1
|
Sanadgol N, Amini J, Khalseh R, Bakhshi M, Nikbin A, Beyer C, Zendehdel A. Mitochondrial genome-derived circRNAs: Orphan epigenetic regulators in molecular biology. Mitochondrion 2024; 79:101968. [PMID: 39321951 DOI: 10.1016/j.mito.2024.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are vital for cellular activities, influencing ATP production, Ca2+ signaling, and reactive oxygen species generation. It has been proposed that nuclear genome-derived circular RNAs (circRNAs) play a role in biological processes. For the first time, this study aims to comprehensively explore experimentally confirmed human mitochondrial genome-derived circRNAs (mt-circRNAs) via in-silico analysis. We utilized wide-ranging bioinformatics tools to anticipate their roles in molecular biology, involving miRNA sponging, protein antagonism, and peptide translation. Among five well-characterized mt-circRNAs, SCAR/mc-COX2 stands out as particularly significant with the potential to sponge around 41 different miRNAs, which target several genes mostly involved in endocytosis, MAP kinase, and PI3K-Akt pathways. Interestingly, circMNTND5 and mecciND1 specifically interact with miRNAs through their unique back-splice junction sequence. These exclusively targeted miRNAs (has-miR-5186, 6888-5p, 8081, 924, 672-5p) are predominantly associated with insulin secretion, proteoglycans in cancer, and MAPK signaling pathways. Moreover, all mt-circRNAs intricately affect the P53 pathway through miRNA sequestration. Remarkably, mc-COX2 and circMNTND5 appear to be involved in the RNA's biogenesis by antagonizing AGO1/2, EIF4A3, and DGCR8. All mt-circRNAs engaged with IGF2BP proteins crucial in redox signaling, and except mecciND1, they all potentially generate at least one protein resembling the immunoglobulin heavy chain protein. Given P53's function as a redox-sensitive transcription factor, and insulin's role as a crucial regulator of energy metabolism, their indirect interplay with mt-circRNAs could influence cellular outcomes. However, due to limited attention and infrequent data availability, it is advisable to conduct more thorough investigations to gain a deeper understanding of the functions of mt-circRNA.
Collapse
Affiliation(s)
- Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, 94149-75516 Bojnurd, Iran
| | - Roghayeh Khalseh
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Mostafa Bakhshi
- Department of Electrical and Computer Engineering, Kharazmi University, 15719-14911 Tehran, Iran
| | - Arezoo Nikbin
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendehdel
- Institut of Anatomy, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
2
|
Vieira JO, Pesquero JB, Nazário ACP. TP53 Gene Polymorphism at Codon 72 as a Response Predictor for Neoadjuvant Chemotherapy. Breast Care (Basel) 2024; 19:96-105. [PMID: 38765899 PMCID: PMC11096797 DOI: 10.1159/000536115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/29/2023] [Indexed: 05/22/2024] Open
Abstract
Introduction Breast cancer is the most prevalent cancer in women worldwide, and neoadjuvant chemotherapy is a favored method for achieving pathologic complete response (pCR). The TP53 gene is involved in inducing the response to chemotherapy drugs. Objectives The present study sought to correlate polymorphism variants at codon 72 with pCR to neoadjuvant chemotherapy. Casuistry and Methods The study was conducted in the state of Sergipe, in northeastern Brazil. A total of 206 patients with a histopathological diagnosis of breast cancer who underwent neoadjuvant chemotherapy from 2019 to 2022 were included. DNA samples were collected for the evaluation of TP53 polymorphism at codon 72. A prospective evaluation of the cases was conducted to verify the surgical pathologic response after chemotherapy; the Response Evaluation Criteria in Solid Tumors (RECIST) were used. The study was approved by the University of São Paulo Ethics and Research Committee. Results Of the 168 patients, 44.6% were Arg72Arg, 17.3% were Pro72Pro, and 38.0% were Arg72Pro; pCR was achieved in 21.4% of the patients; 10.1% had progressive disease, 13.7% had stable disease, and 54.2% had a partial pathologic response. The only predictor of pCR in multivariate regression was immunohistochemistry (p < 0.001). In the multivariate analysis, Arg72Pro and Pro72Pro increased the odds of the patient evolving with stable disease. This study was innovative in demonstrating a predictor of stable disease in response to neoadjuvant chemotherapy. Conclusion TP53 polymorphism at codon 72 is not a predictor of pCR, but it can be a predictor of stable disease.
Collapse
Affiliation(s)
- Jussane Oliveira Vieira
- Department of Gynecology of the Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - João Bosco Pesquero
- Molecular Biology, Department of Biophysics, Federal University of São Paulo (UNIFESP), Ed. Pesquisa II – Centro De Pesquisa e Diagnóstico Molecular De Doenças Genéticas, São Paulo, Brazil
| | | |
Collapse
|
3
|
Zingoni A, Antonangeli F, Sozzani S, Santoni A, Cippitelli M, Soriani A. The senescence journey in cancer immunoediting. Mol Cancer 2024; 23:68. [PMID: 38561826 PMCID: PMC10983694 DOI: 10.1186/s12943-024-01973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.e. "elimination", "equilibrium" and "escape", is influenced by several cancer- and microenvironment-dependent factors. Senescence is a cellular program primed by cells in response to different pathophysiological stimuli, which is based on long-lasting cell cycle arrest and the secretion of numerous bioactive and inflammatory molecules. Because of this, cellular senescence is a potent immunomodulatory factor promptly recruiting immune cells and actively promoting tissue remodeling. In the context of cancer, these functions can lead to both cancer immunosurveillance and immunosuppression. In this review, the authors will discuss the role of senescence in cancer immunoediting, highlighting its context- and timing-dependent effects on the different three phases, describing how senescent cells promote immune cell recruitment for cancer cell elimination or sustain tumor microenvironment inflammation for immune escape. A potential contribution of senescent cells in cancer dormancy, as a mechanism of therapy resistance and cancer relapse, will be discussed with the final objective to unravel the immunotherapeutic implications of senescence modulation in cancer.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, 00185, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
- IRCCS Neuromed, Pozzilli, 86077, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| | - Alessandra Soriani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| |
Collapse
|
4
|
Usategui-Martín R, Galindo-Cabello N, Pastor-Idoate S, Fernández-Gómez JM, del Real Á, Ferreño D, Lapresa R, Martín-Rodriguez F, Riancho JA, Almeida Á, Pérez-Castrillón JL. A Missense Variant in TP53 Could Be a Genetic Biomarker Associated with Bone Tissue Alterations. Int J Mol Sci 2024; 25:1395. [PMID: 38338673 PMCID: PMC10855390 DOI: 10.3390/ijms25031395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Metabolic bone diseases cover a broad spectrum of disorders that share alterations in bone metabolism that lead to a defective skeleton, which is associated with increasing morbidity, disability, and mortality. There is a close connection between the etiology of metabolic bone diseases and genetic factors, with TP53 being one of the genes associated therewith. The single nucleotide polymorphism (SNP) Arg72Pro of TP53 is a genetic factor associated with several pathologies, including cancer, stroke, and osteoporosis. Here, we aim to analyze the influence of the TP53 Arg72Pro SNP on bone mass in humanized Tp53 Arg72Pro knock-in mice. This work reports on the influence of the TP53 Arg72Pro polymorphism in bone microarchitecture, OPG expression, and apoptosis bone status. The results show that the proline variant of the TP53 Arg72Pro polymorphism (Pro72-p53) is associated with deteriorated bone tissue, lower OPG/RANK ratio, and lower apoptosis in bone tissue. In conclusion, the TP53 Arg72Pro polymorphism modulates bone microarchitecture and may be a genetic biomarker that can be used to identify individuals with an increased risk of suffering metabolic bone alterations.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain; (N.G.-C.); (J.M.F.-G.)
- IOBA—Eye Institute, University of Valladolid, 47011 Valladolid, Spain;
| | - Nadia Galindo-Cabello
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain; (N.G.-C.); (J.M.F.-G.)
- IOBA—Eye Institute, University of Valladolid, 47011 Valladolid, Spain;
| | | | - José María Fernández-Gómez
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain; (N.G.-C.); (J.M.F.-G.)
| | - Álvaro del Real
- Department of Medicine and Psychiatry, Faculty of Medicine, Valdecilla Research Institute (IDIVAL), University of Cantabria, 39011 Santander, Spain; (Á.d.R.); (J.A.R.)
| | - Diego Ferreño
- Laboratory of the Materials Science and Engineering Division—LADICIM, Faculty of Civil Engineering, University of Cantabria, 39011 Santander, Spain;
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37008 Salamanca, Spain; (R.L.); (Á.A.)
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, CSIC, 37008 Salamanca, Spain
| | - Francisco Martín-Rodriguez
- Department of Medicine, Dermatology and Toxicology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
| | - José A. Riancho
- Department of Medicine and Psychiatry, Faculty of Medicine, Valdecilla Research Institute (IDIVAL), University of Cantabria, 39011 Santander, Spain; (Á.d.R.); (J.A.R.)
- Internal Medicine Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Ángeles Almeida
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37008 Salamanca, Spain; (R.L.); (Á.A.)
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, University of Salamanca, CSIC, 37008 Salamanca, Spain
| | - José Luis Pérez-Castrillón
- Department of Medicine, Dermatology and Toxicology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Internal Medicine Department, University Hospital Rio Hortega of Valladolid, 47012 Valladolid, Spain
| |
Collapse
|
5
|
Pinto EM, Fridman C, Figueiredo BC, Salvador H, Teixeira MR, Pinto C, Pinheiro M, Kratz CP, Lavarino C, Legal EAMF, Le A, Kelly G, Koeppe E, Stoffel EM, Breen K, Hahner S, Heinze B, Techavichit P, Krause A, Ogata T, Fujisawa Y, Walsh MF, Rana HQ, Maxwell KN, Garber JE, Rodriguez-Galindo C, Ribeiro RC, Zambetti GP. Multiple TP53 p.R337H haplotypes and implications for tumor susceptibility. HGG ADVANCES 2024; 5:100244. [PMID: 37794678 PMCID: PMC10597792 DOI: 10.1016/j.xhgg.2023.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The germline TP53 p.R337H mutation is reported as the most common germline TP53 variant. It exists at a remarkably high frequency in the population of southeast Brazil as founder mutation in two distinct haplotypes with the most frequent co-segregating with the p.E134∗ variant of the XAF1 tumor suppressor and an increased cancer risk. Founder mutations demonstrate linkage disequilibrium with neighboring genetic polymorphic markers that can be used to identify the founder variant in different geographic regions and diverse populations. We report here a shared haplotype among Brazilian, Portuguese, and Spanish families and the existence of three additional distinct TP53 p.R337H alleles. Mitochondrial DNA sequencing and Y-STR profiling of Brazilian carriers of the founder TP53 p.R337H allele reveal an excess of Native American haplogroups in maternal lineages and exclusively European haplogroups in paternal lineages, consistent with communities established through male European settlers with extensive intermarriage with Indigenous women. The identification of founder and independent TP53 p.R337H alleles underlines the importance for considering the haplotype as a functional unit and the additive effects of constitutive polymorphisms and associated variants in modifier genes that can influence the cancer phenotype.
