1
|
Zhou X, Lv M, Duan Z, Liu W, Yan F, Liu J, Cui Y. CHTOP Promotes Microglia-Mediated Inflammation by Regulating Cell Metabolism and Inflammatory Gene Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:677-688. [PMID: 38117276 DOI: 10.4049/jimmunol.2300572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
During the initiation of the inflammatory response of microglia, the expression of many inflammation- and cell metabolism-related genes alters. However, how the transcription of inflammation- and metabolism-related genes are coordinately regulated during inflammation initiation is poorly understood. In this study, we found that LPS stimulation induced the expression of the chromatin target of PRMT1 (protein arginine methyltransferase 1) (CHTOP) in microglia. Knocking down CHTOP in microglia decreased proinflammatory cytokine expression. In addition, CHTOP knockdown altered cell metabolism, as both the upregulated genes were enriched in cell metabolism-related pathways and the metabolites profile was greatly altered based on untargeted metabolomics analysis. Mechanistically, CHTOP could directly bind the regulatory elements of inflammation and cell metabolism-related genes to regulate their transcription. In addition, knocking down CHTOP increased neuronal viability in vitro and alleviated microglia-mediated neuroinflammation in a systemic LPS treatment mouse model. Collectively, these data revealed CHTOP as a novel regulator to promote microglia-mediated neuroinflammation by coordinately regulating the transcription of inflammation and cell metabolism-related genes.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhongying Duan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wenhao Liu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiake Liu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Roth JF, Braunschweig U, Wu M, Li JD, Lin ZY, Larsen B, Weatheritt RJ, Gingras AC, Blencowe BJ. Systematic analysis of alternative exon-dependent interactome remodeling reveals multitasking functions of gene regulatory factors. Mol Cell 2023; 83:4222-4238.e10. [PMID: 38065061 DOI: 10.1016/j.molcel.2023.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.
Collapse
Affiliation(s)
- Jonathan F Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
3
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
4
|
Wang J, Wang Z, Inuzuka H, Wei W, Liu J. PRMT1 methylates METTL14 to modulate its oncogenic function. Neoplasia 2023; 42:100912. [PMID: 37269817 PMCID: PMC10248872 DOI: 10.1016/j.neo.2023.100912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
N6-methyladenosine (m6A), the most abundant mRNA modification in mammalian cells, is responsible for mRNA stability and alternative splicing. The METTL3-METTL14-WTAP complex is the only methyltransferase for the m6A modification. Thus, regulation of its enzymatic activity is critical for the homeostasis of mRNA m6A levels in cells. However, relatively little is known about the upstream regulation of the METTL3-METTL14-WTAP complex, especially at the post-translational modification level. The C-terminal RGG repeats of METTL14 are critical for RNA binding. Therefore, modifications on these residues may play a regulatory role in its function. Arginine methylation is a post-translational modification catalyzed by protein arginine methyltransferases (PRMTs), among which PRMT1 preferentially methylates protein substrates with an arginine/glycine-rich motif. In addition, PRMT1 functions as a key regulator of mRNA alternative splicing, which is associated with m6A modification. To this end, we report that PRMT1 promotes the asymmetric methylation of two major arginine residues at the C-terminus of METTL14, and the reader protein SPF30 recognizes this modification. Functionally, PRMT1-mediated arginine methylation on METTL14 is likely essential for its function in catalyzing the m6A modification. Moreover, arginine methylation of METTL14 promotes cell proliferation that is antagonized by the PRMT1 inhibitor MS023. These results indicate that PRMT1 likely regulates m6A modification and promotes tumorigenesis through arginine methylation at the C-terminus of METTL14.
Collapse
Affiliation(s)
- Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Liu J, Bu X, Chu C, Dai X, Asara JM, Sicinski P, Freeman GJ, Wei W. PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity. Nat Commun 2023; 14:2806. [PMID: 37193698 PMCID: PMC10188589 DOI: 10.1038/s41467-023-38443-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Activation of the cGAS/STING innate immunity pathway is essential and effective for anti-tumor immunotherapy. However, it remains largely elusive how tumor-intrinsic cGAS signaling is suppressed to facilitate tumorigenesis by escaping immune surveillance. Here, we report that the protein arginine methyltransferase, PRMT1, methylates cGAS at the conserved Arg133 residue, which prevents cGAS dimerization and suppresses the cGAS/STING signaling in cancer cells. Notably, genetic or pharmaceutical ablation of PRMT1 leads to activation of cGAS/STING-dependent DNA sensing signaling, and robustly elevates the transcription of type I and II interferon response genes. As such, PRMT1 inhibition elevates tumor-infiltrating lymphocytes in a cGAS-dependent manner, and promotes tumoral PD-L1 expression. Thus, combination therapy of PRMT1 inhibitor with anti-PD-1 antibody augments the anti-tumor therapeutic efficacy in vivo. Our study therefore defines the PRMT1/cGAS/PD-L1 regulatory axis as a critical factor in determining immune surveillance efficacy, which serves as a promising therapeutic target for boosting tumor immunity.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, P.R. China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - John M Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02215, USA
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Identification and Characterization of Glycine- and Arginine-Rich Motifs in Proteins by a Novel GAR Motif Finder Program. Genes (Basel) 2023; 14:genes14020330. [PMID: 36833257 PMCID: PMC9957100 DOI: 10.3390/genes14020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Glycine- and arginine-rich (GAR) motifs with different combinations of RG/RGG repeats are present in many proteins. The nucleolar rRNA 2'-O-methyltransferase fibrillarin (FBL) contains a conserved long N-terminal GAR domain with more than 10 RGG plus RG repeats separated by specific amino acids, mostly phenylanalines. We developed a GAR motif finder (GMF) program based on the features of the GAR domain of FBL. The G(0,3)-X(0,1)-R-G(1,2)-X(0,5)-G(0,2)-X(0,1)-R-G(1,2) pattern allows the accommodation of extra-long GAR motifs with continuous RG/RGG interrupted by polyglycine or other amino acids. The program has a graphic interface and can easily output the results as .csv and .txt files. We used GMF to show the characteristics of the long GAR domains in FBL and two other nucleolar proteins, nucleolin and GAR1. GMF analyses can illustrate the similarities and also differences between the long GAR domains in the three nucleolar proteins and motifs in other typical RG/RGG-repeat-containing proteins, specifically the FET family members FUS, EWS, and TAF15 in position, motif length, RG/RGG number, and amino acid composition. We also used GMF to analyze the human proteome and focused on the ones with at least 10 RGG plus RG repeats. We showed the classification of the long GAR motifs and their putative correlation with protein/RNA interactions and liquid-liquid phase separation. The GMF algorithm can facilitate further systematic analyses of the GAR motifs in proteins and proteomes.
