIRT 1: sirtuin 1, silent information regulator; STAT3: signal transducer and activator of transcription; tRNAs: transfer RNA; tRFs: tRNA-derived fragments; TSS: transcription start site; TE: transposable elements; UB I: polyubiquitin I; UB II: polyubiquitin II; UBE 2N: ubiquitin conjugating enzyme E2N; 5'-UTR: 5'-untranslated sequences; 3'-UTR: 3'-untranslated sequences.
Collapse
Affiliation(s)
- Jovita Mezquita-Pla
- a Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, IDIBAPS, Faculty of Medicine , University of Barcelona , Catalonia , Spain
| |
Collapse
|
39
|
Ito K, Takizawa T. Nuclear Architecture in the Nervous System: Development, Function, and Neurodevelopmental Diseases. Front Genet 2018; 9:308. [PMID: 30127803 PMCID: PMC6087739 DOI: 10.3389/fgene.2018.00308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Decades of study have shown that epigenetic regulation plays an important role in neural development and function. Several layers of epigenetic mechanisms control functions of the eukaryotic cell nucleus, a well-organized subcellular organelle with distinct compartments: chromatin, its related architectural proteins, and nuclear bodies. As these components function together in the epigenetic regulation of cellular development and functions, they are collectively termed nuclear architecture. In the nervous system, dynamic rearrangement of nuclear architecture correlates with alteration of transcription programs. During maturation and upon depolarization, neurons undergo a reorganization of nuclear architecture that alters gene expression programs. As such changes allow for specialized functions, including learning and memory, nuclear architecture is distinct among cell types. Studying nuclear architecture of neurons may uncover cell-division-independent mechanisms of global and local changes to nuclear architecture. We herein review recent research concerning nuclear architecture in the nervous system and will discuss its importance to the development, maturation, function, and diseases of the nervous system.
Collapse
Affiliation(s)
- Kenji Ito
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
40
|
Genome-wide distribution of linker histone H1.0 is independent of MeCP2. Nat Neurosci 2018; 21:794-798. [PMID: 29802390 PMCID: PMC6099063 DOI: 10.1038/s41593-018-0155-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/19/2018] [Indexed: 01/08/2023]
Abstract
Previous studies suggested that MeCP2 competes with linker histone H1, but this hypothesis has never been tested in vivo. Here, we performed ChIP-Seq of Flag-tagged-H1.0 in mouse forebrain excitatory neurons. Unexpectedly, Flag-H1.0 and MeCP2 occupied similar genomic regions and the Flag-H1.0 binding was not changed upon MeCP2 depletion. Furthermore, mild overexpression of H1.0 did not alter MeCP2 binding, suggesting that the functional binding of MeCP2 and H1.0 are largely independent.
Collapse
|
41
|
Gulmez Karaca K, Brito DVC, Zeuch B, Oliveira AMM. Adult hippocampal MeCP2 preserves the genomic responsiveness to learning required for long-term memory formation. Neurobiol Learn Mem 2018; 149:84-97. [PMID: 29438740 DOI: 10.1016/j.nlm.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 01/09/2023]
Abstract
MeCP2 is required both during postnatal neurodevelopment and throughout the adult life for brain function. Although it is well accepted that MeCP2 in the maturing nervous system is critical for establishing normal development, the functions of MeCP2 during adulthood are poorly understood. Particularly, the requirement of hippocampal MeCP2 for cognitive abilities in the adult is not studied. To characterize the role of MeCP2 in adult neuronal function and cognition, we used a temporal and region-specific disruption of MeCP2 expression in the hippocampus of adult male mice. We found that MeCP2 is required for long-term memory formation and that it controls the learning-induced transcriptional response of hippocampal neurons required for memory consolidation. Furthermore, we uncovered MeCP2 functions in the adult hippocampus that may underlie cognitive integrity. We showed that MeCP2 maintains the developmentally established chromatin configuration and epigenetic landscape of CA1 neurons throughout the adulthood, and that it regulates the expression of neuronal and immune-related genes in the adult hippocampus. Overall, our findings identify MeCP2 as a maintenance factor in the adult hippocampus that preserves signal responsiveness of the genome and allows for integrity of cognitive functions. This study provides new insight into how MeCP2 maintains adult brain functions, but also into the mechanisms underlying the cognitive impairments observed in RTT patients and highlights the understudied role of DNA methylation interpretation in adult cognitive processes.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Benjamin Zeuch
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
Abstract
Zinc-finger and homeodomain transcription factors have been shown in vitro to bind to recognition motifs containing a methylated CpG. However, accessing these motifs in vivo might be seriously impeded by the inclusion of DNA in nucleosomes and by the condensed structure adopted by chromatin formed on methylated DNA. Here, we discuss how oxidation of 5-methylcytosine into 5-hydroxymethylcytosine could provide the initial destabilizing clue for such transcription factors to get access to nucleosomal DNA and read epigenetic information.