Collapse
Affiliation(s)
- Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Cintia Fridman
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Hector Salvador
- Pediatric Oncology Department, Sant Joan de Deu Hospital, Barcelona, Spain
| | - Manuel R Teixeira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Porto, Portugal; Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center and School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Carla Pinto
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Porto, Portugal
| | - Manuela Pinheiro
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Porto, Portugal
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Cinzia Lavarino
- Pediatric Oncology Department, Sant Joan de Deu Hospital, Barcelona, Spain
| | - Edith A M F Legal
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Anh Le
- Department of Medicine-Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Kelly
- Department of Medicine-Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika Koeppe
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elena M Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelsey Breen
- Department of Pediatrics and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefanie Hahner
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Britta Heinze
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Piti Techavichit
- Integrative and Innovative Hematology/Oncology Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service (NHLS) and Faculty of Health Sciences, School of Pathology, The University of the Witwatersrand, Johannesburg, South Africa
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Michael F Walsh
- Department of Pediatrics and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huma Q Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carlos Rodriguez-Galindo
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
Bhardwaj J, Upadhye A, Gaskin EL, Doumbo S, Kayentao K, Ongoiba A, Traore B, Crompton PD, Tran TM. Neither the African-Centric S47 Nor P72 Variant of TP53 Is Associated With Reduced Risk of Febrile Malaria in a Malian Cohort Study. J Infect Dis 2023; 228:202-211. [PMID: 36961831 PMCID: PMC10345479 DOI: 10.1093/infdis/jiad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND TP53 has been shown to play a role in inflammatory processes, including malaria. We previously found that p53 attenuates parasite-induced inflammation and predicts clinical protection to Plasmodium falciparum infection in Malian children. Here, we investigated whether p53 codon 47 and 72 polymorphisms are associated with differential risk of P. falciparum infection and uncomplicated malaria in a prospective cohort study of malaria immunity. METHODS p53 codon 47 and 72 polymorphisms were determined by sequencing TP53 exon 4 in 631 Malian children and adults enrolled in the Kalifabougou cohort study. The effects of these polymorphisms on the prospective risk of febrile malaria, incident parasitemia, and time to fever after incident parasitemia over 6 months of intense malaria transmission were assessed using Cox proportional hazards models. RESULTS Confounders of malaria risk, including age and hemoglobin S or C, were similar between individuals with or without p53 S47 and R72 polymorphisms. Relative to their respective common variants, neither S47 nor R72 was associated with differences in prospective risk of febrile malaria, incident parasitemia, or febrile malaria after parasitemia. CONCLUSIONS These findings indicate that p53 codon 47 and 72 polymorphisms are not associated with protection against incident P. falciparum parasitemia or uncomplicated febrile malaria.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Indeglia A, Leung JC, Miller SA, Leu JIJ, Dougherty JF, Clarke NL, Kirven NA, Shao C, Ke L, Lovell S, Barnoud T, Lu DY, Lin C, Kannan T, Battaile KP, Yang THL, Batista Oliva I, Claiborne DT, Vogel P, Liu L, Liu Q, Nefedova Y, Cassel J, Auslander N, Kossenkov AV, Karanicolas J, Murphy ME. An African-Specific Variant of TP53 Reveals PADI4 as a Regulator of p53-Mediated Tumor Suppression. Cancer Discov 2023; 13:1696-1719. [PMID: 37140445 PMCID: PMC10326602 DOI: 10.1158/2159-8290.cd-22-1315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 05/05/2023]
Abstract
TP53 is the most frequently mutated gene in cancer, yet key target genes for p53-mediated tumor suppression remain unidentified. Here, we characterize a rare, African-specific germline variant of TP53 in the DNA-binding domain Tyr107His (Y107H). Nuclear magnetic resonance and crystal structures reveal that Y107H is structurally similar to wild-type p53. Consistent with this, we find that Y107H can suppress tumor colony formation and is impaired for the transactivation of only a small subset of p53 target genes; this includes the epigenetic modifier PADI4, which deiminates arginine to the nonnatural amino acid citrulline. Surprisingly, we show that Y107H mice develop spontaneous cancers and metastases and that Y107H shows impaired tumor suppression in two other models. We show that PADI4 is itself tumor suppressive and that it requires an intact immune system for tumor suppression. We identify a p53-PADI4 gene signature that is predictive of survival and the efficacy of immune-checkpoint inhibitors. SIGNIFICANCE We analyze the African-centric Y107H hypomorphic variant and show that it confers increased cancer risk; we use Y107H in order to identify PADI4 as a key tumor-suppressive p53 target gene that contributes to an immune modulation signature and that is predictive of cancer survival and the success of immunotherapy. See related commentary by Bhatta and Cooks, p. 1518. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Alexandra Indeglia
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica C. Leung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sven A. Miller
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James F. Dougherty
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nicole L. Clarke
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nicole A. Kirven
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Chunlei Shao
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Lei Ke
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Scott Lovell
- Del Shankel Structural Biology Center, The University of Kansas, Lawrence, Kansas
| | - Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - David Y. Lu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Cindy Lin
- Program in Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Toshitha Kannan
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Tyler Hong Loong Yang
- Program in Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Isabela Batista Oliva
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Daniel T. Claiborne
- Program in Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lijun Liu
- Del Shankel Structural Biology Center, The University of Kansas, Lawrence, Kansas
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Yulia Nefedova
- Program in Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joel Cassel
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Noam Auslander
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V. Kossenkov
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother 2023; 163:114822. [PMID: 37146418 DOI: 10.1016/j.biopha.2023.114822] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Jyothsna Kancharla
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India
| | - Ju Yong Sung
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health care informatics, Sacred Heart University, 5151Park Avenue, Fair fields, CT06825, USA
| | - Rino Choi
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
9
|
McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci 2023; 24:ijms24076737. [PMID: 37047710 PMCID: PMC10095465 DOI: 10.3390/ijms24076737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Organ fibrosis represents a dysregulated, maladaptive wound repair response that results in progressive disruption of normal tissue architecture leading to detrimental deterioration in physiological function, and significant morbidity/mortality. Fibrosis is thought to contribute to nearly 50% of all deaths in the Western world with current treatment modalities effective in slowing disease progression but not effective in restoring organ function or reversing fibrotic changes. When physiological wound repair is complete, myofibroblasts are programmed to undergo cell death and self-clearance, however, in fibrosis there is a characteristic absence of myofibroblast apoptosis. It has been shown that in fibrosis, myofibroblasts adopt an apoptotic-resistant, highly proliferative phenotype leading to persistent myofibroblast activation and perpetuation of the fibrotic disease process. Recently, this pathological adaptation has been linked to dysregulated expression of tumour suppressor gene p53. In this review, we discuss p53 dysregulation and apoptotic failure in myofibroblasts and demonstrate its consistent link to fibrotic disease development in all types of organ fibrosis. An enhanced understanding of the role of p53 dysregulation and myofibroblast apoptosis may aid in future novel therapeutic and/or diagnostic strategies in organ fibrosis.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
10
|
Vazgiourakis VM, Zervou MI, Papageorgiou L, Chaniotis D, Spandidos DA, Vlachakis D, Eliopoulos E, Goulielmos GN. Association of endometriosis with cardiovascular disease: Genetic aspects (Review). Int J Mol Med 2023; 51:29. [PMID: 36799179 PMCID: PMC9943539 DOI: 10.3892/ijmm.2023.5232] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a broad spectrum of pathological conditions that affect the heart or blood vessels, including sequelae that arise from damaged vasculature in other organs of the body, such as the brain, kidneys or eyes. Atherosclerosis is a chronic inflammatory disease of the arterial intima and is the primary cause of coronary artery disease, peripheral vascular disease, heart attack, stroke and renal pathology. It represents a leading cause of mortality worldwide and the loss of human productivity that is marked by an altered immune response. Endometriosis is a heritable, heterogeneous, common gynecological condition influenced by multiple genetic, epigenetic and environmental factors, affecting up to 10% of the female population of childbearing age, causing pain and infertility; it is characterized by the ectopic growth of endometrial tissue outside the uterine cavity. Of note, epidemiological data obtained thus far have suggested a link between endometriosis and the risk of developing CVD. The similarities observed in specific molecular and cellular pathways of endometriosis and CVD may be partially explained by a shared genetic background. The present review presents and discusses the shared genetic factors which have been reported to be associated with the development of both disorders.
Collapse
Affiliation(s)
- Vassilios M. Vazgiourakis
- Intensive Care Unit, University Hospital of Larissa, University of Thessaly, Faculty of Medicine, 41110 Larissa, Greece
| | - Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Louis Papageorgiou
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
11
|
Jiang J, Chen HN, Jin P, Zhou L, Peng L, Huang Z, Qin S, Li B, Ming H, Luo M, Xie N, Gao W, Nice EC, Yu Q, Huang C. Targeting PSAT1 to mitigate metastasis in tumors with p53-72Pro variant. Signal Transduct Target Ther 2023; 8:65. [PMID: 36788227 PMCID: PMC9929071 DOI: 10.1038/s41392-022-01266-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 02/16/2023] Open
Abstract
The single-nucleotide polymorphism (SNP) of p53, in particular the codon 72 variants, has recently been implicated as a critical regulator in tumor progression. However, the underlying mechanism remains elusive. Here we found that cancer cells carrying codon 72-Pro variant of p53 showed impaired metastatic potential upon serine supplementation. Proteome-wide mapping of p53-interacting proteins uncovered a specific interaction of the codon 72 proline variant (but not p5372R) with phosphoserine aminotransferase 1 (PSAT1). Interestingly, p5372P-PSAT1 interaction resulted in dissociation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) that otherwise bound to p5372P, leading to subsequent nuclear translocation of PGC-1α and activation of oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle. Depletion of PSAT1 restored p5372P-PGC-1α interaction and impeded the OXPHOS and TCA function, resulting in mitochondrial dysfunction and metastasis suppression. Notably, pharmacological targeting the PSAT1-p5372P interaction by aminooxyacetic acid (AOA) crippled the growth of liver cancer cells carrying the p5372P variant in both in vitro and patient-derived xenograft models. Moreover, AOA plus regorafenib, an FDA-proved drug for hepatocellular carcinoma and colorectal cancer, achieved a better anti-tumor effect on tumors carrying the p5372P variant. Therefore, our findings identified a gain of function of the p5372P variant on mitochondrial function and provided a promising precision strategy to treat tumors vulnerable to p5372P-PSAT1 perturbation.
Collapse
Affiliation(s)
- Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Hui Ming
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Gao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Qiang Yu
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
12
|
Role of p53 in Regulating Radiation Responses. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071099. [PMID: 35888186 PMCID: PMC9319710 DOI: 10.3390/life12071099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022]
Abstract
p53 is known as the guardian of the genome and plays various roles in DNA damage and cancer suppression. The p53 gene was found to express multiple p53 splice variants (isoforms) in a physiological, tissue-dependent manner. The various genes that up- and down-regulated p53 are involved in cell viability, senescence, inflammation, and carcinogenesis. Moreover, p53 affects the radioadaptive response. Given that several studies have already been published on p53, this review presents its role in the response to gamma irradiation by interacting with MDM2, NF-κB, and miRNA, as well as in the inflammation processes, senescence, carcinogenesis, and radiation adaptive responses. Finally, the potential of p53 as a biomarker is discussed.