Collapse
|
7
|
Mei-Lin Zhou, Ma JN, Xue L. Effect of Protein Arginine Methyltransferase 1 Gene Knockout on the Proliferation of Human Embryonic Kidney 293T Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
9
|
Mott AC, Mott A, Preuß S, Bennewitz J, Tetens J, Falker-Gieske C. eQTL analysis of laying hens divergently selected for feather pecking identifies KLF14 as a potential key regulator for this behavioral disorder. Front Genet 2022; 13:969752. [PMID: 36061196 PMCID: PMC9428588 DOI: 10.3389/fgene.2022.969752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 02/03/2023] Open
Abstract
Feather pecking in chickens is a damaging behavior, seriously impacting animal welfare and leading to economic losses. Feather pecking is a complex trait, which is partly under genetic control. Different hypotheses have been proposed to explain the etiology of feather pecking and notably, several studies have identified similarities between feather pecking and human mental disorders such as obsessive-compulsive disorder and schizophrenia. This study uses transcriptomic and phenotypic data from 167 chickens to map expression quantitative trait loci and to identify regulatory genes with a significant effect on this behavioral disorder using an association weight matrix approach. From 70 of the analyzed differentially expressed genes, 11,790 genome wide significantly associated variants were detected, of which 23 showed multiple associations (≥15). These were located in proximity to a number of genes, which are transcription regulators involved in chromatin binding, nucleic acid metabolism, protein translation and putative regulatory RNAs. The association weight matrix identified 36 genes and the two transcription factors: SP6 (synonym: KLF14) and ENSGALG00000042129 (synonym: CHTOP) as the most significant, with an enrichment of KLF14 binding sites being detectable in 40 differentially expressed genes. This indicates that differential expression between animals showing high and low levels of feather pecking was significantly associated with a genetic variant in proximity to KLF14. This multiallelic variant was located 652 bp downstream of KLF14 and is a deletion of 1-3 bp. We propose that a deletion downstream of the transcription factor KLF14 has a negative impact on the level of T cells in the developing brain of high feather pecking chickens, which leads to developmental and behavioral abnormalities. The lack of CD4 T cells and gamma-Aminobutyric acid (GABA) receptors are important factors for the increased propensity of laying hens to perform feather pecking. As such, KLF14 is a clear candidate regulator for the expression of genes involved in the pathogenic development. By further elucidating the regulatory pathways involved in feather pecking we hope to take significant steps forward in explaining and understanding other mental disorders, not just in chickens.
Collapse
Affiliation(s)
| | - Andrea Mott
- Department of Animal Sciences, Georg-August-University, Göttingen, Germany
| | - Siegfried Preuß
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Göttingen, Germany
- *Correspondence: Clemens Falker-Gieske,
| |
Collapse
|
10
|
Friedmacher F, Rolle U, Puri P. Genetically Modified Mouse Models of Congenital Diaphragmatic Hernia: Opportunities and Limitations for Studying Altered Lung Development. Front Pediatr 2022; 10:867307. [PMID: 35633948 PMCID: PMC9136148 DOI: 10.3389/fped.2022.867307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth defect, characterized by an abnormal opening in the primordial diaphragm that interferes with normal lung development. As a result, CDH is accompanied by immature and hypoplastic lungs, being the leading cause of morbidity and mortality in patients with this condition. In recent decades, various animal models have contributed novel insights into the pathogenic mechanisms underlying CDH and associated pulmonary hypoplasia. In particular, the generation of genetically modified mouse models, which show both diaphragm and lung abnormalities, has resulted in the discovery of multiple genes and signaling pathways involved in the pathogenesis of CDH. This article aims to offer an up-to-date overview on CDH-implicated transcription factors, molecules regulating cell migration and signal transduction as well as components contributing to the formation of extracellular matrix, whilst also discussing the significance of these genetic models for studying altered lung development with regard to the human situation.
Collapse
Affiliation(s)
- Florian Friedmacher
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Prem Puri
- Beacon Hospital, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Inoue AH, Domingues PF, Serpeloni M, Hiraiwa PM, Vidal NM, Butterfield ER, Del Pino RC, Ludwig A, Boehm C, Field MC, Ávila AR. Proteomics Uncovers Novel Components of an Interactive Protein Network Supporting RNA Export in Trypanosomes. Mol Cell Proteomics 2022; 21:100208. [PMID: 35091090 PMCID: PMC8938319 DOI: 10.1016/j.mcpro.2022.100208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022] Open
Abstract
In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.
Collapse
Affiliation(s)
| | | | | | | | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Adriana Ludwig
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Paraná, Brazil
| | - Cordula Boehm
- School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, UK; Biology Centre, University of South Bohemia, České Budějovice, Czech Republic.
| | | |
Collapse
|
12
|
Tang S, Sethunath V, Metaferia NY, Nogueira MF, Gallant DS, Garner ER, Lairson LA, Penney CM, Li J, Gelbard MK, Alaiwi SA, Seo JH, Hwang JH, Strathdee CA, Baca SC, AbuHammad S, Zhang X, Doench JG, Hahn WC, Takeda DY, Freedman ML, Choi PS, Viswanathan SR. A genome-scale CRISPR screen reveals PRMT1 as a critical regulator of androgen receptor signaling in prostate cancer. Cell Rep 2022; 38:110417. [PMID: 35196489 PMCID: PMC9036938 DOI: 10.1016/j.celrep.2022.110417] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
Androgen receptor (AR) signaling is the central driver of prostate cancer across disease states. While androgen deprivation therapy (ADT) is effective in the initial treatment of prostate cancer, resistance to ADT or to next-generation androgen pathway inhibitors invariably arises, most commonly through the re-activation of the AR axis. Thus, orthogonal approaches to inhibit AR signaling in advanced prostate cancer are essential. Here, via genome-scale CRISPR-Cas9 screening, we identify protein arginine methyltransferase 1 (PRMT1) as a critical mediator of AR expression and signaling. PRMT1 regulates the recruitment of AR to genomic target sites and the inhibition of PRMT1 impairs AR binding at lineage-specific enhancers, leading to decreased expression of key oncogenes, including AR itself. In addition, AR-driven prostate cancer cells are uniquely susceptible to combined AR and PRMT1 inhibition. Our findings implicate PRMT1 as a key regulator of AR output and provide a preclinical framework for co-targeting of AR and PRMT1 in advanced prostate cancer.