Collapse
Affiliation(s)
- Elise A Mahé
- a University of Rennes 1, UMR6290 CNRS , Institute of Genetics and Development of Rennes , Campus de Beaulieu, Rennes Cedex , France
| | - Thierry Madigou
- a University of Rennes 1, UMR6290 CNRS , Institute of Genetics and Development of Rennes , Campus de Beaulieu, Rennes Cedex , France
| | - Gilles Salbert
- a University of Rennes 1, UMR6290 CNRS , Institute of Genetics and Development of Rennes , Campus de Beaulieu, Rennes Cedex , France
| |
Collapse
|
43
|
Trifonova EA, Khlebodarova TM, Gruntenko NE. Molecular mechanisms of autism as a form of synaptic dysfunction. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717080020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Good KV, Martínez de Paz A, Tyagi M, Cheema MS, Thambirajah AA, Gretzinger TL, Stefanelli G, Chow RL, Krupke O, Hendzel M, Missiaen K, Underhill A, Landsberger N, Ausió J. Trichostatin A decreases the levels of MeCP2 expression and phosphorylation and increases its chromatin binding affinity. Epigenetics 2017; 12:934-944. [PMID: 29099289 DOI: 10.1080/15592294.2017.1380760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.
Collapse
Affiliation(s)
- Katrina V Good
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Alexia Martínez de Paz
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Monica Tyagi
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Manjinder S Cheema
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Anita A Thambirajah
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada.,b Douglas Hospital Research Center , Department of Psychiatry , McGill University , Montréal , Québec H3G 1Y6 , Canada
| | - Taylor L Gretzinger
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Gilda Stefanelli
- c Department of Medical Biotechnology and Translational Medicine , University of Milan , Milan , Italy
| | - Robert L Chow
- d Department of Biology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Oliver Krupke
- d Department of Biology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| | - Michael Hendzel
- e Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada.,f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Kristal Missiaen
- f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Alan Underhill
- f Department of Oncology and Department of Cell Biology , Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Nicoletta Landsberger
- c Department of Medical Biotechnology and Translational Medicine , University of Milan , Milan , Italy
| | - Juan Ausió
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , BC , V8W 3P6 , Canada
| |
Collapse
|
45
|
Pacheco NL, Heaven MR, Holt LM, Crossman DK, Boggio KJ, Shaffer SA, Flint DL, Olsen ML. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol Autism 2017; 8:56. [PMID: 29090078 PMCID: PMC5655833 DOI: 10.1186/s13229-017-0174-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation. METHODS We therefore performed the first comprehensive transcriptome-proteome comparison in a RTT mouse model to elucidate RTT pathophysiology, identify potential therapeutic targets, and further our understanding of MeCP2 function. The whole cortex of wild-type and symptomatic RTT male littermates (n = 4 per genotype) were analyzed using RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Ingenuity® Pathway Analysis was used to identify significantly affected pathways in the transcriptomic and proteomic data sets. RESULTS Our results indicate these two "omics" data sets supplement one another. In addition to confirming previous works regarding mRNA expression in Mecp2-deficient animals, the current study identified hundreds of novel protein targets. Several selected protein targets were validated by Western blot analysis. These data indicate RNA metabolism, proteostasis, monoamine metabolism, and cholesterol synthesis are disrupted in the RTT proteome. Hits common to both data sets indicate disrupted cellular metabolism, calcium signaling, protein stability, DNA binding, and cytoskeletal cell structure. Finally, in addition to confirming disrupted pathways and identifying novel hits in neuronal structure and synaptic transmission, our data indicate aberrant myelination, inflammation, and vascular disruption. Intriguingly, there is no evidence of reactive gliosis, but instead, gene, protein, and pathway analysis suggest astrocytic maturation and morphological deficits. CONCLUSIONS This comparative omics analysis supports previous works indicating widespread CNS dysfunction and may serve as a valuable resource for those interested in cellular dysfunction in RTT.
Collapse
Affiliation(s)
- Natasha L. Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Michael R. Heaven
- Vulcan Analytical, LLC, 1500 1st Ave. North, Birmingham, AL 35203 USA
| | - Leanne M. Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| | - David K. Crossman
- UAB Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Kaul 424A, 1720 2nd Ave. South, Birmingham, AL 35294 USA
| | - Kristin J. Boggio
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Daniel L. Flint
- Luxumbra Strategic Research, LLC, 1331 South Eads St, Arlington, VA 22202 USA
| | - Michelle L. Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| |
Collapse
|
46
|
Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 2017; 19:192-206. [PMID: 29018282 DOI: 10.1038/nrm.2017.94] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.