Collapse
|
13
|
Skhoun H, Khattab M, Belkhayat A, Takki Chebihi Z, Bakri Y, Dakka N, El Baghdadi J. Association of TP53 gene polymorphisms with the risk of acute lymphoblastic leukemia in Moroccan children. Mol Biol Rep 2022; 49:8291-8300. [PMID: 35705773 DOI: 10.1007/s11033-022-07643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND TP53 gene plays a pivotal role in maintaining genetic stability and prevention of malignancies. Alterations of this gene are implicated in more than half of human cancers. To the best of our knowledge, this study is the first to explore TP53 polymorphisms in Moroccan childhood acute lymphoblastic leukemia (ALL). METHODS AND RESULTS DNA samples of 45 ALL children were obtained from peripheral blood. A total of 333 healthy Moroccans were used as controls. Polymerase chain reaction and Sanger sequencing were performed to analyze TP53 hotspot exons in cases. We identified a significant protective effect of the TP53-Arg variant at rs1042522 [OR 0.4593 (0.249-0.8472), p = 0.0127] and the Pro/Arg genotype [OR 0.0350 (0.0047-0.2583), p = 0.0010]. Additionally, we found a novel association between the C-allele of Arg213Arg 1800372 [OR 2.7736 (1.3821-5.5664), p = 0.0041] and the risk of childhood ALL. Importantly, TC/CC genotypes of this polymorphism were revealed to enhance the risk of ALL among females [OR 9.0 (3.1555-25.6693), p < 0.0001]. Arg213Arg was also noticed to be associated with the hemoglobin count of patients at diagnosis by linear regression (p = 0.0318). The analysis of penetrance showed a significant association of the CG/GG genotypes at rs1042522 and TC/CC genotypes at rs1800372 to childhood ALL via dominant model [OR 0.2090 (0.09074-0.4814), p = 0.0002 and OR 3.4205 (1.6084-7.2742), p = 0.0014 for rs1042522 and rs1800372 respectively]. No association was found between TP53 polymorphisms and patients survival. CONCLUSION Altogether, our findings indicated that TP53 polymorphisms are significantly involved in the genetic susceptibility to childhood ALL in Morocco.
Collapse
Affiliation(s)
- Hanaa Skhoun
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco.,Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohammed Khattab
- Pediatric Hematology and Oncology Center, Children's Hospital, Rabat, Morocco
| | | | | | - Youssef Bakri
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Nadia Dakka
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | | |
Collapse
|
14
|
Milani D, Caruso L, Zauli E, Al Owaifeer AM, Secchiero P, Zauli G, Gemmati D, Tisato V. p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics). Front Pharmacol 2022; 13:871583. [PMID: 35721196 PMCID: PMC9201997 DOI: 10.3389/fphar.2022.871583] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection affects different organs and tissues, including the upper and lower airways, the lung, the gut, the olfactory system and the eye, which may represent one of the gates to the central nervous system. Key transcriptional factors, such as p53 and NF-kB and their reciprocal balance, are altered upon SARS-CoV-2 infection, as well as other key molecules such as the virus host cell entry mediator ACE2, member of the RAS-pathway. These changes are thought to play a central role in the impaired immune response, as well as in the massive cytokine release, the so-called cytokine storm that represents a hallmark of the most severe form of SARS-CoV-2 infection. Host genetics susceptibility is an additional key side to consider in a complex disease as COVID-19 characterized by such a wide range of clinical phenotypes. In this review, we underline some molecular mechanisms by which SARS-CoV-2 modulates p53 and NF-kB expression and activity in order to maximize viral replication into the host cells. We also face the RAS-pathway unbalance triggered by virus-ACE2 interaction to discuss potential pharmacological and pharmacogenomics approaches aimed at restoring p53/NF-kB and ACE1/ACE2 balance to counteract the most severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Daniela Milani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Adi Mohammed Al Owaifeer
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
- Ophthalmology Unit, Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis and Thrombosis, University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Gao Y, Su YP, Li XL, Lei SJ, Chen HF, Cui SY, Zhang SF, Zou JM, Liu QJ, Sun QF. ATM and TP53 Polymorphisms Modified Susceptibility to Radiation-Induced Lens Opacity in Natural High Background Radiation Area, China. Int J Radiat Biol 2022; 98:1235-1242. [PMID: 34995174 DOI: 10.1080/09553002.2022.2024294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose: A population-based case-control study was conducted in Yangjiang and Enping areas in South China to assess whether the risk of lens opacity induced by natural high background radiation exposure is modulated by polymorphisms of ATM and TP53.Materials and methods: A total of 133 cases who were diagnosed with cortical and posterior subcapsular (PSC) opacity were recruited, and 419 healthy controls were selected through counter-matching in terms of radiation status. Genomic DNA from all the participants was genotyped with the Illumina platform for four single nucleotide polymorphisms of ATM (rs189037, rs373759, and rs4585) and TP53 (rs1042522). The cumulative lens dose received during the entire life was estimated based on annual indoor and outdoor radiation doses and gender- and age-specific occupancy factors. Non-conditional logistic regression was performed to calculate odds ratio (OR) and 95% confidence intervals (95% CI).Results: ATM rs189037 and TP53 rs1042522 were significantly related to cortical and PSC opacity. The risk of opacity was higher when individuals carried the A allele of ATM rs189037 and C allele of TP53 rs1042522, compared with GG genotype. ATM rs189037 A allele carriers (AG/AA) and TP53 rs1042522 C allele carriers (CG/CC) combined with a cumulative lens dose of 100 mGy or higher showed statistically significant opacity risks (OR =5.51, 95% CI: 1.47-20.66; OR =2.69, 95% CI: 1.10-6.60).Conclusion: The A allele of ATM rs189037 and C allele of TP53 rs1042522 increase the risk of lens opacity induced by radiation. These polymorphisms in ATM and TP53 might modify the risk of cortical and PSC opacity induced by chronic and prolonged low-dose radiation.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yin-Ping Su
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Xiao-Liang Li
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Shu-Jie Lei
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Hui-Feng Chen
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Shi-Yue Cui
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Su-Fen Zhang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Jian-Ming Zou
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Qing-Jie Liu
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Quan-Fu Sun
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| |
Collapse
|
16
|
Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Flavonols: Targeting Nrf2, NF-κB and p53 Pathways in Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10101628. [PMID: 34679762 PMCID: PMC8533072 DOI: 10.3390/antiox10101628] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are one of the leading causes of disability and death worldwide. Intracellular transduction pathways that end in the activation of specific transcription factors are highly implicated in the onset and progression of pathological changes related to neurodegeneration, of which those related to oxidative stress (OS) and neuroinflammation are particularly important. Here, we provide a brief overview of the key concepts related to OS- and neuroinflammation-mediated neuropathological changes in neurodegeneration, together with the role of transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB). This review is focused on the transcription factor p53 that coordinates the cellular response to diverse genotoxic stimuli, determining neuronal death or survival. As current pharmacological options in the treatment of neurodegenerative disease are only symptomatic, many research efforts are aimed at uncovering efficient disease-modifying agents. Natural polyphenolic compounds demonstrate powerful anti-oxidative, anti-inflammatory and anti-apoptotic effects, partially acting as modulators of signaling pathways. Herein, we review the current understanding of the therapeutic potential and limitations of flavonols in neuroprotection, with emphasis on their anti-oxidative, anti-inflammatory and anti-apoptotic effects along the Nrf2, NF-κB and p53 pathways. A better understanding of cellular and molecular mechanisms of their action may pave the way toward new treatments.
Collapse
|
17
|
Differential Transcriptional Regulation of Polymorphic p53 Codon 72 in Metabolic Pathways. Int J Mol Sci 2021; 22:ijms221910793. [PMID: 34639134 PMCID: PMC8509680 DOI: 10.3390/ijms221910793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
p53 is a transcription factor that is activated under DNA damage stress and regulates the expression of proapoptotic genes including the expression of growth arrest genes to subsequently determine the fate of cells. To investigate the functional differences of polymorphic p53 codon 72, we constructed isogenic lines encoding each polymorphic p53 codon 72 based on induced pluripotent stem cells, which can endogenously express each polymorphic p53 protein only, encoding either the arginine 72 (R72) variant or proline 72 (P72) variant, respectively. We found that there was no significant functional difference between P72 and R72 cells in growth arrest or apoptosis as a representative function of p53. In the comprehensive analysis, the expression pattern of the common p53 target genes, including cell cycle arrest or apoptosis, was also increased regardless of the polymorphic p53 codon 72 status, whereas the expression pattern involved in metabolism was decreased and more significant in R72 than in P72 cells. This study noted that polymorphic p53 codon 72 differentially regulated the functional categories of metabolism and not the pathways that determine cell fate, such as growth arrest and apoptosis in cells exposed to genotoxic stress.
Collapse
|
18
|
Alam MJ, Bardakci F, Anjum S, Mir SR, Ahmad I, Saeed M. Molecular docking analysis of p53 with Toll-like receptors. Bioinformation 2021; 17:784-789. [PMID: 35539888 PMCID: PMC9049089 DOI: 10.6026/97320630017784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
P53 is one of the most important proteins for its role in cellular signal transduction pathways. It regulates a wide variety of cellular processes, which includes apoptosis, senescence, cell cycle arrest, differentiation, and DNA repair and replication and cancer dynamics. It is a transcription factor for various cellular proteins. Recent report suggests that P53 is linked with transduction proteins involved in cellular immunity. Toll like receptors are needed for communication in cellular immunity. The interaction between p53 and toll like receptors is reported in various studies. Therefore, it is of interest to document the molecular docking analysis of p53 with Toll-like receptors for further consideration in therapeutic development. In the present paper we studied molecular interaction between p53 and toll like receptors using molecular docking approach. We used open-source tools for molecular docking and analyzing the data. Our molecular docking results suggest there is a promising interaction between p53 and toll like receptors. Our study will be a very useful for molecular therapeutics and drug design strategies. Further, molecular dynamics studies can be useful to determine of the stability of complex form by p53 and toll like receptors.
Collapse
Affiliation(s)
- Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Hail, Kingdom of Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Kingdom of Saudi Arabia
| | - Sadia Anjum
- Department of Biology, College of Science, University of Hail, Kingdom of Saudi Arabia
| | - Shumayla Rasheed Mir
- College of Computer Science and Engineering, University of Hail, Kingdom of Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Khalid University, Kingdom of Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Synoradzki KJ, Bartnik E, Czarnecka AM, Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P, Grieb P. TP53 in Biology and Treatment of Osteosarcoma. Cancers (Basel) 2021; 13:4284. [PMID: 34503094 PMCID: PMC8428337 DOI: 10.3390/cancers13174284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The TP53 gene is mutated in 50% of human tumors. Oncogenic functions of mutant TP53 maintain tumor cell proliferation and tumor growth also in osteosarcomas. We collected data on TP53 mutations in patients to indicate which are more common and describe their role in in vitro and animal models. We also describe animal models with TP53 dysfunction, which provide a good platform for testing the potential therapeutic approaches. Finally, we have indicated a whole range of pharmacological compounds that modulate the action of p53, stabilize its mutated versions or lead to its degradation, cause silencing or, on the contrary, induce the expression of its functional version in genetic therapy. Although many of the described therapies are at the preclinical testing stage, they offer hope for a change in the approach to osteosarcoma treatment based on TP53 targeting in the future.