Collapse
Affiliation(s)
- Stephen Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Nebiyou Y Metaferia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marina F Nogueira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emma R Garner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Lauren A Lairson
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher M Penney
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maya K Gelbard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sarah Abou Alaiwi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Justin H Hwang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shatha AbuHammad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA
| | - David Y Takeda
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Peter S Choi
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Maron MI, Casill AD, Gupta V, Roth JS, Sidoli S, Query CC, Gamble MJ, Shechter D. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation. eLife 2022; 11:e72867. [PMID: 34984976 PMCID: PMC8765754 DOI: 10.7554/elife.72867] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are required for the regulation of RNA processing factors. Type I PRMT enzymes catalyze mono- and asymmetric dimethylation; Type II enzymes catalyze mono- and symmetric dimethylation. To understand the specific mechanisms of PRMT activity in splicing regulation, we inhibited Type I and II PRMTs and probed their transcriptomic consequences. Using the newly developed Splicing Kinetics and Transcript Elongation Rates by Sequencing (SKaTER-seq) method, analysis of co-transcriptional splicing demonstrated that PRMT inhibition resulted in altered splicing rates. Surprisingly, co-transcriptional splicing kinetics did not correlate with final changes in splicing of polyadenylated RNA. This was particularly true for retained introns (RI). By using actinomycin D to inhibit ongoing transcription, we determined that PRMTs post-transcriptionally regulate RI. Subsequent proteomic analysis of both PRMT-inhibited chromatin and chromatin-associated polyadenylated RNA identified altered binding of many proteins, including the Type I substrate, CHTOP, and the Type II substrate, SmB. Targeted mutagenesis of all methylarginine sites in SmD3, SmB, and SmD1 recapitulated splicing changes seen with Type II PRMT inhibition, without disrupting snRNP assembly. Similarly, mutagenesis of all methylarginine sites in CHTOP recapitulated the splicing changes seen with Type I PRMT inhibition. Examination of subcellular fractions further revealed that RI were enriched in the nucleoplasm and chromatin. Taken together, these data demonstrate that, through Sm and CHTOP arginine methylation, PRMTs regulate the post-transcriptional processing of nuclear, detained introns.
Collapse
Affiliation(s)
- Maxim I Maron
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Alyssa D Casill
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronxUnited States
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Jacob S Roth
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronxUnited States
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
14
|
Jaing TH, Chang TY, Chen SH, Lin CW, Wen YC, Chiu CC. Molecular genetics of β-thalassemia: A narrative review. Medicine (Baltimore) 2021; 100:e27522. [PMID: 34766559 PMCID: PMC8589257 DOI: 10.1097/md.0000000000027522] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT β-thalassemia is a hereditary hematological disease caused by over 350 mutations in the β-globin gene (HBB). Identifying the genetic variants affecting fetal hemoglobin (HbF) production combined with the α-globin genotype provides some prediction of disease severity for β-thalassemia. However, the generation of an additive composite genetic risk score predicts prognosis, and guide management requires a larger panel of genetic modifiers yet to be discovered.Presently, using data from prior clinical trials guides the design of further research and academic studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene therapy approaches.Genetic studies have successfully characterized the causal variants and pathways involved in HbF regulation, providing novel therapeutic targets for HbF reactivation. In addition to these HBB mutation-independent strategies involving HbF synthesis de-repression, the expanding genome editing toolkit provides increased accuracy to HBB mutation-specific strategies encompassing adult hemoglobin restoration for personalized treatment of hemoglobinopathies. Allogeneic hematopoietic stem cell transplantation was, until very recently, the curative option available for patients with transfusion-dependent β-thalassemia. Gene therapy currently represents a novel therapeutic promise after many years of extensive preclinical research to optimize gene transfer protocols.We summarize the current state of developments in the molecular genetics of β-thalassemia over the last decade, including the mechanisms associated with ineffective erythropoiesis, which have also provided valid therapeutic targets, some of which have been shown as a proof-of-concept.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Yen Chang
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsiang Chen
- Divisions of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Wei Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chuan Wen
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chi Chiu
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
15
|
De Simone G, Quattrocchi A, Mancini B, di Masi A, Nervi C, Ascenzi P. Thalassemias: From gene to therapy. Mol Aspects Med 2021; 84:101028. [PMID: 34649720 DOI: 10.1016/j.mam.2021.101028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/19/2021] [Indexed: 12/26/2022]
Abstract
Thalassemias (α, β, γ, δ, δβ, and εγδβ) are the most common genetic disorders worldwide and constitute a heterogeneous group of hereditary diseases characterized by the deficient synthesis of one or more hemoglobin (Hb) chain(s). This leads to the accumulation of unstable non-thalassemic Hb chains, which precipitate and cause intramedullary destruction of erythroid precursors and premature lysis of red blood cells (RBC) in the peripheral blood. Non-thalassemic Hbs display high oxygen affinity and no cooperativity. Thalassemias result from many different genetic and molecular defects leading to either severe or clinically silent hematologic phenotypes. Thalassemias α and β are particularly diffused in the regions spanning from the Mediterranean basin through the Middle East, Indian subcontinent, Burma, Southeast Asia, Melanesia, and the Pacific Islands, whereas δβ-thalassemia is prevalent in some Mediterranean regions including Italy, Greece, and Turkey. Although in the world thalassemia and malaria areas overlap apparently, the RBC protection against malaria parasites is openly debated. Here, we provide an overview of the historical, geographic, genetic, structural, and molecular pathophysiological aspects of thalassemias. Moreover, attention has been paid to molecular and epigenetic pathways regulating globin gene expression and globin switching. Challenges of conventional standard treatments, including RBC transfusions and iron chelation therapy, splenectomy and hematopoietic stem cell transplantation from normal donors are reported. Finally, the progress made by rapidly evolving fields of gene therapy and gene editing strategies, already in pre-clinical and clinical evaluation, and future challenges as novel curative treatments for thalassemia are discussed.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alberto Quattrocchi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy
| | - Benedetta Mancini
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Clara Nervi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy.
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy; Accademia Nazionale dei Lincei, Via della Lungara 10, 00165, Roma, Italy.
| |
Collapse
|
16
|
Niikura M, Fukutomi T, Mitobe J, Kobayashi F. Roles and Cellular Localization of GBP2 and NAB2 During the Blood Stage of Malaria Parasites. Front Cell Infect Microbiol 2021; 11:737457. [PMID: 34604117 PMCID: PMC8479154 DOI: 10.3389/fcimb.2021.737457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
The quality control and export of mRNA by RNA-binding proteins are necessary for the survival of malaria parasites, which have complex life cycles. Nuclear poly(A) binding protein 2 (NAB2), THO complex subunit 4 (THO4), nucleolar protein 3 (NPL3), G-strand binding protein 2 (GBP2) and serine/arginine-rich splicing factor 1 (SR1) are involved in nuclear mRNA export in malaria parasites. However, their roles in asexual and sexual development, and in cellular localization, are not fully understood. In this study using the rodent malaria parasite, Plasmodium berghei, we found that NAB2 and SR1, but not THO4, NPL3 or GBP2, played essential roles in the asexual development of malaria parasites. By contrast, GBP2 but not NPL3 was involved in male and female gametocyte production. THO4 was involved in female gametocyte production, but had a lower impact than GBP2. In this study, we focused on GBP2 and NAB2, which play important roles in the sexual and asexual development of malaria parasites, respectively, and examined their cellular localization. GBP2 localized to both the nucleus and cytoplasm of malaria parasites. Using immunoprecipitation coupled to mass spectrometry (IP-MS), GBP2 interacted with the proteins ALBA4, DOZI, and CITH, which play roles in translational repression. IP-MS also revealed that phosphorylated adapter RNA export protein (PHAX) domain-containing protein, an adaptor protein for exportin-1, also interacted with GBP2, implying that mRNA export occurs via the PHAX domain-containing protein pathway in malaria parasites. Live-cell fluorescence imaging revealed that NAB2 localized at the nuclear periphery. Moreover, IP-MS indicated that NAB2 interacted with transportin. RNA immunoprecipitation coupled to RNA sequencing revealed that NAB2 bound directly to 143 mRNAs, including those encoding 40S and 60S ribosomal proteins. Our findings imply that malaria parasites use an evolutionarily ancient mechanism conserved throughout eukaryotic evolution.