Collapse
|
47
|
Abstract
This paper provides a brief introductory review of the most recent advances in our knowledge about the structural and functional aspects of two transcriptional regulators: MeCP2, a protein whose mutated forms are involved in Rett syndrome; and CTCF, a constitutive transcriptional insulator. This is followed by a description of the PTMs affecting these two proteins and an analysis of their known interacting partners. A special emphasis is placed on the recent studies connecting these two proteins, focusing on the still poorly understood potential structural and functional interactions between the two of them on the chromatin substrate. An overview is provided for some of the currently known genes that are dually regulated by these two proteins. Finally, a model is put forward to account for their possible involvement in their regulation of gene expression.
Collapse
Affiliation(s)
- Juan Ausió
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.,b Center for Biomedical Research, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Philippe T Georgel
- c Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA.,d Cell Differentiation and Development Center, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
48
|
Parikh ZS, Tripathi A, Pillai PP. Differential Regulation of MeCP2 Phosphorylation by Laminin in Oligodendrocytes. J Mol Neurosci 2017; 62:309-317. [PMID: 28616777 DOI: 10.1007/s12031-017-0939-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Oligodendrocytes (OLGs) are the myelinating cells of the central nervous system (CNS), and its proper differentiation is crucial for normal functioning of neurons. Methyl-CpG-binding protein 2 (MeCP2) is a multifunctional methylated DNA binding protein; mutation of which causes Rett syndrome, a severe neurodevelopmental disorder. Previously, we reported that MeCP2 is expressed in all the stages of oligodendrocyte development, and also shown the role of MeCP2 as a transcription regulator of myelin genes in OLGs. The expression and function of MeCP2 phosphorylation at S80 (pS80MeCP2) has been well studied in neurons and astrocytes; however, there is no data so far available in OLGs regarding pS80MeCP2. Certain developmental stimuli such as growth factors and extracellular matrix (ECM) protein play important role in OLG development. In the present study, we have examined the effects of external stimuli (growth factors (GFs) and extracellular matrix (ECMs)) on S80 phosphorylation of MeCP2 in N19 oligodendroglial cells (N19 OLGs). This study provides the first evidence that laminin (LN) differentially regulates the expression of pS80MeCP2 in immature and mature N19 OLGs. Thus, MeCP2 is phosphorylated in a stimulus-dependent manner during oligodendrocyte development, and thereby, it may regulate the oligodendrocyte behavior.
Collapse
Affiliation(s)
- Zalak S Parikh
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ashutosh Tripathi
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
49
|
The Crucial Role of DNA Methylation and MeCP2 in Neuronal Function. Genes (Basel) 2017; 8:genes8050141. [PMID: 28505093 PMCID: PMC5448015 DOI: 10.3390/genes8050141] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
A neuron is unique in its ability to dynamically modify its transcriptional output in response to synaptic activity while maintaining a core gene expression program that preserves cellular identity throughout a lifetime that is longer than almost every other cell type in the body. A contributing factor to the immense adaptability of a neuron is its unique epigenetic landscape that elicits locus-specific alterations in chromatin architecture, which in turn influences gene expression. One such epigenetic modification that is sensitive to changes in synaptic activity, as well as essential for maintaining cellular identity, is DNA methylation. The focus of this article is on the importance of DNA methylation in neuronal function, summarizing recent studies on critical players in the establishment of (the “writing”), the modification or erasure of (the “editing”), and the mediation of (the “reading”) DNA methylation in neurodevelopment and neuroplasticity. One “reader” of DNA methylation in particular, methyl-CpG-binding protein 2 (MeCP2), is highlighted, given its undisputed importance in neuronal function.
Collapse
|
50
|
Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nat Commun 2017; 8:15134. [PMID: 28480880 PMCID: PMC5424149 DOI: 10.1038/ncomms15134] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/02/2017] [Indexed: 01/07/2023] Open
Abstract
While intron retention (IR) is considered a widely conserved and distinct mechanism of gene expression control, its regulation is poorly understood. Here we show that DNA methylation directly regulates IR. We also find reduced occupancy of MeCP2 near the splice junctions of retained introns, mirroring the reduced DNA methylation at these sites. Accordingly, MeCP2 depletion in tissues and cells enhances IR. By analysing the MeCP2 interactome using mass spectrometry and RNA co-precipitation, we demonstrate that decreased MeCP2 binding near splice junctions facilitates IR via reduced recruitment of splicing factors, including Tra2b, and increased RNA polymerase II stalling. These results suggest an association between IR and a slower rate of transcription elongation, which reflects inefficient splicing factor recruitment. In summary, our results reinforce the interdependency between alternative splicing involving IR and epigenetic controls of gene expression. Intron retention is a conserved mechanism that controls gene expression but its regulation is poorly understood. Here, the authors provide evidence that DNA methylation regulates intron retention and find reduced MeCP2 occupancy and splicing factor recruitment near affected splice junctions.
Collapse
|