Collapse
Affiliation(s)
- Kamil Jozef Synoradzki
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Wiktoria Firlej
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Brodziak
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Stasinska
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| |
Collapse
|
20
|
Lodhi N, Singh R, Rajput SP, Saquib Q. SARS-CoV-2: Understanding the Transcriptional Regulation of ACE2 and TMPRSS2 and the Role of Single Nucleotide Polymorphism (SNP) at Codon 72 of p53 in the Innate Immune Response against Virus Infection. Int J Mol Sci 2021; 22:8660. [PMID: 34445373 PMCID: PMC8395432 DOI: 10.3390/ijms22168660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Human ACE2 and the serine protease TMPRSS2 of novel SARS-CoV-2 are primary entry receptors in host cells. Expression of these genes at the transcriptional level has not been much discussed in detail. The ISRE elements of the ACE2 promoter are a binding site for the ISGF3 complex of the JAK/STAT signaling pathway. TMPRSS2, including IFNβ, STAT1, and STAT2, has the PARP1 binding site near to TSS either up or downstream promoter region. It is well documented that PARP1 regulates gene expression at the transcription level. Therefore, to curb virus infection, both promoting type I IFN signaling to boost innate immunity and prevention of virus entry by inhibiting PARP1, ACE2 or TMPRSS2 are safe options. Most importantly, our aim is to attract the attention of the global scientific community towards the codon 72 Single Nucleotide Polymorphism (SNP) of p53 and its underneath role in the innate immune response against SARS-CoV-2. Here, we discuss codon 72 SNP of human p53's role in the different innate immune response to restrict virus-mediated mortality rate only in specific parts of the world. In addition, we discuss potential targets and emerging therapies using bioengineered bacteriophage, anti-sense, or CRISPR strategies.
Collapse
Affiliation(s)
- Niraj Lodhi
- Clinical Research (Research and Development Division) miRNA Analytics LLC, Harlem Bio-Space, New York, NY 10027, USA
| | - Rubi Singh
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA;
| | | | - Quaiser Saquib
- Department of Zoology, College of Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
21
|
Genetic associations of TP53 codon Pro72Arg polymorphism (rs1042522) in coronary artery disease: A meta-analysis of candidate genetic mutants. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Haupt S, Haupt Y. Cancer and Tumour Suppressor p53 Encounters at the Juncture of Sex Disparity. Front Genet 2021; 12:632719. [PMID: 33664771 PMCID: PMC7920968 DOI: 10.3389/fgene.2021.632719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
There are many differences in cancer manifestation between men and women. New understanding of the origin of these point to fundamental distinctions in the genetic code and its demise. Tumour suppressor protein p53 is the chief operating officer of cancer defence and critically acts to safeguard against sustained DNA damaged. P53 cannot be ignored in cancer sex disparity. In this review we discuss the greater prevalence and associated death rates for non-reproductive cancers in males. The major tumour suppressor protein p53, encoded in the TP53 gene is our chosen context. It is fitting to ask why somatic TP53 mutation incidence is estimated to be disproportionately higher among males in the population for these types of cancers compared with females? We scrutinised the literature for evidence of predisposing genetic and epigenetic alterations that may explain this sex bias. Our second approach was to explore whether redox activity, either externally imposed or inherent to males and females, may define distinct risks that could contribute to the clear cancer sex disparities.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Transcriptional Regulation of Inflammasomes. Int J Mol Sci 2020; 21:ijms21218087. [PMID: 33138274 PMCID: PMC7663688 DOI: 10.3390/ijms21218087] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are multimolecular complexes with potent inflammatory activity. As such, their activity is tightly regulated at the transcriptional and post-transcriptional levels. In this review, we present the transcriptional regulation of inflammasome genes from sensors (e.g., NLRP3) to substrates (e.g., IL-1β). Lineage-determining transcription factors shape inflammasome responses in different cell types with profound consequences on the responsiveness to inflammasome-activating stimuli. Pro-inflammatory signals (sterile or microbial) have a key transcriptional impact on inflammasome genes, which is largely mediated by NF-κB and that translates into higher antimicrobial immune responses. Furthermore, diverse intrinsic (e.g., circadian clock, metabolites) or extrinsic (e.g., xenobiotics) signals are integrated by signal-dependent transcription factors and chromatin structure changes to modulate transcriptionally inflammasome responses. Finally, anti-inflammatory signals (e.g., IL-10) counterbalance inflammasome genes induction to limit deleterious inflammation. Transcriptional regulations thus appear as the first line of inflammasome regulation to raise the defense level in front of stress and infections but also to limit excessive or chronic inflammation.
Collapse
|
24
|
Gebert M, Jaśkiewicz M, Moszyńska A, Collawn JF, Bartoszewski R. The Effects of Single Nucleotide Polymorphisms in Cancer RNAi Therapies. Cancers (Basel) 2020; 12:E3119. [PMID: 33113880 PMCID: PMC7694039 DOI: 10.3390/cancers12113119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Tremendous progress in RNAi delivery methods and design has allowed for the effective development of siRNA-based therapeutics that are currently under clinical investigation for various cancer treatments. This approach has the potential to revolutionize cancer therapy by providing the ability to specifically downregulate or upregulate the mRNA of any protein of interest. This exquisite specificity, unfortunately, also has a downside. Genetic variations in the human population are common because of the presence of single nucleotide polymorphisms (SNPs). SNPs lead to synonymous and non-synonymous changes and they occur once in every 300 base pairs in both coding and non-coding regions in the human genome. Much less common are the somatic mosaicism variations associated with genetically distinct populations of cells within an individual that is derived from postzygotic mutations. These heterogeneities in the population can affect the RNAi's efficacy or more problematically, which can lead to unpredictable and sometimes adverse side effects. From a more positive viewpoint, both SNPs and somatic mosaicisms have also been implicated in human diseases, including cancer, and these specific changes could offer the ability to effectively and, more importantly, selectively target the cancer cells. In this review, we discuss how SNPs in the human population can influence the development and success of novel anticancer RNAi therapies and the importance of why SNPs should be carefully considered.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Maciej Jaśkiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| |
Collapse
|
25
|
Barnoud T, Parris JLD, Murphy ME. Common genetic variants in the TP53 pathway and their impact on cancer. J Mol Cell Biol 2020; 11:578-585. [PMID: 31152665 PMCID: PMC6736421 DOI: 10.1093/jmcb/mjz052] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023] Open
Abstract
The TP53 gene is well known to be the most frequently mutated gene in human cancer. In addition to mutations, there are > 20 different coding region single-nucleotide polymorphisms (SNPs) in the TP53 gene, as well as SNPs in MDM2, the negative regulator of p53. Several of these SNPs are known to alter p53 pathway function. This makes p53 rather unique among cancer-critical genes, e.g. the coding regions of other cancer-critical genes like Ha-Ras, RB, and PI3KCA do not have non-synonymous coding region SNPs that alter their function in cancer. The next frontier in p53 biology will consist of probing which of these coding region SNPs are moderately or strongly pathogenic and whether they influence cancer risk and the efficacy of cancer therapy. The challenge after that will consist of determining whether we can tailor chemotherapy to correct the defects for each of these variants. Here we review the SNPs in TP53 and MDM2 that show the most significant impact on cancer and other diseases. We also propose avenues for how this information can be used to better inform personalized medicine approaches to cancer and other diseases.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA
| | - Joshua L D Parris
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA.,Cell and Molecular Biology Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
26
|
Pavlakis E, Stiewe T. p53's Extended Reach: The Mutant p53 Secretome. Biomolecules 2020; 10:biom10020307. [PMID: 32075247 PMCID: PMC7072272 DOI: 10.3390/biom10020307] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/08/2023] Open
Abstract
p53 suppresses tumorigenesis by activating a plethora of effector pathways. While most of these operate primarily inside of cells to limit proliferation and survival of incipient cancer cells, many extend to the extracellular space. In particular, p53 controls expression and secretion of numerous extracellular factors that are either soluble or contained within extracellular vesicles such as exosomes. As part of the cellular secretome, they execute key roles in cell-cell communication and extracellular matrix remodeling. Mutations in the p53-encoding TP53 gene are the most frequent genetic alterations in cancer cells, and therefore, have profound impact on the composition of the tumor cell secretome. In this review, we discuss how the loss or dominant-negative inhibition of wild-type p53 in concert with a gain of neomorphic properties observed for many mutant p53 proteins, shapes a tumor cell secretome that creates a supportive microenvironment at the primary tumor site and primes niches in distant organs for future metastatic colonization.
Collapse
|
27
|
Cho JH, Patel B, Bonala S, Mansouri H, Manne S, Vadrevu SK, Ghouse S, Kung CP, Murphy ME, Astrinidis A, Henske EP, Kwiatkowski DJ, Markiewski MM, Karbowniczek M. The Codon 72 TP53 Polymorphism Contributes to TSC Tumorigenesis through the Notch-Nodal Axis. Mol Cancer Res 2019; 17:1639-1651. [PMID: 31088907 DOI: 10.1158/1541-7786.mcr-18-1292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 01/09/2023]
Abstract
We discovered that 90.3% of patients with angiomyolipomas, lymphangioleiomyomatosis (LAM), and tuberous sclerosis complex (TSC) carry the arginine variant of codon 72 (R72) of TP53 and that R72 increases the risk for angiomyolipoma. R72 transactivates NOTCH1 and NODAL better than the proline variant of codon 72 (P72); therefore, the expression of NOTCH1 and NODAL is increased in angiomyolipoma cells that carry R72. The loss of Tp53 and Tsc1 within nestin-expressing cells in mice resulted in the development of renal cell carcinomas (RCC) with high Notch1 and Nodal expression, suggesting that similar downstream mechanisms contribute to tumorigenesis as a result of p53 loss in mice and p53 polymorphism in humans. The loss of murine Tp53 or expression of human R72 contributes to tumorigenesis via enhancing epithelial-to-mesenchymal transition and motility of tumor cells through the Notch and Nodal pathways. IMPLICATIONS: This work revealed unexpected contributions of the p53 polymorphism to the pathogenesis of TSC and established signaling alterations caused by this polymorphism as a target for therapy. We found that the codon 72 TP53 polymorphism contributes to TSC-associated tumorigenesis via Notch and Nodal signaling.