Collapse
Affiliation(s)
- Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jiro Mitobe
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Fumie Kobayashi
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| |
Collapse
|
17
|
Samuel SF, Barry A, Greenman J, Beltran-Alvarez P. Arginine methylation: the promise of a 'silver bullet' for brain tumours? Amino Acids 2021; 53:489-506. [PMID: 33404912 PMCID: PMC8107164 DOI: 10.1007/s00726-020-02937-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Despite intense research efforts, our pharmaceutical repertoire against high-grade brain tumours has not been able to increase patient survival for a decade and life expectancy remains at less than 16 months after diagnosis, on average. Inhibitors of protein arginine methyltransferases (PRMTs) have been developed and investigated over the past 15 years and have now entered oncology clinical trials, including for brain tumours. This review collates recent advances in the understanding of the role of PRMTs and arginine methylation in brain tumours. We provide an up-to-date literature review on the mechanisms for PRMT regulation. These include endogenous modulators such as alternative splicing, miRNA, post-translational modifications and PRMT-protein interactions, and synthetic inhibitors. We discuss the relevance of PRMTs in brain tumours with a particular focus on PRMT1, -2, -5 and -8. Finally, we include a future perspective where we discuss possible routes for further research on arginine methylation and on the use of PRMT inhibitors in the context of brain tumours.
Collapse
Affiliation(s)
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | | |
Collapse
|
18
|
Feng X, Bai X, Ni J, Wasinger VC, Beretov J, Zhu Y, Graham P, Li Y. CHTOP in Chemoresistant Epithelial Ovarian Cancer: A Novel and Potential Therapeutic Target. Front Oncol 2019; 9:557. [PMID: 31380263 PMCID: PMC6660285 DOI: 10.3389/fonc.2019.00557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/07/2019] [Indexed: 01/14/2023] Open
Abstract
Objective: Chemoresistance is a major challenge in epithelial ovarian cancer (EOC) treatment. Chromatin target of protein arginine methyltransferase (CHTOP) was identified as a potential biomarker in chemoresistant EOC cell lines using label-free LC-MS/MS quantitative proteomics. Thus, the aim of this study is to investigate the role of CHTOP in chemoresistant EOC and the underlying mechanism. Methods: The expression of CHTOP in human ovarian cancer cells and tissues was detected using immunofluorescence (IF), western blot (WB), and immunohistochemistry (IHC), respectively. Flow cytometry and TUNEL assay were employed to detect the effect of CHTOP knockdown (KD) in chemoresistant EOC cell apoptosis, while colony and sphere formation assays were used to evaluate its effect on cell stemness. The association of CHTOP with cell metastasis was determined using Matrigel invasion and wound-healing assays. Results: The higher level expression of CHTOP protein was found in chemoresistant EOC cells as compared to their sensitive parental cells or normal epithelial ovarian cells. Results from IHC and bioinformatic analysis showed CHTOP was highly expressed in human ovarian cancer tissues and associated with a poor progression-free survival in patients. In addition, CHTOP KD significantly enhanced cisplatin-induced apoptosis, reduced the stemness of chemoresistant EOC cells, and decreased their metastatic potential. Conclusion: Our findings suggest that CHTOP is associated with apoptosis, stemness, and metastasis in chemoresistant EOC cells and might be a promising target to overcome chemoresistance in EOC treatment.
Collapse
Affiliation(s)
- Xiaojie Feng
- Department of Gynaecological Oncology, Henan Cancer Hospital, Zhengzhou, China.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Xupeng Bai
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Jie Ni
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, NSW, Australia.,School of Medical Science, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Julia Beretov
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia.,Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, Australia
| | - Ying Zhu
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW, Australia.,St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, NSW, Australia.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Chromatin target of protein arginine methyltransferase regulates invasion, chemoresistance, and stemness in epithelial ovarian cancer. Biosci Rep 2019; 39:BSR20190016. [PMID: 30910850 PMCID: PMC6465198 DOI: 10.1042/bsr20190016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/08/2019] [Accepted: 03/23/2019] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological cancers with a high mortality rate in females. Chromatin target of protein arginine methyltransferase (CHTOP) is an important intracellular protein that regulates the transcriptional activation of several oncogenic genes in glioblastomagenesis and controls mature mRNA export as a component of TRanscription-Export complex. However, the role of CHTOP in ovarian cancer is unclear. In the present study, we investigated the correlation between tumor-derived CHTOP expression and prognosis and explored its role in the malignant behaviors of epithelial ovarian cancer cells. We found that higher expression of CHTOP was associated with a lower disease-free survival (DFS) rate in ovarian cancer patients. Also, CHTOP was highly expressed in human ovarian cancer tissues compared with normal and adjacent tissues. Moreover, compared with IGROV-1 cell line, higher expression of CHTOP was also confirmed in the malignant ovarian cancer cell lines (OV-90 and SK-OV-3). Further results from wound-healing and Matrigel assay showed that CHTOP knockdown significantly reduced the migration and invasion ability of OV-90 and SK-OV-3 cells, while colony formation assay and apoptosis detection showed that CHTOP knockdown markedly sensitized OV-90 and SK-OV-3 cells to cisplatin treatment by inducing apoptosis. Additionally, CHTOP silence also remarkably weakened the stemness of OV-90 and SK-OV-3 through inhibiting the protein expressions of several transcriptional or surface markers of cancer stem cells. These findings first suggest that CHTOP, as a highly expressed protein in ovarian cancer, is closely associated with the malignant phenotypes of epithelial ovarian cancer cells, including metastasis, chemoresistance, and stemness, which highlights a promising role of CHTOP in ovarian cancer targeted therapy.