Collapse
Affiliation(s)
- Jun-Hung Cho
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas
| | - Bhaumik Patel
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas
| | - Santosh Bonala
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas.,Hollings Cancer Center, Charleston, South Carolina
| | - Hossein Mansouri
- Department of Mathematics and Statistics, Texas Tech University, Broadway and Boston, Lubbock, Texas
| | - Sasikanth Manne
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas.,Institute for Immunology, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Surya Kumari Vadrevu
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas.,HIV-1 Immunopathogenesis Laboratory, Wistar Institute, Philadelphia, Pennsylvania
| | - Shanawaz Ghouse
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas
| | - Che-Pei Kung
- Program in Molecular and Cellular Oncogenesis, Wistar Institute, Philadelphia, Pennsylvania.,ICCE Institute and Department of Internal Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, Wistar Institute, Philadelphia, Pennsylvania
| | - Aristotelis Astrinidis
- Division of Nephrology, Department of Pediatrics, University of Tennessee Health Sciences Center, and Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas.
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Science Center, Abilene, Texas.
| |
Collapse
|
28
|
Gunaratna RT, Santos A, Luo L, Nagi C, Lambertz I, Spier M, Conti CJ, Fuchs-Young RS. Dynamic role of the codon 72 p53 single-nucleotide polymorphism in mammary tumorigenesis in a humanized mouse model. Oncogene 2019; 38:3535-3550. [PMID: 30651598 PMCID: PMC6756019 DOI: 10.1038/s41388-018-0630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/14/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
Female breast cancer (BrCa) is the most common noncutaneous cancer among women in the United States. Human epidemiological studies reveal that a p53 single-nucleotide polymorphism (SNP) at codon 72, encoding proline (P72) or arginine (R72), is associated with differential risk of several cancers, including BrCa. However, the molecular mechanisms by which these variants affect mammary tumorigenesis remain unresolved. To investigate the effects of this polymorphism on susceptibility to mammary cancer, we used a humanized p53 mouse model, homozygous for either P72 or R72. Our studies revealed that R72 mice had a significantly higher mammary tumor incidence and reduced latency in both DMBA-induced and MMTV-Erbb2/Neu mouse mammary tumor models compared to P72 mice. Analyses showed that susceptible mammary glands from E-R72 (R72 x MMTV-Erbb2/Neu) mice developed a senescence-associated secretory phenotype (SASP) with influx of proinflammatory macrophages, ultimately resulting in chronic, protumorigenic inflammation. Mammary tumors arising in E-R72 mice also had an increased influx of tumor-associated macrophages, contributing to angiogenesis and elevated tumor growth rates. These results demonstrate that the p53 R72 variant increased susceptibility to mammary tumorigenesis through chronic inflammation.
Collapse
Affiliation(s)
- Ramesh T Gunaratna
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andres Santos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Linjie Luo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Isabel Lambertz
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Madison Spier
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Claudio J Conti
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.,Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Robin S Fuchs-Young
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA. .,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
29
|
Budina-Kolomets A, Barnoud T, Murphy ME. The transcription-independent mitochondrial cell death pathway is defective in non-transformed cells containing the Pro47Ser variant of p53. Cancer Biol Ther 2018; 19:1033-1038. [PMID: 30010463 DOI: 10.1080/15384047.2018.1472194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Approximately half of all human cancers contain mutations in the TP53 tumor suppressor. In addition to mutations, there are single nucleotide polymorphisms (SNPs) in TP53 that can dampen p53 function, and can increase cancer risk and decrease the efficacy of cancer therapy. Approximately 6% of Africans and 1% of African-Americans express a p53 allele with a serine instead of proline at position 47 (Pro47Ser, or S47). The S47 variant is associated with increased breast cancer risk in pre-menopausal African Americans, and in a mouse model for the S47 variant, mice are predisposed to spontaneous cancers. We recently showed that the S47 variant is impaired for p53-mediated apoptosis in response to radiation and some genotoxic agents, particularly cisplatin. Here we identify the mechanism for impaired apoptosis of S47 in response to cisplatin. We show that following cisplatin treatment, the S47 variant shows normal stabilization and serine 15 phosphorylation, but reduced ability to bind to the peptidyl prolyl isomerase PIN1, which controls the mitochondrial localization of p53. This is accompanied by impaired mitochondrial localization of S47, along with decreased induction of cleaved caspase-3. Interestingly, we show that this defect occurs only for cisplatin and not for camptothecin. These findings show that normal tissues may respond differently to genotoxic stress depending upon this TP53 genotype. These data suggest that toxicity to cisplatin may be decreased in S47 individuals, and that this compound may be a superior treatment option for these individuals.
Collapse
Affiliation(s)
- Anna Budina-Kolomets
- a Program in Molecular and Cellular Oncogenesis , The Wistar Institute , Philadelphia PA 19104 , USA
| | - Thibaut Barnoud
- a Program in Molecular and Cellular Oncogenesis , The Wistar Institute , Philadelphia PA 19104 , USA
| | - Maureen E Murphy
- a Program in Molecular and Cellular Oncogenesis , The Wistar Institute , Philadelphia PA 19104 , USA
| |
Collapse
|
30
|
Omrani-Nava V, Hedayatizadeh-Omran A, Alizadeh-Navaei R, Mokhberi V, Jalalian R, Janbabaei G, Amjadi O, Rahmatpour G, Mozaffari A. TP53 single nucleotide polymorphism (rs1042522) in Iranian patients with coronary artery disease. Biomed Rep 2018; 9:259-265. [PMID: 30271603 PMCID: PMC6158393 DOI: 10.3892/br.2018.1121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/22/2018] [Indexed: 02/05/2023] Open
Abstract
Chronic diseases including coronary artery disease (CAD) impose a high burden in terms of mortality and disability particularly in developing countries. Both genetic and environmental risk factors confer susceptibility to CAD. Meanwhile, a functional polymorphism in the tumor protein p53 (TP53) gene (codon 72, exon 4) has been reported to be associated with a wide range of cancers and inflammatory disorders. There are controversies regarding CAD and involvement of the TP53 codon 72 single nucleotide polymorphism; therefore, the present case-control study was conducted to evaluate the potential association between this TP53 polymorphism and CAD in an Iranian population. A total of 153 subjects (including 70 patients diagnosed with CAD and 83 subjects with normal coronary parameters, determined by angiography) were genotyped for the TP53 (rs1042522) polymorphism by the polymerase chain reaction-restriction fragment length polymorphism technique. Clinical and laboratory findings were also evaluated. The χ2 test and unpaired Student's t-test were applied to compare genotype and allele distributions and clinical characteristics between the two groups. Significant associations of the Pro72 allele [odds ratio (OR)=1.66, P=0.027] and Pro/Pro genotype (OR=2.91, P=0.022) with CAD were identified. No associations between patients' clinical findings and genotypes were apparent. Therefore, according to present findings, the TP53 Pro72 allele may be involved in the development of CAD along with conventional risk factors in patients from Northern Iran.
Collapse
Affiliation(s)
- Versa Omrani-Nava
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran 48166-33131, Iran
| | - Akbar Hedayatizadeh-Omran
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran 48166-33131, Iran
- Correspondence to: Dr Akbar Hedayatizadeh-Omran, Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, 70 Razi Street, Sari, Mazandaran 48166-33131, Iran, E-mail:
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran 48166-33131, Iran
| | - Vahid Mokhberi
- Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran 48471-91971, Iran
| | - Rozita Jalalian
- Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran 48471-91971, Iran
| | - Ghasem Janbabaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran 48166-33131, Iran
| | - Omolbanin Amjadi
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran 48166-33131, Iran
| | - Ghasem Rahmatpour
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran 48166-33131, Iran
| | - Amir Mozaffari
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran 48166-33131, Iran
| |
Collapse
|
31
|
Barnoud T, Budina-Kolomets A, Basu S, Leu JIJ, Good M, Kung CP, Liu J, Liu Q, Villanueva J, Zhang R, George DL, Murphy ME. Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Res 2018; 78:5694-5705. [PMID: 30115697 DOI: 10.1158/0008-5472.can-18-1327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023]
Abstract
The tumor suppressor TP53 is the most frequently mutated gene in human cancer and serves to restrict tumor initiation and progression. Single-nucleotide polymorphisms (SNP) in TP53 and p53 pathway genes can have a marked impact on p53 tumor suppressor function, and some have been associated with increased cancer risk and impaired response to therapy. Approximately 6% of Africans and 1% of African Americans express a p53 allele with a serine instead of proline at position 47 (Pro47Ser). This SNP impairs p53-mediated apoptosis in response to radiation and genotoxic agents and is associated with increased cancer risk in humans and in a mouse model. In this study, we compared the ability of wild-type (WT) and S47 p53 to suppress tumor development and respond to therapy. Our goal was to find therapeutic compounds that are more, not less, efficacious in S47 tumors. We identified the superior efficacy of two agents, cisplatin and BET inhibitors, on S47 tumors compared with WT. Cisplatin caused dramatic decreases in the progression of S47 tumors by activating the p53/PIN1 axis to drive the mitochondrial cell death program. These findings serve as important proof of principle that chemotherapy can be tailored to p53 genotype.Significance: A rare African-derived radioresistant p53 SNP provides proof of principle that chemotherapy can be tailored to TP53 genotype. Cancer Res; 78(19); 5694-705. ©2018 AACR.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Madeline Good
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Che-Pei Kung
- ICCE Institute and Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Jingjing Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jessie Villanueva
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Donna L George
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
32
|
Zhao Y, Wu L, Yue X, Zhang C, Wang J, Li J, Sun X, Zhu Y, Feng Z, Hu W. A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models. eLife 2018; 7:34701. [PMID: 29557783 PMCID: PMC5906094 DOI: 10.7554/elife.34701] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/18/2018] [Indexed: 12/12/2022] Open
Abstract
Tumor suppressor p53 prevents early death due to cancer development. However, the role of p53 in aging process and longevity has not been well-established. In humans, single nucleotide polymorphism (SNP) with either arginine (R72) or proline (P72) at codon 72 influences p53 activity; the P72 allele has a weaker p53 activity and function in tumor suppression. Here, employing a mouse model with knock-in of human TP53 gene carrying codon 72 SNP, we found that despite increased cancer risk, P72 mice that escape tumor development display a longer lifespan than R72 mice. Further, P72 mice have a delayed development of aging-associated phenotypes compared with R72 mice. Mechanistically, P72 mice can better retain the self-renewal function of stem/progenitor cells compared with R72 mice during aging. This study provides direct genetic evidence demonstrating that p53 codon 72 SNP directly impacts aging and longevity, which supports a role of p53 in regulation of longevity. How long most animals live depends on the balance between the biological processes that allow them to regenerate their tissues when damaged and those that prevent them from developing cancer. Regeneration relies mostly on cells, in particular stem cells, dividing to make new cells, while cancer occurs when cell division becomes uncontrolled. Tumor suppressor genes protect against cancer. One such gene encodes a protein called p53 that eliminates damaged cells before they can become cancerous. The p53 protein is also believed to be involved in regulating how quickly an animal ages and how long it lives, but this second role has not yet been clearly established. Previous studies using different strategies to change the activity of p53 in several mouse models have led to inconsistent results. However, the mouse models used in these earlier studies did not reflect how p53 works under normal conditions. Zhao et al. have now used mice in which the mouse gene for p53 was replaced with one of two versions of the equivalent human gene to study its impact on lifespan and the aging process. The two versions of p53 only differ slightly; a single building block of the protein, the amino acid at position 72, is a proline in one version but an arginine in the other. This difference makes one version of p53 weaker than the other; in other words, it is less able to eliminate damaged cells. Zhao et al. revealed that the mice with the weaker p53 lived for longer and appeared to age more slowly too. Further experiments showed that the stem cells in the mice with a weaker p53 were able to keep dividing and create new cells for longer. This is important because a decline in this activity – which is known as self-renewal – is a hallmark of aging. Together these findings show that a small yet common change in p53 impacts both aging and lifespan, possibly by altering how stem cells are regulated. Further work is now needed to better understand why the different versions of p53 have different effects on stem cells.
Collapse
Affiliation(s)
- Yuhan Zhao
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, United States
| | - Lihua Wu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, United States
| | - Xuetian Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, United States
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, United States
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, United States
| | - Jun Li
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, United States
| | - Xiaohui Sun
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, United States.,Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, China
| | - Yiming Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, China
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, United States.,Department of Pharmacology, Rutgers, the State University of New Jersey, Piscataway, United States
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, United States.,Department of Pharmacology, Rutgers, the State University of New Jersey, Piscataway, United States
| |
Collapse
|
33
|
Nishizuka SS, Tamura G, Nakatochi M, Fukushima N, Ohmori Y, Sumida C, Iwaya T, Takahashi T, Koeda K. Helicobacter pylori infection is associated with favorable outcome in advanced gastric cancer patients treated with S-1 adjuvant chemotherapy. J Surg Oncol 2018; 117:947-956. [PMID: 29355977 DOI: 10.1002/jso.24977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Limited information exists regarding beneficial effects of Helicobacter pylori. To examine the effect in advanced gastric cancer, we compared survival for patients treated with surgery-only or adjuvant chemotherapy on the basis of H. pylori infection status. METHODS A cohort of 491 patients who underwent R0 resection for locally advanced gastric cancer between 2000 and 2009 at 12 institutions in northern Japan was included. H. pylori infection status, was assessed from paraffin-embedded formalin-fixed samples. Overall survival (OS) and disease-free survival (DFS) in surgery-only (Surgery) and adjuvant chemotherapy (S-1) groups were analyzed. A propensity score matching was employed to correct for confounding factors by indication. RESULTS H. pylori infection was positive in 175 patients and negative in 316 patients. H. pylori-positive patients showed significantly better survival than H. pylori-negative patients in both OS (hazard ratio [HR] 0.593, 95% confidence interval [CI] 0.417-0.843; P = 0.003]) and DFS (HR 0.679, 95%CI 0.492-0.937; P = 0.018). Propensity score matching further confirmed that S-1 was virtually only effective when tumors were H. pylori-positive. CONCLUSIONS The favorable outcome of H. pylori-positive patients implies that the host immune system is modulated by H. pylori enhancing the chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Satoshi S Nishizuka
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan.,Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan.,Division of Biomedical Research & Development, Institute of Biomedical Sciences, Iwate Medical University, Morioka, Japan.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Gen Tamura
- Department of Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Masahiro Nakatochi
- Statistical Analysis Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Norimasa Fukushima
- Department of Surgery, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Yukimi Ohmori
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
| | - Chihiro Sumida
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan
| | - Takeshi Iwaya
- Molecular Therapeutics Laboratory, Iwate Medical University School of Medicine, Morioka, Japan.,Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Koeda
- Department of Surgery, Iwate Medical University School of Medicine, Morioka, Japan
| | | |
Collapse
|
34
|
Gnanapradeepan K, Basu S, Barnoud T, Budina-Kolomets A, Kung CP, Murphy ME. The p53 Tumor Suppressor in the Control of Metabolism and Ferroptosis. Front Endocrinol (Lausanne) 2018; 9:124. [PMID: 29695998 PMCID: PMC5904197 DOI: 10.3389/fendo.2018.00124] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/12/2018] [Indexed: 01/06/2023] Open
Abstract
The p53 tumor suppressor continues to be distinguished as the most frequently mutated gene in human cancer. It is widely believed that the ability of p53 to induce senescence and programmed cell death underlies the tumor suppressor functions of p53. However, p53 has a number of other functions that recent data strongly implicate in tumor suppression, particularly with regard to the control of metabolism and ferroptosis (iron- and lipid-peroxide-mediated cell death) by p53. As reviewed here, the roles of p53 in the control of metabolism and ferroptosis are complex. Wild-type (WT) p53 negatively regulates lipid synthesis and glycolysis in normal and tumor cells, and positively regulates oxidative phosphorylation and lipid catabolism. Mutant p53 in tumor cells does the converse, positively regulating lipid synthesis and glycolysis. The role of p53 in ferroptosis is even more complex: in normal tissues, WT p53 appears to positively regulate ferroptosis, and this pathway appears to play a role in the ability of basal, unstressed p53 to suppress tumor initiation and development. In tumors, other regulators of ferroptosis supersede p53's role, and WT p53 appears to play a limited role; instead, mutant p53 sensitizes tumor cells to ferroptosis. By clearly elucidating the roles of WT and mutant p53 in metabolism and ferroptosis, and establishing these roles in tumor suppression, emerging research promises to yield new therapeutic avenues for cancer and metabolic diseases.
Collapse
Affiliation(s)
- Keerthana Gnanapradeepan
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
- Graduate Group in Biochemistry and Molecular Biophysics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, United States
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
| | - Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
| | - Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
| | - Che-Pei Kung
- Department of Internal Medicine, School of Medicine, Washington University in St. Louis, St Louis, MO, United States
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, United States
- *Correspondence: Maureen E. Murphy,
| |
Collapse
|
35
|
Neumann MP, González MV, Pitiot AS, Santamaría Í, Martínez C, Tardón A, Astudillo A, Balbín M. TP53 p.R72P genotype is a marker of poor prognosis in lung cancer. Cancer Biomark 2017; 21:747-754. [PMID: 29286914 DOI: 10.3233/cbm-170230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lung cancer is a leading cause of death worldwide, with poor survival rates despite diagnostic and therapeutic advances. Markers are needed in order to improve clinical patient management and survival. TP53 is frequently involved in lung cancer development with polymorphic sites potentially having a role in it. This study aims to determine the value of codon 72 missense polymorphic variant genotyping, TP53 R72P, as a prognostic factor in NSCLC patients. METHODS One hundred and fifteen NSCLC samples from patients exposed to tobacco smoke and silica dust from Asturias (Northern Spain) were genotyped by direct sequencing. RESULTS Seventy-five percent tumour samples alleles coded for Arg. The R72P genotype was an independent predictor of lymph node status (HR = 3.6). The heterozygous genotype was associated to a reduced 5-year survival rate (28% vs 51% for homozygotes). Importantly, this result was specifically observed in these subsets of patients: those over 67 years, patients with silicosis, current smokers, patients with squamous cell carcinomas and, notably, with tumour free lymph nodes. CONCLUSION Our results indicate a remarkable application of R72P genotyping in the clinical setting: refine patient subclassification to identify those with an adverse clinical course despite tumour free lymph node status.
Collapse
Affiliation(s)
- Mirko Peter Neumann
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain.,Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - María Victoria González
- Department of Surgery, University of Oviedo and IUOPA, Oviedo, Spain.,Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Ana S Pitiot
- Laboratorio de Oncología Molecular, IUOPA and Laboratorio de Medicina, HUCA, Oviedo, Spain
| | - Íñigo Santamaría
- Laboratorio de Oncología Molecular, IUOPA and Laboratorio de Medicina, HUCA, Oviedo, Spain
| | - Cristina Martínez
- Servicio de Neumología, Area de Gestión Clínica de Pulmón, Instituto Nacional de Silicosis, HUCA, Oviedo, Spain
| | - Adonina Tardón
- IUOPA, University of Oviedo and CIBERESP (Ciber de Epidemiologia y salud Pública), Oviedo, Spain
| | - Aurora Astudillo
- Department of Surgery, University of Oviedo and IUOPA, Oviedo, Spain
| | - Milagros Balbín
- Laboratorio de Oncología Molecular, IUOPA and Laboratorio de Medicina, HUCA, Oviedo, Spain
| |
Collapse
|
36
|
NAP1L1 regulates NF-κB signaling pathway acting on anti-apoptotic Mcl-1 gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1759-1768. [DOI: 10.1016/j.bbamcr.2017.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/20/2023]
|
37
|
Katkoori VR, Manne U, Chaturvedi LS, Basson MD, Haan P, Coffey D, Bumpers HL. Functional consequence of the p53 codon 72 polymorphism in colorectal cancer. Oncotarget 2017; 8:76574-76586. [PMID: 29100333 PMCID: PMC5652727 DOI: 10.18632/oncotarget.20580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/16/2017] [Indexed: 01/22/2023] Open
Abstract
Background The codon 72 polymorphism in p53 has been implicated in colorectal cancer (CRC) risk, prognosis and CRC health disparities. We examined the functional consequence of this polymorphism in CRC. Experimental Design Plasmids (pCMV6) that express different phenotypes of p53 [p53 wild type (wt) at codon 72 (R72wt), R72wt with mutation at codon 273 cysteine (R72273Cys), p53 mutation at codon 72 (P72wt) and P72wt with mutation at codon 273 (P72273Cys)] were constructed. The CRC cell line Caco2, which does not express p53 for in vitro studies, was used as host. CRC xenografts were established in severe combined immunodeficient (SCID) mice using established cell lines. CRC surgical specimens, corresponding normal colon, and tumor xenografts were sequenced for codon 72 polymorphism of p53. Proteins signaling mechanisms were evaluated to assess the functional consequence of P72 phenotype of p53. Results This study demonstrated a significantly increased survival of cells expressing P72wt, mutant phenotype, versus R72wt phenotype. WB analyses revealed that P72wt induced activation of p38 and RAF/MEK/ extracellular signal-regulated kinase (ERK) MAP kinases. Activation of CREB was found to be higher in tumors that exhibit P72 phenotype. Metastatic lesions of CRC expressed more phospho-CREB than non-metastatic lesions. The expression of P72wt promoted CRC metastasis. Conclusions P72 contributes to the aggressiveness of CRC. Because P72 is over-expressed in CRC, specifically in African-American patients, this suggests a role for P72 in cancer health disparities. This work was supported by NIH/NCI Workforce Diversity Grant R21-CA171251 & U54CA118948.