Collapse
|
20
|
Izumikawa K, Ishikawa H, Simpson RJ, Takahashi N. Modulating the expression of Chtop, a versatile regulator of gene-specific transcription and mRNA export. RNA Biol 2018; 15:849-855. [PMID: 29683372 DOI: 10.1080/15476286.2018.1465795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Chtop binds competitively to the arginine methyltransferases PRMT1 and PRMT5, thereby promoting the asymmetric or symmetric methylation of arginine residues, respectively. In cooperation with PRMT1, Chtop activates transcription of certain gene groups, such as the estrogen-inducible genes in breast cancer cells, the 5-hydroxymethylcytosine-modified genes involved in glioblastomagenesis, or the Zbp-89-dependent genes in erythroleukemia cells. Chtop also represses expression of the fetal γ-globin gene. In addition, Chtop is a component of the TREX complex that links transcription elongation to mRNA export. The regulation of Chtop expression is, therefore, a key process during the expression of certain gene groups and pathogenesis of certain diseases. Our recent study revealed that cellular levels of Chtop are strictly autoregulated by a mechanism involving intron retention and nonsense-mediated mRNA decay. Here, we summarize roles of Chtop in gene-specific expression and highlight our recent findings concerning the autoregulation of Chtop.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Hideaki Ishikawa
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Richard J Simpson
- b Global Innovation Research Organizations, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,c La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University , Bundoora Victoria , Australia
| | - Nobuhiro Takahashi
- a Department of Applied Biological Science , United Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,b Global Innovation Research Organizations, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| |
Collapse
|
21
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
22
|
Lee RFS, Chernobrovkin A, Rutishauser D, Allardyce CS, Hacker D, Johnsson K, Zubarev RA, Dyson PJ. Expression proteomics study to determine metallodrug targets and optimal drug combinations. Sci Rep 2017; 7:1590. [PMID: 28484215 PMCID: PMC5431558 DOI: 10.1038/s41598-017-01643-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/03/2017] [Indexed: 01/01/2023] Open
Abstract
The emerging technique termed functional identification of target by expression proteomics (FITExP) has been shown to identify the key protein targets of anti-cancer drugs. Here, we use this approach to elucidate the proteins involved in the mechanism of action of two ruthenium(II)-based anti-cancer compounds, RAPTA-T and RAPTA-EA in breast cancer cells, revealing significant differences in the proteins upregulated. RAPTA-T causes upregulation of multiple proteins suggesting a broad mechanism of action involving suppression of both metastasis and tumorigenicity. RAPTA-EA bearing a GST inhibiting ethacrynic acid moiety, causes upregulation of mainly oxidative stress related proteins. The approach used in this work could be applied to the prediction of effective drug combinations to test in cancer chemotherapy clinical trials.
Collapse
Affiliation(s)
- Ronald F S Lee
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alexey Chernobrovkin
- Karolinska Institute, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, S-171 77, Stockholm, Sweden
| | - Dorothea Rutishauser
- Karolinska Institute, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, S-171 77, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Claire S Allardyce
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - David Hacker
- Protein Expression Core Facility, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Roman A Zubarev
- Karolinska Institute, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, S-171 77, Stockholm, Sweden
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
23
|
Patel S. Pathogenicity-associated protein domains: The fiercely-conserved evolutionary signatures. GENE REPORTS 2017; 7:127-141. [PMID: 32363241 PMCID: PMC7185390 DOI: 10.1016/j.genrep.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
Abstract
Proteins have highly conserved domains that determine their functionality. Out of the thousands of domains discovered so far across all living forms, some of the predominant clinically-relevant domains include IENR1, HNHc, HELICc, Pro-kuma_activ, Tryp_SPc, Lactamase_B, PbH1, ChtBD3, CBM49, acidPPc, G3P_acyltransf, RPOL8c, KbaA, HAMP, HisKA, Hr1, Dak2, APC2, Citrate_ly_lig, DALR, VKc, YARHG, WR1, PWI, ZnF_BED, TUDOR, MHC_II_beta, Integrin_B_tail, Excalibur, DISIN, Cadherin, ACTIN, PROF, Robl_LC7, MIT, Kelch, GAS2, B41, Cyclin_C, Connexin_CCC, OmpH, Bac_rhodopsin, AAA, Knot1, NH, Galanin, IB, Elicitin, ACTH, Cache_2, CHASE, AgrB, PRP, IGR, and Antimicrobial21. These domains are distributed in nucleases/helicases, proteases, esterases, lipases, glycosylase, GTPases, phosphatases, methyltransferases, acyltransferase, acetyltransferase, polymerase, kinase, ligase, synthetase, oxidoreductase, protease inhibitors, nucleic acid binding proteins, adhesion and immunity-related proteins, cytoskeletal component-manipulating proteins, lipid biosynthesis and metabolism proteins, membrane-associated proteins, hormone-like and signaling proteins, etc. These domains are ubiquitous stretches or folds of the proteins in pathogens and allergens. Pathogenesis alleviation efforts can benefit enormously if the characteristics of these domains are known. Hence, this review catalogs and discusses the role of such pivotal domains, suggesting hypotheses for better understanding of pathogenesis at molecular level. Proteins have highly conserved regions or domains across pathogens and allergens. Knowledge on these critical domains can facilitate our understanding of pathogenesis mechanisms. Such immune manipulation-related domains include IENR1, HNHc, HELICc, ACTIN, PROF, Robl_LC7, OmpH etc. These domains are presnt in enzyme, transcription regulators, adhesion proteins, and hormones. This review discusses and hypothesizes on these domains.
Collapse
Key Words
- CARDs, caspase activation and recruitment domains
- CBM, carbohydrate binding module
- CTD, C-terminal domain
- ChtBD, chitin-binding domain
- Diversification
- HNHc, homing endonucleases
- HTH, helix-turn-helix
- IENR1, intron-encoded endonuclease repeat
- Immune manipulation
- PAMPs, pathogen associated molecular patterns
- Pathogenesis
- Phylogenetic conservation
- Protein domains
- SMART, Simple Modular Architecture Research Tool
- Shuffling
- UDG, uracil DNA glycosylase
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
| |
Collapse
|
24
|
Izumikawa K, Yoshikawa H, Ishikawa H, Nobe Y, Yamauchi Y, Philipsen S, Simpson RJ, Isobe T, Takahashi N. Chtop (Chromatin target of Prmt1) auto-regulates its expression level via intron retention and nonsense-mediated decay of its own mRNA. Nucleic Acids Res 2016; 44:9847-9859. [PMID: 27683223 PMCID: PMC5175361 DOI: 10.1093/nar/gkw831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Chtop (chromatin target of Prmt1) regulates various aspects of gene expression including transcription and mRNA export. Despite these important functions, the regulatory mechanism underlying Chtop expression remains undetermined. Using Chtop-expressing human cell lines, we demonstrate that Chtop expression is controlled via an autoregulatory negative feedback loop whereby Chtop binds its own mRNA to retain intron 2 during splicing; a premature termination codon present at the 5′ end of intron 2 leads to nonsense-mediated decay of the mRNA. We also show that Chtop interacts with exon 2 of Chtop mRNA via its arginine-glycine-rich (RG) domain, and with intron 2 via its N-terminal (N1) domain; both are required for retention of intron 2. In addition, we show that hnRNP H accelerates intron 2 splicing of Chtop mRNA in a manner dependent on Chtop expression level, suggesting that Chtop and hnRNP H regulate intron 2 retention of Chtop mRNA antagonistically. Thus, the present study provides a novel molecular mechanism by which mRNA and protein levels are constitutively regulated by intron retention.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Biological Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Hideaki Ishikawa
- Department of Applied Biological Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuko Nobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Richard J Simpson
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University, Bundoora, Victoria 3086, Australia
| | - Toshiaki Isobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
25
|
Abstract
Cryptococcus gattii is a fungal pathogen of humans, causing pulmonary infections in otherwise healthy hosts. To characterize genomic variation among the four major lineages of C. gattii (VGI, -II, -III, and -IV), we generated, annotated, and compared 16 de novo genome assemblies, including the first for the rarely isolated lineages VGIII and VGIV. By identifying syntenic regions across assemblies, we found 15 structural rearrangements, which were almost exclusive to the VGI-III-IV lineages. Using synteny to inform orthology prediction, we identified a core set of 87% of C. gattii genes present as single copies in all four lineages. Remarkably, 737 genes are variably inherited across lineages and are overrepresented for response to oxidative stress, mitochondrial import, and metal binding and transport. Specifically, VGI has an expanded set of iron-binding genes thought to be important to the virulence of Cryptococcus, while VGII has expansions in the stress-related heat shock proteins relative to the other lineages. We also characterized genes uniquely absent in each lineage, including a copper transporter absent from VGIV, which influences Cryptococcus survival during pulmonary infection and the onset of meningoencephalitis. Through inclusion of population-level data for an additional 37 isolates, we identified a new transcontinental clonal group that we name VGIIx, mitochondrial recombination between VGII and VGIII, and positive selection of multidrug transporters and the iron-sulfur protein aconitase along multiple branches of the phylogenetic tree. Our results suggest that gene expansion or contraction and positive selection have introduced substantial variation with links to mechanisms of pathogenicity across this species complex. The genetic differences between phenotypically different pathogens provide clues to the underlying mechanisms of those traits and can lead to new drug targets and improved treatments for those diseases. In this paper, we compare 16 genomes belonging to four highly differentiated lineages of Cryptococcus gattii, which cause pulmonary infections in otherwise healthy humans and other animals. Half of these lineages have not had their genomes previously assembled and annotated. We identified 15 ancestral rearrangements in the genome and over 700 genes that are unique to one or more lineages, many of which are associated with virulence. In addition, we found evidence for recent transcontinental spread, mitochondrial genetic exchange, and positive selection in multidrug transporters. Our results suggest that gene expansion/contraction and positive selection are diversifying the mechanisms of pathogenicity across this species complex.
Collapse
|
26
|
Takai H, Masuda K, Sato T, Sakaguchi Y, Suzuki T, Suzuki T, Koyama-Nasu R, Nasu-Nishimura Y, Katou Y, Ogawa H, Morishita Y, Kozuka-Hata H, Oyama M, Todo T, Ino Y, Mukasa A, Saito N, Toyoshima C, Shirahige K, Akiyama T. 5-Hydroxymethylcytosine plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex. Cell Rep 2014; 9:48-60. [PMID: 25284789 DOI: 10.1016/j.celrep.2014.08.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/29/2014] [Accepted: 08/27/2014] [Indexed: 11/28/2022] Open
Abstract
The development of cancer is driven not only by genetic mutations but also by epigenetic alterations. Here, we show that TET1-mediated production of 5-hydroxymethylcytosine (5hmC) is required for the tumorigenicity of glioblastoma cells. Furthermore, we demonstrate that chromatin target of PRMT1 (CHTOP) binds to 5hmC. We found that CHTOP is associated with an arginine methyltransferase complex, termed the methylosome, and that this promotes the PRMT1-mediated methylation of arginine 3 of histone H4 (H4R3) in genes involved in glioblastomagenesis, including EGFR, AKT3, CDK6, CCND2, and BRAF. Moreover, we found that CHTOP and PRMT1 are essential for the expression of these genes and that CHTOP is required for the tumorigenicity of glioblastoma cells. These results suggest that 5hmC plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex to selective sites on the chromosome, where it methylates H4R3 and activates the transcription of cancer-related genes.
Collapse
Affiliation(s)
- Hiroki Takai
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Koji Masuda
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomohiro Sato
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryo Koyama-Nasu
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukiko Nasu-Nishimura
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuki Katou
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Haruo Ogawa
- Laboratory of Membrane Proteins, Center for Structural Biology of Challenging Proteins, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoki Todo
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yasushi Ino
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Chikashi Toyoshima
- Laboratory of Membrane Proteins, Center for Structural Biology of Challenging Proteins, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
27
|
TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-mammary syndrome. PLoS Genet 2014; 10:e1004247. [PMID: 24675841 PMCID: PMC3967948 DOI: 10.1371/journal.pgen.1004247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/02/2014] [Indexed: 11/22/2022] Open
Abstract
TBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 interacting proteins in vivo and discovered that TBX3 interacts with multiple mRNA splicing factors and RNA metabolic proteins. We discovered that TBX3 regulates alternative splicing in vivo and can promote or inhibit splicing depending on context and transcript. TBX3 associates with alternatively spliced mRNAs and binds RNA directly. TBX3 binds RNAs containing TBX binding motifs, and these motifs are required for regulation of splicing. Our study reveals that TBX3 mutations seen in humans with UMS disrupt its splicing regulatory function. The pleiotropic effects of TBX3 mutations in humans and mice likely result from disrupting at least two molecular functions of this protein: transcriptional regulation and pre-mRNA splicing. TBX3 is a protein with essential roles in development and tissue homeostasis, and is implicated in cancer pathogenesis. TBX3 mutations in humans cause a complex of birth defects called Ulnar-mammary syndrome (UMS). Despite the importance of TBX3 and decades of investigation, few TBX3 partner proteins have been identified and little is known about how it functions in cells. Unlike previous investigations focused on TBX3 as DNA binding factor that represses transcription, we took an unbiased approach to identify TBX3 partner proteins in mouse embryos and human cells. We discovered that TBX3 interacts with RNA binding proteins and binds mRNAs to regulate how they are spliced. The different mutations seen in human UMS patients produce mutant proteins that interact with different partners and have different splicing activities. TBX3 promotes or inhibits splicing depending on cellular context, its partner proteins, and the target mRNA. Eukaryotic cells have many more proteins than genes: alternative splicing is critical to generate the different mRNAs needed for production of the specific and vast repertoire of proteins a cell produces. Our finding that TBX3 regulates this process provides fundamental new insights into how altered quantity and molecular function of TBX3 contribute to human developmental disorders and cancer.