Collapse
Affiliation(s)
- Venkat R Katkoori
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, MI, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lakshmi S Chaturvedi
- Department of Surgery, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Marc D Basson
- Department of Surgery, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Pam Haan
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, MI, USA
| | | | - Harvey L Bumpers
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, MI, USA
| |
Collapse
|
38
|
Domínguez ER, Orona J, Lin K, Pérez CJ, Benavides F, Kusewitt DF, Johnson DG. The p53 R72P polymorphism does not affect the physiological response to ionizing radiation in a mouse model. Cell Cycle 2017; 16:1153-1163. [PMID: 28594296 DOI: 10.1080/15384101.2017.1312234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Tissue culture and mouse model studies show that the presence of the arginine (R) or proline (P) coding single nucleotide polymorphism (SNP) of the tumor suppressor gene p53 at codon 72 (p53 R72P) differentially affects the responses to genotoxic insult. Compared to the P variant, the R variant shows increased apoptosis in most cell cultures and mouse model tissues in response to genotoxins, and epidemiological studies suggest that the R variant may enhance cancer survival and reduce the risks of adverse reactions to genotoxic cancer treatment. As ionizing radiation (IR) treatment is often used in cancer therapy, we sought to test the physiological effects of IR in mouse models of the p53 R72P polymorphism. By performing blood counts, immunohistochemical (IHC) staining and survival studies in mouse populations rigorously controlled for strain background, sex and age, we discovered that p53 R72P polymorphism did not differentially affect the physiological response to IR. Our findings suggest that genotyping for this polymorphism to personalize IR therapy may have little clinical utility.
Collapse
Affiliation(s)
- Emily R Domínguez
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Jennifer Orona
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Kevin Lin
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Carlos J Pérez
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Fernando Benavides
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Donna F Kusewitt
- b Department of Pathology , The University of Mexico School of Medicine , Albuquerque , NM , USA
| | - David G Johnson
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| |
Collapse
|
39
|
Kung CP, Liu Q, Murphy ME. The codon 72 polymorphism of p53 influences cell fate following nutrient deprivation. Cancer Biol Ther 2017; 18:484-491. [PMID: 28475405 DOI: 10.1080/15384047.2017.1323595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The TP53 gene is distinguished as the most frequently mutated gene in cancer. Unlike most cancer-relevant genes, the TP53 gene is also distinguished by the existence of coding region polymorphisms that alter p53 sequence, and in some cases, also alter p53 function. A common coding region variant at amino acid 72 of p53 encodes either proline (P72) or arginine (R72). P72 is the ancestral variant and is most common in populations near the equator. The frequency of the R72 variant increases in a linear manner with latitude. To date, why the R72 variant arose in humans and was possibly selected for has remained unclear. Here-in we show that this single nucleotide polymorphism (SNP) influences the phosphorylation of p53 and the transactivation of the key p53 target CDKN1A (p21) specifically in response to nutrient deprivation, but not in response to conventional cytotoxic agents. Following activation of the kinase AMPK, R72 cells show increased phosphorylation on serine-15 and increased transactivation of the cyclin-dependent kinase inhibitor CDKN1A (p21) and the metabolic response genes PPARGC1B (PGC-1β) and PRKAB2 (AMPK-β2). This is accompanied by increased growth arrest and decreased apoptosis in R72 cells compared with P72 cells. The combined data fit best with the hypothesis that the R72 polymorphism confers increased cell survival in response to nutrient deprivation. This differential response to nutrient deprivation may explain part of selection for this SNP at northern latitudes, where nutrient deprivation might have been more frequent.
Collapse
Affiliation(s)
- Che-Pei Kung
- a Program in Molecular and Cellular Oncogenesis , The Wistar Institute , Philadelphia , PA , USA.,b Department of Internal Medicine , Washington University, School of Medicine , St Louis , MO , USA
| | - Qin Liu
- a Program in Molecular and Cellular Oncogenesis , The Wistar Institute , Philadelphia , PA , USA
| | - Maureen E Murphy
- a Program in Molecular and Cellular Oncogenesis , The Wistar Institute , Philadelphia , PA , USA
| |
Collapse
|
40
|
Zarate AM, Don J, Secchi D, Carrica A, Galindez Costa F, Panico R, Brusa M, Barra JL, Brunotto M. Study of the TP53 codon 72 polymorphism in oral cancer and oral potentially malignant disorders in Argentine patients. Tumour Biol 2017; 39:1010428317699113. [PMID: 28459200 DOI: 10.1177/1010428317699113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this work was to evaluate the prevalence of TP53Arg72Pro mutations and their possible relationship with oral carcinoma and oral potentially malignant disorders in Argentine patients. A cross-sectional study was performed on 111 exfoliated cytologies from patients with oral cancer (OC), oral potentially malignant disorders (OPMD) and controls. The TP53Arg72Pro mutations were determined using conventional PCR. We evaluated univariate and multivariate study variables, setting p < 0.05. We found: (a) a low frequency of Pro72 variant in control group and a high frequency in OC and OPMD, as well in OC and oral leukoplakia (OL) diagnosis; (b) multivariate association among the TP53CC genotype and females over 45 years with no tobacco nor alcohol habits with oral lichen planus pathology; (c) multivariate association between the TP53GC genotype and males with alcohol and tobacco habits and OC and OL pathologies. Our results showed that the wild-type Arg72variant was related to control patients and Pro72variant was related to OC and OPMD, in Argentine patients.
Collapse
Affiliation(s)
- Ana Maria Zarate
- 1 Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Julieta Don
- 1 Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Dante Secchi
- 2 Departamento de Patología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andres Carrica
- 2 Departamento de Patología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernanda Galindez Costa
- 2 Departamento de Patología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rene Panico
- 2 Departamento de Patología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Martin Brusa
- 2 Departamento de Patología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Luis Barra
- 3 Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mabel Brunotto
- 2 Departamento de Patología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
41
|
ASSOCIATION STUDY BETWEEN POLYMORPHISMS OF THE p53 AND LYMPHOTOXIN ALPHA (LTA) GENES AND THE RISK OF PROLIFERATIVE VITREORETINOPATHY/RETINAL DETACHMENT IN A MEXICAN POPULATION. Retina 2017; 38:187-191. [PMID: 28106707 DOI: 10.1097/iae.0000000000001508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To report the results of an association study between single-nucleotide polymorphisms of the p53 and LTA genes and the risk of proliferative vitreoretinopathy (PVR)/retinal detachment (RD) in a Mexican cohort. METHODS A total of 380 unrelated subjects were studied, including 98 patients with primary rhegmatogenous RD without PVR, 82 patients with PVR after RD surgery, and 200 healthy, ethnically matched subjects. Genotyping of single-nucleotide polymorphisms rs1042522 (p53 gene) and rs2229094 (LTA gene) was performed by direct nucleotide sequencing. Allele frequencies, genotype frequencies, and Hardy-Weinberg equilibrium were assessed with HaploView software. RESULTS No significant differences in the allelic distributions of the previously identified risk C allele for LTA rs2229094 were observed between RD subjects and controls (odds ratio [95% confidence interval] = 0.8 [0.5-1.2]; P = 0.3). Conversely, the C allele for rs1042522 in p53 was positively associated with an increased risk for RD (odds ratio [95% confidence interval] = 1.4 [1.01-1.9]; P = 0.04). No significant differences were observed when the subgroup of 82 RD + PVR subjects was compared with the subgroup of 98 patients with RD. CONCLUSION The C allele for rs1042522 in p53 was genetically associated with a higher risk for RD but not for PVR in this cohort. This is the first association study attempting replication of PVR-associated risk alleles in a nonwhite population.
Collapse
|
42
|
Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7190943. [PMID: 28116037 PMCID: PMC5225393 DOI: 10.1155/2016/7190943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.
Collapse
|
43
|
Schäfer C, Göder A, Beyer M, Kiweler N, Mahendrarajah N, Rauch A, Nikolova T, Stojanovic N, Wieczorek M, Reich TR, Tomicic MT, Linnebacher M, Sonnemann J, Dietrich S, Sellmer A, Mahboobi S, Heinzel T, Schneider G, Krämer OH. Class I histone deacetylases regulate p53/NF-κB crosstalk in cancer cells. Cell Signal 2016; 29:218-225. [PMID: 27838375 DOI: 10.1016/j.cellsig.2016.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 02/09/2023]
Abstract
The transcription factors NF-κB and p53 as well as their crosstalk determine the fate of tumor cells upon therapeutic interventions. Replicative stress and cytokines promote signaling cascades that lead to the co-regulation of p53 and NF-κB. Consequently, nuclear p53/NF-κB signaling complexes activate NF-κB-dependent survival genes. The 18 histone deacetylases (HDACs) are epigenetic modulators that fall into four classes (I-IV). Inhibitors of histone deacetylases (HDACi) become increasingly appreciated as anti-cancer agents. Based on their effects on p53 and NF-κB, we addressed whether clinically relevant HDACi affect the NF-κB/p53 crosstalk. The chemotherapeutics hydroxyurea, etoposide, and fludarabine halt cell cycle progression, induce DNA damage, and lead to DNA fragmentation. These agents co-induce p53 and NF-κB-dependent gene expression in cell lines from breast and colon cancer and in primary chronic lymphatic leukemia (CLL) cells. Using specific HDACi, we find that the class I subgroup of HDACs, but not the class IIb deacetylase HDAC6, are required for the hydroxyurea-induced crosstalk between p53 and NF-κB. HDACi decrease the basal and stress-induced expression of p53 and block NF-κB-regulated gene expression. We further show that class I HDACi induce senescence in pancreatic cancer cells with mutant p53.
Collapse
Affiliation(s)
- Claudia Schäfer
- Friedrich-Schiller-University Jena, Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Anja Göder
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Mandy Beyer
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Nicole Kiweler
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Nisintha Mahendrarajah
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Anke Rauch
- Friedrich-Schiller-University Jena, Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Teodora Nikolova
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Natasa Stojanovic
- Project Group "Personalized Tumor Therapy", Fraunhofer Institute of Toxicology and Experimental Medicine, Am Biopark 9, 93053 Regensburg, Germany
| | - Martin Wieczorek
- Friedrich-Schiller-University Jena, Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Thomas R Reich
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Michael Linnebacher
- University Medicine Rostock, Department of General Surgery, Molecular Oncology and Immunotherapy, Schillingallee 35, 18057 Rostock, Germany
| | - Jürgen Sonnemann
- Department of Paediatric Haematology and Oncology, Children's Clinic, Jena University Hospital, Kochstraße 2, 07745 Jena, Germany
| | - Sascha Dietrich
- Department of Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Thorsten Heinzel
- Friedrich-Schiller-University Jena, Center for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Günter Schneider
- Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik, Ismaninger Straße 22, 81675 München, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany.