Collapse
|
28
|
Ng RK, Kong CT, So CC, Lui WC, Chan YF, Leung KC, So KC, Tsang HM, Chan LC, Sham MH. Epigenetic dysregulation of leukaemic HOX code inMLL-rearranged leukaemia mouse model. J Pathol 2013; 232:65-74. [DOI: 10.1002/path.4279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Ray Kit Ng
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Cheuk Ting Kong
- Department of Biochemistry; University of Hong Kong, Pokfulam; Hong Kong SAR China
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Chi Chiu So
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Wing Chi Lui
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Yuen Fan Chan
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Ka Chun Leung
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Kam Chung So
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Ho Man Tsang
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Li Chong Chan
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Mai Har Sham
- Department of Biochemistry; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| |
Collapse
|
29
|
Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res 2013; 2:188. [PMID: 24555089 DOI: 10.12688/f1000research.2-188.v1] [Citation(s) in RCA: 268] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing is widely recognized for its roles in regulating genes and creating gene diversity. However, despite many efforts, the repertoire of gene splicing variation is still incompletely characterized, even in humans. Here we describe a new computational system, ASprofile, and its application to RNA-seq data from Illumina's Human Body Map project (>2.5 billion reads). Using the system, we identified putative alternative splicing events in 16 different human tissues, which provide a dynamic picture of splicing variation across the tissues. We detected 26,989 potential exon skipping events representing differences in splicing patterns among the tissues. A large proportion of the events (>60%) were novel, involving new exons (~3000), new introns (~16000), or both. When tracing these events across the sixteen tissues, only a small number (4-7%) appeared to be differentially expressed ('switched') between two tissues, while 30-45% showed little variation, and the remaining 50-65% were not present in one or both tissues compared. Novel exon skipping events appeared to be slightly less variable than known events, but were more tissue-specific. Our study represents the first effort to build a comprehensive catalog of alternative splicing in normal human tissues from RNA-seq data, while providing insights into the role of alternative splicing in shaping tissue transcriptome differences. The catalog of events and the ASprofile software are freely available from the Zenodo repository ( http://zenodo.org/record/7068; doi: 10.5281/zenodo.7068) and from our web site http://ccb.jhu.edu/software/ASprofile.
Collapse
Affiliation(s)
- Liliana Florea
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Li Song
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Steven L Salzberg
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
30
|
Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res 2013; 2:188. [PMID: 24555089 PMCID: PMC3892928 DOI: 10.12688/f1000research.2-188.v2] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing is widely recognized for its roles in regulating genes and creating gene diversity. However, despite many efforts, the repertoire of gene splicing variation is still incompletely characterized, even in humans. Here we describe a new computational system, ASprofile, and its application to RNA-seq data from Illumina’s Human Body Map project (>2.5 billion reads). Using the system, we identified putative alternative splicing events in 16 different human tissues, which provide a dynamic picture of splicing variation across the tissues. We detected 26,989 potential exon skipping events representing differences in splicing patterns among the tissues. A large proportion of the events (>60%) were novel, involving new exons (~3000), new introns (~16000), or both. When tracing these events across the sixteen tissues, only a small number (4-7%) appeared to be differentially expressed (‘switched’) between two tissues, while 30-45% showed little variation, and the remaining 50-65% were not present in one or both tissues compared. Novel exon skipping events appeared to be slightly less variable than known events, but were more tissue-specific. Our study represents the first effort to build a comprehensive catalog of alternative splicing in normal human tissues from RNA-seq data, while providing insights into the role of alternative splicing in shaping tissue transcriptome differences. The catalog of events and the ASprofile software are freely available from the Zenodo repository (
http://zenodo.org/record/7068; doi:
10.5281/zenodo.7068) and from our web site
http://ccb.jhu.edu/software/ASprofile.
Collapse
Affiliation(s)
- Liliana Florea
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Li Song
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Steven L Salzberg
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA ; Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
31
|
Abstract
Motifs rich in arginines and glycines were recognized several decades ago to play functional roles and were termed glycine-arginine-rich (GAR) domains and/or RGG boxes. We review here the evolving functions of the RGG box along with several sequence variations that we collectively term the RGG/RG motif. Greater than 1,000 human proteins harbor the RGG/RG motif, and these proteins influence numerous physiological processes such as transcription, pre-mRNA splicing, DNA damage signaling, mRNA translation, and the regulation of apoptosis. In particular, we discuss the role of the RGG/RG motif in mediating nucleic acid and protein interactions, a function that is often regulated by arginine methylation and partner-binding proteins. The physiological relevance of the RGG/RG motif is highlighted by its association with several diseases including neurological and neuromuscular diseases and cancer. Herein, we discuss the evidence for the emerging diverse functionality of this important motif.
Collapse
Affiliation(s)
- Palaniraja Thandapani
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | |
Collapse
|
32
|
Teng IF, Wilson SA. Mapping interactions between mRNA export factors in living cells. PLoS One 2013; 8:e67676. [PMID: 23826332 PMCID: PMC3691119 DOI: 10.1371/journal.pone.0067676] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022] Open
Abstract
The TREX complex couples nuclear mRNA processing events with subsequent export to the cytoplasm. TREX also acts as a binding platform for the mRNA export receptor Nxf1. The sites of mRNA transcription and processing within the nucleus have been studied extensively. However, little is known about where TREX assembly takes place and where Nxf1 is recruited to TREX to form the export competent mRNP. Here we have used sensitized emission Förster resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM)-FRET, to produce a spatial map in living cells of the sites for the interaction of two TREX subunits, Alyref and Chtop, with Nxf1. Prominent assembly sites for export factors are found in the vicinity of nuclear speckles in regions known to be involved in transcription, splicing and exon junction complex formation highlighting the close coupling of mRNA export with mRNP biogenesis.
Collapse
Affiliation(s)
- I-Fang Teng
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Stuart A. Wilson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J Virol 2013; 87:4360-71. [PMID: 23388725 DOI: 10.1128/jvi.02574-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hepatitis B virus X protein (HBx) is essential for virus replication and has been implicated in the development of liver cancer. HBx is recruited to viral and cellular promoters and activates transcription by interacting with transcription factors and coactivators. Here, we purified HBx-associated factors in nuclear extracts from HepG2 hepatoma cells and identified protein arginine methyltransferase 1 (PRMT1) as a novel HBx-interacting protein. We showed that PRMT1 overexpression reduced the transcription of hepatitis B virus (HBV), and this inhibition was dependent on the methyltransferase function of PRMT1. Conversely, depletion of PRMT1 correlated with increased HBV transcription. Using a quantitative chromatin immunoprecipitation assay, we found that PRMT1 is recruited to HBV DNA, suggesting a direct effect of PRMT1 on the regulation of HBV transcription. Finally, we showed that HBx expression inhibited PRMT1-mediated protein methylation. Downregulation of PRMT1 activity was further observed in HBV-replicating cells in an in vivo animal model. Altogether, our results support the notion that the binding of HBx to PRMT1 might benefit viral replication by relieving the inhibitory activity of PRMT1 on HBV transcription.
Collapse
|
34
|
Chtop is a component of the dynamic TREX mRNA export complex. EMBO J 2013; 32:473-86. [PMID: 23299939 PMCID: PMC3567497 DOI: 10.1038/emboj.2012.342] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 12/03/2012] [Indexed: 11/08/2022] Open
Abstract
The TREX complex couples nuclear pre-mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi-subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA. As observed with the THO complex subunit Thoc5, Chtop binds to the NTF2-like domain of Nxf1, and this interaction requires arginine methylation of Chtop. Using RNAi, we show that co-knockdown of Alyref and Chtop results in a potent mRNA export block. Chtop binds to Uap56 in a mutually exclusive manner with Alyref, and Chtop binds to Nxf1 in a mutually exclusive manner with Thoc5. However, Chtop, Thoc5 and Nxf1 exist in a single complex in vivo. Together, our data indicate that TREX and Nxf1 undergo dynamic remodelling, driven by the ATPase cycle of Uap56 and post-translational modifications of Chtop.
Collapse
|
35
|
Lee YJ, Hsieh WY, Chen LY, Li C. Protein arginine methylation of SERBP1 by protein arginine methyltransferase 1 affects cytoplasmic/nuclear distribution. J Cell Biochem 2012; 113:2721-8. [PMID: 22442049 DOI: 10.1002/jcb.24151] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Protein arginine methylation regulates a broad array of cellular processes. SERBP1 implicated in tumor progression through its putative involvement in the plaminogen activator protease cascade, is an RNA-binding protein containing an RG-rich domain and an RGG box domain that might be methylated by protein arginine N-methyltransferases (PRMTs). Asymmetric dimethylarginine (aDMA) was detected in SERBP1 and an indirect methyltransferase inhibitor adenosine dialdehyde (AdOx) significantly reduced the methylation signals. Arginines in the middle RG and C-terminal RGG region of SERBP1 are methylated based on the analyses of different deletion constructs. The predominant type I protein arginine methyltransferase PRMT1 co-immunoprecipitated with SERBP1 and the level of bound PRMT1 decreased upon the addition of AdOx. Recombinant PRMT1 methylated SERBP1 and knockdown of PRMT1 significantly reduced the aDMA level of SERBP1, indicating that SERBP1 is specifically methylated by PRMT1. Immunofluorescent analyses of endogenous SERBP1 showed predominant cytoplasmic localization of SERBP1. Treatment of AdOx or PRMT1 siRNA increased the nuclear localization of SERBP1. Analyses of different deletions indicated that the middle RG region is important for the nuclear localization while both N- and C- terminus are required for nuclear export. Low methylation of the C-terminal RGG region also favors nuclear localization. In conclusion, the RG-rich and RGG box of SERBP1 is asymmetrically dimethylated by PRMT1 and the modification affects protein interaction and intracellular localization of the protein. These findings provide the basis for dissecting the roles of SERBP1.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
36
|
Fanis P, Gillemans N, Aghajanirefah A, Pourfarzad F, Demmers J, Esteghamat F, Vadlamudi RK, Grosveld F, Philipsen S, van Dijk TB. Five friends of methylated chromatin target of protein-arginine-methyltransferase[prmt]-1 (chtop), a complex linking arginine methylation to desumoylation. Mol Cell Proteomics 2012; 11:1263-73. [PMID: 22872859 DOI: 10.1074/mcp.m112.017194] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin target of Prmt1 (Chtop) is a vertebrate-specific chromatin-bound protein that plays an important role in transcriptional regulation. As its mechanism of action remains unclear, we identified Chtop-interacting proteins using a biotinylation-proteomics approach. Here we describe the identification and initial characterization of Five Friends of Methylated Chtop (5FMC). 5FMC is a nuclear complex that can only be recruited by Chtop when the latter is arginine-methylated by Prmt1. It consists of the co-activator Pelp1, the Sumo-specific protease Senp3, Wdr18, Tex10, and Las1L. Pelp1 functions as the core of 5FMC, as the other components become unstable in the absence of Pelp1. We show that recruitment of 5FMC to Zbp-89, a zinc-finger transcription factor, affects its sumoylation status and transactivation potential. Collectively, our data provide a mechanistic link between arginine methylation and (de)sumoylation in the control of transcriptional activity.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Cell Biology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Veenma DCM, de Klein A, Tibboel D. Developmental and genetic aspects of congenital diaphragmatic hernia. Pediatr Pulmonol 2012; 47:534-45. [PMID: 22467525 DOI: 10.1002/ppul.22553] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/17/2012] [Indexed: 12/21/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a frequent occurring cause of neonatal respiratory distress and occurs 1 in every 3,000 liveborns. Ventilatory support and pharmaceutical treatment of the co-occurring lung hypoplasia and pulmonary hypertension are insufficient in, respectively, 20% of isolated cases and 60% of complex ones leading to early perinatal death. The exact cause of CDH remains to be identified in the majority of human CDH patients and prognostic factors predicting treatment refraction are largely unknown. Their identification is hampered by the multifactorial and heterogenic nature of this congenital anomaly. However, application of high-resolution molecular cytogenetic techniques to patients' DNA now enables detection of chromosomal aberrations in 30% of the patients. Furthermore, recent insights in rodent embryogenesis pointed to a specific disruption of the early mesenchymal structures in the primordial diaphragm of CDH-induced offspring. Together, these data allowed for the introduction of new hypotheses on CDH pathogenesis, although many issues remain to be resolved. In this review, we have combined these new insights and remaining questions on diaphragm pathogenesis with a concise overview of the clinical, embryological, and genetic data available.
Collapse
Affiliation(s)
- D C M Veenma
- Department of Paediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | | | | |
Collapse
|
38
|
Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood 2011; 117:3945-53. [PMID: 21321359 DOI: 10.1182/blood-2010-11-316893] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In humans, embryonic, fetal, and adult hemoglobins are sequentially expressed in developing erythroblasts during ontogeny. For the past 40 years, this process has been the subject of intensive study because of its value to enlighten the biology of developmental gene regulation and because fetal hemoglobin can significantly ameliorate the clinical manifestations of both sickle cell disease and β-thalassemia. Understanding the normal process of loss of fetal globin expression and activation of adult globin expression could potentially lead to new therapeutic approaches for these hemoglobin disorders. Herein, we briefly review the history of the study of hemoglobin switching and then focus on recent discoveries in the field that now make new therapeutic approaches seem feasible in the future. Erythroid-specific knockdown of fetal gene repressors or enforced expression of fetal gene activators may provide clinically applicable approaches for genetic treatment of hemoglobin disorders that would benefit from increased fetal hemoglobin levels.
Collapse
|
39
|
A systems approach to analyze transcription factors in mammalian cells. Methods 2011; 53:151-62. [DOI: 10.1016/j.ymeth.2010.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 01/09/2023] Open
|
40
|
Abstract
An estimated 6% to 7% of the earth's population carries a mutation affecting red blood cell function. The β-thalassemias and sickle cell disease are the most common monogenic disorders caused by these mutations. Increased levels of γ-globin ameliorate the severity of these diseases because fetal hemoglobin (HbF; α2γ2) can effectively replace adult hemoglobin (HbA; α2β2) and counteract polymerization of sickle hemoglobin (HbS; α2β(S)2). Therefore, understanding the molecular mechanism of globin switching is of biologic and clinical importance. Here, we show that the recently identified chromatin factor Friend of Prmt1 (FOP) is a critical modulator of γ-globin gene expression. Knockdown of FOP in adult erythroid progenitors strongly induces HbF. Importantly, γ-globin expression can be elevated in cells from β-thalassemic patients by reducing FOP levels. These observations identify FOP as a novel therapeutic target in β-hemoglobinopathies.
Collapse
|