| |
Collapse
|
44
|
Gudkov AV, Komarova EA. p53 and the Carcinogenicity of Chronic Inflammation. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026161. [PMID: 27549311 DOI: 10.1101/cshperspect.a026161] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is a major cancer predisposition factor. Constitutive activation of the inflammation-driving NF-κB pathway commonly observed in cancer or developed in normal tissues because of persistent infections or endogenous tissue irritating factors, including products of secretion by senescent cells accumulating with age, markedly represses p53 functions. In its turn, p53 acts as a suppressor of inflammation helping to keep it within safe limits. The antagonistic relationship between p53 and NF-κB is controlled by multiple mechanisms and reflects cardinal differences in organismal responses to intrinsic and extrinsic cell stresses driven by these two transcription factors, respectively. This provides an opportunity for developing drugs to treat diseases associated with inappropriate activity of either p53 or NF-κB through targeting the opposing pathway. Several drug candidates of this kind are currently in clinical testing. These include anticancer small molecules capable of simultaneous suppression of p53 and activation of NF-κB and NF-κB-activating biologics that counteract p53-mediated pathologies associated with systemic genotoxic stresses such as acute radiation syndrome and side effects of cancer treatment.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Elena A Komarova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
45
|
Shatz M, Shats I, Menendez D, Resnick MA. p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways. Oncotarget 2016. [PMID: 26220208 PMCID: PMC4627285 DOI: 10.18632/oncotarget.4435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The p53 tumor suppressor regulates transcription of genes associated with diverse cellular functions including apoptosis, growth arrest, DNA repair and differentiation. Recently, we established that p53 can modulate expression of Toll-like receptor (TLR) innate immunity genes but the degree of cross-talk between p53 and TLR pathways remained unclear. Here, using gene expression profiling we characterize the global effect of p53 on the TLR5-mediated transcription in MCF7 cells. We found that combined activation of p53 and TLR5 pathways synergistically increases expression of over 200 genes, mostly associated with immunity and inflammation. The synergy was observed in several human cancer cells and primary lymphocytes. The p53-dependent amplification of transcriptional response to TLR5 activation required expression of NFκB subunit p65 and was mediated by several molecular mechanisms including increased phosphorylation of p38 MAP kinase, PI3K and STAT3 signaling. Additionally, p53 induction increased cytokine expression in response to TNFα, another activator of NFκB and MAP kinase pathways, suggesting a broad interaction between p53 and these signaling pathways. The expression of many synergistically induced genes is elevated in breast cancer patients responsive to chemotherapy. We suggest that p53's capacity to enhance immune response could be exploited to increase antitumor immunity and to improve cancer treatment.
Collapse
Affiliation(s)
- Maria Shatz
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Igor Shats
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Daniel Menendez
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Michael A Resnick
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
46
|
Abstract
The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer; this gene is subject to inactivation by mutation or deletion in >50% of sporadic cancers. Genes that encode proteins that regulate p53 function, such as MDM2, MDM4, and CDKN2A (p14(ARF)) are also frequently altered in tumors, and it is generally believed that the p53 pathway is likely to be inactivated by mutation in close to 100% of human tumors. Unlike most other cancer-relevant signaling pathways, some of the genes in the p53 pathway contain functionally significant single nucleotide polymorphisms (SNPs) that alter the amplitude of signaling by this protein. These variants, thus, have the potential to impact cancer risk, progression, and the efficacy of radiation and chemotherapy. In addition, the p53 pathway plays a role in other biological processes, including metabolism and reproductive fitness, so these variants have the potential to modify other diseases as well. Here we have chosen five polymorphisms in three genes in the p53 pathway for review, two in TP53, two in MDM2, and one in MDM4. These five variants were selected based on the quality and reproducibility of functional data associated with them, as well as the convincingness of epidemiological data in support of their association with disease. We also highlight two other polymorphisms that may affect p53 signaling, but for which functional or association data are still forthcoming (KITLG and ANRIL). Finally, we touch on three questions regarding genetic modifiers of the p53 pathway: Why did these variants arise? Were they under selection pressure? And, is there compelling evidence to support genotyping these variants to better predict disease risk and prognosis?
Collapse
Affiliation(s)
- Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104
| |
Collapse
|
47
|
Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JIJ, Khaku S, Scott JP, Cai KQ, Campbell MR, Porter DK, Wang X, Bell DA, Li X, Garlick DS, Liu Q, Hollstein M, George DL, Murphy ME. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 2016; 30:918-30. [PMID: 27034505 PMCID: PMC4840298 DOI: 10.1101/gad.275891.115] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/15/2016] [Indexed: 12/20/2022]
Abstract
In this study, Jennis et al. characterize the first mouse model of an African-specific naturally occurring coding region variant at codon 47 of the p53 tumor suppressor gene (S47). They show that homozygous S47 mice are markedly tumor-prone and that the S47 variant impairs not only p53-mediated cell death but also the ability of p53 to transactivate a subset of genes involved in metabolism and ferroptosis. A nonsynonymous single-nucleotide polymorphism at codon 47 in TP53 exists in African-descent populations (P47S, rs1800371; referred to here as S47). Here we report that, in human cell lines and a mouse model, the S47 variant exhibits a modest decrease in apoptosis in response to most genotoxic stresses compared with wild-type p53 but exhibits a significant defect in cell death induced by cisplatin. We show that, compared with wild-type p53, S47 has nearly indistinguishable transcriptional function but shows impaired ability to transactivate a subset of p53 target genes, including two involved in metabolism: Gls2 (glutaminase 2) and Sco2. We also show that human and mouse cells expressing the S47 variant are markedly resistant to cell death by agents that induce ferroptosis (iron-mediated nonapoptotic cell death). We show that mice expressing S47 in homozygous or heterozygous form are susceptible to spontaneous cancers of diverse histological types. Our data suggest that the S47 variant may contribute to increased cancer risk in individuals of African descent, and our findings highlight the need to assess the contribution of this variant to cancer risk in these populations. These data also confirm the potential relevance of metabolism and ferroptosis to tumor suppression by p53.
Collapse
Affiliation(s)
- Matthew Jennis
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA; Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Che-Pei Kung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sakina Khaku
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Jeremy P Scott
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Kathy Q Cai
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Michelle R Campbell
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Devin K Porter
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Xuting Wang
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Douglas A Bell
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - David S Garlick
- The Wistar Institute Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | - Donna L George
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
48
|
Tanaka T, Iino M. Nuclear Translocation of p65 is Controlled by Sec6 via the Degradation of IκBα. J Cell Physiol 2016; 231:719-30. [PMID: 26247921 DOI: 10.1002/jcp.25122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
Nuclear factor-κB (NF-κB) is an inducible transcription factor that mediates immune and inflammatory responses. NF-κB pathways are also involved in cell adhesion, differentiation, proliferation, autophagy, senescence, and protection against apoptosis. The deregulation of NF-κB activity is found in a number of disease states, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease. The 90 kDa ribosomal S6 kinase (p90RSK) family, which is serine/threonine kinases, is phosphorylated by extracellular signal-regulated kinase1/2 (ERK1/2) and is related to NF-κB pathways. Our previous studies revealed that Sec6, a component of the exocyst complex, plays specific roles in cell-cell adhesion and cell cycle arrest. However, the mechanism by which Sec6 regulates the NF-κB signaling pathway is unknown. We demonstrated that Sec6 knockdown inhibited the degradation of IκBα and delayed the nucleus-cytoplasm translocation of p65 in HeLa cells transfected with Sec6 siRNAs after treatment with tumor necrosis factor alpha (TNF-α). Furthermore, the binding of p65 and cAMP response element binding protein (CREB) binding protein (CBP) or p300 decreased and NF-κB related genes which were inhibitors of NF-κB alpha (IκBα), A20, B cell lymphoma protein 2 (Bcl-2), and monocyte chemoattractant protein-1 (MCP-1) were low in cells transfected with Sec6 siRNAs in response to TNF-α stimulation. Sec6 knockdown decreased the expression of p90RSKs and the phosphorylation of ERK or p90RSK1 at Ser380 or IκBα at Ser32. The present study suggests that Sec6 regulates NF-κB transcriptional activity via the control of the phosphorylation of IκBα, p90RSK1, and ERK.
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan.,Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan
| |
Collapse
|
49
|
Budina-Kolomets A, Webster MR, Leu JIJ, Jennis M, Krepler C, Guerrini A, Kossenkov AV, Xu W, Karakousis G, Schuchter L, Amaravadi RK, Wu H, Yin X, Liu Q, Lu Y, Mills GB, Xu X, George DL, Weeraratna AT, Murphy ME. HSP70 Inhibition Limits FAK-Dependent Invasion and Enhances the Response to Melanoma Treatment with BRAF Inhibitors. Cancer Res 2016; 76:2720-30. [PMID: 26984758 DOI: 10.1158/0008-5472.can-15-2137] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/28/2016] [Indexed: 01/12/2023]
Abstract
The stress-inducible chaperone protein HSP70 (HSPA1) is implicated in melanoma development, and HSP70 inhibitors exert tumor-specific cytotoxic activity in cancer. In this study, we documented that a significant proportion of melanoma tumors express high levels of HSP70, particularly at advanced stages, and that phospho-FAK (PTK2) and BRAF are HSP70 client proteins. Treatment of melanoma cells with HSP70 inhibitors decreased levels of phospho-FAK along with impaired migration, invasion, and metastasis in vitro and in vivo Moreover, the HSP70 inhibitor PET-16 reduced levels of mutant BRAF, synergized with the BRAF inhibitor PLX4032 in vitro, and enhanced the durability of response to BRAF inhibition in vivo Collectively, these findings provide strong support for HSP70 inhibition as a therapeutic strategy in melanoma, especially as an adjuvant approach for overcoming the resistance to BRAF inhibitors frequently observed in melanoma patients. Cancer Res; 76(9); 2720-30. ©2016 AACR.
Collapse
Affiliation(s)
- Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Marie R Webster
- Program in Tumor Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Jennis
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Clemens Krepler
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Anastasia Guerrini
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania
| | - Wei Xu
- Department of Medicine, The Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Giorgos Karakousis
- Department of Surgery, The Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn Schuchter
- Department of Medicine, The Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Department of Medicine, The Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Wu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xiangfan Yin
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, and Abramson Cancer Center, The Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donna L George
- Department of Genetics, The Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashani T Weeraratna
- Program in Tumor Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
50
|
Kung CP, Leu JIJ, Basu S, Khaku S, Anokye-Danso F, Liu Q, George DL, Ahima RS, Murphy ME. The P72R Polymorphism of p53 Predisposes to Obesity and Metabolic Dysfunction. Cell Rep 2016; 14:2413-25. [PMID: 26947067 DOI: 10.1016/j.celrep.2016.02.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 01/14/2023] Open
Abstract
p53 is well known for its tumor suppressor role, but this protein also has a poorly understood role in the regulation of metabolism. Human studies have implicated a common polymorphism at codon 72 of p53 in diabetic and pre-diabetic phenotypes. To understand this role, we utilized a humanized mouse model of the p53 codon 72 variants and monitored these mice following challenge with a high-fat diet (HFD). Mice with the arginine 72 (R72) variant of p53 developed more-severe obesity and glucose intolerance on a HFD, compared to mice with the proline 72 variant (P72). R72 mice developed insulin resistance, islet hypertrophy, increased infiltration of immune cells, and fatty liver disease. Gene expression analyses and studies with small-molecule inhibitors indicate that the p53 target genes Tnf and Npc1l1 underlie this phenotype. These results shed light on the role of p53 in obesity, metabolism, and inflammation.
Collapse
Affiliation(s)
- Che-Pei Kung
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Subhasree Basu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sakina Khaku
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Frederick Anokye-Danso
- Institute for Diabetes, Obesity, and Metabolism, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; Biostatistics Unit, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Donna L George
- Department of Genetics, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rexford S Ahima
- Institute for Diabetes, Obesity, and Metabolism, The Perelman School at the University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|